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RIGIDITY IN THE HARMONIC MAP HEAT FLOW 

PETER MILES TOPPING 

Abstract 
We establish various uniformity properties of the harmonic map heat flow, 
including uniform convergence in L2 exponentially as t —> oo, and unique
ness of the positions of bubbles at infinite time. Our hypotheses are that 
the flow is between 2-spheres, and that the limit map and any bubbles share 
the same orientation. 

1. Introduct ion 

Let us consider smooth maps (f> : S 2 —> S2. We use z = x + iy as 
a complex coordinate on the domain, obtained by stereographic projec
tion, and write the metric as a2dzdz, where 

a z 
l+\z 2 

Similarly we have a coordinate u on the target, and a metric p2dudu. 
We are using the notation 

dz = dx + idy, dz = dx — idy, 

with analogues for du and du, and we will write 

-{Ux-iu y), Uz=2 Ux - i u y ) , u z = - (Ux + i u y) . 

To the map (f> we associate the energy densities 

(A,\ P2(u)\ |2 ir\ P2(u) 
edW) = ô-\u z\ , eg(ç!>) = — 
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and 

e{4>) = ed{4>) + eB{4>). 

The corresponding energies are 

Ed{4>) = ed{4>) = - p \u z\ dzAdz, 

EB{4>) = eB{4>) = - p2\u z\2dz A dz, 

and 

(1) E{4>) = Ed{4>) + EB{4>). 

We also define a local energy 

E(x,r){(f>) = e{4>), 
B r (x) 

where B r (x) is the geodesic ball of radius r centred at x in S 2 . The 
Jacobian of (f> is given by 

J{4>) = ed{4>) - e§(^), 

and consequently we see that 

(2) Ed{<j>)-EB{<j>)=ATTdeg{<j>). 

For a fixed target chart, we may form 

(3) T = — Uzz -\ UzUz 
a2 P 

The associated geometric object is r u , and the tension of <f> is defined 
to be 

T / ,N d d 
ou ou 

which is a section of (f)*(TS2). 
The critical points of the energy functional E are known as harmonic 

maps, and the Euler-Lagrange equation which they satisfy is 

TO) = 0. 
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The harmonic map heat flow is a solution $ : S 2 X [0, oc) -> S 2 of the 
associated parabolic problem 

(4) l t = T ^ ' *(- .°) = *o. 
which we refer to as the 'heat equation'. We call (f>o the 'initial map ' . 
The heat flow was introduced by Eells and Sampson [2]. It is L2-gradient 
flow on the energy - loosely speaking, <£> evolves in order to decrease its 
energy as quickly as possible. 

For Q CC S2 we measure the concentration over Q of a flow with 
the quantity 

£(R,tt)= sup E{xtR)($(;t)). 
(x,t)eüx[o,oo) 

We will have cause to embed the target S 2 in R , and see <£> as a 
map v : R2 X [0, oc) -> S 2 ^ R , or v : S2 X [0, oc) -> S 2 ^ R , and cf)0 

as a map vo '• S2 —> S2 -̂> R3. In terms of v we have 

e(^) = \\Vv\2, 

and so 

E(< )̂) = - \Vv\2dxdy. 
2 2 

In the harmonic map heat flow, the map v evolves according to 

^N dv 1 . A _ 
(5) — = — ( A v + v | V v 

2 

öt a 

where A is the Laplace-Beltrami operator. We will denote the right-
hand side of (5) also by T, without confusion. We may also make 
references such as E(v(-,t)) meaning E(<&(-,t)) for related v and <I>. 

Existence theory for the heat equation was studied by Struwe in 
[6]. The equation was shown to have a global weak solution (which is 
now known to be essentially unique [3]) and to be smooth except at 
finitely many points in space-time. For much of this paper we will be 
considering only the asymptotic behaviour of the flow at infinite time, 
in which case we may assume it is globally smooth. 

Struwe's theory also described how 'bubbles' may occur in the heat 
flow. We need an extension of this which is the following theorem of 
Qing [4]. 



596 p e t e r m i l e s t o p p i n g 

T h e o r e m 1. Let v be the solution of (5), corresponding to a solu
tion <£> of (4). Then there exist finitely many non-constant harmonic 

maps f^k g k~o from S2 to S2 (seen as maps f̂  k g k~o from R to S2 via 
stereographic projection) together with sequences 

(i) ft i g with t i —T- co, 

(ii) ffa k i gg=1 in R2 with lim ̂ o o a k = x k G R2 for 1 < k < m (where 
x corresponds to a point x G S2), and 

(iii) f^ i gg k~i with Ak > 0 for 1 < k < m and any i, and lim ̂ o o Ak = 
f for 1 < k < m, 

such that 

and 

\k \ j \k j 2 
Ai , Ai , a i ~ a i j 
—j H k + ^ — — ^ ^ oo, as i ^ co, 

(6) 

and moreover, 

strongly 

v(x 

in W l '2 

oc 

,t) 

(R2, 

lim E(v(-
t—>-oo 

- E k 
k = l 

, t ) ) = 
k 

x — a i 

R ) as i -> co. 

k = 0 

k(co) -> w0 

R e m a r k 1. In fact, Qing proves more than Theorem 1. We are 
using his theorem on Palais-Smale-type sequences rather than his the
orem on the harmonic map heat flow. Of course, to be able to do this 
we must find a sequence ft i g with t i —> co such that T(3>(-, t i)) —> 0 in 
L2(S2). Such a sequence is easy to find (see [6] or deduce it from (16).) 
Qing's work has now been generalised by Ding and Tian [1]. 

We will refer to the map o>o as the 'body map' , and to the maps 
f̂  k g k m i as 'bubbles'. The points fx g = 1 will be known as bubble 
points, or blow-up points. 

Of course, for (6) to hold, we should choose our domain chart so 
that none of the blow-up points correspond to the point at infinity in 
the domain, though this is just a technical point. 
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As the statement of Qing's theorem is technical, we will describe 
some of its implications in more intuitive language. The theorem says 
firstly that there exists a sequence of times ft i g at which the heat flow 
v converges weakly in W1,2(S2, R ) to the harmonic map CJQ (and in 
particular strongly in L p ( S 2 , R ) for p G [l,oo)) and that we have the 
strong convergence 

(7) v(;t i)->û0 in W /
1o'c2(S2nfx1...x m g , R ) as i -> oc. 

The theorem also says that near the bubble points fx k g = 1 , the energy 
of the flow concentrates, and that by rescaling appropriate regions by 
appropriate amounts, we see new maps - the bubbles. So much was 
known from the work of Struwe [6]. An important aspect of the theorem 
is that it tells us that all the energy of the flow is accounted for by the 
body map and the bubbles. 

In this paper we show that some of the asymptotic properties of the 
heat flow hold uniformly as t —> oo rather than just at a special sequence 
of times ft i g. 

2. S t a t e m e n t of the results 

Before we state our results, we must recall tha t any harmonic map 
from S 2 to S 2 (or more generally from S 2 to a surface) is either holo-
morphic or anti-holomorphic. The proof is simple and may be found in 
[8] for example. 

We now give our main theorem. 

T h e o r e m 2. Suppose we have a solution <£> of the heat equation 
(4), and the corresponding v and v. Suppose moreover that at infinite 
time, the bubbles and the body map are all holomorphic or all anti-
holomorphic. Then with the definition of Û>Q and fx g = 1 as in Theorem 
1 we have that: 

(i) v(-,t) —*• &0 uniformly as t —» oo weakly in W1,2(S2, R ) - and 
hence strongly in L p{S2, R ) for any p G [1, oo), 

(ii) v(-,t) —» Ü>O uniformly as t —» oo in C k0c(S2nfx1 . . .x m g,R3) for 
any k G N, 

(iii) for any r > 0 sufficiently small and k G f 1 . . .mg, the quantity 

Eix k r\ (<£>(-, t)) converges to a limit F k;r uniformly as t —» oo. 
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R e m a r k 2. In fact, we can control the rate of convergence too (see 
[7]). It will follow from the proofs of our theorems, for example, tha t 
given Q CC S 2 n f x 1 . . .x m g there exist C > 0 and 7 > 0 such that : 

(i) kv(-, t) - OJ0k L2(S2) < C (Ed(v(; t)))* < Ce-*, 

(ii) kv(-, t) - û0k Wi,2{çl) < C (Ed(v(-, t)))* < Ce-*, 

(iii) jE(x r ) ( $ ( - , t ) ) - F k,r j <C(Ed(v(;t)))? <Ce~*. 

A consequence of parts (ii) and (iii) of Theorem 2 is that we cannot 
pick another sequence of times ft i g in Qing's theorem and get a different 
set of blow-up points fx k g. 

Although our result may be true if we allow some of the maps 
f̂  k g k mo to be holomorphic and others anti-holomorphic (in other words 
absolutely no restrictions on the flow) it is no longer true if we drop the 
condition that the target is S 2 . An example in which parts (i) and 
(ii) fail is given later. In fact, we believe that part (iii) may also fail 
- a sketched counter-example will be given in [7] in which a different 
sequence of times ft i g gives a different number of bubbles. 

We remark that we do have an example of a heat flow satisfying the 
hypotheses of Theorem 2 in which bubbling occurs. We will give this in 
[7]. The body map in this example is constant. 

We also have the following perturbation result for flows which are 

smooth for all time (i.e., flows with no bubbles at finite time - see Struwe 

[6]-) 

T h e o r e m 3. Suppose we have two solutions of the heat equation, 
which we write as maps v and w from S2 X [0, 00) to S2 -̂> R , with 
initial maps vo and w from S2 to S2 -̂> R . Suppose moreover that for 
the flow v there are no bubbles at finite time and that the bubbles and the 
body map at infinite time are all holomorphic or all anti-holomorphic. 

Then with fx g the blow-up points of the flow v as in Theorem 1, 
we have that for all e > 0, £1 CC S 2 nfx 1 . . .x m g and r > 0 sufficiently 
small, there exists 8 > 0 independent of w such that if 

kv0 - w k W1,2(S2J < 6, 

then 

(i) kv(-, t) — w(-, t)||L(S2) < e for all t > 0, 

(ii) kv(-,t) - w{-,t) k Wl>2(o.) < £ for all t > 0, 
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In other words, if we start a new flow close to the original one, then 
it will stay close in L2 for all time, and close in W1'2 away from the 
blow-up points. We remark that the perturbed flow may blow up in 
finite time. 

As in Theorem 2 the hypothesis that the target is S 2 , rather than 
something higher dimensional, cannot simply be dropped. In fact in [7] 
we will give an example of a harmonic map (from S 2 to a higher dimen
sional target) which blows up under arbitrarily small C°° perturbations. 
By considering a perturbation of a harmonic mapping from T2 to an 
equator of S 2 , we see that the theorem is not true for general domain 
surfaces. 

R e m a r k 3 . The condition that the body map and bubbles at infi
nite time are all holomorphic or all anti-holomorphic will certainly be 
satisfied if we impose the condition 

E(<f>0) <87T + 4 7 r | d e ^ o ) | 

on the initial map çV This follows from (1) and (2) and the fact that 
if (f) : S 2 —7- S 2 is a non-trivial holomorphic map, then Eß(<f>) > Air. We 
omit any further details. 

3. T h e key e s t i m a t e 

In this section we derive a key estimate controlling the 9-energy in 
terms of the tension. The estimate is very similar to the key estimate 
of Leon Simon in his important paper [5]. However, in the special 
case of maps between 2-spheres, and with the harmonic map energy 
functional E, we are able to reduce Simon's hypothesis ofW2'2 closeness 
to a harmonic map, to just smallness of the 9-energy. This makes it 
applicable to maps with bubbles, assuming the bubbles and the body 
map are all anti-holomorphic (or all holomorphic). 

Very loosely speaking, the harmonic map heat flow can only keep 
moving energy about for all time if the total energy is dissipated very 
slowly. The point of the estimate will be to show that this cannot 
happen, and thus that the heat flow becomes 'rigid' for large times. 

L e m m a 1. There exist £Q > 0 and K > 0 such that providing (f> : 
S 2 —T- S 2 satisfies Eß(<f>) < £Q, we have the estimate 

(8) Ed(cp)<K\\T(cp)\\h(s-y 
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Before proving Lemma 1 we recall the following lemma from 
[9, Theorem 2.8.4]. 

L e m m a 2. Suppose we have an operator I on functions f : C —> R 
given by 

(If)(w)= Z j f ^ j -dz A dz. 

Then for q £ (1,2) we have the estimate 

\\If\\L q { q < C ( q ) \ \ f \ \ L q{q. 

Proof. (Lemma 1). Fix global complex coordinates z and u on the 
domain and target respectively. With these coordinates, we consider 
the quantity p2u z. To begin with, we calculate 

(9) {p2u z)z = p2u zz + 2ppu u z u z + 2ppu u z u z 

(10) = \a2p2T + 2ppu ju z j2, 

by (3). In particular, as pu = — \up2, we see that 

(11) j(P2Uz)z j<j<J2PTj+P2jUz j 2 . 

We now apply Cauchy's theorem for C°° functions to the function 
p2u z to get, for jwj < r, 

2 I \ l Z Èu j_ l Z (Pu zh A -
p u z(w) = : dz -\ : dz A dz, 27Ti JgD r z - w 2Ki D r z - w 

where D r = fz G C : jzj < r}. Allowing r to tend to infinity, and 
observing that jp2u z j —> 0 as jzj —> oo (because j—u z j is bounded) we 
see that 

2 ( \ l Z (P2u z)z . _ 
pu z(w) = —dz/\dz. 

Combining this with (11), we have 

1 Z 1 
jp2u z(w)j <— j -(ja2prj + p2ju z j2)-dz A dz. 

Now we observe that the right-hand side is independent of which stere-
ographic chart we took for the target (note for example that jprj is the 
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length of by taking a chart for which 0 G C corresponds to (f>(w) 9 
we obtain the estimate 

(12) \pu z(w)\<— Z _ (\a2
PT\+p2\u z\2)i dzAdz. 

But now, all the terms are independent of the target chart, allowing us 
to change target chart, or equivalently to move w with a fixed chart. 

To develop estimate (12) we need to appeal to the theory of Riesz 
potentials, and in particular to Lemma 2. This produces, for q G (1,2), 
the first of the estimates 

(13) 

\pu z\\ 2q_ < C (\\<J2pT\\L q{q + \\p2\u z\2\\L q{q) 
Ll q (<L) 

( 1 4 ) < C (\\PT\\L q(SZ) + | | u | | L q(Q 

( 1 5 ) -Cll^rllL2(S2)+ WPUz\\L2(QIIPuII ^ q 

whilst the last follows from applying Holder's inequality to both terms. 

The constant C is changing, of course, but remains independent of (f>. 

Now, as Eß(<f>) = \\pu z\\^ L(ip\, we see that there exists £Q > 0 such that 

providing Eß((f>) < £o, we may absorb the second term on the right-hand 

side into the left-hand side to give 

\\pu z\\L q { q < C | | T | I L 2 ( S 2 ) . 

This then easily yields 

ed{4>) =\\pu z\\L2{Dl)<C\\pu z\\ 2q_ < C||T||L2(S2), 
S\ ) L 2 q ( D i ) 

where S\ is the hemisphere corresponding to the points in the domain 
with \z\ < 1. Repeating the estimate with the 'opposite' chart to give 
a 9-energy estimate over the remaining hemisphere, and combining the 
two, we are left with 

E ) < C | | T | | L ( S 2 ) . 

q.e.d. 
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R e m a r k 4. We remark that we have in fact proved more than 
stated in that we can control the L p norm of eg(<̂ >) for any p > 1 not 
just p = 1. 

R e m a r k 5. Our key lemma is the part of this work which requires 
the hypotheses on the domain, target and flow. As we shall see, for a 
flow <&(•,t) the 9-energy Eg (<£>(-, t)) is exactly half the energy still left to 
be dissipated during the flow, but in fact whenever we have an estimate 
of the form 

(energy left to dissipate) < ||T||p2(S2-| 

for some p > 1, the forthcoming proofs will be valid. Of course, such an 
estimate will not be true in general as the conclusions of our theorems 
are not true in general. 

Although we only discuss the case of round 2-spheres in this work, 
we mention that the key lemma as stated implies the same lemma with 
a deformed domain metric, and that the proof can be modified to imply 
the same lemma with a deformed target metric. 

4. P r o o f of the results 

Before giving the proofs we state a supporting lemma which is a 
consequence of successive iterations of a result of Struwe [6, Lemma 
3.10']. The lemma gives control of C k norms of the flow away from any 
points where the energy density concentrates. 

L e m m a 3. There exists £\ > 0 such that whenever we have a solu
tion <£> : S2x[0, oo) —T- S 2 of the heat equation (4) satisfying 8 (R, Çi) < £\ 
for some R > 0 and Q CC S 2 , then the Holder norms of <£> are bounded 
uniformly on Ci X [r, oo) for any r > 0. 

Proof. (Theorem 2). Without loss of generality, we will assume that 
the body map and all the bubbles are anti-holomorphic, rather than 
holomorphic. 

We begin by recalling the well known fact that 

(16) d EW-,t)) = -\\T*(-it))\\L{S2y 

This is easily proved by writing E in terms ofv, and using (5). Moreover, 
as a combination of (1) and (2) gives 

Ed^) = ^{E^)+Andeg{^)), 
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we see that 

(17) 
d 

~dt 
Eam-,t)) 

1 
kT(* ( - , t ) )k L2(S2)-

Qing's description of the bubble tree in Theorem 1, together with the 
fact that the maps fojk g are all anti-holomorphic, tells us that at his 
sequence of times ft i g, the 9-energy is converging to zero. As the d-
energy is decreasing (equation (17)) we then see that 

:i8) Ea($(-,t)) ->Q as . 

In particular, there exists a time T such that if t > T, then Eg(<£>(-, t)) < 
£o, where £Q is defined in Lemma 1. As we are concerned only with the 
asymptotics of the heat flow, we may suppose for simplicity that T = 0. 
Moreover, we may assume that no finite time blow-up occurs. 

We note then that the combination of Lemma 1 and equation (17) 
implies the exponential decay of Eg(<£>(-, t)) which is necessary to estab
lish the exponential convergence mentioned in Remark 2. An alternative 
application of Lemma 1 gives 

d 

"dt 
( E 9 ( < & ( . , t ) ) ) 2 ±(Eaw.,t)))-ïkTM-,mk(S>) 

1 kT(<I>(-,t))k L2(S2), 

and thus, for to G [0, oo) 

(19) k T ( $ ( - , t ) ) k L 2 ( S 2 ) d t < C ( E 9 ( $ ( - , t o ) ) ) 

The first application of (19) is the calculation 

dv 

(20) 

s u p k v ( - , t ) - ó > o k L2(S2) < 
te[to,oo) to 

to 

dt 
dt 

L2(S2) 

k T ( $ ( - , t ) ) k L2 ( S 2 ) dt 

<C(Ed(<S>(-,t0)))
2 . 

The exponential decay of Eß(<&(-,to)) then gives us the L2 exponential 
convergence of Remark 2. In pursuit of Theorem 2, however, we are 
satisfied with the weaker statement 

(21) v(-,t) -> ÙQ in L2(S2,R3) as t ^ oo. 
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A consequence of this is that 

(22) v(-,t) -^û0 weakly in W1'2(S2
1R

3) as t -> oo. 

This is because otherwise we could pick a sequence of times ft i g to give 

(23) \(v(;t i),a)-{û0,a)\>5, 

where a is some test function, S > 0, and (•, •) is the inner product of 
W1^2(S2

1R
3). Then, as the total energy E is bounded (E($ ( - , t ) ) < 

E(<!>(•, 0))) we could pass to a subsequence of times (also called ft i g) 
such that 

(24) v(-, t ) ->• /3 weakly in W 1 ' 2 S 2 , R3) as i - • oo, 

for some /3. The convergence would thus be strong in L2(S2,R), and 
so by (21) we would have ß = u>o- There would then be a contradiction 
between (23) and (24). So (22) holds, which is part (i) of Theorem 2. 

Of course, as W1'2 is compactly embedded in L p for any p G [1, oo), 
the convergence in (22) tells us that 

v(-, t) -> UJ0 in L ( S 2 , R ) as t -> oo. 

We now proceed to consider the local oscillation of energy. For 
r, s > 0, define a cut-off function <y0 : R —> R by 

¥H 

1 if | x | < r, 

1 + - (r — |x|) if r < |x| < r + s, 

0 if |x | > r + s, 

and define the 'cut energy' @w of a map w : R2 —> R3 by 

2 R2 

We also write 

The cut energy is about the point in S 2 corresponding to the point 
0 Ç R , but this could be any point by taking a different chart. The 
energy 0 evolves according to 

dt Z <p2i.VT = - Z v ? 2 | T | V - 2 Z <p(V<p.i)T. 
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Abandoning the first term on the right, and using Holder's inequality, 
we estimate 

dS 2 i l u r l . 

where we are assuming that r + s < 1 to avoid an extra constant. 
Integrating this, we see that the cut energy can only vary within the 
restriction 

@Ht)-@Ht0)<- Z \\rm;0)\\L^)dc, 
s t0 

and thus, by (19), 

(25) Q^t)-eHt0)<C(Ed^(;t0)))^ 

where t > to, of course. 
The power of (25) is evident. It would be required to establish the 

exponential convergence of part (iii) of Remark 2. However, we will be 
using the simple consequence that there exists a number l ̂ r,s' such that 

(26) e(r's)(t) ^ l ( r ' s ) as t^oo. 

For any Ci CC S 2 \ { x 1 . . .x m g this provides us with the uniform control 
of concentration 

e(R,Q) <si, 

for some R, enabling us to apply Lemma 3 to get 

llv(-t)llC=(îî) < C(k) uniformly for t G [ l ,oo), 

for all k. We can deduce the convergence of a subsequence of any se
quence v(•,£i) in C (Q) for any k, and hence establish part (ii) of The
orem 2 via the obvious contradiction argument. 

Having established part (ii), part (iii) of Theorem 2 then follows 
from a further application of (26). q.e.d. 

Before proving Theorem 3, we need a perturbation result for finite 
time intervals. 

L e m m a 4. Suppose we have two solutions of the heat equation, 
which we write as maps v and w from S2 X [0, oo) to S2 -̂> R , with 
initial maps vo and w from S2 to S2 -̂> R . Suppose moreover that 
T > 0 and that the flow v has no bubbles up to time t = T (in other 
words v is smooth for t G [0, T].) 
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Then for all e > 0, there exists 8 > 0 independent of w such that if 

\\vQ - w \ \ W 1 ' 2 ( S 2 ) < Ö, 

then 

\\v(-,t) - w(-,t)\\Wi,2(S2) < e for allt e [0,T]. 

Proof. (Lemma 4). We sketch the proof, which essentially follows 
from the work of Struwe. 

For £\ > 0 we may choose R sufficiently small so that 

sup Etxt2R)(v(-,t)) < —. 
(x,t)eS2x[o,T] 4 

This is possible as v is regular for t G [0, T]. Then for ||vo — wUWi^fS2) 
sufficiently small, we may ensure that 

sup E(x2R){w) < —. 
xeS2 l 

Thus by Struwe's local control on the increase of energy [6, Lemma 3.6], 
for r] > 0 sufficiently small, we have that 

sup E(xtR)(w(-,t)) < ei. 
(x,t)eS2x[o,r]] 

Here r] is dependent on v only in terms of R, and essentially independent 
of w. The lemma then follows for T < TJ by [6, Remark 3.9]. By 
dividing up the interval [0,T] into intervals of length no more than r] 
and applying the lemma for T < TJ iteratively, we establish the lemma 
for general, finite, T. q.e.d. 

Proof. (Theorem 3). As in the proof of Theorem 2 we will assume 
without loss of generality that the body map and all the bubbles are 
anti-holomorphic, rather than holomorphic. 

The basic idea of the proof is to use Lemma 4 to show that the 
flows stay close until the 9-energy is small, and then use the techniques 
we developed in the proof of Theorem 2. We set £Q as in Lemma f in 
anticipation. 

We will distinguish between the body maps of the flows v and w 
by calling them v^ and w ̂  respectively. In keeping with our previous 
notation, v and w will be the maps from R X [0, oo) associated to v and 
w (the maps from S 2 X [0,oo)) via stereographic projection. 
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Part (i) of Theorem 3 will follow from (20). For any 771,772 > 0, we 
may choose T sufficiently large so that 

\\v(-,t) - vOOWL? < m for t>T, 

from part (i) of Theorem 2 and 

Ed(v(-,t)) <min(r]2,—) for t>T, 

from (18) and 

\\v{-,t)-voo\\Wh2(Q) < V3 for t>T, 

from part (ii) of Theorem 2. Then for any 774 > 0, we may apply Lemma 

4 to find S > 0 such that providing ||vQ — w| |W 1 ' 2 (S 2 ) < <̂> we have 

(27) | | v ( - , t ) - w ( - , t ) \ \Wi ,2 (S2) < m i n ( i ] 4 , — , e ) 

for all t G [0,T]. Therefore we must have 

Ed(w(-,t))<Ed(w(-,T))<min(V2 + V4,e0) for t>T, 

and so we may use (20) to estimate 

\\w(-,t) - wOO||L2 < C(r]2 + 1]4)2 for t>T. 

Combining the above, we find that 

\\v(-,t) - w(-,t)\\L2 < \\v(-,t)-vOD\\L2 + \\vOD-v(-,T)\\L2 

+ \\v(.1T)-w(-1T)\\L2 

+ \\w(-,T) - wooW^ + \\woo - w ( - , t ) \ \ L 2 

< 2rìl + rÌ4 + 2C(rÌ2 + rÌ4)ì, 

for t > T, and thus by taking 771,772,774 sufficiently small and using (27) 
again, we establish part (i) of Theorem 3. 

To establish part (ii) we must control locally the oscillation of the 
first order part of the W1'2 norm. By adapting the argument below, 
with w = v, we could establish the exponential convergence of part (ii) 
of Remark 2. With ip and 0 as in the proof of Theorem 2 we calculate 

(28) 

= dt w^'t> dt 
d®w;t)-Td ¥>2Vw,t).Vv 

file:////woo
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The second term on the right-hand side is controlled by 

d 

~dt 
tp2Vw(-,t).Vv ¥2VT(w(-,t)).Vv 

< C(voo,r ,s) | |T(w(- , t ) ) | |L2(S2), 

where we have integrated by parts and used Holder's inequality. To
gether with (25) and (19) we now have enough information to integrate 
(28) giving 

¥2\V(w(-,t)-v ¥2\V(w(-,T)-v 

< ®w(;t) - ®w(;T) + C(voo,r,s)\\T(w(-,^))\\L2^S2)d^ 

e* k ^ C (,t) + w(.,T) - (Edw, TW + C(voo, r, s) (Ed(w(; T)))2 

< C(Ed(w(;T)))^ <C(m + rl4), 

where the constant C on the final line is independent of the flow w 
assuming we insist tha t ||vo — w||W1>2(S2) < 1 (for example) so that we 
have a bound on the energy of w(-, t). Taking 7/2 and 7/4 sufficiently small, 
we may make the right-hand side as small as we desire. Consequently, 
for any 775 > 0 we can ensure that 

\\w(-,t) - v o o W W 1 - 2 ^ ) - \\w(-,T) - voo J J Wi,2 (JÌ) < i]5-

Combining everything again, we see that 

\\w(-,t) - v(-,t)\\Wi,2(fy <\\w(-,t) - voo\\W^(n) + ||voo - v(-,t)\\Wi,2(fy 

<V5+ (??3 + î?4) + V3, 

for t > T, so by taking 7/3,7/5 sufficiently small and making 7/4 smaller if 
necessary (and using (27) again) we establish part (ii) of Theorem 3. 

q.e.d. 

5. A n e x a m p l e of non-uniqueness 

As promised earlier, we now give a counter-example to part (i) of 
Theorem 2 when the condition that the target is S 2 is dropped. No 
bubbling occurs. The flow has a 'winding' behaviour and has a circle of 
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accumulation points. The example will also show that a perturbation 
of a locally energy minimising harmonic map may move far away under 
the heat flow. It therefore contrasts with the work of Leon Simon ([5]) 
in which these phenomena are ruled out under the hypothesis that the 
target is real analytic. 

Let the domain be S 2 and the target R X S 2 . It is not important 
that R is non-compact - as we shall see, we are only concerned with 
a bounded region, so we could change it to a flat 2-torus. We give the 
domain the standard metric, but give the target a warped metric - if 
g and h are the standard metrics on R and S 2 respectively, then at 
a point (z,x) G R X S 2 , we define the metric to be g(z) + f(z)h(x) 
where f : R —> R|_ is to be determined. In other words, the target is 
R Xf S 2 . We consider initial maps of the form u ( x ) = (z,x) where 
z is independent of x. Such maps give solutions of the heat equation 
(4) of the form u(x,t) = [z(t),x), where z : R —> R , and z evolves 
according to 

dz 
(29) - = - V f ( z ( t ) ) . 

In other words, we have reduced the heat flow to finite-dimensional gra
dient flow for z on the function f. It remains to choose the function f so 
that z may not have a unique limit, and so that moving z an arbitrarily 
small amount from a point z with V f(zo) = 0 (which corresponds to a 
harmonic map) will make the solution of (29) move away from z . To 
achieve this we take a 'downwardly spiralling gramophone record' 

j l i f r < l , 

f ( r ' ö ) - j i + e - r ï fsin(_l_ + 0) + 2 ) i f r > l , 

where (r, 9) are polar coordinates. Taking initial conditions with r = 2 
say, the solution for z will spiral in to give the circle r = 1 as the 
accumulation set. Moreover, any point with r = 1 is a stationary point, 
but perturbing r to be slightly larger will make the solution of (29) 
spiral around, and move at least a distance 2 away. 

R e m a r k 6. Of course, we are not restricted to using S 2 in the ex
ample above. In particular, the same idea will work for domains of any 
dimension. 
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[s; 

6. A c k n o w l e d g e m e n t s 

The problem of uniqueness of the positions of bubbles was brought 
to the attention of the author by Leon Simon during a visit to Stanford 
University. The author would like to take this opportunity to thank 
Professors Schoen and Simon for their hospitality during this visit. 

The author would like to thank Professor James Eells for his encour
agement of all the author 's work on the harmonic map heat flow. 

The author is indebted to his supervisor Mario Micallef for, among 
other things, introducing him to the harmonic map heat flow, showing 
enthusiasm in this work, and encouraging the use of complex analytic 
techniques. 

This work will constitute part of the author 's doctoral thesis [7]. 
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