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0. Introduct ion 

In this paper and in [12], [13], we study the structure of spaces, Y, 
which are pointed Gromov-Hausdorff limits of sequences, { (M n ,p i)}, 
of complete, connected Riemannian manifolds whose Ricci curvatures 
have a definite lower bound, say Ric M n > — (n — 1). In Sections 
5-7, and sometimes in [12], we also assume a lower volume bound, 
Vol (Bi(p i)) > v > 0. In this case, the sequence is said to be non-
collapsing. If l im^oo Vol (Bi(p i)) = 0, then the sequence is said to 
collapse. It turns out that a convergent sequence is noncollapsing if and 
only if the limit has positive n-dimensional Hausdorff measure. In par
ticular, any convergent sequence is either collapsing or noncollapsing. 
Moreover, if the sequence is collapsing, it turns out that the Hausdorff 
dimension of the limit is actually < n — 1; see Sections 3 and 5. 

Our theorems on the infinitesimal structure of limit spaces have 
equivalent statements in terms of (or implications for) the structure on 
a small but definite scale, of manifolds with Ric M n > — (n — 1). Al
though both contexts are significant, for the most part, it is the limit 
spaces which are emphasized here. Typically, the relation between corre
sponding statements for manifolds and limit spaces follows directly from 
the continuity of the geometric quantities in question under Gromov-
Hausdorff limits, together with Gromov's compactness theorem, [37]; 
Theorems 2.45, 5.12 (see also Remark 5.13), 7.5, 7.6, are examples of 
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results concerning Riemannian manifolds, whose proofs depend on re
sults on the infinitesimal structure of limit spaces; see also Remark 4.9. 

Our results, most of which were announced in [14], are applications 
of the "almost rigidity" theorems for manifolds of almost nonnegative 
Ricci curvature, announced in [14] and proved in [15]. In particular, 
we use the generalized splitting, "volume cone implies metric cone" and 
(implicitly) integral Toponogov theorems, together with tangent cone 
analysis of the sort employed in geometric measure theory. 

The continuity of the volume (of balls) under Gromov-Hausdorff 
limits, M n —T- Y n, where Ric M n > — (n — 1) and Y n is a manifold, 
also plays a direct role in the present discussion. The continuity of the 
volume in the above case was conjectured by Anderson-Cheeger and 
proved in [26]. 

The remainder of this paper is divided into 8 sections and two ap
pendices. 

1. Renormalized limit measures. 

2. Arbitrary limit spaces. 

3. dim Y < n — 1 in the collapsed case. 

4. Polar limit spaces. 

5. Noncollapsed limit spaces. 

6. dim S(Y n) <n-2. 

7. Two sided bounds on Ricci curvature and Einstein manifolds. 

8. Examples. 

Appendix 1. Reifenberg's method and some consequences. 
Appendix 2. Remarks on the synthetic t reatment of Ricci curvature. 

We now describe the contents of the paper in more detail. 
Let dim denote Hausdorff dimension. We write Y m to indicate that 

Y has dimension m. Let £ G R . We say that y is an l-dimensional 
point, if lim r l o d im(B r(y)) = £. We denote the subset of such points by 

Let the complete pointed metric space, (Y m,y), be the pointed 
Gromov-Hausdorff limit of a sequence of connected pointed Rieman
nian manifolds, {(M'i1, p i)}, with Ric M n > —(n — 1). Of course, m < n 
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and Y m is locally compact; see [37]. By definition, a tangent cone at 
y G Y m is a complete pointed Gromov-Hausdorff limit, fY y, d ̂ , y ̂  g 
of a sequence of rescaled spaces, f{Y m,r~ d, y)g, where d^d ^ are the 
metrics (distance functions) of Y m,Y y respectively, and frg is a pos
itive sequence with r i —> 0. It follows from Gromov's compactness 
theorem that every such sequence has a subsequence, fr j g, such that 
fY m,r~ d,yg is convergent. In particular, tangent cones exist for all 
y G Y m, but might depend on the choice of convergent sequence. 

It is easy to see that any tangent cone also arises as the pointed limit 
of some sequence, f(M i1, q i)g, with Ric M n > — (n — l)5i, where Si —> 0. 
Thus, tangent cones have nonnegative curvature in a generalized sense. 
In some arguments, we must also consider iterated tangent cones i.e. we 
take (Y y)z at some point, z G Y y, and iterate this construction finitely 
many times. It is also easy to see that any iterated cone can be realized 
as a pointed Gromov-Hausdorff limit of some sequence, f{Y m, r~ d, y i)g, 
and hence, as the limit of some sequence, f ( M n , i ) g , as well. 

Definit ion 0 .1 . A point, y G Y, is called regular, if for some k, 
every tangent cone at y is isometric to R k. 

Let R k denote the set of k-regular points and put R = Uk R k, the 
regular set. Note that this definition and notation, as well as certain 
definitions and notation below, differ somewhat from those of [14]; the 
theorems of [14] are correct as stated (with the definitions given there). 

Definit ion 0.2. A point, y G Y m, is called singular, if it is not 
regular. 

We denote the singular set by S. 

Ideally, we would like to show that R is connected, R = R m, 
dim S < m — 1 and more generally, S has codimension > 1 with re
spect to any natural measure for which the measure of R is positive. 

In the noncollapsed case, m = n, all of the above mentioned proper
ties will be shown to hold; see [12] for the connectedness of R . Moreover, 
with regard to the dimension of the singular set, we get the stronger as
sertion, dim S < n — 2. 

In the collapsed case, m < n, without further assumptions, our 
information at the present is less complete. We do not know that R 
is connected, nor do we know that m is an integer, nor that R m is 
nonempty. However, we have partial information on the the latter two 
issues and strong additional information as well. 
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An obvious density argument implies dim R k < k; compare (4.2), 
(4.3). Moreover, if k is the largest of those integers, £, such that R 
is nonempty, then H {R k) > 0, where H (•) denotes k-dimensional 
Hausdorff measure] see [13] (and Section 5 for the case k = n). We 
show in Section 4 that this k satisfies k = m, for so called polar limit 
spaces, Y m; see below for the definition. By the results of Section 5, 
noncollapsed limit spaces are polar, and at present we do not know an 
explicit example of limit space which is not polar. 

For many purposes, the natural measures on our limit spaces are 
those which are obtained by considering a suitable subsequence, 
f ( M n ,p j)g, and extracting an appropriate limit of the sequence of renor-
malized Riemannian measures on the manifolds, M j n . Here, the renor-
malization is such that renormalized volume of the unit ball, Bi(p i), is 
equal to 1. These renormalized limit measures were constructed in [30]; 
see also Section 1 and compare [36]. 

In the noncollapsed case, it turns out that any such measure, is, is 
just a multiple of the Hausdorff measure, H n; see Theorem 5.9. How
ever, in the collapsed case, different Gromov-Hausdorff convergent se
quences, M'i1 —T- Y m, can lead to different limit measures; see Example 
1.24. Thus, a renormalized limit measure encodes information on the 
collapsing sequence from which it arises; compare [34]. Even in the col
lapsed case, the renormalized limit measures and Hausdorff measure are 
closely related; see [13] for further discussion. 

Any renormalized limit measure, is, has the crucial property that 
is(S) = 0 and as a consequence, v{R) > 0. In particular it follows that 
the regular set, R , is dense. 

In order to discuss the content of the individual sections, we intro
duce some additional definitions and notation. 

Definit ion 0.3 . A point, y G Y m, is called k-weakly Euclidean, if 
some tangent cone at y splits off a factor, R , isometrically. 

Let WE k denote the set of k-weakly Euclidean points. Then 

Y m = WE D WEi D • • • D WE n = R nD WE n+i = 0. 

Of course, R k C WEfc, 

Definit ion 0.4. A point, y G Y m, is called k-degenerate if it is not 
(k + l)-weakly Euclidean. 

Let D k denote the set of k-degenerate points. Then 

D c D x C - - - C D n = Y 
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If we put D k nR = S k C S, then S = Lik S k-
Before proceeding, we mention that in Section 2, a corresponding 

notion of k-Euclidean point is defined, in which the word, "some", in 
Definition 0.3 is replaced by "every". From the technical standpoint, 
this distinction is very significant. However, at present, in all known 
examples, the k-weakly Euclidean and k-Euclidean sets coincide. 

In Section 1, we construct renormalized limit measures, is, on limit 
spaces, Y m. Let M H denote the simply connected space of dimension k 
and curvature = H. For z G M H. put V k,H{r) = Vol (B r(z)). Let fi be 
a measure. Then by construction, we have, the inequality, 

(0.5) B z»4. 

for z G Y m, fj, = is, k = n, H = —1; see [37]. In fact, it follows from 
[37], tha t (0.5) holds in the directionally restricted form given in (A.2.1). 
Presently, we do not know if (0.5) always holds for fj, = H m, k = n, 
H = —1; compare Examples 1.31 and 8.77. 

In Section 2, we show that for any renormalized limit measure, is, 
we have v(S) = 0. We also show that WE k C U^k R i-

In Section 3 we show d imY m < n implies dim Y m < n — 1. 
In Section 4 we introduce the class of polar limit spaces. The space 

Y m is polar if the base point of every iterated tangent cone is a pole 
i.e. if every minimal geodesic segment emanating from the base point 
is the restriction of some ray. We show that for polar limit spaces, 
dimD k < k. Note that from the results of Sections 3 and 5, it follows 
that dimD n-i < n— 1, for all (possibly nonpolar) limit spaces. We also 
show that in the polar case, Y(£) C Ui>fg R i, compare Section 2. 

In Section 5, we discuss the noncollapsed case, Vol (Bi(p i)) > v > 0, 
where p i G M i1, or equivalently, dim Y n = n. Here, Y n = Y(n) and 
it follows easily that R = R n. We also show in Section 5 that any 
tangent cone at y G Y n is a metric cone. Thus, in particular, Y n is 
polar and so, dimD k < k. Additionally, we show that the result of [26] 
on the continuity of the volume (equivalently, n-dimensional Hausdorff 
measure) can be extended to the general case in which a sequence of 
limit spaces, fY rag, converges to a limit space Y n. In particular, (0.5) 
holds for fj, = H n, k = n, H = — 1, on such limit spaces. 

Let cGH denote Gromov-Hausdorff distance and let Bi(O) C R . 

Definit ion 0.6. The (e, k)-regular set, (R k)s D R k{Y m), con
sists of those points, y, such that every tangent cone, (1y,yOO)> satisfies 
d GH(B1(yoo),B1(0)) <e. 
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Note that {R k)s H S need not be empty. If m = n, then for e small, 
we must have k = n and we will just write R , rather than (R n)e. 

Using the results of Appendix 1, we show in Section 5 that for e < 
o 

e(n), sufficiently small, R , the interior of R , is homeomorphic to a 
smooth manifold. The homeomorphism is essentially unique and with 
respect to this parameterization, the metric is bi-Hölder equivalent to 
a smooth metric, where the exponent, a, satisfies, a —> 1 as e —> 0; 

o 

possibly, the metric on R is actually bi-Lipschitz equivalent to a smooth 
metric. The basic idea for constructing a bi-Hölder homeomorphism is 
to use the results proved in [26]. Recall tha t in [26], using the solution 
of a conjecture of Anderson-Cheeger proved there, combined with a 
conjecture of Anderson-Cheeger and Perelman analogous to the one 
proved in [24], the following was shown. If Ric M n > —e(n) and some 
ball in M n is Gromov-Hausdorff close to the corresponding ball in R n, 

then every sub-ball (whose center is not very close to the boundary) is 
close on its own scale to the corresponding ball in R n. More precisely, for 
all e > 0, there exists S > 0, such that R s ( Y n) CR(Y n); see Theorem 
A.1.5. For subsets of R n, an analog of the condition which defines R is 
known as "Reifenberg's condition", as was pointed out to us by Bruce 
Kleiner; see [43], [50]. 

In Section 6 we show that S(Y n) C S n-2(Y n). Thus, in the non-
collapsed case, the singular set has codimension at least 2. Obvious 
2-dimensional examples show that this result is optimal. In the col
lapsed case, well-known examples show that the singular set can have 
codimension 1. For instance, S 3 collapses with bounded sectional cur
vature, to a closed interval. 

In Section 7, we continue to assume dim Y n = n. Using a theorem 
of Anderson, [4], we show that if jRic M n j < (n — 1), then for e < e(n), 
in fact R6 = R (i.e., R e T S = 0). In particular, R is open and S is 
closed. Clearly, this is not the case if we just assume Ric M i > — (n — 1). 
Moreover, in this case of bounded Ricci curvature, R has the structure 
of smooth manifold with Cl,a Riemannian metric; the metric is C°° if 
in addition, M n is Einstein. At points of R , the convergence of metrics 
g i —^ goo takes place in the Cl,a (respectively C°°) topology. 

In Section 8, we present a number of examples. The first of these, Ex
ample 8.41, illustrates that for all e > 0, there exist Y n and 
y G R e ( Y n), such that the tangent cone at y is not unique. 

In the collapsed case, we show that various new phenomena arise. 
For instance there may exist distinct mutually tangent geodesics and at 
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certain singular points of Y m, (0.5) can fail to hold, for fj, = 7im, k = 
m, H = —1; see Example 8.77. Additionally, there may be points at 
which there exist distinct tangent cones having different dimensions; 
see Example 8.80. There exist also collapsed limit spaces containing 
points at which no tangent cone is a metric cone; see Example 8.95. 
However, the spaces in these examples are still polar. Finally (and not 
surprisingly) we show that if for a sequence, f M n i g, with Ric M n i > 0, 
we have n i —> oo, then for the limit space, all good properties (such as 
the splitting theorem) can fail to hold. 

In Appendix 1, we reformulate the theorem of Reifenberg [50] (see 
also [52]) in an intrinsic setting. In combination with the results of 
[24]-[26] (in particular with the conjectures of Anderson-Cheeger and 
Perelman proved there) this implies a sharpening of Perelman's lower 
bound on the relative contractibility radius in the presence of almost 
maximal volume; [46]. As a consequence, we obtain sharpenings of most 
of the results of [24]-[26] and additional new results; see in particular, 
Theorem A.1.11. 

As a specific example, it follows that there exists S(n) > 0, such 
that if Ric M n > n - 1 and Vol(M n) > (1 - 8{n)) V o l ^ n), then M n is 
diffeomorphic to the sphere, S n. Indeed M n might be bi-Lipschitz to 
S n, but this does not follow from Reifenberg's method. 

In Appendix 2, we discuss synthetic t reatments of the concept, 
"Ricci curvature bounded below", in light of the results on limit spaces 
obtained in the body of the paper and in [12], [13]. 

We will now give a brief indication of a portion of the contents of 
[12], [13]. 

In [12], we will show that the set, SS C S, of so called strongly 
singular points, has codimension > 1 with respect to any renormalized 
limit measure, v (in a suitably defined sense). Conjecturally, this holds 
for S as well. By definition, the strongly singular set is the complement 
of the weakly regular set. 

In [13] we show that on the set of so called k-strongly regular points, 
SR ki any renormalized limit measure, is, determines the same measure 
class as Hausdorff, measure, H . Since, the complement of the strongly 
regular set, SR = Uk SR k, has measure zero with respect to any is, 
it follows that the collection, f//g, of all renormalized limit measures 
determines a well-defined measure class i.e. v\ is absolutely continuous 
with respect to z/2, for all v\,vi. The above discussion is based in part 
on the Poincare inequality, which is shown to hold for our limit spaces. 
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For polar limit spaces, we find that Y(k) C R k for k G Z+, that 
Y(k) is empty for k g- Z + and that for e sufficiently small, {R k)e is 
empty for k > m. In particular, for polar limit spaces, m = dim Y m is 
an integer. 

Additionally, we discuss rectifiability properties of limit spaces. Based 
in part on this discussion, we show that there is a natural intrinsi
cally defined self-adjoint Laplacian on functions, with all of the familiar 
properties which hold in the smooth case. Moreover, we show that 
the spectrum of the Laplacian behaves continuously under measured 
Gromov-Hausdorff convergence. 

In [12], in the noncollapsed case, we prove a result on the connected
ness of the e-regular set. We show that for all e > 0, there exists S > 0, 

o 

such that R$(Y n) lies in a single component of R6 (Y n). Conjecturally, 
the same holds for arbitrary m = dim Y m. Under the assumption that 
(a slightly more technical version of) this condition holds in general, 
we show the isometry group of any limit space, Y m, is a Lie group; 
compare [32]. In particular this is the case for m = n. Knowing that 
the isometry group is always a Lie group would have significant impli
cations for the structure of the fundamental group, for manifolds with 
diameter bounded above and Ricci curvature bounded below. It would 
imply that the results of [31], proved there under the assumption that 
the sectional curvature is bounded below, actually remain valid in the 
presence of a lower bound on Ricci curvature. 

We also show in [12] that certain spaces which closely resemble the 
"horns" of Example 8.67, but which do not have locally constant di
mension, do not arise as limit spaces; 

Finally in [12], we specialize the results of the present paper to the 
case in which the manifolds, M i1, are homogeneous spaces; compare [59], 
[60]. 

We close this introduction with some additional remarks and con
jectures. 

Conjecture 0.7. The interior of Y n n S n-^{Y n) is a topological 
manifold. 

In a subsequent joint paper with Gang Tian, [17], we prove the 
stronger statement, S{Y n) C S n-^{Y n), under the additional assump
tion that for some p > | , the L p-norms of the curvature tensors of the 
manifolds, M i1, are uniformly bounded; see also [16]. 

In case the metrics on the M'i1 are Kahler-Einstein on a fixed com-
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plex manifold M n = M n, with fixed Kahler class, a standard argument 
based on characteristic numbers and curvature identities implies that 
this uniform bound actually holds, with p > 2; see [17]. On the other 
hand, the following conjecture is well known; see [6], Conjecture 2.3. 

Conjecture 0.8. If jRic M n j < (n - 1), then S(Y n) C S n-4(Y n) 

and H n-4(S n-4(Y n)) < oo. 

Finally, we point out that the results of this paper should be com
pared to those of [9], [48], which treat analogous questions in the context 
of a lower bound on sectional curvature, i.e., for Alexandrov spaces. Re
call tha t in [24]-[26], one finds the first theorems on Ricci curvature (in
tegral Toponogov theorems, etc.) tha t strongly resemble results which 
play a basic role in Alexandrov space theory. 

Moreover, some of the results of Sections 5, 6 of this paper should 
be contrasted with the theorem of Grove-Petersen [38] (see also [40], 
[41]) giving a lower bound on the relative contractibility radius at all 
points of M n, under the assumptions d iam(M n) < d, Vol (M n) > v > 0, 
K M > — 1- Here K M denotes sectional curvature. Well known examples 
show that this fails to hold if the bound K M > —1 is weakened to 
Ric M n > —(n — 1); see [5]. However, according to Theorem 5.12 and 
Remark 5.13, the complement of a set of codimension 2 can be written 
as a union of sets, on each of which, every point has a neighborhood of a 
definite size diffeomorphic to a standard ball. Conjecturally, a weakened 
version of this property holds off a set of codimension 4. 

We are grateful to Fred Almgren, Mike Anderson, David Bao, Syl
vain Cappell, S.S.Chern, Misha Gromov, Bruce Kleiner, Fang-Hua Lin, 
Stephen Semmes, Gang Tian, Zhongmin Shen and Shmuel Weinberger 
for helpful discussions. We are particularly grateful to the referee for 
many highly constructive suggestions which very substantially improved 
the exposition and for pointing out an error in one of the examples in a 
previous draft of this paper. 

A portion of this paper was written during Fall 1995, while the first 
author was a member of the Institute for Advanced Study. He thanks 
the Institute for its hospitality. 

1. Renormal ized limit measures 

In this section, we construct renormalized limit measures, is, on (pos
sibly collapsed) spaces, (Y m,y), which are pointed Gromov-Hausdorff 
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limits of sequences, { (M n ,p i)}, satisfying 

(1.1) Ric M n > -(n-1). 

For any sequence, there is a subsequence for which the renormalized 
limit measure exists. These measures were first constructed by Fukaya, 
who used a somewhat different argument; see [30]. 

In the noncollapsed case, the limit measure exists without the nec-
cessity of passing to a subsequence, or of renormalizing the measure. 
The unique limit measure is just Hausdorff measure, H n; see Theorem 
5.9. (If, for the sake of consistency, one does renormalize the measure, 
then one obtains a multiple of H n, where as usual, the normalization 
factor depends on the choice of base point.) However, in the collapsed 
case, the renormalized limit measure on the limit space can depend on 
the particular choice of subsequence; see Example 1.24. 

The renormalized limit measures play an important role role in [12], 
[13], for instance in connection with the theory of the Laplace operator 
on limit spaces; compare [30]. 

Let M n satisfy Ric M n > - ( n - 1 ) . Then by (0.5), for /x = Vol(-), k = 
n, H = — 1 (and the triangle inequality) the following relations hold. For 
r\ < r2, xi,x2 = s, 

(12) Vol(B ri(xl)) > V , - i ( r i ) 

Vol(B r2(x2)) V , _ i ( r 2 + s) 

(1 3) V o l B t x ) ) > V , - i ( r 2 ) 
1 ' Vol(B r i (x i ) ) - V , - i ( r i + s) r 2 - r i + 

Vol (B 2 (x2) ) y 

' ' ; Vol^xi)) -
r2 > r\ + s. 

Fix p and define the renormalized volume function, 

V(x,r) = Vol(B r(x)) 

by 

(1.5) V(x,r) :=Vol.(B r(x)) := Vol B Vol (B r(x)). 
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It follows from (1.2)-(1.4) that on compact subsets, B R(p) X [r\, r?\, 
the collection of all such functions (i.e., for all (M n,p) satisfying (1.1)) 
are uniformly bounded, uniformly bounded away from zero and uni
formly equicontinuous. 

By combining the proof of Gromov's compactness theorem with an 
obvious modification of the proof of the theorem of Arzela-Ascoli, we 
obtain: 

T h e o r e m 1.6. Given any sequence of pointed manifolds, f(M i1, p i)g, 
for which Ric M n > —(n — 1) holds, there is a subsequence,f(M n,p j)g, 
convergent to some (Y m, y) in the pointed Gromov-Hausdorjf sense, and 
a continuous function V , : Y m X R —> R , such that if q j G M j n, 
z G Y m and q j —> z, then for all R > 0, 

(1.7) V jiq^Ri^Vooi^R) (uniformly on B Rl(p) X [0, R2]). 

Proof. After passing to a subsequence, we can assume f ( M n ,p i)g 
converges to (Y m,y) in the Gromov-Hausdorff sense. Take a count
able dense subset, fz k g C Y m, and a countable dense subset, fRg C 
R . Given the above mentioned bounds implied by (1.2)-(1.4), a stan
dard infinite diagonal argument shows that there exists a subsequence, 
f(M n,p j)g, such that (1.7) holds for z G fz k g, R G fRig. Just as in the 
Arzela-Ascoli theorem, it follows that (1.7) actually holds in general. 
This suffices to complete the proof. 

Since we can multiply both sides of (0.5) by (Vol(Bi(y))) _ 1 , the 
function, Voo, satisfies the following inequality for all z G Y m: 

h R] V ̂ (z,ri) V n,-i(ri) 
[ • > Voo (z,r2) - V , - i ( r 2 ) " 

Indeed, it is clear that (A.2.2), the directionally restricted version of 
(0.5) holds for fj, = is, k = n, H = —1. 

Define an outer measure, is, on subsets of Y m, by the standard 
construction, 

(1.9) i/(A) = imi/s(A), 
(l->0 

where 

us (A) = i n f f ^ V ^ , r ) j B z) , r < 5g. 
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By standard measure theory, v is a metric outer measure and the 
corresponding measure, also denoted by is, is a Radon measure; see 
Theorem 13.7 of [44]. 

T h e o r e m 1.10. There is a unique Radon measure, v, such that for 
all, z, R, 

(1.11) v{B R{z)) = V 0 0 { z , R ) . 

In particular v satisfies the inequality, 

"(B r.(z)) V n - i ( r i ) 
1.12 i > ' r < r2 . 

v{B r2{z)) V n-i(r2) 

Proof. From the definition of V œ , it is clear that for all z, R, 

(1.13) v{B R{z))>V ^{z,R). 

Thus, we must prove the opposite inequality. 
Let M n satisfy (1.1) and let K C B R(x). By a standard covering 

argument based on (0.5), for fj, = Vol(-), k = n, H = —1, it follows that 
for all e > 0, there exist balls, B r i(x i), with Xi G K, 

(1.14) 1 < i < N < N(e,n), 

(1.15) A ( e , n ) < r i < e , 

such that 

(1.16) K C U n = 1 B r i(x-), 

(1.17) J ] Vol (B r i(x-)) < (1 + e)Vol (Te(K))-
i 

Here Te(-) denotes the e-tubular neighborhood. Moreover, for some 

N' < N and 

(1.18) ^ A ( e , n ) < r i ' < e i = l,...N', 

the balls, f B r/ (x•)}, are mutually disjoint and 

(1.19) J ^ Vol (B r i(x-)) > (1 - e)Vol (K). 
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By dividing both sides of the inequalities in (1.17), (1-19) by 
Vol (Bi(p j)) and passing to the limit, we obtain corresponding inequal
ities for Y m, in which the function, Vol (B r(x)) is replaced by V_00. 
Clearly, the estimate corresponding to (1-17) implies (1.11), and thus, 
(1.12) as well. 

Finally, let v' be a second Radon measure satisfying V'{B R{z)) = 
Voo(z, R). Since is, v' are Radon measures, it suffices to show that they 
agree on each bounded open set, U. Again since is, v' are Borel regular, 
it follows that for all TJ > 0, there exists a compact set, K C U, with 

(1.20) v{K)>{l-r,)v{U), 

(1.21) v'{K)>{l-rj)v'{U). 

Since is, v' agree on balls, with the help of (1.19), we easily conclude 
that v = v1. 

The following is a direct consequence of (1.3). 

Propos i t ion 1.22. 

(1.23) v{B r{z)) < c{n,z^y)r 0 < r < 1. 

E x a m p l e 1.24. Consider the sequence of metrics on R , each of 
nonnegative curvature, given in polar coordinates by 

(1.25) fdr2 + [f(nr)/n]2d02}, 

where 

(1.26) f | [ l ,oo) = l . 

In this case, the limit space is the Alexandrov space, [0,oo), with its 
standard metric and the measure, is, is 1-dimensional Hausdorff mea
sure, given by integration of the 1-form, dr. 

Note however, tha t there exists a second sequence of metrics on R , 
each of nonnegative curvature, say, 

(1.27) fdr2 + h2n(r)d02}, 

where 

(1.28) h\[-,oo) = - . 
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The manifolds in this sequence look like very thin cones with sharply 
rounded tips. The limit is again the Alexandrov space, [0,oo), and the 
measure, is, is given by integration of the 1-form, 

(1.29) rdr. 

In particular, it follows that for a fixed limit space, which might be 
an Alexandrov space, the limit measure is not unique even if one fixes 
the dimension of the approximating sequence. This indicates that even 
for Alexandrov spaces it is of interest to consider measures other than 
Hausdorff measure. Many other examples in which the measure is not 
unique can be constructed e.g. from the examples in Section 8. 

R e m a r k 1.30. As mentioned in Section 0, it will be shown in [13] 
that the collection, {is}, of all renormalized limit measures determines a 
well-defined measure class i.e. v\ is absolutely continuous with respect 
to z/2, for all v\, vi. 

E x a m p l e 1.31. For the sequence of manifolds constructed in 
Example 8.77, the measure, is, is given by integration of the 5-form, 

(1.32) r 3 ^ - ^ , 

where UJ is the volume form associated to (normalized) Hausdorff mea
sure, H 5 , on Y5. Recall tha t for balls centered at the origin, one has 
(0.5), for fj, = H 5 , k = 5 + 4e, H = - 1 . On the other hand, (0.5) holds 
for ß = is, k = 8 + Ae - 3is, H = - 1 . Recall tha t 4e - 3r] < 0. 

R e m a r k 1.33. As a consequence of Proposition 1.22, it follows 
that any limit measure, is, is absolutely continuous with respect to Haus
dorff measure, in case the limit space is 1-dimensional. It will be shown 
in [13] that (as a consequence of the results described in Section 0) this 
result has a suitable generalization to arbitrary limit spaces. 

Conjecture 1.34. For some k, with m < k < n, one has (0.5), for 
H = H m, m < k < n, H = - 1 . 

The phenomena discussed in Example 8.77, are related to Conjecture 
1.34. 

Propos i t ion 1.35. Let {(M i1 ,p i)} —» (Y m,y) satisfy Ric M n > -£i, 
where Si —> 0. IfY m splits isometrically, Y m = 1 x X , then any limit 
measure, v, is a product measure, is = H ̂  R x tp, for some measure, tp, 
on X. 
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Proof. It suffices to show that for all x, r > 0, t\ < t2> we have 
is(B r((ti, x))) = is(B r((t2, x))). After making the change of coordinates, 
t —> t — ^ (t\ + t2)) we can assume t\ = — t, t2 = t, for some fixed t > 0. 
Moreover, by symmetry, it suffices to show 

(1.36) u(B r((-t,x))) < u(B r((t,x))). 

For w G B r((—t, x)), let s denote a minimal geodesic segment from 
(s, x) to w. Let 

(1.37) I s = {ujls(u)eB r((-t,x))}, 

(1.38) J s = { u j 7 s ( u ) G B r ( ( t , x ) ) , 

and let jI s j , jJ s j denote the 1-dimensional measure of I s, J s, respectively. 
From the isometric splitting, R x X , it follows that for all e > 0, there 
exists s(e) such that for s > s (e), we have 

(1.39) jJ s j+e>jI s j. 

Clearly, the directionally restricted version of (0.5) (see (A.2.1)) 
holds for fj, = is, k = n, H = 0. Therefore, by observing the ball, 
B r((—t,x)), from the point, (s,x), letting s —> 00 and applying (1.39), 
we easily obtain (1.36). 

R e m a r k 1.40. In [12], [13], we will prove results on generalized 
volume convergence which are closely related to Proposition 1.35. 

2. Arbi trary limit spaces 

Let (Y m,y) be the pointed Gromov-Hausdorff limit of a sequence, 
{(M m, p i)}, such that (1.1) holds. Let v be a renormalized limit measure 
as in Section 1. 

The main result of this section is 

T h e o r e m 2 .1 . For any renormalized limit measure, v{S) = 0. 

As a consequence of Theorem 2.1, we will deduce Theorem 6.68 of 
[15], which is restated here as Theorem 2.45. The proof was deferred to 
the present paper. We mention however, tha t Theorem 2.45 is consid
erably weaker than Theorem 2.1 and that a shorter, more direct proof 
is possible. 
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In order to prove Theorem 2.1, it will be convenient to introduce 
some additional concepts and notation; compare Section 0. 

Definit ion 2 .2 . A point, y G Y m, is called k-Euclidean if every 
tangent cone at y splits off a factor, R , isometrically. 

We denote by E&, the set of k-Euclidean points. Of course, 

E k C WE k. 

Definit ion 2 .3 . A point, y G Y m, is called k-weakly degenerate if 
it is not (k + 1)-Euclidean. 

We denote by WD k, the set of k-weakly degenerate points. 
Let WE k denote the set of points for which there exists some tangent 

cone, not isometric to R c , which splits off a factor, R c , isometrically. 
For all e > 0, we also define sets, (WE k)e, such that WE k = ne(WE k)e, 
as follows. We say that y G (WE k)e, if there exists r > 0 and X, 
(0,x) eR k X X, such that 

(2.4) d GH(B r(y),B r((0,x)))<er. 

The strongest assertion in the following Lemma 2.5 is the one con
cerning the set, (WE k)e- The proof of this assertion will be given in [13]. 
However, for the proof of Theorem 2.1, only the assertion concerning 
the set WE k is required. 

We will show in Proposition 2.13 below, that if Y is not a single 
point, then V(WDQ) = 0. From this and the following two lemmas, we 
easily obtain Theorem 2.1. 

L e m m a 2.5. We have is(WE k n E k) = 0. Moreover, there exists 
e(n) > 0, such that if y £ (WE k)e, for e < e(n)> then for all sufficiently 
small r > 0, we have v(B r(y) n E k) > 0. 

L e m m a 2.6. 

z/(WEfcnWEfc+i) = 0. 

Proof of Theorem 2.1. We can assume that Y is not a single point. 
Write A ~ B if A and B coincide off a set of measure zero with respect 
to v. Then by Propositon 2.13 below, we have 

(2.7) Y m = WDUE1 ~ E i . 

By Lemmas 2.5 and 2.6, we have, WE k ~ E k+i, for all k. Thus, 

(2.8) E k = R k U (E k n WE k) ~R kU E k+l. 
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By induction, we get 

(2.9) Y m ~ K 1 U ? ? 2 U - - U n . 

Let y G Y m and let py(z) = z^y denote the distance function from 

y-

Definit ion 2 .10. A point, z G Y m, is not a restricted cut 
point of y, if for all e > 0, there exists r(z,e) > 0, such that for 
0 < r < r(z,e), there exists a space, X r, (0,x r) G R X X r (the iso
metric product) and a pointed er-Gromov-Hausdorff approximation, 
ßr : B r(z) —T- B r((0, x r)), such that 

(2.11) \py - toßr\ < er (on B r(z)), 

where t denotes the coordinate function o n R x X r corresponding to the 
factor, R . 

Let W D ( y ) denote the set of restricted cut points of y. Note that 
WD C ny WD(y). We put Ex(y) = Y m \ WD(y). 

R e m a r k 2 .12 . From the generalized splitting theorem, Theorem 
6.62 of [15], it follows that if w is an interior point of a minimal geodesic 
segment, 7, with 7(0) = y, then z G Ei(y)- But in principle, E\(y) could 
contain points which lie on no such segment. 

Propos i t ion 2 .13 . If Y is not a single point, then for all y G Y m, 

(2.14) i>{WD{y)) = 0. 

In particular, V(WDQ) = 0. 

Proposition 2.13 is a direct consequence of the following lemma, 
which concerns smooth Riemannian manifolds satisfying (1.1). Lemma 
2.16 plays a role in Section 3 as well. 

Put A sus(p) = B s(p) \B sl(p). Fix 0 < r < r2 and 0 < i] < rx. 
Let X(p, r i , r2, i]) denote the set of points, y(t) G A ritr2(p), such that 
7(0) = p, , 7|[0,t] is minimal and -y|[0, t+ i]) is not minimal. 

Given 0 < r < 1, put 

(2.15) Z(p,r1,r2,v,r) = {q G A rur2(p) \BT11(q) C X(p, rh r2, i])}. 

L e m m a 2.16. There exist k = k(n,ri,r2), c = c (n , r i , r 2 , r ) and 
qi,... , qV; such that 

N 

(2.17) Z(p, ru r2, ?/, r) C ( J Brr)(q i), 
i=l 
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N 

(2.18) Yl Vol BTq) < kv, 
i=l 

(2.19) N < cr]1"n. 

Proof. It follows directly from (the directionally restricted version 
of) (0.5), for fi = Vol(-), k = n, H = - 1 (see (A.2.2)) that 

(2.20) Vol (X(p, r i , r2, T/)) < k(n, r b r2)?7; 

see (1.5). 
Let q i , . . .qv be a maximal set of points in Z(p, r\, r2, i], r ) such that 

i, q j > T7/, if i / j . Then (2.17) holds and since 

Ui BTri(q i) C X(p,r1,r2,v), 

it follows that (2.18) holds as well. We have B i ( i ) n Bi (q j) = 0, 

for i / j . Thus, by (2.20) and (0.5), we get (2.19). 
Let \P (£ i , . . . , £i j c i , . . . , c j) denote any function such that for fixed 

c i ) • • • ) c j) 

(2.21) lim£li...,£i_n,tf = 0. 

Proof of Proposition 2.13. It follows from the generalized split
ting theorem (Theorem 6.62 of [15]) that if Ric M n > - ( n - l ) , p É 
M n and z G A r i jr2(p) nZ(p,ri,r2,T],T), then (2.11) holds with r = TT] 
and e = ^ (T? , Tjn). 

Let (Y m,y) be a limit space such that (1.1) holds and let v be a 
renormalized limit measure on Y m. Let f77g be a fixed sequence such 
that T£ —> 0. Then it follows by an obvious diagonal argument that 
for all j,k,£ G Z+, the subset, W(p, j , k, TI), C A2-j 2j(p), for which 
(2.11) fails to hold with r = Ti2~v+k\ e = ^(r^jn) admits a covering by 
balls, fBTe2-j+k)(q i)g, i = 1 , . . . ,N, such that (2.17)-(2.19) hold with 
p replaced by y and Vol(-) replaced by v(-). 

For fixed j , £, we have in particular, 

(2.22) v ( J W(p,j,k,n) < c(n,j,n)2-k°, 
\k>k„ J 



424 j e f f c h e e g e r & t o b i a s h . c o l d i n g 

CO CO 

CO CO 

(2.23) v f | ( J W{p,j,k,Ti) ) = 0 . 

Note that if 

then (2.11) holds for all sufficiently small r and e = ^ ^ ( r ^ | n ) . By 
considering the sequence, 77 —> 0, we get from (2.23), 

(2.24) I / ( W o ( y ) n A 2 - j i 2 j ( y ) ) = 01 

and letting j —> 00, we obtain (2.14). 

Let (Ejt)e denote the set of points, z, such that for every tangent 
cone, Y z1 there exists X, (0, x) G R c X X , such that 

(2.25) d GH(Bi (zoo) ,B i ( (0 ,x ) ) )<e . 

Here, X, might depend on the particular tangent cone, Y z. Note that 

E k = ne(Efc)e. 

Recall tha t given a metric space, Z, and a collection, B = f B ra (za)}) 
of balls, such that sup a ra < 00, then there is a subcollection, 

(2.26) B' = fB ral{za,)}, 

of mutually disjoint balls, such that 

(2.27) Ua>B6ra,(z0,) DUaB ra(za); 

see Chapter 1, Theorem 3.3 of [56]. This statement, which we call the 
Covering Theorem, has the following standard consequence. 

Let tp be a u-finite measure on Z, such that for all R > 0, there 
exists c(R), such that for all z G Z, 

(2.28) ^ ( B r(z)) < c(R)4>(B r(z)) (r < R). 

Let A C Z. If for all z £ A, the lower density, ®A(z), of A at z (with 
respect to -0) satisfies 

~ , N tp(B(z) HA) 
2.29 A z := lim n r ; ; = 0, 
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then 

(2.30) i>{A) = 0. 

Proof of Lemma 2.5. In view of (0.5), for fj, = is, k = n, H = —1, 
the discussion preceding the proof implies that it suffices to show the 
following. For all z G Y m and e > 0, there exists 8 > 0, such that if for 
some X, (0, x) G R c X X , we have 

(2.31) d GH(B r(z),B r((0,x)))<5r, 

then 

(9 QOÌ i / (B r ( z ) n ( k ) e ) ^ p . 

^ ( B r ( z j ) 

compare (2.25), (2.29), (2.30). 
First consider the case of a Riemannian manifold, M n, satisfying 

(1.1). By scaling, it suffices to consider B\{p) C M n, such that for some 
X , (o,x)eX, 

(2.33) d GH(B1(p),B1((0,x)))<S. 

By the proof of Theorem 6.62 of [15] (see also [26, Lemma 1.23]) the 
following holds. Given 

q G Bi_* l (5|n ) (p) , * 2 ( j n ) * 3 ( j n ) < s < V3(5jn), 

there exist harmonic functions, b i , . . . , b k on B s(q), given by b i jdB s(q) = 
b i jB s(q), where b i (x ) = p i, x — p i, q, for suitable p i, such that 

(2.34) + V KVb i.Vb j J H - ^ i jHess b i j } 

The collection of points, {p i}, is gotten from the splitting in (2.33). 
Since apart from a set of measure \P(5jn)Vol (Bi(p)), we can cover, 

Bi-#(5|n)(q) by a collection of mutually disjoint balls as in (2.34), it 
will suffice to consider a single such ball. After rescaling the metric, 
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g —7- s 2g and making the replacement, b ; —> s 1b î-, we are reduced to 
considering a ball such that 

(2.35) +J2- s-2 jHess b î j 2 | 

: = VolBtq) ) Z ^ f 

< V(8jn). 

As recalled below, relation (2.35) can be used to control the extent to 
which sub-balls, B r(q) C B\(q), satisfy a condition like (2.33) (possibly 
with a different constant on the right-hand side and a different space on 
the left-hand side). Indeed, by the proof of Theorem 6.62 of [15] (see 
Sections 2, 3, 6) and rescaling, the following holds. If for some A < 1, 

then there exists X, (0, x) <E R k X X such that 

(2.37) d GH{B r{q), B r((0, x))) < iS(\-1iif(Sjn) j n)r. 

Now let B denote the collection of all balls for which (2.36) fails to 
hold. Thus, B includes all balls for which (2.37) fails. By the Covering 
Theorem, there exists a subcollection, B' = fB r , (qa')}, such that (2.27) 
is valid. 

Since the balls of B' are mutually disjoint, it follows from (2.35), 
(2.36) that 

(2.38) Y,aVol(B raq°'))<X-

Hence, by (0.5), for fj, = Vol(-), k = n, H = —1, we have 

(2.39) ^ a , Vol(B ra, (q«')) <c (n )A, 

where L)a'Bßr ,(qai) contains all balls for which (2.37) fails. 
By letting S —> 0 and then A —> 0, we conclude that (2.32) holds for 

the case of smooth manifolds. 
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Now, by a straightforward limiting argument, based on (2.37)-(2.39) 
and the fact that L)a'Bßr ,(qai) contains all balls for which (2.37) fails, 
we find that (2.32) holds for arbitrary limit spaces, (Y m,y), satisfying 
(1.1). This completes the proof. 

R e m a r k 2.40. By making stronger use of the L2-estimate on 
the Hessians of the harmonic functions, b-, together with the Poincare 
inequality, we can get more detailed information on the regular set. In 
[13], by using such ideas, we will prove the assertion in Lemma 2.5 con
cerning (WE k)e- We will also obtain lower estimates on the codimension 
(suitably defined) of the complement of the set of points, y G R k, which 
satisfy for some ro, c > 0, 1 > a > 0 and all r < ro, 

(2.41) d GH{B r{y), B r(0)) < cr1+a. 

Roughly speaking, at such a-regular points, the metric is Ca; see [13] 
for further discussion. Finally, we mention that the results described in 
Remarks 1.30 and 1.33 are obtained as applications of this discussion. 

Proof of Lemma 2.6. By the discussion preceding the proof of 
Lemma 2.5, it suffices to show the following. Given z G W E , for all 
e > 0, there exists r > 0, such that 

(2.42) •<(B(z) n ( > V k W ) . ) < E . 
v{B r{z)) 

Suppose, there exists e > 0 such that (2.42) fails for all r. Then 
since the sets (WE k)e are open, by a standard argument in measure 
theory, we find a tangent cone Y z = R c X X , where X is not a point, 
such that for (0, x) G R k X X, 

(2 4 3 i t / o o ( B 1 ( ( 0 , x ) ) n ( W E i M R k x X ) ) 

Here the measure, z/^, is a limit measure for some rescaled sequence, 
(Y m,r~ d,z), which is constructed as in Section 1. Clearly, v^ is itself 
a renormalized limit measure, in the sense of Section 1. 

By Proposition 2.13, we have z / 0 0 (WD((0 , x))) = 0. Moreover, if 
woo G Ei ((0, x)) nR k X x, then 

woo G E k+i{R k x X) c WE k+1{R k x X). 

Since by Proposition 1.35, vO0(R k Xx) = 0 [X is not a point) it follows 
that for WD k = R kxXnE k+ll we have v00(WD k) = 0, which contradicts 
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(2.41). This completes the proof of Lemma 2.6 and hence of Theorem 
2.1 as well. 

R e m a r k 2.44. At present, for m < n, we are unable to show 
that the sets, (lZk)e (Y m), have nonempty interior. At interior points, 
Reifenberg's theorem, in the intrinsic formulation given in Appendix 
1, can be applied to obtain the local topological regularity of (lZk)e] 
compare Section 5, for the case m = n. 

We close this section by restating Theorem 6.68 of [15], the proof of 
which was deffered to the present paper. 

Let M n satisfy (1.1) and let B R{p) C M n. 

T h e o r e m 2.45. For all e > 0, there exists a disjoint union of balls, 
UN := Ue C B R(p), such that, 

(2.46) V o l ( U £ ) > ( l - e ) V o l ( R ( p ) ) , 

(2.47) r i > A(e,n) > 0 , 

(2.48) d GH(B r i(q i),B r i(0))<er (0eR k i). 

Moreover, there exist harmonic functions, b^ i , • • • , b k iti, on B r i(q i) 
and an er i-Gromov-Hausdorjf approximation, ßi : B r i(q i) —> B r i(Q), 
such that if b jti denotes the i7th coordinate function on R k i, then 

(2.49) jb j i i - b j i i o / i j < er i. 

Proof. This follows from an obvious compactness argument based 
on Theorem 2.1, together with the existence of harmonic functions, 
b i , . . . , b k, as in (2.34); compare [15, Section 6]. 

3. d im Y < n — 1 in the col lapsed case 

The main result of this section is 

T h e o r e m 3 .1 . If (Y m, y) is the pointed Gromov-Hausdorff limit of 
a sequence, {(M i1, m i )} , with Vol (Bi(p i)) —> 0, then dim Y m < n — 1. 
Equivalently, dim D n-\ < n — 1, for any limit space, Y m. 
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As explained in Section 0, it suffices to prove the first statement. We 
begin by proving a counterpart for Hausdorff measure, of Proposition 
2.13. 

Propos i t ion 3 .2 . dim WD{z) < n - 1, for all z G Y m. In 
particular, dim WD(Y m) < n — 1. 

Proof. Since the proof is very similar to that of Proposition 2.13, 
we will be brief. 

Let Z(p,ri,r2,i],T) be as in (2.15). Given e > 0, it follows from 
(2.19) that 

(3.3) (TT])n-1+eN < c(n, r , r2 , r ) r n - 1 + V . 

If we consider sequences, rj = 2 , k = 1 ,2 , . . . , and 77 —> 0, we get the 
following estimate which corresponds to (2.23): 

(3.4) H nT-2
l_to I (J W{p,j,k,Tt)\ O ^ j , ^ ) ^ ^ - k - * . 

\k=k0 J 

Here Hg denotes Ö-Hausdorff content in dimension K. Now the proof 
can be completed as in Proposition 2.13. 

Proof of Theorem 3.1. Suppose that H a - 1 + e ( Y m) > 0 for some 
e > 0. By a standard lemma in measure theory (see [33, Chapter 11] and 
compare Section 4) we can write Y m = AUB, where H n~1+s (B) = 0 and 
if z G A, then for some tangent cone, Y z, we have H n~1+s(Bi(z00)) > 0. 
In view of Proposition 3.2, we can assume with no loss of generality, 
tha t z G Ei{Y m). 

We have Y z = R X X, z ̂  = (0, x), for some (X, x). It follows that 
E i ( R x X ) n R x x C E i Y y). Since H n~1+s (R X x) = 0, we can repeat 
the previous argument, starting at some (0, x ) G E2(Y y). 

If we repeat this argument, after n—1 steps, we arrive at an iterated 
tangent cone which is isometric to R a _ 1 x W, for some W, and for which 
H a _ 1 + e ( B i ( ( 0 , w))) / 0. Thus, W is not a point, and as above, we have 

n ( R a _ 1 X W) / 0. By using Theorem 5.9, the generalization of the 
n-dimensional volume convergence theorem of [26], we easily conclude 
the proof. 

4. Polar limit spaces 

Throughout this section, we assume (in addition to (1.1)) that Y m 
is polar, in the sense defined below. Under this assumption, we show 
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tha t R k is nonempty, for some k > m. On the other hand, we show 
in Par t II, tha t for Y m an arbitrary limit space satisfying (1.1), R k is 
empty, for k > m. It follows in particular that if Y m is polar, then m 
is an integer. 

Additionally, we show that in the polar case, dim D k < k; see Section 
0 for the definition of D k. Since S k C D k, in this case, dim S k < k as 
well. 

As observed in Section 5, if m = n, then Y n is polar. Thus, in 
particular, dim S k(Y n) < k. 

Let X be a complete length space. We say x G X is a pole, if for all 
x / x, there is a ray, y : [0, co) —> X , with 7(0) = x and y(t) = x , for 
some t > 0. Here, as usual, 7 is called a ray if each finite segment of 7 
is minimal. 

Let y G Y m and let Y y be a tangent cone at y. If z ̂  G 1y, we can 
consider a tangent cone to Y y at z ̂ . More generally, any tangent cone 
obtained by iterating this process will be called an iterated tangent cone. 
Recall tha t iterated tangent cones played an implicit role in Section 3. 

Definit ion 4 .1 . The space, Y m, is called polar if for all y G Y m, 
the base point of every iterated tangent cone is a pole. 

As mentioned in Section 0, currently we do not know an explicit 
example of a limit space satisfying (1.1) which is not polar. If m = n, 
then every tangent cone is a metric cone; see Theorem 5.2. Thus, every 
limit space, Y n, is polar. 

Fix 0 < t < 1 (which plays no further role in the discussion). Let X 
be a metric space and A C X . We say that x G A is a k-density point 
of A, if there exists a positive sequence, r j —> 0 such that for all j , and 
any covering of B r (x) n A by balls, fB st (x•)g, we have 

(4-2) Ek ^ -
i 

Let T k(A) denote the set of k-density points of A. By an easy lemma 
in measure theory, (see [33, Chapter 11]), 

(4.3) H k(AnT k(A)) = Q. 

Let Y(k) denote the set of k-dimensional points of Y m (defined in 
Section 0). Clearly, for all k' < k, we have 

(4.4) Y(k)cT k,(Y). 
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Also, if y G T kt{Y), by Gromov's compactness theorem, it is obvious 

that there exists a tangent cone, Y y, with H (Y y) > 0. 

Let {k} denote the smallest integer > k. 

T h e o r e m 4.5 . IfY m is polar, then Y(k) C Un={k}R~. 

Proof. As noted above, for all k' < k, the set Y(k), is contained 
in the closure of points, y such that there exists Y y with H k (Y y) > 0. 
Let zoo / y be a k'-density point of Y y. Then there exists a tangent 

cone, (Y y) , at z ̂ , such that , H ((Y y) ) > 0. Since the base point 
of (Y y) is a pole, from the splitting theorem (Theorem 6.64 of [15]) it 
follows that (Y y)zco splits off a factor R , isometrically. 

Proceeding by induction, we find that there exists an interated tan
gent cone at y which splits off a factor, R isometrically, where i > {k}. 

It follows that for all e > 0,Y(k) C (W£i)e. Therefore, using the 
assertion concerning (W£k)e in Lemma 2.5 (which will be proved in 
[13]) our claim follows from an argument like that which was given in 
the proof of Theorem 2.1; see (2.8), (2.9). 

Note that using only the first statement in Lemma 2.5 (the proof of 
which was given in Section 2) and arguing as in the proof of Theorem 
2.1, one obtains from the Baire catagory theorem, the weaker statement, 
Y(k)cn={k}WR-. 

Let (W£k)e,r denote the open subset consisting of points, y, such 
that there exists X , (0, x) G R X X and, s > r, with 

(4.6) d GH(B s(y),B s((0,x)))<es. 

We denote by (WR k)e,r C (W£k)e,r, the open subset of points, y, 
such that the space, X , in (4.6), can be taken to consist of a single 
point. Also, define the e-weakly regular set, (WR k)e, and weakly regular 
set, (WR k), by (WR k)e = Ur(WR k)S}r, and (WR k) = ne(WR k)e, 
respectively. 

On compact subsets of Y, the following holds. For all r] > 0, there 
exist e(r]),r(r]) > 0 such that if z, D k > r], then z G (W k+i)e,r (where 
the bar denotes distance). In particular, if we put (D k)e = Y\(W£k+i)e, 
then (D k)e is closed and D k = Ue>0(D k)£. Also, (W£n)E = (WR n)E. 

T h e o r e m 4.7. IfY m is polar, and in particular, if m = n, then 
dim D k < k. 

Proof. If the assertion is false, then for some k' > k and e > 0, 
there exists a k'-density point, y, of (D k)e. By Gromov's compactness 



432 j e f f c h e e g e r & t o b i a s h . c o l d i n g 

theorem, we can assume that , (Y, r ~ d y) G romov-Hausdorff converges 
to a tangent cone, Y y, where fr j g is as in (4.2). 

It follows that for all r] > 0, and j sufficiently large, z G (D k)e(Y) n 
Bi(y), implies 

(4.8) d GH(z,(D k)E(Y y)nB1(y00)) < r], 

where B\(y) denotes the unit ball for the rescaled metric, r~ d. Since 
y is a k'-density point and (D k)e(Y y) is closed, we conclude that 

H k'((D k)£(Y y)nB1(yco))>0. 

Write Y y = R X X , where R ̂  is the maximal Euclidean factor. Since 
y G (D k)£(Y m), wehave£ < k. Put y<yo = ( O , ^ ) . Since H k'{Rxx<yo) = 
0, it follows that there is a k'-density point, z ̂ , of (D k)s(Y y) which does 
not lie on R X x ̂ . Since base point of any tangent cone of Y y at z ^ 
is a pole, it follows that such a tangent cone splits off a factor, R + 1 

isometrically. Since z ̂  G (D k)e(Y y), we find that in fact, £+1 < k. 
By repeating this argument sufficiently many times (with successive 
iterated tangent cones) we conclude £ < 0, a contradiction. By Theorem 
5.2, if m = n, then Y m is polar. This suffices to complete the proof. 

R e m a r k 4.9 . For Riemannian manifolds satisfying Vol(Bi(p)) > 
v > 0, Theorem 4.7 can be employed in an obvious fashion to provide 
an extension of Theorem 2.45. 

R e m a r k 4 .10 . A simple direct argument shows that for polar limit 
spaces, the set ( D ) e is actually finite, for all e > 0. In the noncollapsed 
case, one can give an explicit estimate on the cardinality of this set. 

5. Nonco l lapsed limit spaces 

In this section we continue to assume that (Y, y) is the Gromov-
Hausdorff limit of a sequence, f ( M n ,p i)g. In addition, we assume 

(5.1) Vol(Bi(p i ) ) > v > 0 . 

Before discussing the additional properties of the regular set tha t 
hold in this case, we give some results which are more geometric in 
nature. 

T h e o r e m 5.2. If (Y,y) satisfies (1.1) and (5.1), then for all 
y G Y, every tangent cone at y is a metric cone, C{X), on a length 
space X, with diam(X) < IT. 
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Proof. Suppose there exists y £ Y for which the assertion fails for 
some tangent cone, Y y, which is the pointed Gromov-Hausdorff limit of 
a sequence {Y,r i d,y), where d is the metric on Y. Since Y y is not a 
metric cone, it follows that there exists r] > 0,e > 0,Q > 1 and r j —> 0 
such that for any length space, X j , with d iam(X j) < IT, 

(5.3) d GH(A r jiQ,r j , (r j , fir j) Xr X j) > er j 

Here, as in [15], we understand that the metrics on A r jto,r j, and 
(r j,Qr j) Xr X j are measured in At1_r]\r ii+rj\r Q and 

((1 — 7?)r j 5 (1 + 7])Qr j) Xr X j 

respectively. However, according to Theorem 4.91 of [15], for any of 
the manifolds, M i1, with lim i_>00(M n ,p i) = (Y, y) there are at most 
# ( ^ e , fi-, i ì , n, v) annuli which satisfy the above condition with e replaced 
by ^e. For i sufficiently large, this is a contradiction. 

It follows immediately from Theorem 5.2 that the space, Y n, is polar 
in the sense of Definition 4.1. 

Next we observe that the result on volume convergence, conjectured 
by Anderson-Cheeger and proved in [26], can be sharpened as follows. 

T h e o r e m 5.4. For all d,v,rj > 0 there exists 

S(r)) = 8(n, d, v, rj) > 0, 

such that if for i = 1,2, 

(5.5) diam (M n) < d, 

(5.6) Vol (M n) > v > 0, 

(5.7) d GH(M n , M n )<5(r i ) , 

then 

(5.8) e-"Vol (M n) < Vol (M2n) < e"Vol (M n). 

Proof. It follows from (5.6) and (0.5), for fj, = Vol(-),k = n, 
H = — 1, tha t there exists e(n, v) > 0, such that if in Theorem 2.45, we 
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take e < e(n, v), then for all i , we have k i = n. With this observation, 
the theorem follows from the argument of [26]. 

Let H n denote Hausdorff measure. By definition, H n is normalized 
to agree with Lebesgue measure on R n. 

From (the proof of ) Theorem 5.4 we immediately obtain the follow
ing; compare Theorem 7.5. 

T h e o r e m 5.9. If Y satisfies (1.1) and (5.1) then dim Y = n. 

Moreover, for any R > 0 and q i GH z, 

(5.10) lim Vol (B R(q i)) = H n{B R{z)). 
i—>oo 

In particular, any renormalized limit measure, v, is a multiple of Haus
dorff measure, H n. Thus, on Y n, (0.5) holds, for fj, = H n,k = n, 
H = - 1 . 

We now consider the regular set. 

T h e o r e m 5 .11 . Weakly regular points are regular i.e. WR(Y n) = 
R ( Y n) = R n(Y n). Moreover, for all e > 0 there exists S > 0 such that 

if y e {WR n)s, then y e {R n)e. 

Proof. This follows directly from (0.5), for fj, = u,k = n and 
the argument used in [26] to prove the corresponding uniqueness theo
rem (conjectured by Anderson-Cheeger) for tangent cones at infinity of 
complete manifolds with Ric M n > 0. 

Let (WSk)e,s(M n) be as in Section 4 and put 

(Vk)e4M n) = M k \ {W£k)e,s{M n). 

From Theorem 6.2 (see Section 6) we immediately obtain the following. 

T h e o r e m 5.12. Given k' > n — 2 and e,r] > 0, there exists 
S = S(n, d, v, k', e, r]) > 0, such that if 

Ric M n > - (n - 1), diam (M n) < d, Vol (M n) > v, 

then the set (Vn)e $(M n) admits a covering by balls, fB s i(q i)}, with 

R e m a r k 5 .13. By Theorem A.1.8, given £ > 0, there exists 
e = e(n,£) > 0, such that for p G (WR n)£:s(M n) = M n\(Vn)£:S(M n), 
there is a smooth imbedding, f : B$(0) —> M n (where 0 G R n) such that 
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B(i-É)5(p) C f(Bs(0)) C B(1+yS(p). Thus (roughly speaking) offa set 
of codimension 2, Theorem 5.12 provides a sharpened generalization of 
the result of [38]. 

o 

Recall tha t for all e > 0, there exists 8 > 0, such that R$ CR . By 
Theorem A. 1.9 we get the following. 

o 

T h e o r e m 5.14. For e < e(n), the set R ^ Y n) has a natural smooth 
manifold structure. Moreover, for this parameterization, the metric on 

o 

R ( Y n) is bi-Holder equivalent to a smooth Riemannian metric. The 
exponent in this bi-Holder equivalence satisfies a(e) —> 1 as e —> 0. 

R e m a r k 5.15. It seems possible that the above parametrization 
can actually be chosen to be bi-Lipschitz. 

6. d i m S ( Y n) < n - 2 

The main result of this section is 

T h e o r e m 6 .1 . IfY n satisfies (1.1), (5.1) then S{Y n) C S n-2{Y n) 
and dim S < n — 2. 

By Theorem 4.7, if S C S n-2, then dim S < n — 2. Therefore, 
it suffices to show that a half space, R a _ 1 x R , does not occur as a 
limit space (in the present noncollapsing case). Intuitively, the reason 
why this holds is the following. Consider an interior point, z, in such a 
half space and a ball, B r(z), with r greater than the distance from z, 
to the boundary, R a _ 1 x 0. The boundary of this ball contains points 
whose distance from z is strictly less that r, namely B r(z) n ( R a _ 1 X 0). 
Note however, tha t for a ball in a complete Riemannian manifold, this 
never happens. We will show that in the noncollapsing case, it does 
not happen for limit spaces as well, i.e., we show that the boundary of 
the Gromov-Hausodorff limit of a sequence of balls, is the limit of the 
sequence of boundaries of these balls. 

T h e o r e m 6.2. If Y n satisfies (1-1), (5.1), then at no point of Y 
does there exist a tangent cone isometric to R ~ l X R . 

Proof. Put H n = R n~1xR+ C R n and A rur2(x) = B r2 (x) nB ri (x). 
Suppose, that there exists (Y n,y) with some Y y isometric to H n. 

Let fM i1g —» Y n be as in (1.1). Fix e > 0. Then, after rescaling the 
metrics on M i, for i sufficiently large, there is a continuous e-Gromov-
Hausdorff approximation, f : Bi(p i) —» Bi(O) C\H n. Here Bi(p i) C M n 
and Bi(0) C R n. 
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Using the map f, we will construct an auxiliary map, f, and show 
that the mod 2 degree of f satisfies both degf = 0 and degf = 1. This 
will give the desired contraction. 

Without loss of generality, we can assume that 1 is a regular value of 
the distance function on M n . Thus, B\(p i) is a smooth manifold with 
boundary. 

Since f is an e-Gromov-Hausdorff approximation, it follows that 
f(dBi(p i)) is contained in an e-neighborhood of dBi(O) n H n. By ad
justing f slightly (using radial projection) we can assume without loss 
of generality, tha t 

(6.3) f(dB1(p i))cdB1(0)nH n. 

Note that öBi(O) l~l H n is a proper subset of ö(Bi(0) l~l H n). 
Let q G dBi(p i) be a point such that f(q) is at maximal distance 

from R a _ 1 x {0}. By further adjusting f (using radial projection on say 
Bi(f(q))) we can assume without loss of generality that 

5 

(6-4) f(BL(q))cBL(f(q)), 
4 4 

(6-5) f ( A i i ( q ) ) c A i i (f(q)) . 
8 ' 4 8 ' 4 

From Perelman's theorem, [46] (or Appendix 1) together with the result 
on local volume convergence proved in [26], it follows for say q\ G Bi(q) 

6 

and r < ì , tha t the ball B r(q\) is contractible in the ball B(i+$)r(qi) , 

where $ = \P(e|n) —> 0 as e —> 0. Thus, for e sufficiently small, 

we can construct a continuous 2e-Gromov-Hausdorff approximation, 

h:BL(f(q))^BL(q). 
4 4 

After adjusting h slightly (using radial projection on B2 (f(q))) we 
5 

can assume with no loss of generality, 

(6-6) h B i ( f ( q ) ) ) c B i ( q ) , 

(6-7) h ( A l i ( f (q))) e Ai i (f(q)) . 
8 '4 / 8 ' 4 

Moreover, for z G Bi(q) and $(e |n) as above, 

(6.8) f oh{z),z < * ( e | n ) . 
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Clearly the map of pairs, 

foh:(BL(f(q)),A1L(f(q))) -+ (BL(f(q)),A1L(f(q))), 
2 8 ' 4 / 4 4 ' 8 / 

has mod 2 degree satisfying, deg fog— 1. Thus, if we let 

f : B i ( q ) , A i i ( q ) ) - • B i ( f ( q ) ) , A i i ( f ( q ) ) ) , 
4 8 ' 4 / 4 8 ' 4 / 

denote the map induced from f by restriction, we have 

(6.9) d e g f = l . 

Let N n denote the closed manifold obtained by doubling B\(p i) 
along its boundary. Let D n denote the manifold with boundary obtained 
by doubling Bi(0) C\H n along öBi(O) C\H n. Clearly, D n is a topological 
ball. We denote by f, the induced map from N n to D n. 

Since D n is not a closed manifold, clearly degf = 0. On the other 
hand, 

(6.10) d e g f = d e g f = l , 

since for say, z G Bj_(f(q)) we have f~l(z) C Bi(q). This contradiction 
16 4 

suffices to complete proof. 

7. T w o sided bounds on Ricci curvature and Einste in 
manifolds 

In this section we continue to assume that (Y n,y) is the Gromov-
Hausdorff limit of a sequence, { (M n ,p i )} , such that (5.1) holds. How
ever, we strengthen (1.1) to 

(7.1) \Ric M n\ < n — 1. 

Sometimes, we will assume in addition, that each M n is Einstein. In 
either of these cases, we can replace the intrinsic version of Reifen-
berg's theorem used in Section 5 by the corresponding estimate on the 
C1,Qf-harmonic radius (respectively C°°-harmonic radius) proved in [4]. 
Then, a more elementary and straightforward version of the discussion 
of Section 5 yields improved results concerning regularity. 

T h e o r e m 7.2. IfY n satisfies (5.1), (7.1), then WRt = R = R, 

for some e = e(n) > 0. In particular, the set S C S n-2 is closed. 
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Moreover, R is a C 'a-Riemannian manifold and at points of R , the 
convergence, (M n , g ) —> (Y,n g ̂ ), takes place in the C1'"-topology. 

T h e o r e m 7.3. If Y n satisfes (5.1), (7.1) and in addition, M i1 

is Einstein, for all i, then R is a C°° '-Riemannian manifold and the 
convergence, (M n , g ) —> (Y n,goo), takes place in the C°°-topology. 

Since, mutadis mutandis, the proof of Theorem 7.3 is the same as 
that of Theorem 7.2, we will only prove the latter. First, we recall some 
background from [4]. 

Recall tha t there is a constant, uj(n) > 0, and for all 1 > a > 0, 
a function, X(n,a,r, s) : (0,1) —> R , with the following properties. 
Assume M n satisfies (7.1), p G M n and (see Section 1) 

(7.4) _ B p > ! _ „ ( n , . 

Then for all q G B r(p), with p~^q = s • r, there exists A(n, a, r, s) and a 
harmonic coordinate system on the ball, B\r(q), in which the metric, 
(g ij), satisfies definite Cl,a bounds, say, jg i^ j Ci,a < 2, and jdet(g j ) j _ 1 < 
2. 

If we assume in addition that M n is Einstein , then for some A(n, r, s), 
the same holds with Cl,a replaced by C°°. 

According to [26], there exists e = e(n) > 0 such that if 
p G (WR n)ets(M n), then (7.4) holds; compare Section 5. 

Proof of Theorem 7.2. Write (WR n)le(Y n) = yj^WR n i j - , (Y n), 

where e = e(n). Let f i : M n —> Y n be a Gromov-Hausdorff equivalence 

realizing the Gromov-Hausdorff distance between M'i1 and Y n. Then 

for all fixed j and i sufficiently large, f i(q i) G ( W R a ) l j-i(Y n) implies 

q i G (WR n)ej-i(M i l ) . Hence, by the discussion preceding the proof, 

there is a definite bound on the C1,Qf-harmonic radius at q i. By us

ing arguments which by now are standard (compare e.g. [11], [7]) and 

Theorem 6.1, which asserts that S C S n-2, the proof can be concluded. 

In view of Theorem 7.2 and 7.3, an obvious application of Gromov's 
compactness theorem gives 

T h e o r e m 7.5. Given k' > n — 2, 0 < a < l and i] > 0, there exist 
S = S(n, d, v, k', a, r]) > 0, such that if M n satisfies (7.1), (5.1), then the 
set of points contained in a ball of radius d, at which the C1'"-harmonic 
radius is < 8, admits a covering by balls, fB st(q i)g, with i s i — V-



r i c c i c u r v a t u r e 439 

T h e o r e m 7.6. If M n satisfy (5.1), (7.1) and in addition, M n is 
Einstein, then "C1'"-harmonic radius" can be replaced by "C00-harmonic 
radius" in Theorem 7.5. 

8. E x a m p l e s 

In this section we will construct a number of examples of spaces 
which are Gromov-Hausdorff limits of sequences of pointed Riemannian 
manifolds, { (M n ,p i)}, of positive Ricci curvature. The tangent cones 
of these limit spaces exhibit various phenomena which could not oc
cur if say the sectional curvatures, K M n, had a uniform lower bound. 
Similarly, we will construct complete noncompact manifolds with posi
tive Ricci curvature whose tangent cones at infinity exhibit phenomena 
which could not occur if the sectional curvature were nonnegative. 

The first such example is due to Perelman (unpublished) who con
structed a metric on R with positive Ricci curvature, Euclidean volume 
growth and quadratic curvature decay, for which the tangent cone at in
finity is not unique; compare [15] and [22]. In Perelman's example, he 
views R n {0} as R|_ X S 3 , on which he constructs a metric of triply 
warped product type, based on the Hopf fibration, S 1 —> S3 —> S2. Our 
examples are based on doubly warped product constructions, and we 
will begin by briefly reviewing some properties of such metrics; com
pare [3]. 

Let I be an interval and let Z be a manifold. Consider a family 
of Riemannian metrics, g Z{r) on Z, parameterized by r G I . Assume 
that for each p G Z, the metrics g (r)\Z p can all be simultaneously 
diagonalized with respect to some fixed metric on the tangent space, 
Z p. Thus, we can find a local orthonormal basis, {y i}, near p, such that 
for some positive functions, wi(r), the vector fields, {y i(r)}, defined by 

y i = — are orthonormal for g (r). 
u i 

Consider the metric 

(8.1) g = dr2+g Z{r) 

on I X Z. In order to simplify the discussion, we now recall a sufficient 
condition for the vector, n = gr, to be an eigenvector for the Ricci 
tensor of g. 

If we view the vector fields, y i, as being defined on I X Z, then their 
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Lie brackets satisfy 

(8.2) 

(8.3) h[y i,y j],ni = 0. 

Using the standard formula for the Riemannian connection, 

(8.4) h r A B,Ci = ±{h[A,B],Ci-h[A,C],Bi-h[B,C],Ai}, 

where A, B, C are vector fields whose inner products with respect to the 
metric, g = h , i, are constant, we find that 

(8.5) r n y i = 0. 

Thus, we have 

(8-6) h r n r y y i, y j i = nhr y i y il y j i, 

(8-7) hr y i r n y i1y j i = 01 

u'-

(8-8) hr[n,y i]y i, y j i = h r / i y i, y j i. 

Therefore, if h r y i, y j i = 0, it follows that 

(8-9) hR(n,y i)y i,y j i = 0, 

and in particular, tha t n is an eigenvector of the Ricci tensor. 
Suppose that the metric g Z (r) is of the form 

(8.10) g Z(r) = u\{r)kx + ... + u2d(r)k d, 

where the tangent bundle TZ admits a decomposition, 

TZ = E1®...®E d, 

such that , g (r)\E i = u i(r)k i, and k i annihilates E j for i / j . 
Assume further that for the metric k\-\-- • - + k d, whenever a geodesic, 

7, satisfies 7'(0) C E i (for some i) then j'(t) C E i for all t. Equivalently, 
for all i, the symmetric part of the second fundamental form of E i 

[n,y i\ = y i 
u 
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vanishes. Then it follows from (8.4) that for fixed r, the same is true for 
the metric u\{r)k\ + • • • + u ̂ (r)k d- Thus, it is clear that the condition 
h r y i y i, y j i = 0 holds. So in this case, (8.9) holds as well. 

In particular, if E\, Ei denote the vertical and horizontal subbundles 
for a Riemannian submersion, X1 —> Zi+m —> W m, with totally geodesic 
fibres, then (8.9) holds. 

Since the fields, y i, are Jacobi fields, we see that 

(8.11) Ric(n,n) = Y^ 

n-l i 

u 

i = 1 

Also, from (8.3)-(8.5), the second fundamental from of a hypersurface, 
(r, Z), is given by 

_u _ . 
(8-12) II(y iiy j) = u i n i ~ j 

o i^j. 

Thus, if Ric denotes the Ricci tensor of the induced metric on (r_,Z), 

and fy*g denotes the dual basis to fy i g, then 

(8.13) R i c ( r , Z ) = g - £ ( u + u £ ^ l ( y ) 2 . 

Now let u : R+ —> R+ and put 

(8.14) u = ur. 

Then 

u' u' 1 
8.15 - = - + - , 

u u r 

u" u Tu'I 
(8.16) — = — + ^ - . 

u u u r 

From (8.13)-(8.16) it is clear that if for some r > 0, 

n - 2 + r (8.17) Rio 
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and in addition, for sufficiently small S = S(T, n) > 0, 

(8.18) < 
5 

(8.19) 
u 

< 

then the expression in (8.13) is strictly positive; indeed, it is essentially 
the same as the corresponding expression for the case of a metric cone 
on a space with Ric > (n — 2). 

For suitable Z g conditions (8.17)-(8.19) are not difficult to achieve. 
Therefore, to obtain a metric with Ric > 0, the essential point is to 
choose the functions, u i, such that in addition, the expression in (8.11) 
is positive. 

Our first example is based on repeated application of the following 
elementary lemma. 

Let £ll£2eZ and C1,C2,C1,C2 £ R , satisfy 

(8.20) — > 1 > — 
C > y C 2 

(8.21) C l C • > C l C ' 

Relation (8.21) corresponds to the inequality in the relative volume 
comparison theorem ([37]); compare Lemma 8.28 and Example 8.41. 

Define a and \ by 

(8.22) C 
C 2 

(8.23) £1-a£2 = x> 0. 

Let e1,e2 e R+. Put 

(8.24) Cl = /3e2 

and assume 

(8.25) ß£1+£2 = \>0} 
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where the left-hand side defines A. 
Given 0 < a < b < 1, define r/i, r]2 by 

i i 

"71 ^ a C = C • 

Thus, 

(8.27) 772 = m?!. 

7/1 —7- 0 is equivalent to a/b —> 0. 
Let r, 6(T,n) be as in (8.18), (8.19). 

L e m m a 8.28. For 61,62 > 0 sufficiently small, there exists UJ = 
^(•^1)^2) Ci) C2, Ci) C2, r ) ei> e2) > 0, such that if UJ > a > 0, then for 
j t iMjt j < 2, there exist C 1 functions, u\,u2 : [a, b] —> R , which are 
C°° on [ a , b ] n f b g ; such that (#.-/#,), ( ^ - -^ hold for n = ix + i2 and 

(8.29) 
u1(b) = C i b ( l + (-(7/1 + ei)) + C ia t i J7i, 

u2(b) =C2b(l - -(7/2 + e2)) + C2at2T]2, 

(8.30) u1(b) = (l + e1)Ci, u2(b) = ( l - e 2 ) C 2 , 

(8.31) ui(a) = C i a ( l + ti?/i), u2(a) = C 2 a ( l + t2^/2), 

(8.32) u'^a) = (1 - 7/i)Ci, u 2 (a) = (1 + r,2)C2l 

u „ u 1 , , 1 
ul u2 2r 2 

(8-33) - u + u > Ì M ( r ^ i b ) . 

Proof. On [a, ib] , put 

(8.34) ul(r) = C b ^^-^+C ^ a t r u , u2(r) = C2b-'n2rl+r>2+C2at2r]2. 

Then by (8.23), (8.27), it follows that (8.31) and (8.32) hold. Also, if 
7/1 is sufficiently small, where in particular, 



444 j e f f c h e e g e r & t o b i a s h. c o l d i n g 

then on [a, ^b], 

(8.36) -£i— + Ì2—>lmxr~2>0. 
u i u2 2 

On [^b, b], put 

(8.37) 

ul{r) = C i b r 1 " " 1 + C ! ( ? ? 1 b 6 l ) ( r - ±b)2 + Ciatim, 

u2{r) = C2b-^r1+^ - C2
 (??2 b 6 2 ) (r - ±b)2 + C2at2 Î ? 2 . 

Then (8.29), (8.30) hold. Additionally, if we fix e\,e2 sufficiently small 
and then take rji, r]2 sufficiently small, we have (8.18), (8.19). Finally, it 
is clear that for a sufficiently small (i.e., 7/1,772, sufficiently small) where 
in particular, 

(8.38) m < \e2X-\ 

we have 

(8.39) 
u\ u2 A I 

This suffices to complete the proof. 

R e m a r k 8.40. If in (8.21), one considers values for which the 
ratio of the left-hand side to the right-hand side tends to 1, while the 
quantity, C\/C\, stays bounded away from 1, then the number, Xi of 
(8.23), tends to zero. Thus, by (8.35), 771 —?- 0 and hence, a —> 0 as well; 
compare the discussion prior to (8.65). 

E x a m p l e 8.41 (Nonun iquenes s of tangent cones ) . We will 
construct a smooth Riemannian metric of positive Ricci curvature on 
R n {0} with the following properties. Its metric space completion, 
Y 4 (which is obtained by adding the origin) is the pointed Gromov-
Hausdorff limit of a sequence of smooth complete metrics of positive 
Ricci curvature on R . At the origin, the tangent cone of Y 4 is not 
unique. 

As previously mentioned, the metric on R n {0} = R X S 3 is of 
doubly warped product type, with warping functions, f, h. It is the 
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limit as j —T- oo, of a sequence of doubly warped product metrics on R , 
with warping functions, f j,h j . 

Our metrics arise from the Hopf fibration, S 1 —> S3 —> S2, which we 
regard as a Riemannian submersion with totally geodesic fibres. Thus, 
S 1 , S 3 , S 2 carry the metrics, g S ,g S ,\g S respectively, where g S" de
notes the canonical metric of curvature E 1 on S n. 

The distinct tangent cones which occur at 0 G Y4 can be described 
as follows. 

Fix 0 < £ < 1 and C f, C h with 

(8.42) C f C2h = e , 

(8.43) 0 < C h < £ < C f, 

(8.44) \C f-ç\,\C h-Ç\<8, 

where S is as in (8.18), (8.19). 
Put g S = k f + k h, where k h = ft*(\g S )• Then there is a cer

tain 1-parameter family of metrics, g S , joining Çg S = Çk f + Çk h and 
C f k f + C h k h, such that for all 0 < t < 1, there exists a tangent cone 
at 0 G Y 4 , with cross section isometric to S 3 equipped with the metric 

S3 

g t • 

Our construction will be broken into several steps: 

i) Our warping functions, f, h, have the property that for a certain 
sequence, r j —> 0, we have 

f{r2k)/r2k = h(r2k)/r2k -> £, f{r2k+i)/r2k+i -> C f, 

h(r2k+i)/r2k+i -> C h-

Since the set of tangent cones is connected, this guarentees the existence 
of a 1-parameter family of tangent cones as above. 

Initial approximations f,h, to the functions f, h, will be constructed 
by applying Lemma 8.28 inductively (an infinite number of times) where 
at this stage, we always choose t\,t2 = 0. 

These approximations have jump discontinuities at the points, r j \ 
see (8.29), (8.31), (8.59). Moreover, at the points, r j ^r j , the left-
and right-hand limits of the second derivatives do not agree; see (8.36), 
(8.39). However, the left- and right-hand limits of the first derivatives 
do agree at all points; see (8.30), (8.32), (8.60). 
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The construction can be arranged so that the series of jumps for the 
functions, f, h, can be assumed to converge as fast as we like and in 
particular, as fast as a given convergent geometric series; see (8.59) and 
the discussion prior ot (8.65). 

ii) For all j , we construct smooth functions, f j,h j , on the interval, 
[0,r j] . Each of these functions is asymptotic to r + O(r3), as r —> 0. 
Next, we define functions, f j , h j , to be equal to f j , h j , on the interval, 
[0, r j] and equal to f, h on (r j , oo). These are our initial approximations 
to the smooth functions f j,h j , on R , which define the sequence of 
doubly warped product metrics, the limit of which is the desired metric 
on Y4. The functions, f j , h j , have properties analogous to those of the 
functions, f, h, above. 

iii) By adjusting the values of the functions, f j,h.-, by suitable con-
stants, on each interval, (r i, r i_i], where (i < j) we can remove the jump 
discontinuities, thereby obtaining functions, f j,h j , are C 1 ; see (8.67). 
This corresponds to choosing t i , t2 / 0 in Lemma 8.28 (for a suitable 
inductively determined sequence of choices.) 

The functions, f j , h j , continue to have the property that the quantity 
in (8.33) is positive (i.e., positive Ricci curvature in the radial direction 
for the associated doubly warped product metrics) except at the points, 
r i, \Ti, where the second derivatives are not continuous. 

iv) Finally, by modifiying f", h'j in sufficiently small intervals con
taining the points, r i, where (i < j) and ^ r i, where (i < j) we can re
move the jumps in the second derivatives. By integration with respect 
to r, we obtain C 2 functions, f j,h j , defining the sequence of doubly 
warped product metrics on R that we are seeking; of course, it is clear 
that the functions, f j , h j , can actually be chosen to be C°°. The metric 
on Y 4 is determined by the corresponding functions, f, h, which are the 
limits as j —7- oo of the functions, f j , h j . 

Detai l s of i ) — i v ) : 
i) Let £ be as in (8.42)-(8.44) and let C fj,C h,j, satisfy 

(8.45) C fj C hj < C f,j+1C h j + 1 j = 0 , 1 , . . . 

(8.46) \C fij-ç\,\C hij-Ç\<6 j = 0 , 1 , . . . 

(8.47) ',2k — C h,2k, 
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(8.48) 
C f,2k, C f,2k+2 < C f,2k+1, C h,2k+l < C h,2ki C h,2k+2 

k = 0,l,..., 

(8.49) lim C ft2k = lim C h k = £, 
k—>-oo k—>-oo 

(8.50) lim C ft2k+i = C f, lim C h^k+i = C h. 

Put c = C f,0 = C ĥ o- Let d > 0, and set f = h = q(r) on ( l ,oo) , 
where 

(8.51) q(r) = r - (1 - ^ ) ( r 2 + d)5 - 1 + (1 - c ) (1 + d)5 + c. 

Note that q(l) = c, q'(l) < 1, q" < 0. In particular, the correspond
ing warped product metric on ( l ,oo) has positive sectional curvature. 
Moreover, by taking d sufficiently large, we can make q'(l) as close to 
1 as we like. We choose d large enough so that the choices of 6^1,62,1 
below are sufficiently small (as in Lemma 8.28.) 

Let rQ = 00. We will determine a sequence 1 = r\ > r2 > • • • , 
and the restrictions of the functions, f, h, to the interval, (r j+ i , r j], by 
applying Lemma 8.28 inductively, where at this stage, we always choose 
t\,t2 = 0. For clarity, when applying Lemma 8.28 to determine the 
value, r j_|_i, we will add the subscript, j , to the functions and constants 
which appear in that lemma. 

Specifically, if r j has already been specified, we determine eij,£2,j 
as in (8.56) and apply Lemma 8.28, with b j = r j and with remaining 
data as given below, in order to determine a j,r]ij,r]2j. We then set 
r j_|_i = a j . Thus, in general, r j+i = a j = b j+i . 

For j = 1, we choose e^i, 62,1, such that if for the data as in (8.54), 
(8.55), we determine u1,1, u2,1 as above and set 

(8.52) f = u 2 J I , h=u1)1 (on ( r 2 , l ] ) , 

then 

(8.53) lim f' = lim f', lim h? = lim h?. 
r - » l r - » l + r - » l ~ r - » l + 

For j = 2k, k = 1 , . . . , we use t1}2k, t ,2k = 0, 

Cl,2k = C f,2k ( = C2,2k-1 1 Ci,2k = C h,2k = ( Cl,2k-1 ) , 
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(8.54) Cl,2k = C f,2k+l, C2,2k = C h,2k+1, 

For j = 2k + 1, k = 0 , 1 , . . . , we use ti,2k+i, t2,2k+i = 0, 

Cl,2k+1 = C h,2k+1 = ( C2,2k ) 5 C2,2k+1 = C f,2k+l = ( Cl,2k) > 

(8.55) Cl,2k+1 = C h,2k+2i C2,2k+1 = C f,2k+2-

Observe that the relations for j = 2k, j = 2k-\-l, are consistent with 
one another (the values in parentheses are redundent; they are provided 
for the convenience of the reader.) 

For all j > 1, we determine e i j , e 2 j inductively, by setting 

(8.56) e i j = 7/2j-1, e2 j = T / I j - I -

Thus, wehave also, ßj = « j _ i , Aj = Xj-i-
Finally, we put 

(8.57) f_=ult2k, h = u 2 , 2 k (on ( r 2 k + i , r 2 k]) , 

and 

(8.58) f_=u2,2k+i, h = ult2k+i- (on ( r 2 k + 2 , r 2 k + i ] ) . 

By (8.29), (8.31), (8.56), we have for all j , 

Aj(f) =f f r j) - lim+ f = ( " 1 ) j T (j-hj + j j - i ) C / J r ' 
r ^ r j 

(8.59) ^ j{h)=hr j)- l i m h = ( - i j + 1 - ( V j , j + Vj_hj_1)C h,j r j , 
j 

where the first subscript in rj.t., is to be take mod 2. 
By (8.29)-(8.32) and (8.56), we have for all j , 

(8.60) lim f' = lim f', lim h' = lim h?. 

Also, by (8.33), 

r_).r+ r—ïr j r_).r + 
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ii) We define nonnegative functions, f j , h j on [0, r j] which are strictly 
positive on (0, r j], as follows. Let G C be a smooth nonnegative function 
on [0, oc), such that G C > 0 on (0, oc), G C(0) = 0, G'C(0) = 1, G'C(0) = 
0. Assume in addition that — 2 C _ 1 < G"C < 0 on (O.oc) and that for some 
fixed function, G, on [ l ,oc) , with say jG'(r) — 1j < e~r, jG"(r)j < e~r, 
we have 

(8.62) G C{r) = CG{r) ( o n [ l , o c ) ) . 

Now put 

f j = r j G C f,j (r j2r) (on (0, -r j], 

f j = r j G C fj r j r) + f j — r - 2 r j J 2 ' 

1 
— 
2 

(on {-r j,r j)), 

h = r j G C htj(r-2r) (on ((0, Kj]), 

r j G C hj r j r) + ( r " 2 r j) ' 

(8.63) 

1 

2 
(on ( - r ^ r j ) ) , 

In (8.63), the first subscript of TJ.j is to be taken mod 2. 
Note that f j f r ) = f f r ) , h ( r j) = h(r j). 
Since 0 < f' < 1,0 < h < 1, it follows easily from (8.13) that 

for the associated doubly warped product metric, the Ricci curvature 
in directions tangent to the cross-section is positive and bounded away 
from zero, independent of r j . Also, from the properties of G, together 
with (8.23),(8.62), (8.63), we get 

(8.64) _ j _ + 2 j - > 0 ( r / -
j ) 

which implies that the Ricci curvature in the radial direction is positive 
(though not, of course, uniformly bounded above.) 
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iii) Note that as a consequence of (8.42), (8.47), (8.49) (which relect 
the volume cone property for tangent cones of limit spaces with Ricci 
curvature bounded below) together with Remark 8.40, it follows that 
r j+i/r j —T- 0 (equivalently, TJ.j —> 0.) Indeed, this property is consistent 
with the fact that for such spaces, tangent cones are metric cones. In 
particular, we can certainly assume 

(8.65) jAj + 1 ( f ) j < ^ jAj ( f ) j , jAj+1(h)j < \jAhj-

Indeed, since r j + \ < \r j , this is virtually automatic. Thus, if we set 

(8.66) f j [ 0 , r j] = f , 

and for i < j , 

j - 1 

f j j (r, r i_!] = f + f(r j) - lim f ( r j) + J > , ( f ) , 
r^r j t=i 

(8.67) h j j(r i,r i-1] = h + h(r j)- lim h(r j) + ^ Ae(h), 
r~>r j i=i 

then f j , h j are of class C 1 . Similarly, we can assume that the properties 
corresponding to (8.17)-(8.19) hold. By Lemma 8.28 (where now, we 
no longer have t\, ti = 0) we get 

(8.68) - j - + 2-j- > 0 (r / 1 , r , —r). 
j ' 2 j J 

iv) We can remove the jump discontinuities in the functions, f", h j 
by modifying them by linear interpolation, in arbitrarily small neighbor
hoods of the points, frg (where i < j) and f^r i g (where i < j). Call the 
resulting functions f'j h'j and let the corresponding functions, f j,h j , 
be obtained by integration with respect to r, subject to the conditions, 
f j(0) = h j(0) = 0, f ' (0) = h'jO) = 1. The modifications in the second 
derivatives can be performed on intervals whose size decreases rapidly 
enough to ensure that f j , h j satisfy (8.17)-(8.19) and for all r G (0, co), 
we have 

(8.69) _ f + 2_h)> 0 . 

file:///jAhj-
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Moreover, l im^oo 
(8.19) and for all r 

(8.70) 

f 
e 

= 
(o, 

f, 
co) 

-

lim j 
, we 

(f 

h j 

have 

h" 
+ 2 h 

h, where f,h satisfy (8.17)-

> 0. 

Now, by considering the doubly warped product spaces correspond
ing to {(f j,h j)} and to (f,h), we obtain the limit space, Y4, with the 
properties which were asserted. 

When the volume is not subjected to an a priori lower bound, the 
situation is much less constrained than when such a bound is in force. 
As a consequence, examples illustrating various new phenomena are not 
difficult to come by. 

Let S3 - • S7 4 S4 denote the Hopf fibration. If S3, S7, S4 carry the 
metrics, g ,g ,\g , then the map, 7r, is a Riemannian submersion 
with totally geodesic fibres. Put g = k\ + k2> where k ̂  = ft*(\g )• 

Recall tha t the metric, g S = 82k\ + k2> has uniformly positive 
Ricci curvature, for all 0 < 8 < 1. To see this, view the fibration, 
S 3 —7- S7 —> S4, as a principle bundle. Then we can obtain a Riemannian 
submersion, S7 X S 3 —> S 7 , by taking the quotient map associated to 
the diagonal action of the Lie group, S 3 , on the product, S7 X S 3 . Here, 
S7 has metric g S and S7 X S 3 has metric g + T2g , where r = T(S) 
and T(S) —> 0 as S —> 0. Since the Ricci curvature of g + T2g is 
uniformly positive, the above mentioned fact is a direct consequence of 
O'Neill's formula; see [18]. 

More precisely, as S —> 0, the sectional curvatures of planes which are 
contained in the fibre, S 3 , are equal to S~2, the curvatures of horizontal 
planes approach 4 and the curvatures of planes spanned by a horizontal 
vector and a vertical vector approach 0. 

We will now give an example of a collapsed limit space which is 
actually a smooth Riemannian manifold such that it, together with its 
renormalized limit measure, can be regarded as having positive Ricci 
curvature in a generalized sense, although not in the classical sense. 

E x a m p l e 8.71 ( S m o o t h limit spaces ) . Let h be a smooth 
positive function on [0,1], such that 

h S 
8.72 = < - , 

r 
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<8-> |h | < r• 

Here, S is so small tha t the doubly warped product metric in (8.75) 
below has positive Ricci curvature in directions tangent to the factor, 
S7. 

Of course, we can also arrange that — h is somewhere negative. For 
such values of r, the Ricci curvature of the metric 

(8.74) dr2 + -h2gs\ 

is negative in the radial direction. 
Now choose 0 < TJ < 1 such that the doubly warped product metric 

on R , 

(8.75) dr2 + (xr^^fk + h2k2l 

has strictly positive Ricci curvature for all r > 0, provided \ is suffi
ciently small. 

As in Example 8.41 the metric in (8.75) can be truncated at r = r x , 
where 

(8.76) Xr^ = h(rx), 

and smoothed to produce a metric of positive Ricci curvature on the 
disk, D8. This metric can be doubled and smoothed at the equator to 
give a metric, gx, of positive Ricci curvature on S 8 . Then as \ ~^ 0, we 
have(S8,gx)^(S5,dr2 + h2(\gs4)). 

Although the limit metric in (8.75) does not have positive Ricci 
curvature in the usual sense, it together with its renormalized limit 
measure, is, does have this property in a generalized sense; compare 
Appendix 2. The point here is that various properties of manifolds with 
a definite lower Ricci curvature bound (e.g. existence of e-dense sets 
of bounded cardinality, Abresch-Gromoll inequality, splitting theorem) 
remain valid for Gromov-Hausdorff limit spaces and their renormalized 
limit measures, even in the collapsed case. 

The following example shows that objects which are shaped like 
horns can appear as collapsed limit spaces. These objects contain in
finitely many distinct geodesics which are mutually tangent; for Alexan-
drov spaces, this does not occur. 
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E x a m p l e 8.77 (Mutua l ly tangent geodes ics , lower d imen
sional tangent cones , horns) . If in the previous example, we 
replace the function h by r 1 + e , where 

(8.78) -3rç(l - rj) + 4e(l + e) < 0, 

then we obtain the limit metric, 

(8.79) dr2+{-rl+c)2g S \ 

A warped product metric of this type is called a metric horn. For the 
corresponding (5-dimensional) limit space, Y 5 , the tangent cone at the 
origin is a half line. Thus, geodesics emanating from the origin are all 
mutually tangent and (0.5), for fj, = H 5 , k = 5, fails to hold; compare 
Section 1. 

Consider on the other hand, the space, Y j 5 , obtained by adjoining (at 
the origin) a segment, [—j, 0], of the negative real axis, to the space, Y 5 , 
above. Given j sufficiently large and S > 0 sufficiently small, it follows 
from the quantitative generalization of the splitting theorem, Theorem 
6.64 of [15], tha t the space, Y j 5 , can not arise as a Gromov-Hausdorff 
limit of a sequence, fM i1g, with Ric M n > — (n — 1)S. 

In fact, one can show that no space, Y 5 , can arise as a limit of any 
sequence, M i1, with Ric M n > (n — 1)H > — oo. This will be discussed 
in [12]. 

Next we construct an example of a limit space, Y 5 , with an isolated 
singular point, for which every metric cone, dr2 + j\2r2g , where 0 < 
A < 1, occurs as a tangent cone. Hence, the half line occurs as a 
tangent cone as well. The number, | , which occurs in this metric can 
be increased, but it can not be replaced by a number larger than ^; see 
(8.85). 

E x a m p l e 8.80 (Points w i th nonunique tangent cones of dif
ferent d imens ions ) . Let fC h,j g satisfy 

(8.81) C h,2i+2 > C h,2ii 

(8.82) lim C h,2i = 1, 
i—>-oo 

(8.83) C h,2i+1 < C h,2i-1, 
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(8.84) lim C ht2i-i = 0. 

i—>oo 

From the discussion preceding Example 8.71, it follows that 
(8.85) Ric8 > 12 + o(5). 

Here Ric denotes the Ricci tensor of the metric, g S . In particular, 
Ric > 6, the Ricci curvature of S7. This guarentees that the Ricci 
curvatures of the metrics constructed below are nonnegative (and thus, 
bounded away from — oo) in directions tangent to the cross-section. Note 
that given A, TJ > 0, C h,2i < 1 — A and 0 < e, j ~ 2 < S(X, TJ), the metric, 

(8.86) O j 1 r 1 " " ) 2 k ! + (C h i b - £ r 1 + £ ) 2 k 2 , 

has positive Ricci curvature, in directions tangent to the cross-section if 

(8.87) j l r - v < C h 2 i r e . 

Moreover, the metric 

(8.88) O j 1 r 1 " " ) 2 k ! + ( C h i + I b r - 6 ) 2 k , 

has positive Ricci curvature in directions tangent to the cross-section if 

(8.89) j 1 r ~ i 1 < C h (b 2 i+ l 

In what follows, we will consider a sequence of metrics indexed by j . 
As in Example 8.41, we can find sequences, fe^}, fbi}, such that the 

sequence of metrics given by 

,R Q n , d r 2 + (j'r'-rk + (C h,2i b% r 1 + £ «) 2 k2 

(on (b2i + 1,b2i), 

(8 91) dr2 + (j-'r^fk + (C hi+Xb^I1 rl~^fk2 

(on (b2i+2, b2i+l]), 

has the following property. Define r j by 

( 8 9 2 ) j i r i - . _ { C h i b% r j ~ t 2 1 j = ^ 
( ] j ~ C h,2i+1b-^r j - ^ j = 2i+l. 
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Then the restriction of the metric in (8.90), (8.91) to the interval, [r j , 1], 
can be smoothed to a metric of positive Ricci curvature. 

By considering the limit as j —> oo of the above sequence of trunca
tions and smoothings, we obtain a limit space, Y5, with an isolated sin
gular point, for which every metric cone, dr2-\-j\2gs , where 0 < A < 1, 
occurs as a tangent cone. Hence, the half line occurs as a tangent cone 
as well. 

R e m a r k 8 .93. With more work one can actually construct limit 
spaces for which the points with nonunique tangent cones are dense. 

E x a m p l e 8.94 ( C o m p l e t e manifolds) . By modifying the con
struction of the previous example in an obvious fashion, we obtain a 
complete metric of positive Ricci curvature on R , for which any cone 
dr2 + ^X2r2g , 0 < A < 1, occurs as a tangent cone at infinity. Hence 
the half line occurs as a tangent cone as well. 

E x a m p l e 8.95 (Tangent cones which are not metr ic cones ) . 
Let h be a positive function such that say, 

(8.96) \h--\<6, 

(8.97) \h\,\h'\,\h"\<5. 

As in our previous examples it is clear that we can construct a metric 
of positive Ricci curvature on R , which, for r > 1, is of the form 

(8.98) dr2 + ( r 1 _ , ? ) 2ki + (rh(log r))2k2. 

These metrics have tangent cones at infinity of the form 

(8.99) dr2 + i ( r h g 4 -

If, for instance, h is periodic, then h ̂  is some translate of h itself. But 
unless h is constant, no tangent cone is a metric cone. 

Note that R equipped with metric in (8.99) is itself a limit space, 
Y 5 , with an isolated singular point at which no tangent cone is a metric 
cone. 

E x a m p l e 8.100 (Topological ly singular spaces ) . In the pre
vious example the limit space was topologically nonsingular. However, 
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one can easily produce singular limit spaces with analogous properties, 
by starting with a suitable ALE space in place of R . 

Let {(M n i, g i)g be a sequence of manifolds of positive Ricci curvature 
converging to a finite dimensional limit space. Of course, it may happen 
that n i —> co. In this case (not surprisingly) so much information can be 
lost in the limit that the limit space cannot be legitimately regarded as a 
generalized space of nonnegative Ricci curvature. It follows in particular 
that the estimates in the "almost splitting" theorem (Theorem 6.62 of 
[15]) cannot be made uniform in the dimension, n, of M n. 

The following example illustrates what can go wrong. 

E x a m p l e 8.101 (d imens ion —> oo). Consider a warped product 
space, R Xf S 2 , where S 2 has metric g and 

(8.102) f K - o o , _ ! ] = ! , 

(8.103) f | [ l ,oo] = 1, 

(8.104) 

Let {h j g be a sequence of functions, h j : (—j,j) —> R , such that 

(8.105) lim h j = lim h j = 0, 
r_)._j r_yj 

h'j 8.106 —-^ > 0, 
h j 

(8.107) lim h j = 0, (uniformly) 

and dr2 + h2j g S j , defines a smooth metric of strictly positive curvature 

on S n j + 1 . 

For n j sufficiently large, the doubly warped product metric 

(8.108) g j = dr2 + h2j g S"j +f2g S \ 

on S n j + 1 X S 2 , has positive Ricci curvature. As j —> oo, the sequence, 
{(S n j + 1 X S2,g j)g, converges in the pointed Gromov-Hausdorff sense 
to the smooth warped product space, R Xf S 2 . Although this space 
contains geodesic lines, it does not split isometrically and thus, cannot 
be legitimately considered to have nonnegative Ricci curvature in any 
generalized sense. 

< 1. 
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A p p e n d i x 1: Rei fenberg's m e t h o d and s o m e consequences 

In this appendix, we formulate an intrinsic version of Reifenberg's 
theorem, [50], and draw a number of consequences. We thank Bruce 
Kleiner for bringing Reifenberg's theorem to our attention in connection 
with the results of [26] and Fred Almgren for some helpful conversations 
concerning it. We are also grateful to Stephen Semmes, for discussions 
and for pointing out his paper, [52], and book, [28], which deal with 
situations closely related to Reifenberg's. 

Let (lZk)e,r denote the set of points such that for some u > r, (4.6) 
holds for all s G (0, u] and R k X X = R k. Thus, (Jlk)£ = \Jr{TZk)er. Let 
0 G R n. Let the notation, \P, be as in previous sections. 

T h e o r e m A . 1 . 1 . There exists e(n) > 0, with the following property. 
Let (Z, p) be a complete metric space such that for some z G Z, and 
e < e(n), we have z\ G (lZn)Str for all z\ G B\{z) and r < 1 — z\, z. 
Then there exists a topological imbedding, F : Bi(O) —> B i ( z ) , such 
F(Bi(0)) D Bi-ig(z), where $ = ty(e\n). Moreover, the maps F, F - 1 

are Holder continuous, with exponent, a = 1 — \P. If, in addition, Z 
is an n-dimensional Riemannian manifold, then F can be taken to be a 
smooth imbedding. 

Next, we will give some global counterparts of Theorem A.1.1. 
Let M ( n , e , r) denote the collection of isometry classes of complete 

separable metric spaces, (Z,p), such that z G (1Zn)Str, for all z G Z. Let 
[Z] denote the isometry class of Z. 

T h e o r e m A . 1 . 2 . There exists e (n) > 0, such that if [Z] G M { n , e , r ) , 
for e < e{n), then there exists a smooth Riemannian manifold, (W n,g) 
and a homeomorphism, F : W n —> Z, such that F, F - 1 are Holder 
continuous, with exponent, a = 1 — ^, where $ = ty(e\n). 

Let \ZX\{Z2\ G M{n,e,r), where e < e{n). Let (W^g^, (W^g2) 
denote the Riemannian manifolds whose existence is asserted in Theo
rem A.1.2. 

T h e o r e m A . 1 . 3 . The number, e{n) > 0, can be chosen such that 
if d GH iZi , Z2) < e{n), then we can choose (Wi,g\) = (W n , ^ ) - More
over, if Z\, Zi are smooth n-dimensional Riemannian manifolds, then 
for this Wi = W n , the maps F\, F2 can be chosen to be diffeomor-
phisms. Thus, Z\ and Z2 are dijfeomorphic in this case. 

Let M ( n , £ , r, d) denote the subset of M ( n , e , r) such that diam(Z) < 
d. As a direct consequence of Theorem A.1.3 we obtain: 
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T h e o r e m A . 1 . 4 . Fix 0 < e < e(n) and r, d > 0. 

i) There exist at most N(n, r~ld) < oo bi-Holder equivalence classes 
of metric spaces, Z, with [Z] G Ai(n,e,r,d). 

ii) There exist at most N(n,r~1d) < oo diffeomorphism classes of 
n-dimensional Riemannian manifolds, Z n, with [Z n] G Ai(n,e,r,d). 

Apart from some simple (and inessential) technicalities (concerning 
points near dBi(z)) the proof of Theorem A. 1.1 is identical to that of 
Theorem A.1.2. Since the additional statements in Theorems A.1.3, 
A.1.4 are direct consequences of the proof of Theorem A.1.2, we will 
only prove Theorem A.1.2. 

Before proving Theorem A.1.2, we will collect some consequences 
of Theorems A. l . l -A .1 .3 for Ricci curvature. For these, we need the 
following result which summarizes some of the conjectures of Anderson-
Cheeger that were proved in [26]. (Recall tha t the relevant sets in parts 
ii), iii) below were defined prior to Theorem 4.7.) 

T h e o r e m A.1 .5 ([26]). For alle > 0, there exists r = r(n,e), 
S = S(n,e) > 0, with the following properties: Let 

Ric M n > -{n- l ) , p G M n 

and r\ < r. 

i)If 

(A.1.6) Vol(B ri(p)) > ( l - 5 ) V o l ( B r i (0) ) , 

then p G (TZn)Stri. 

ii) If p e (WTZn)s,ri, then 

(A.1.7) Vol(B ri(p)) > ( l - e ) V o l ( B r i (0) ) . 

iii) If p G (WUn)s,ri, then q G (Un)Sts, for all q G B ri(p), 
s < (1 — e)r\ — q/p. 

By combining Theorems A.1.1 and A.1.5, we get the following two 
theorems which sharpen Perelman's theorem; [46]. 

As usual, let (Y n,y) be the pointed Gromov-Hausdorff limit of a 
sequence, { (M n ,p i)}, satisfying (1.1), (5.1). 

T h e o r e m A . 1 . 8 . For all e > 0, there exists r = r(n,e), 
S = S(n,e) > 0, such that if for some r\ < r, either y G (WTZn)$tri or 
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H n(B ri (y)) > (1 — S) Vol(B r i (0)), then there exists a topological imbed
ding F : B ri(Q) —T- B ri(y), such that F(B ri(0)) D Bt1_q,\ri (y), where 
vp = ^[sjn). The maps, F,F~l are Holder continuous, with exponent, 
a = 1 - * . 

T h e o r e m A . 1 . 9 . Let the assumptions be as in Theorem A.1.8. If 
Y n = M n is a smooth Riemannian manifold satisfying 
R ic M n > —(n—1), then the map, F, can be taken to be a smooth 
imbedding. 

By arguing as in [24], [25] (see also [15, Section 5]) but letting Theo
rem A.1.8 play the role of Perelman's theorem, we obtain the following 
differentiable sphere theorem for Ricci curvature and volume. 

T h e o r e m A . 1 . 1 0 . There exists S(n) > 0, such that if 
Ric M n > n - 1 , Vol(M n) > (l-5(n))Vol(S n), then M n is diffeomorphic 
to S n. 

Similarly, we have the following noncompact analog of Theorem 
A.1.10, the proof of which is a minor variation on that of Theorem 
A.1.2; see Remark A.1.47. As in (0.5) let Va,o(l) denote the volume of 
the unit ball in R n. 

T h e o r e m A . 1 . 1 1 . There exists S(n) > 0 such that if Ric M n > 0 
and Vol (B r(p)) > (1 - 8{n))V nfl{l)r n, for all p G M n, r > 0, then M n 
is diffeomorphic to R n. 

We also obtain a sharpening of the result of [26] concerning one 
of the conjectures of Anderson-Cheeger as well as a sharpening of the 
statement of Gromov's conjecture proved in [26]. 

T h e o r e m A . 1 . 1 2 . Let the compact smooth Riemannian manifold, 
M n, be the Gromov-Hausdorff limit of a sequence, fM'i1g, satisfying 
(1.1). Then M n is diffeomorphic to M n, for all i sufficiently large. 

T h e o r e m A . 1 . 1 3 . There exists S(n) > 0 such that if M n is a com
pact n-dimensional Riemannian manifold, with Ric M n(diam(M n)) 2 > 
— S(n) and bi(M n) = n, then M n is diffeomorphic to the torus T n. 

After introducing some notation, we will proceed to the proof of 
Theorem A.1.2. Let J : A -> R n, where A C R n. For some suitable 
sequence of positive constants, ao, a\,..., and t > 0, write jJj C°°,t < c, 
if j c ^ J j < a i ^ i t 1 - ^ c, for every multi-index ß. 

Proof of Theorem A. 1.2. By scaling, with no loss of generality, we 
can assume r = 40. 
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Let \P = ty(ejn), where the particular function with lim \P(£jn) = 0 
e—»0 

might change from line to line. 
We will show that there exists a sequence, f(W n,pi)g, where W n 

is a smooth manifold and pi is a nonnegative symmetric function on 
W n X W n , which vanishes on the diagonal, such that there are sequences 
of diffeomorphisms, h i : W i1 —> W n+1, and (not necessarily continuous) 
maps, f i : W n —> Z, such that for all i, the following hold: 

i) There exists a Riemannian metric, g i, on W n, with associated 
distance function d i, such that pi(w i ,w 2 ) < 2~i implies pi(w i ,w 2 ) = 
d i(w i , w i2). 

ii) The maps, h i, satisfy 

(A. 1.14) 2-*Pi < Pi+i o h i <2xspi. 

iii) The maps, f i, satisfy 

(A.1.15) j P o f i-Pi j <m~i 

iv) The maps, f i+1 oh i, f i, satisfy, 

(Al .16) p(f i+1oh i,f i)<m-i 

v) The range of the map, f i, is \P(e)-dense. 

vi) If moreover, (Z,p) is an n-dimensional Riemannian manifold, 
then for i sufficiently large (possibly depending on (Z,p)) the map, f i, 
can be taken to be a diffeomorphism. 

Claim. It suffices to construct f{W i n, pi)g, fhg, ffg satisfying 

i)-vi). 

Proof of Claim. We begin by observing that if (Z, p) is an n-
dimensional Riemannian manifold, then 

(A. 1.17) F i = f i o h i_! o • • -oho 

is a diffeomorphism, F i : WQ —> Z, for i sufficiently large. 
Let w°, w°2 e W n , with p{w°l, w°2) < 1. Put 

(Al .18) s0 = p0(w
0
1,w°2), 

(A. 1.19) s i = pi{h i_x o • • • o h0(w°), h i_x o • • • o h0(w2)). 
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By iii), iv) we have 

(A. 1.20) Si - * 2 _ i < s-+1 < Si + * 2 " i 

In particular, lim s i := s ̂  := p^ ^w®, w®) exists. 
i—>oo 

Since Z is complete, it follows from iv) that lim F i := F exists and 
i—>oo 

from iii), we get 

(A.1.21) poF = Poo. 

Moreover, by v), F«, is surjective. Thus, it will suffice to show that p^ 
is a metric on WQ and that this metric is bi-Hölder equivalent to do. 
By i), it suffices to compare p^ to po. 

By ii), we have 

(A. 1.22) 2~*s i < s-+1 < 2*s i. 

If we fix j and use (A.1.22) for j < i and (A.1.20) for j > i, we get 
(for all j) 

(A.1.23) 2~*j s0 - * 2 " j < soo < 2* j s0 + * 2 _ j . 

Clearly, we can chose j such that 

(A.1.24) 2* j s0 < 2 " j , 

(A.1.25) 2vE,(j+1)s > 2- ( j + 1 ) . 

Then (A.1.25) implies 

(A.1.26) 2 s ^ > 2~j 

which together with (A. 1.23), (A. 1.24) gives 

(A.1.27) sco<2{l + ^)sfw. 

Similarly, choosing j such that 

(A.1.28) 2-*(j"1)so < 2-f j - 1) , 

(A.1.29) 2 - * j s0 > 2 " j , 
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we find from (A. 1.28), 

(A. 1.30) s p > 2-j, 

and from (A.1.23), (A.1.28), (A.1.30), 

(A.1.31) ±(l-*)sf* <soo. 

By (A.1.27), (A.1.31), poo is bi-Hölder equivalent to do with exponent, 
a = 1 - * . 

Before constructing the data in i)-v) above, we recall a well-known 
fact about sets of points in Euclidean space. 

Let Q = fqg be a minimal ry-dense set in B R(O) C R n, R > i]. Let 
Q\ C Q be a maximal subset such that q i1, i > 20?y, for i l , q i G 
Q i , il / i2- Similarly, let Q2 C Q n Q\ be a maximal subset such 
that q , q i > 20r], for q , q i G Q 2 , i / i - Then if Q 3 , . . . , Q N are 
constructed similarly by induction, we have N < N(n). Note that if 
q k G Q ki then for any £, we have B%,q(q k) l~l Bgv(qi) / 0, for at most one 

Clearly, we can assume that the number, e(n), of the hypothesis has 
been chosen such that if fzg is minimal y^-dense subset set of Z, then 
property of the preceding paragraph holds, for some possibly different 
N = N{n). 

We now construct the data in i)-v) , starting with the construction 
of the manifolds, W n . These will be obtained by gluing together cer
tain balls, B2.2-i(Qi,j), where 0 i j is the origin in some copy of Euclidean 
space, M.n,j. The gluings are determined by diffeomorphisms, I ij2j1 (de
fined for certain pairs of indices, j i , j 2 ) . The domain of i j 2 j l is an open 
subset of B2.2-i(Qi,j1), and its range is an open subset of B 2 . 2 - i (0 i j 2 ) . 
The consistency condition, I ij3j1 = I i,j3,j2 ° I i,j,ji is required to hold 
on the intersection of the domains of I ij3j1 and I ij3j2 o I itj2tj1-

It will be clear in what follows that there is a certain degree of 
freedom in the choice of the numbers (16, 8, 6, 4, 2) which appear in 
the construction. All tha t matters is that certain inequalities between 
these numbers hold. 

We begin by successively choosing finite subsets, XQ C X\ S • • •, 
N i 

such that X i is a minimal 2_i-dense subset of Z. We write X i = Q ij, 
j = 1 

where N i < N and the sets, Q it\,... , Q i,ji> are defined analogously to 
the sets, Q j , above. 
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For all i,j, we choose a copy of Euclidean space, R n j , with origin 

0 i j . For all x ij G X i, choose e2_i-Gromov-Hausdroff approximations, 

<*i,j '• Bi6.2-i(0i,j) > Bl6-2-i\x i,j) 

and 

ßi,j '• Bl6-2-i\x i,j) ^ Bl6-2-i\Qi,j)i 

such that ßij o a i j , Id < ^2~i and a i j o / i j , I d < î '2~i . 
The maps I ij2j1 will be defined only for pairs of indices ji,j2, for 

which 

(A.1.32) B6.2-i(x itj) n B6.2-i(x itj) + 0. 

For such pairs, the intersection, Bl&.2-i{x i)jl) n B16.2-i(x ij2), has a def
inite size (it contains a ball of radius 10 • 2~i). 

Since the intersection has a definite size and the maps, aij1, ßij2, 
almost preserve distances, it is clear that there exist isometries, I ij2j1 '• 
R n j —> R n j , such that 

(A. 1.33) I , j , j l , ßi,j2 o 0!ij1 < * 2 _ i (on say B . 2 - i ( 0 i j 1 ) ) . 

Now suppose that for some ji,j2,j, the intersection 

B6.2-i(Xi}j1) n BQ.2-i{Xij) n BQ.2-i{Xij) 

is nonempty. Then 

B 1 6 - 2 - i ( ^ i j i ) !"! BiQ.2-i{x i j ) Pi B l o ^ - H x i j s ) 

has a definite size and from (A. 1.33), it is clear that 

(A. 1.34) I ~ ~ ^ I ~ ~ I ~ ~ < *2"i (on say B8.2-i(0ij1)). 

We will define maps, I i j 2 j l , by suitably modifying the maps, I i j 2 j l , 

in such a way as to guarentee that for ji,j2,j as above, the relation, 

I i,j,j ° I i,j,ji = I i,j,ji holds on an appropriate subset. 

A given map, I i j 2 j l , may have to be modified more than once (but 

< N3 times) in the course of producing the final map, I i,j2,ji- After the 

first modification has been performed, we use the notation, I i j 2 j l , for 

the resulting map. Thereafter e we refer to all additional modifications 

as modifications of the map, I i,j2,ji- Since any such map undergoes at 
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most a definite number of such modifications, we can assume that e and 
hence \P, are so small tha t at every stage of the process, we have 

(A. 1.35) |I- ij2 ij l - I 2 j 1 |C0Oj2_i < * (on B8.2-i(Oitk2)). 

By restricting the domains of the maps, I i,j2,j1, to subsets of the 
balls, B2.2-i(Qi,j1), we will obtain the desired maps, I i,j2,ji-

The modifications are effected by the proceedure of [11], where a 
situation closely related to the one considered here is treated. Thus, we 
will refer to [11] for certain details (see also [21]). 

If x i,kt G Q i,i, x i,k2 ^ Q i,2, are such that 

I i,k2k (B4.2-i(Qi,k1))
 n B - 2 - i ( ^ i,k2) 

is nonempty, we put I itk2k = I,k2,ki- Note that for x i^x fixed, there is 
at most one such x itk2 G Q ifi-

Let x ik l G Q i,i, x i,k3 G Q i,3 be such that 

is nonempty. Then we put I i^k = I,k3,ki- Suppose that in addition, 

e * U (B2-(oik l)) ne ̂ ki (B(4.2-i(oilkl)) / 0. 

Then, as in [11] (see also [21]) by means of the Isotopy Extension 

Theorem, we modify the map, I itk3,k2, to obtain a diffeomorphism, 

I ik k : R n k —» R n k , such that on 

e U ( e U (B(4-NiT)2-(oiki)) nB (4_N)2-(°ik)) 
(A.1.36) e i , , 

we have I i,k,k o e , k = e , k 3 k -
Moreover, it is easy to see that if e and hence \P are sufficiently 

small, then by further decreasing the radii of the relevant balls, we 
obtain the following. Let ji,j2,j by any of the 6 possible permutations 
of k\, k2, k . Then on 

(A 1 _ eLn ( e U ( B - N - i j n B(4_N)2-i(oij)) 
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Note that the balls occuring in (A. 1.37) have radii which are smaller 
than those in (A.1.36), which in turn, are smaller than those in the 
relation that preceds it. Indeed, in what follows, at every stage at 
which our maps are modified, we will shrink by a definite amount, the 
radii of all balls (with centers, 0ij) tha t are used to define the sets on 
which all of our consistency conditions are required to hold. In addition 
to the reason which we have just mentioned (i.e., to obtain all of the 
above 6 relations, I ij3j2 ° I i,j2,ji

 = I i,j,jì) are two additional reasons 
why the radii must be decreased. 

First of all, this is neccessary in order to obtain the new consistency 
relations which are produced at any given stage of the construction; see 
[11] for details. 

Secondly, decreasing the radii plays a role in ensuring that a mod
ifications performed at a given stage do not destroy any consistency 
relations which were obtained at earlier stages. This point will be ex
plained at length below. 

We now treat the points, x i^k G Q i,4, in a fashion similar to that in 
which the points, Xik G Q i,3, were treated above. 

Thus, if x i)kl,x i)k4are such that I ik,kl (B-2-i (0iki)) n B-2- i (0 i ,k ) 

is nonempty, we put I e k4k = I ik k -

Next, we modify all appropriate maps, I itkitk2 to obtain the maps, 

e,ki,k2 such that on 

e I M ( e k,k (B(4-N)2- i ( ° ik l ) ) n B ( 4 - N ) 2 - ( ° i k ) ) 

n e k k i ( B ( 4 - N ) 2 - i ( ° i k l ) ) ' 

we have I i}k4,k2 ° e , k 2 k = I i,k4k-

Then, we modify all appropriate maps, I itk4,k3, so as to obtain maps, 
I i k k su e h that the relations I itkitk3 ° e,k3k = eMM and finally, 
e,ki,k3 ° h,k3,k2 = e,ki,k2i hold on the corresponding subsets (defined 
by balls whose radii have been appropriately decreased). 

In particular, a map, I itk4,k e may have to be modified twice in or
der to produce the final map, I itk4,k3, since there are two consistency 
relations which must be satisfied. 

As previously mentioned, the modification proceedure of [11] guar-
entees that modifications performed at a given stage, do not destroy 
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consistency conditions which have been obtained at a previous stage. 
The reasons for this are the following. 

First of all since every modifcation can be assumed to be by as small 
an amount as we like (by making e sufficiently small) and in addition, the 
radii of every ball is shrunk by a definite amount when each modification 
is performed, it follows easily that the new domain on which a previously 
established consistency relation is required to hold, is actually a subset 
of the previous domain o f tha t consistency relation. 

Given what has just been explained, it suffices to check the following 
point which we illustrate by using the indices, k\, k2, k , k , which were 
considered above; the argument in the general case is precisely the same. 

Suppose we have already established the relation, 

I i,k4,k3 ° I i,k3 ,k\ — I i,k4,k\} 

and must now perform a second modification on the map, I itk4,k3, in 

order to establish the relation, I itk4,k3 ° e,k3,k2
 = e,k4,k2- Suppose that 

there exists 

m ik G B(4_N_)2-i(0i,ki) ,m i,k2 G B(4_-N_)2-i(0i,k); 

such that 

e ,k 4 ,k 3 ° I i,k3k(m ik) = I ' , k , k i ( m i ,k i ) i 

I i,k3,k2 \m i,k2 ) — i,k3 ,k\ \m i,ki ) ? 

and 

I i,k4,k2(m i,ki) e B(4__e_)2-i(0ik4)-
V N3 ! 

We claim that in this case, we actually have, I itk4,k3 °I i,k3,k2 (m i,k2)
 = 

I i,k4,k2(m i,k2)- Granting this for the moment, we note that the modifi
cation proceedure of [11] is such that in such an instance, the second 
modification of the map, I itk4,k3, will leave the value, I itk4,k3(m i,k3), un
changed; see [11] for details. This suffices to show that the second modi
e cation does not destroy the previously established consistency relation, 

I i,k4,k3 ° I i,k3,k\ — I i,k4,k\-

To check our claim, note that from the previously established re

lations, we get m itk2 = e e M m M ) and e u M ° eMM (m i\ki) = 

I i , k 4 k ( m ik e ) - These imply I i,k4,k2e m i,k2) = e M M m M ) - Addition

ally, since I i,k4,k3 ° I i,k3,kAm i,ki) = I i,k4,kAm ik)i by applying e,k4,k3 to 

both sides of the relation, I i,k3,k2(m i,k2)
 = I ',k,ki (m i,ki)ï i t follows that 
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e M M o I e k3,k2(m ik2) = I ik,kAm i,ki) = I i,k4,k2(m i,k2), which establishes 
our claim. 

By proceeding in as above, with all Xik G Q i,e, we obtain maps, 

I i,j,jn for all j i , j2 satisfying (A. 1.32), such that 

(A. 1.38) \en,j - I 2 j 1 |COOj2_, < * (on B8.2-t(0ij1)) 

and such that the following holds: 
Let 

(A. 1.39) dom b j 2 j l = fw e B2.2-t(0ij1) \ e , j , j { w ) G B2.2-t(0)ij2g, 

and on this domain, put 

(A1.4UJ I i,j,jl = I i,j,jl-

As usual, put 

(A. 1.41) dorn b j3 j o b J 2 J l = b ^ (range I j2 j l n dorn b J 3 J 2 J . 

Then for e < e(n) sufficiently small and all ji,j2,j, we have 

/A , .„x I i , j , j ° * i j , j l = I i,j,jl 

(on dom b j 3 j 2 o b j 2 j l n d o m b 3 j l ) . 

It follows from (A.1.42), tha t the collection, fI i,j1,j2g, determines an 
atlas, ftpij g, for a smooth manifold, W n, such that ipij2 °^j = I i,j2,ji 

and range t i j = B2.2-,(0). 

The manifold, W n is essentially unique. In fact, if a ' j , / i ' j are a 
different set of e • 2_i-Gromov-Hausdorff equivalences as above, then 
there exist isometries, J i j : R 1 —> R n, with J i j (0) = 0, such that 

i j> » i j ° J < *2~i> on B . 2 - (0), 

and 

ßi,jiJ j°ßi,j < * 2 ~ i > on B - 2 - x J ) -

Let f-(/i' j g denote the atlas for the manifold, (W)n, constructed as above 
from the maps, f a ' j g, f i j g. Then for e < e{n) sufficiently small, 
by modifying the maps in the collection, f (V ' i j ) - 1 ° J i,j ° V'ij g by a 
small amount (in the topology induced from j j Coo 2-t and the given 
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atlases) as in [11] (see also [21]) one constructs an essentially canonical 
diffeomorphism from W n to (W')n. 

Suppose that (Z, p) is actually an n-dimensional Riemannian mani
fold. Then for i, sufficiently large, the collection of maps, {ßij g, can be 
choosen to be an atlas for the smooth manifold underlying, Z. Then the 
maps, I i,jltj2i will be slight modifications of the (restrictions of) maps, 
ßij2 oi~i and as above, it follows that (for e < e(n), sufficiently small) 
there exists an essentially canonical diffeomorphism, f i : W n —> Z. 

Let X i be the 2_i-dense set chosen earlier. For each £ i + i j G X i+i, 

choose x ikj\ G X i, such that £ i + i j G B2-i{x ikj\). If in fact, £ i + i j G 

X i, take x ikj\ = £ i + i j . Let L ij : R n —> R n be an isometry such that 

L ij o b i^tj\(x i+ij) = 0. Let {Oij g be the atlas for W n obtained by 

putting 

(A.1.43) 

0i,j = L i,j ° i>i,k(j) I (L i j ° i'ikj))'1 (B2-i(L i j ° i>i,k(j)^ tx '+ i j ) ) ) -

As above, there exist isometries, say K ij : R n —> R n, such that by 
slightly modifying the maps, {ti~+1 j ° K i,j ° @i,j gi we obtain an essen
tially canonical diffeomorphism, h i : W n —> W i n+1, (provided e < e(n), 
sufficiently small). 

Verification of i)—vi): 

vi) From, the preceding discussion, it is clear that if Z is an n-
dimensional Riemannian manifold, and i as above is sufficiently large, 
then F i as defined in (A.1.17), is a diffeomorphism, F i : WQ —> Z. 

Consider again the case in which Z is arbitrary. 
Let {4>i,j g denote a partition of unity subordinate to the cover

ing, {ili~j (B6.2-i(0))g, constructed in standard fashion (from the pull-
backs via the maps, ipij, of a standard bump function). Put g i = 
P ^ ij ^ i j(g)i where g is the standard flat metric on R n. Let d i denote 
the distance function associated to g i. 

Clearly, the functions, d i, and maps h i, satisfy for all i, 

(A. 1.44) 2~*d i < d i+1 o h i < 2*d i. 

Starting with the collection of Gromov-Hausdorff approximations, 
{oiij g, in obvious fashion, we can construct a map, f i : W n —> Z (which 
might not be continuous if Z is not an n-dimensional Riemannian man
ifold) such that the following properties hold. 

iv) For all i, (A.1.16) holds. 
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i) Define points, w i j G W i1 by w i j = ipi j (0). Then for all i, j , 

(A.1.45) | / o o i - d i | < * 2 - i ( o n B r , ( t j ) ) . 

Here B r(w i j) denotes the metric ball of radius r with respect to the 
distance function, d i. 

If we define 

(A. 1.46) Pi(w i , w i) 
d i(w i ,w 2 ) d i(w i ,w 2 ) < 2 

pò f i d i(w i , w i2) > 2 

then it follows that i) holds. 

iii) Moreover, it is clear that (A. 1.15) holds. 
ii) From (A.1.44), (A.1.46), together with (A.1.15), (A.1.16), we get 

(A.1.14). 

v) Finally, the map, F ̂ , is surjective. 

This completes the proof. 

R e m a r k A .1 .47 . As previously mentioned, the proof of The
orem A.1.11 is very similar to the proof of the Theorem A.1.2. Let 
M n be as in Theorem A.1.11. It follows from [26] (or [15]) that for 
1 < c < c(n) ,0 < S < S(n), after rescaling to unit size, every annu-
lus, A R)cR(p) = B cR(p) n B R(p), is lI'(5|n)-close to the corresponding 
annulus'A l jc(0) C R n. Write M n = B^p) U (U^1A2 /_i/3 ) 2 /+4/3(p)). In 
place of the sets, XQ C X\ C • • • , defined prior to (A. 1.32), we consider 
sets, XQ C X\ C • • -, such that X i n A2e-i/3 2e+4/s(p) is 2^_i-dense in 
A2e-i/3 2̂ +4/3 (p))- With this modification, the proof of Theorem A.1.11 
can be carried out in a manner strictly analogous to that of Theorem 
A.1.2. 

A p p e n d i x 2: R e m a r k s on the synthet i c t rea tment 
of Ricci curvature 

Generalizations of the notion of "smooth function" have long played 
a very important role in analysis and in questions of a geometric an
alytic nature; see e.g. [10], [29], [51], [57]. After the pioneering work 
of Alexandrov and Gromov ([2], [37]) analogous notions of "generalized 
Riemannian manifold" have begun to play an increasingly significant 
role in Riemannian geometry. In this appendix, we will discuss some 
related issues in connection with Ricci curvature. 
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We begin by fixing some ideas and terminology. Let us consider 
metric spaces, possibly equipped with some additional structure like 
a measure. Roughly speaking, we say that a set of conditions which 
serve to define a subclass of such metric spaces (or associated objects) 
is synthetic if these conditions do not depend on the existence of an un
derlying smooth structure, or indeed, make any reference to the notion 
of smoothness. (More generally, our conditions should not entail any a 
priori structural assumptions.) 

The origins of the synthetic tradition in geometry go back quite far. 
More recently, questions of a geometric analytic nature, of the sort which 
classically were studied in R n, have received considerable attention in 
more general synthetic contexts; see e.g. [53] and the references therein. 

Let Alex(n, H) denote the class of n-dimensional Alexandrov spaces, 
X, with Alexandrov-Toponogov curvature > H. Let sec(n,H) denote 
the class of n-dimensional Riemannian manifolds, M n, with sectional 
curvature K M n > H. Clearly, the former of these classes is defined syn
thetically while the latter is not. Since Alex(n, H) contains sec(n,H) 
and coincides with it when intersected with the class of smooth Rie
mannian manifolds, we say that Alex(n, H) provides a strict synthetic 
generalization of the class, sec(n, H); see [9], [48], for the general theory 
of Alexandrov spaces. 

Let sec(n, H) denote the closure of sec(n, H) in the Gromov-Haus-
dorff topology. This class is not defined synthetically, even though it 
contains members more general than smooth n-dimensional Riemannian 
manifolds. 

In fact, for H > 0, it is known that sec(n, H) (jL Alex(n, H); see [49]. 
However, it is not known whether there exists 

N(X) < oc, c(X)H> - o c , 

such that if X G Alex(n, H), then X G sec(N(X),c(X)H). If this were 
known, we would say that the class sec(N(-),c(-)H) provides a resolu
tion of singularities for Alex(n, H). According to [9], Section 13, this 
instance of the problem of resolution of singularities "presents difficul
ties" . 

If resolution of singularities holds, one can in principle study the 
synthetically defined class by means of theorems which are proved (ini
tially) in the smooth case by smooth methods, but whose hypotheses 
and conclusions are phrased in purely synthetic terms and are preserved 
under Gromov-Hausdorff limits; compare the proof of the Poincare in
equality for limit spaces given in [13]. 
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At present, there are only very few theorems which are known to hold 
for the class, sec(N(-), c(-)H)f]Alex(n, H), but which are not known for 
Alex(n, H), itself. 

On the other hand, for Ricci curvature, the main rigidity theorems 
for Gromov-Hausdorff limits are proved in [15] by just this method of 
resolution of singularities. In this appendix, we will discuss the issue of 
possible synthetic generaliztions of these theorems and of their conse
quences. 

The generalized splitting theorem provides a particular example. 
Let Ric(n,H) denote the class of smooth Riemannian manifolds, M n, 
with Ric M n > (n — 1)H. In [15], the splitting theorem is proved for 
the class, fleRic(n, —e). Since the splitting theorem itself is not valid 
for any individual class, Ric(n, —e), it is necessary to prove an "almost" 
or "quantitative" splitting theorem for each e. This implies the cor
responding theorem for Ric(n, —e) and the totality of these theorems 
yields the splitting theorem for fleRic(n, —e). 

For the most part, the theorems of the present paper are formulated 
and proved purely synthetically (but compare e.g. (2.34)-(2.36)). Thus, 
most of these results hold for certain nonstrict synthetic generalizations 
of the class, Ric(n, H), in which various subsets of the relative volume 
comparison and almost rigidity theorems are assumed (axiomatically) 
to hold. All of these generalizations contain the class Ric(n, H). If, for 
example, we assume the integral Toponogov theorem of [15], as formu
lated with respect to the measure, v (compare [24]-[26]) we emphasize 
the connection with Alexandrov space theory and obtain as a particular 
synthetic consequence, the splitting theorem and (at least a weakened 
version of) Theorem 2.1. 

After recalling some further background, we will point out a par
ticular strict synthetic generalization of the class, Ric(n, H ) , for which 
the almost rigidity and integral Toponogov theorems are not assumed 
axiomatically to hold. However, it turns out that any theory for which 
such results are valid, must in one way or another, be based on rather 
strong additional assumptions. 

The idea that there should be a synthetic theory of spaces whose 
Ricci curvature is bounded below in some generalized sense, goes back 
to Gromov, whose compactness theorem provides the first nontrivial 
examples of such spaces; [37], [36]. 

Fukaya, observed the existence of renormalized limit measures and 
conjectured the role that they should play in connection with the conti
nuity of the spectrum of the Laplacian under measured Gromov Haus-
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dorff convergence; see [30] and, for the proof of the conjecture, [13]. 
The first estimate on distances under Ricci curvature bounds is the 

Abresch-Gromoll inequality; [1]. This estimate automatically passes to 
Gromov-Hausdorff limits. 

In [24]-[26], one finds the first theorems on Ricci curvature in the 
context of smooth manifolds (integral Toponogov theorems, etc.) tha t 
strongly resemble results which for sectional curvature, play a basic role 
in the theory of Alexandrov spaces. 

As noted above, the almost rigidity theorems for Gromov-Hausdorff 
limit spaces were proved in [15]; it had been conjectured in [31] that the 
splitting theorem extends to Gromov-Hausdorff limits. 

From [30], it is already clear that the basic objects of any synthetic 
generalization of the class, Ric(n, H), are pairs, (Y, is), where Y is a 
length space, and is is a Radon measure which plays the role of the 
renormalized limit measure; compare Sections 1-3. The measure, is, 
should satisfy (0.5), for all z G Y, fj, = is, and k = n, for some n < oo. 
Consequently, Y = Y m has Hausdorff dimension m < n. As indi
cated by Examples 1.24 and 8.71, neither for Alexandrov spaces, nor 
even for smooth Riemannian manifolds, should one restrict is to be m
dimensional Hausdorff measure. 

The above mentioned property of is, which is a strengthened version 
of what is often refered to as a doubling condition, has significant con
sequences e.g. compactness theorems; compare also [53]. However, to 
capture more completely the fundamental implication of the condition, 
"Ricci curvature bounded below", which in the smooth case, is mean 
curvature comparison, or equivalently (in the smooth case) Laplacian 
comparison, one needs a version of (0.5) which is localized with respect 
to direction; [8], [10], [37]. 

Calabi emphasized that Laplacian comparison holds in a useful gen
eralized sense, even at points where the distance function fails to be 
smooth i.e. on the cut locus; compare [20], [62]. 

In terms of mean curvature, this principle can also be formulated 
as follows. Namely, rate of change of the logarithm of the area of the 
intersection of any (thin) angular sector of minimal geodesics with a 
family of distance spheres, dB r(p), is less than the corresponding rate 
of change in the model space, Mjn. 

We now consider certain strict synthetic generalizations of the class, 
Ric(n, H ) , which are based on generalized concepts of mean curvature 
comparison and Laplacian comparison. 

Let X be a length space equipped with a Radon measure, is. For 
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p G X and 0 < r i < r2 , we put A ri)r(p) = B r2(p) \ B ri(p). Given 

0 < si < s2 < ri, and an open subset, U C A ri r2(p)> we set 

(A.2.1) _ _ _ 
S slts2(p, U) = {x G A s l is (p)\ p,x + x, z = p, x, for somez G U } . 

Thus, S s l j s (p , U) is the intersection with A slts(p) of the angular sector 
consisting of minimal geodesics emanating from p and the ends of which 
lie in U. 

A generalized version of mean curvature comparison can be formu
lated as follows; compare (0.5). For all p G X, 0 < si < s2 < r \ < r2, 
we have 

v{U) <V n,H(s2)-V n,H(s1) 

(A.2.2) v(S si,s2 (p> U)) V n,H(r2) - V . H ( r i ) 

(for all U C A r i , r2(p)) . 

It is easy to see that condition (A.2.2) already provides a strict 
synthetic generalization of the class, Ric(n, H). 

In order to formulate Laplacian comparison, we must have a gener
alized notion of Laplacian for (X, v). 

Let f be a Lipschitz function on X. Given x £ X and 0 < r\ < r2, 
put 

Assume from now on that X is locally compact, from which it follows 
that Lip (x , f ) is a continuous function of (x,ri,r2). Hence, the 
function, 

(A.2.4) L i p ( x , f ) : = lim lim Lip ( x , f ) , 

is measurable. As in [35], we define a generalized Dirichlet functional 

by 

(A.2.5) Q(f , f )= Z (Lip(x,f))2, 
x 

whenever the integral is finite. If v{X) < oo, then this holds for all 
Lipschitz functions, f. 

Note that at least formally, (A.2.2) implies Theorem 2.11 of [15] 
and hence a lower bound for the "bottom of the spectrum" of Q in the 
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compact case; compare [15, Remark 2.82]. However, due to the possible 
lack of regularity in our space, there are technical points to consider 
in carrying out such a proceedure; compare [13] in which an argument 
based on resolution of singularities is employed. 

If (X, v) is the limit in the measured Gromov-Hausdorff sense of a 
sequence, fM i1g, satisfying (1.1), it makes sense to compare the func
tional, Q, with the corresponding sequence of Dirichlet forms on the 
manifolds, M i1; see [13] for details. However, in order to define the 
Laplacian of f (in a weak sense) we need an appropriate definition of 
Q(f,h) for pairs of Lipschitz functions (f,h). Given such a definition, 
we can take f = f(r) and take h to be supported near some point, 

z eX. 
Roughly, for Q(f,h) to be defined, the following should hold. As

sume that fxg satisfies Xi —> x and either f(x i) > f(x) or f(x i) < f(x), 
for all i. In (A.2.7) below we attach a sign, + or —, according to which 
of these alternatives actually holds. Assume in addition, that 

(A.2.6) lim jfx ih_fxj=q f(x) 
i-ïoo x i,x 

and that 

(A.2.7) ±q f(x) lim j h x x ^ x j .= {x) 

i—>ooi, x 

exists and is independent of the particular sequence, Xi. If q fth(x) is 
defined for almost all x and q fth(x) G Li(X, is), then we put 

(A.2.8) Q(f,h)= q f , h ( x ) . 
X 

Note that in the definition we have given, the roles of f and h are not 
symmetric. Moreover, the functional, Q, is not bilinear in general. 

If Q(f,h) exists for f = f(r) and a suitably dense collection of 
functions h, then the condition "generalized Laplacian comparison holds 
with respect to some M H \ has an obvious meaning. 

The following canonical examples do satisfy generalized Laplacian 
comparison (as well as (A.2.2)) but not the basic rigidity and integral 
Toponogov theorems. These examples were pointed out to us by Z. 
Shen; compare [54], [55]. 

Let X n denote a normed vector space of dimension n. As usual, we 
regard X n as a complete metric space by setting v\, vi = jv\ — v ̂  j- Let 
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v denote the associated Hausdorff measure. We will assume that unit 
ball is strictly convex i.e. the norm on X n satisfies the nondegeneracy 
condition: If v\ and v2 are linearly independent, then 

(A.2.9) jtvi + {\-t)v2j < tjvij + (l-t)jv2j (0 < t < 1). 

In this case, the minimal geodesics are precisely the affine line segments 
and every such segment extends to a line in the sense of the splitting 
theorem. 

Since the splitting theorem holds for Alexandrov spaces (see [39] and 
for the case of Gromov-Hausdorff limit spaces, [61]) it follows that X n 
is not an Alexandrov space unless it is isometric to Euclidean space, R 1 . 
(Of course this can also be checked directly). None-the-less, it is easy to 
verify (A.2.2) (for H =0 ) . Also, the functional, Q, is well defined and 
(for H = 0) generalized Laplacian comparison holds. 

For convenience, fix an inner product on X n. Let Cn denote the 
corresponding Hausdorff measure. Note that the identity map is bi-
Lipschitz from the original normed space, X n, to X n equipped with 
this Euclidean structure. Since the additive group of the underlying 
vector space acts by isometries with respect to both metrics, it follows 
in particular that v is constant multiple of Cn. Thus, the divergence, 
div W, of a vector field, W, is the same when defined with respect to 
either of the associated volume forms. 

For t ^ 0 , scalar multiplication by t defines homothety of X n which 
scales distances by a factor t and hence scales v by a factor, t n. It 
follows directly that (A.2.2) holds for H = 0. 

If we regard X as a normed linear space, the nondegeneracy con
dition, (A.2.8), allows us to define a bijection, L, from the dual space 
(X n)* to X n (the Legendre transformation). Namely, when restricted 
to the unit sphere, every linear functional, £*, takes its maximum at a 
unique point, v. Then we send £* to £*(v)v. The map, L, is not linear 
unless X n is isometric to Euclidean space. However, we can define the 
gradient of a Lipschitz function, f, by putting e f = L(df*). Typically, 
this gradient is not a linear map (from functions to vector fields). 

It follows from the previous discussion that the functional, Q, is well 
defined. Specifically, qj^ = dh e f). Of course, if the gradient, e , is 
not linear, then the functional, Q, will not be bilinear. However, it is 
easy to verify that Laplacian comparison holds. Indeed, we have 

(A.2.10) Q(f,h)= Z e f-h, 



476 j e f f c h e e g e r & t o b i a s h . c o l d i n g 

where the nonlinear Laplacian, e , is given by 

(A. 2.11) e = div e ; 

(Shen has observed that the above definition extends to arbitrary Finsler 

manifolds, in which case, one must replace div by div; see [55]). Then 

an easy computation gives 

(A. 2.12) 

Assume that there is at least one point, v, on the unit sphere of 
X n, at which this sphere is not C1-smooth. Let w be such that the 
intersection of the plane spanned by v and w and the the unit sphere 
is a curve which is not C1-smooth. Then for arbitrarily thin triangles 
lying in this plane, with base along v, the excess is bounded below by 
a definite multiple of the altitude i.e. even in qualitative form, the 
Abresch-Gromoll inequality, a weak form of the splitting theorem, does 
not hold. 

Note that the nonsmoothness of the unit sphere implies that (A.2.9) 
is violated for the dual space, (X n)*. However, if we consider a sequence 
of norms for which the unit sphere is smooth, which converges to a 
norm for which the unit sphere is not smooth, it follows that there is 
no inequality of Abresch-Gromoll type which holds uniformly for such 
a sequence. 

The proof of the Abresch-Gromoll inequality for smooth Riemannian 
manifolds uses only Laplacian comparison and the maximum principle. 
Since the Laplacian, e , satisfies the maximum principle, it becomes 
clear that the failure of the proof in our situation can be traced to the 
nonlinearity of e . Recall in this connection, that in the proof, it is 
actually neccesary to apply the Laplacian to a linear combination of 
two distance functions (which occur in the excess function) and a cer
tain comparison function of the distance from a third point; see [1]. 
If the Laplacian is nonlinear, Laplacian comparison for individual dis
tance functions does not imply Laplacian comparison for such linear 
combinations. 

Clearly, there is no reason for the generalized Dirichlet form, Q, to 
be bilinear unless almost all points of the underlying metric space are 
actually regular. So if we assume the bilinearity of the Q, we are in 
effect making a hidden assumption concerning the local regularity of 
our space; see [13] for further discussion. 

e r 
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On the other hand, it would be of interest to explore theories (limit 
space and synthetic) in which the role of Riemannian manifolds is played 
by Finsler manifolds i.e. in which role of Euclidean spaces is played by 
Minkowski spaces. 

While the bilinearity of Q suffices for the Abresch-Gromoll inequal
ity, in order to obtain the splitting theorem itself, a version of Bochner's 
formula must be incorporated into the discussion. 

Let us make a final remark. In the Riemannian case, the penulti
mate step in the proof of the splitting theorem produces a vector field 
of constant norm which is the gradient of a harmonic function; see [20]. 
Bochner's formula implies that this vector field is parallel, and hence, 
by the DeRham decomposition theorem, the manifold splits isometri-
cally. As a particular consequence, the gradient field is also Killing. 
For the space, X n, considered above, the coordinate functions are har
monic. Moreover, their gradients have constant length and do generate 
1-parameter groups of isometries. However, the splitting theorem still 
fails to hold. 
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