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L. KATZARKOV 

1. Introduct ion 

Characterizing the universal coverings of smooth projective varieties 
is an old and hard question. Central to the subject is a conjecture of 
Shafarevich according to which the universal cover X of a smooth pro­
jective variety is holomorphically convex, meaning that for every infinite 
sequence of points without limit points in X there exists a holomorphic 
function unbounded on this sequence. 

In this paper we try to study the universal covering of a smooth 
projective variety X whose fundamental group vri(X) admits an infinite 
image homomorphism 

p:7T1(X)^L 

into a complex linear algebraic group L. We will say that a nonramified 
Galois covering X ' —> X corresponds to a representation p : vri(X) —> L 
if its group of deck transformations is im(p). 

Definit ion 1.1. We call a representation p : vri(X) —> L linear, 
reductive, solvable or nilpotent if the Zariski closure of its image is a 
linear, reductive, solvable or nilpotent algebraic subgroup in L. We 
call the corresponding covering linear, reductive, solvable or nilpotent 
respectively. 

The natural homomorphism TTI(X, x) —> 7runi(X, x) to Malcev's pro-
unipotent completion will be called the Malcev representation and the 
corresponding covering the Malcev covering. 
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One may ask not only if the universal covering of X is holomorphi-
cally convex but also if some special intermediate coverings that corre­
spond to representations p : ^\{X) —> L are holomorphically convex. 

In case X is an algebraic surface and p : ^\{X) —> L is a reductive 
representation this question has been answered in [13]. The author and 
M. Ramachandran proved there that if X' —> X is a Galois covering of 
a smooth projective surface corresponding to a reductive representation 
of VTI(X) and such that Deck(X ' /X) does not have two ends, then X' 
is holomorphically convex. 

In this paper we study the other extreme. Namely we study if nilpo-
tent coverings X' —> X are holomorphically convex for X smooth pro­
jective variety. We prove the following: 

T h e o r e m 1.1. The Malcev covering of any smooth projective X is 
holomorphically convex. 

As an immediate consequence of this statement we have: 

T h e o r e m 1.2. Let X be a smooth projective variety with a virtually 
nilpotent fundamental group. Then the Shafarevich conjecture is true for 
X. 

(Recall tha t a finitely generated group is nilpotent if its lower central 
series has finitely many terms. A group is virtually nilpotent if it has a 
finite index subgroup which is nilpotent.) 

The proof of Theorem 1.1 uses the functorial Mixed Hodge Structure 
(MHS) on VTI(X) combined with some new ideas of Janos Kollar from 
[15] and [16]. At the end of paper we give a different proof of Theorem 
1.2. We also give some examples as well as some suggestion for the case 
of solvable coverings. Combining Theorem 1.1 and the theorem proved 
by the author and M. Ramachandran in [13] we get the following: 

Corollary 1.1. Let X be a smooth projective surface and p : ^\{X) 
—T- L be a linear representation with an infinite image. Then the uni­
versal covering X of X admits nontrivial holomorphic functions. 

2. T h e Malcev covering 

In this section we prove Theorem 1.1 and Theorem 1.2. 

We start with some ideas of Janos Kollar from [15] and [16]. In 
[15] Kollar observed that the Shafarevich conjecture is equivalent to the 
following: 
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1) There exist a normal variety S h ( X ) and a proper map with con­
nected fibers Sh : X —> S h ( X ) , which contracts precisely the subva-
rieties Z in X with the property that im\TTi(Z') —> TTI(X)] is finite. 
Here Z' denotes a desingularization of Z. 

2) Sh (X) is a Stein space. Here we denote by Sh (X) the Grauert-
Remmert reduction of X. In our notation S h ( X ) = Sh(X)/7Ti(X). The 
action of VTI(X) may have fixed points on Sh (X) but we can still take 
a quotient. 

One can consider also a relative version of condition 1). Let H <l 
7Ti(X) be a normal subgroup. We will say that a subgroup R C ^i(X) 
is almost contained in H if the intersection R n H has finite index in R 
and we will write R < H. We have the following condition. 

1. There exist a normal variety Sh (X) and a proper map with 
connected fibers Sh : X —> Sh (X) , which contracts exactly 
the subvarieties Z in X having the property that im[jri(Z') —> 
TTI(X)] < H. Again Z' denotes a desingularization of Z. The 
relative version of 2) is the following: 

2. Sh (X) is a Stein space. Here we denote by Sh (X) the Cartan-
Remmert reduction of S h ( X ) . In our notation 

Sh H(X) = Sh H(X)/(7r1(X)/H). 

This was also independently observed by F . Campana in [4]. 
Our approach is that if there is a natural candidate for S h ( X ) it 

is enough to check condition 1) only for Z - an algebraic curve. This 
certainly is the case when ^\{X) is a nilpotent group. In the simplest 
case when ^\{X) is virtually abelian, one uses the Albanese variety 
Alb(X) for S h ( X ) . 

It is clear that for a smooth projective variety X with ^\{X) an 
infinite nilpotent group the Albanese map: 

Alb : X —> Alb (X) 

has nontrivial image. In other words dimc(im(Alb)) > 0. 
Moreover if we denote by S the Stein factorization of the Albanese 

map, then this is a natural candidate for S h ( X ) in case ^\{X) is a 
nilpotent group. Observe that the map 

X -^ S 



n i l p o t e n t g r o u p s 339 

contracts all subvarieties Z with the property that im[Hi(Z, Q) —> 
H i ( X , Q ) ] is trivial. 

Now using that ^\{X) is a nilpotent group and the mixed Hodge 
structures on its Malcev completion we show that for an algebraic curve 
Z the fact that im[Hi(Z, Q) —> Hi(X, Q)] is trivial is equivalent to the 
fact that im[7Ti(Z) —> TTI(X)] is finite for Z an algebraic curve. We 
finish the proof by reducing the case when Z is of arbitrary dimension 
to the case when Z is an algebraic curve. 

To prove Theorem 1.1 we need to show again that there is natural 
candidate for Sh (X) , where H = kerp : ^i(X) —> 7runi(X, x) of the 
Malcev representation. Again this candidate is S the Stein factorization 
of the Albanese map. In the next section we give a different proof of 
Theorem 1.1, which is basically spelling of the proof we have given 
already in the language of equivariant harmonic maps. 

2 .1 . M i x e d H o d g e s tructure considerat ions 
In this subsection we explain why if ^\{X) is a nilpotent group the 

theory of Mixed Hodge Structures on it implies that im[Hi(Z, Q) —> 
Hi(X, Q)] is trivial is equivalent to the fact that im[7Ti(Z) —> TTI(X)] 

is finite for Z an algebraic curve. For some background one can look at 
[7], [8] or [10]. 

For the proof of Theorem 1.1 we need to work with X smooth but 
for completeness in this section we will require only the MHS on Hl(X) 
is of weights > 0. 

L e m m a 2 .1 . If Z is a compact nodal curve and f : Z —> X is a 
map to a variety such that MHS on Hl(X) is of weights > 0, then the 
map 

f*:L(Z,x)^L(X,f(x)) 

is trivial if and only if the map 

f:H\X,Q)^H1(Z,Q) 

is trivial. Here L(Z,x) and L(X, f(x)) are the corresponding Lie al­
gebras of the unipotent completions Truni(Z, x) and 7runi(X, f(x)) of the 
fundamental groups TTI(Z,x) and TTI(X, f(x)) respectively, and x is a 
point in Z. 

Proof. Observe that the map in unipotent completions determines 
and is determined by a map on the corresponding Lie algebras: 

L{Z,x)^L{X,f{x)). 
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First let us consider the case where Hi(Z) is pure of weight — 1. This 
is the case when the dual graph of Z is a tree. By a standard strictness 
argument [7] the weight filtration on L(Z,x) is its lower central series, 
and the associated graded Lie algebra is generated by Gr-iL(Z,x) = 
H!(Z,Q). 

Since 
L(Z,x)^L(Xf(x)) 

is a morphism of MHS, it is non-zero if and only if the map 

GrL(Z, x) —> GrL(X, f(x)) 

on weight graded quotients is a morphism of MHS. Since 

Gr-1L(X,f(x)) = H1(X,Q)/W-2, 

and since Hi(Z,Q) —> Hi(X,Q) is trivial, it follows that L(Z,x) —> 
L(X, f(x)) is trivial. 

To prove the general case, we take a partial normalization 

Z' —> Z 

with the property that Z' is connected and such that Hl(Z') is a pure 
MHS of weight 1. 

This can be done as follows. Take a maximal tree T in the dual 
graph of Z and normalize only those double points corresponding to 
edges not in T. Then Hi(Z) is pure MHS of weight - 1 . The previous 
argument implies that 

L(Z',x)^L(Xf(x)) 

is trivial. 
To complete the proof, note that we have an exact sequence 

1 > N > 7Ti (Z, x) > 7Ti ( r , * ) > 1 , 

where T denotes the dual graph of Z and N is the normal subgroup of 
fti(Z) generated by iri(Z',x). After passing to unipotent completions, 
we obtain an exact sequence 

0 —> (L(Z', x)) —> L(Z, x) —> L(T, *) —> 0. 

This is an exact sequence in the category of Malcev Lie algebras with 
MHS. The ideal (L(Z', x)) generated by L(Z', x) is exactly W-\L(Z, x), 
so the MHS induced on L(T, *) is pure of weight 0. 
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It follows that the homomorphism L(Z,x) —> L(X, f(x)) induces 
a homomorphism 

L(T,*)^L(X,f(x)). 

This is a morphism of MHS of (0,0) type. It is injective if and only if 
the map 

L(T, *) = GrL(T, *) —> GrL(X, f{x)) 

is also injective. Since H\(X) has weights < 0 and L(T,*) has weight 
zero, it follows that 

L ( r , *) = GrL(Y, *) — • GrL(X, f(x)) 

is zero. This proves the statement in general. Namely, we have that for 
any nodal curve (singular, reducible) the map 

f*:L(Z,x)^L(X,f(x)) 

is trivial if and only if the map 

f:H\X,Q)^H1(Z,Q) 

is trivial. q.e.d. 

L e m m a 2.2 . Let X be a smooth projective variety with a nilpotent 
fundamental group TTI(X). Then for any algebraic curve Z C X the 
fact im[Hi(Z,Q) —> Hi(X,Q)] is trivial is equivalent to the fact that 
im[rri(Z) —> 7i"i(X)] is finite. 

Proof. Since we can always find a partial normalization Z —» Z with 
Z e nodal and TTI(Z, x) —> TTI(Z, x) surjective it follows from the previous 
lemma that the map 

f*:L(Z,x)^L(X,f(x)) 

is the zero map. Furthermore, if ^\{X) is a torsion free nilpotent group, 
then by definition it embeds in irun(X, f(x)). It is easy to see that 
torsion elements of a nilpotent group generate a finite group and hence 

miXfixV^JuniiXfix)) 

is an embedding up to torsion which proves the lemma. q.e.d. 

We have actually proved more. Observed that we have not used the 
fact that the lower central series of ^\{X) has finitely many terms. The 
strictness property of MHS structures allows us to prove: 
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L e m m a 2 .3 . Let X be a smooth projective variety andp : vri(X) —> 
L(X, f(x)) be the Malcev representation ofiri(X). Then for any alge­
braic curve Z C X the fact im[Hi(Z, Q) —> Hi(X, Q)] is trivial is 
equivalent to the fact that im[7Ti(Z) —> TTI(X)/H] is finite. Here H is 
the kernel of the Malcev representation. 

2.2 . A reduct ion to the case of an algebraic curve 
In this section we show how to reduce the argument for Z of arbitrary 

dimension to Z an algebraic curve. 

L e m m a 2.4. Let F be a connected subvariety in X. Then we can 
find a curve Z C F such that iri(Z) surjects on TTI(F). 

Proof. If F is a smooth variety the above lemma is just the Lef-
schetz hyperplane section theorem. Let F = Fi + . . . + F i be singular 
and with many components of different dimension. Denote by n the 
normalization n : F' —> F of F. In every component of F' after ad­
ditional desingularization we can find finitely many points x k,y k such 
that n{x k) = n(y k) and TT\{F'/(x k = y k)) surjects onto TTI(F). The 
way to do that is to take the Whitney stratification of F and put the 
points x k,y k in every s t ra tum. For some singularities this might not 
be enough. Then instead of identifying the points we connect them 
with a rational curve, which maps to a singular point. Now following 
[9, (ii, 1.1)] we take hypersurfaces with large degrees that pass through 
the points x k, y k and intersect every component of F', F l in a curve Z l 
such that Z' = UZ l and iri(Z') surjects on 7Ti(F'). We make Z = n(Z'). 
Observe that Z might be singular and have many components but it 
will be connected. q.e.d. 

Now we are ready to finish the proof of Theorem 1.1. We start with 
the Stein factorization of the Albanese map for X 

A l b : X ^ S ^ im (Alb) C Alb (X) . 

Denote by S' the fiber product of the universal covering Alb (X) of 
Alb (X) and S over Alb (X) . By definition S' is mapped finitely to a 

closed analytic subset in Alb (X) and since Alb (X) is a Stein manifold S' 
is a Stein manifold as well. It follows from the definition of the Albanese 
morphism that the fibers of the map 

Alb : X — • S 

are all subvarieties F in X for which the map Hi(F,Q) —> Hi(X,Q) 
is trivial. We have shown that the fact that H i ( F , Q ) —> Hi(X,Q) 
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is trivial implies that im[7Ti(F) —> TTI(X)/H] is finite (Lemmas 2.3 
and 2.4). To finish the proof of Theorem 1.1 we need to observe that 
S satisfies the conditions for being the Shafarevich variety of X, S = 
Sh H ( X ) ; namely: 

1) There exists a holomorphic map with connected fibers X —> S, 
which contracts only the subvarieties Z in X with the property that 
im[7Ti(Z) —> iTi(X)/H] is finite. 

2) Sh (X) = S' is a Stein space. q.e.d. 

To prove Theorem 1.2 we use the same argument as above but H is 
a finite group. Actually we have shown more. As we pointed out before 
we have not used the fact that lower central series of ^\{X) has finitely 
many terms. The only thing that is really needed is that ^\{X) has a 
finite torsion. Therefore we get: 

Corollary 2 .1 . Let X be a smooth projective variety with a finite 
torsion virtually residually nilpotent fundamental group. Then the Sha­
farevich conjecture is true for X. 

3. S o m e e x a m p l e s 

In this section we give some examples and geometric applications of 
our method. We start with the following result tha t was also proved by 
Campana in [5]. 

Corollary 3 .1 . Let X be a smooth projective surface and T be the 
image ofiri(X) in L(X, f(x)). Let as before S be the Stein factorization 
of the map X —> A lb(X) . After taking an etale finite covering X" —> 
X the homomorphism TÏ\ (X") —> T factors through the map TÏ\ (S) —> 

r. 
Proof. According to [16, 4.8] after taking some etale finite covering 

X" —> X, iTi(X") is the same as the fundamental group of TTI(S). 

This follows from the fact that residually nilpotent groups are residually 
finite. q.e.d. 

Nilpotent Kahler groups were constructed by Sommese and Van de 
Ven [18], and Campana [5] (look also at [6] for a very nice exposition). 
The construction goes as follows: 

Start with a finite morphism from an abelian variety A to P n. Now 
take the preimage X in A of generic abelian d-fold in P n. Then X has 
as fundamental group a nonsplit central extension of an abelian group 
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by Z. Let us following [18] give more explicit example. We start with a 
four-dimensional abelian variety A and a finite morphism f to P 4 . Take 
the Mumford-Horrocks abelian surface Z in P 4 and pull it back to A. 
Let us call the new surface f~l(Z). The following exact sequence was 
established in [18] 

TT2(A) 0 TT2(Z) —> 7T2(P
4) —> mtf-^Z)) —> TT! (A) ® ^ (Z) —> 0. 

In our case this sequence reads as: 

0 —> Z —> 7 r i ( f - 1 (Z) ) — • Z 1 2 —> 0 

and shows that f~l(Z) has a two steps nilpotent fundamental group. 
As a quick geometric application of Theorem 1.2, we get that if X 

is a smooth projective variety with an infinite virtually nilpotent funda­
mental group and such that r ankPic (X) = 1, then for every subvariety 
Z in X we have that im[7ri(Z) —> TTI(X)] is infinite. The proof of the 
above statement is an easy consequence of [16, Chapter 1]. 

We give now an idea of an alternative proof of Theorem 1.1, which 
came from conversations with M. Ramachandran. It is based on the 
use of 7i"i (X) equivariant harmonic maps to the universal coverings to 
Higher Albanese varieties defined in [12]. Combined with the strict­
ness property for the nonabelian Hodge theory this seems to be a very 
promising idea ( see [14]). 

Denote by G s the complex form of the Malcev completion of 
7Ti(X)/ rs + 1 , where Ti are the groups from the lower central series for 
7Ti(X) and Vs is the smallest nontrivial one. Then G s is a simply con­
nected, complex nilpotent Lie group. The corresponding Lie algebra 
g s has MHS coming from the Lie bracket (see [11]). Denote by F°G s 
the closed subgroup in G s tha t corresponds to F°g s. Since both F°G s 
and G s are contractible and the group TT\ ( X ) / r s + 1 is nilpotent, then 
it follows from [11] that we have a free action of the corresponding to 
G s lattice G s(Z) on G s/F°G s. In case ^\{X) is nilpotent up to a finite 
index subgroup, G s(Z) is nothing else but TTI(X). 

Therefore in the same way as in [13] we obtain a ^\{X) equivariant 
proper horizontal holomorphic map ( see [12]) 

X —> G s/F°G s. 

According to [11] G s/F°G s is biholomorphic to C N. In the same way 
as in [13] we construct a strictly plurisubharmonic exhaustion function 
on X . So X is holomorphically convex. 
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R e m a r k 3 .1 . The above argument is weaker than the argument we 
have used in the first proof, and cannot be generalized to the case of 
residually nilpotent groups since in this case G s/F°G s will not be a 
manifold. 

Let us at the end say two words about the case where we have an 
infinite solvabe representation p : ^\{X) —> L. By theorem of Arapura 
and Nori [1] all Kahler linear solvable groups are virtually nilpotent. So 
we have the following: 

Corollary 3 .2 . Let X be a smooth projective variety with a linear 
solvable fundamental group. Then the universal covering X is holomor-
phically convex. 

We cannot prove solvable analog of Theorem 1.1. The maximum 
we can do is to realize how close the solvable representations come to 
nilpotent ones. To be able to do so we need to generalize slightly the 
result of Arapura and Nori by proving 

T h e o r e m 3 .1 . If T is a quotient of a Kahler group ^\{X) so that 
it is a complex linear solvable group, then there are two possibilities -
either Y is deformable to a virtually nilpotent representation of TTI(X) 

or fti(X) surjects onto the fundamental group of a curve of genus bigger 
than zero. 

First observe that every Zariski dense representation p : ^\{X) —> T 
to a complex linear solvable group can be deformed to a Zariski dense 
representation p : ^\{X) —> S(Q) to a linear solvable group S(Q) ( which 
we denote again by p) defined over Q and having an infinite image. 

Proof. (The idea of the proof was suggested to me by T. Pantev.) 
Denote by Y the image of the solvable representation p : ^\{X) —> L. 
We need to show that either T is virtually nilpotent or there exists a 
holomorphic map with connected fibers f : X —> C to a smooth curve C 
of genus > 1. Let us introduce some notation. For a finitely generated 
group r denote by S ( r ) the set of all special characters of T; tha t is, 

S ( r ) := {a : T -> C x H ( r , C„) / 0} , 

where C„ is the one-dimensional T-module associated to a. Now we 
recall the following: 

Propos i t ion 3 .1 . (Arapura-Nor i [1]) Let T be a finitely gener­
ated Q-linear solvable group. Then the following are equivalent: 

1. Y is virtually nilpotent. 
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2. S ( r ) consists of finitely many torsion characters. 

Due to this proposition it is enough to show that either S(T) consists 
of finitely many torsion characters or X has a non-trivial map to a curve 
of genus larger than zero. Now, since ^\{X) surjects on Y it follows that 
S ( r ) C T,(iri(X)) and hence it suffices to show that either T,(iri(X)) 
consists of finitely many torsion characters or X has an irrational pencil. 

For a smooth projective variety X denote by M(X) the moduli space 
of homomorphisms from ^\{X) to C x . The locus of special characters 
is a jump locus in M(X) and hence is a subscheme in a natural way. It 
turns out that T,(iri(X)) is actually a smoooth subvariety having very 
special geometric properties which we are going to exploit. Since the 
subvariety T,(iri(X)) C M(X) is completely canonical, one expects it 
to have an intrinsic description. One way to construct natural sub-
varieties in M(X) is via pullbacks; namely, given any surjective mor-
phism ip : X —» Y we can pullback the moduli space of characters of 
7Ti(Y) to get a subvariety tp*M(Y) C M(X). According to [17], Lemma 
2.1 and Theorem 6.1 every connected component S of the subvariety 
T,(iri(X)) C M(X) is of this kind. More specifically for every such S 
there exist a torsion character ff£S and a connected abelian subvariety 
P C Alb(X) so that S is the translation of <p*M(Alb(X)/P) C M{X) 
by a. Here cp : X —» Alb(X) —» A l b ( X ) / P is the composition of 
the Albanese map and the natural quotient morphism. In particular, 
T,(iri(X)) has a positive dimensional component if and only if its inter­
section with the set of all unitary characters has a positive dimensional 
component. Now the Hodge decomposition of the cohomology of a uni­
tary local system implies that unless T,(iri(X)) consists of finitely many 
torsion characters the subvariety of all special line bundles in PicT (X) 
has a positive dimensional component. Indeed, for a unitary charac­
ter a denote by La the corresponding rank-one local system, and by 
La = La ®c Ox the corresponding holomorphic line bundle. Now by 
the Hodge theorem we have 

h i m i X ) , Ca) = h\X, La) = h\X, La)+h°{X, ttx®La) = 2h\X, La), 

i.e., a is a special character iff the line bundle La is special. 
Furthermore a theorem of Beauville ([3, Proposition 1]) asserts that 

the subvariety of Pic0 (X) consisting of special line bundles is a union of 
a finite set and the subvarieties of the form f*Pic°(B) where f : X —> B 
is a morphism with connected fibers to a curve B of genus > 1. Thus 
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X posseses irrational pencils which finishes the proof of Theorem 1.3. 
q.e.d. 

The above theorem can be seen as the solvable analog of the theorem 
of Simpson's that SL(n,Z) is not a Kahler group, n > 2. This theo­
rem gives a way of constructing new examples of non-Kahler groups. In 
particular any group T with infinite H 1 ( [ r , T ] , Q ) possessing a solvable 
linear quotient defined over Q that is not virtually nilpotent cannot be 
Kahler. Or this means that any group T with no surjective homomor-
phisms to a nonabelian free group possessing a solvable linear quotient 
defined over Q that is not virtually nilpotent cannot be Kahler ( see e.g. 

[2])-
In the case where there exists a holomorphic map with connected 

fibers f : X —» C to a smooth curve C of genus > 1 we cannot say much 
about the holomorphic convexity of the corresponding solvable covering 
of X. 
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