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1. Introduction

In the last several years, there has been considerable interest in the
deformation of Euclidean hypersurfaces in the direction of their normal
vector field with speed various functions of the principal curvatures. In
particular, for contracting flows, Gage-Hamilton [12] and Grayson [14]
studied the curve shortening flow, Brakke [3] and Huisken [19] studied
the mean curvature flow and Tso [22] studied the Gauss curvature flow
(see also Chow [6], [7], Hamilton [17], [18] and Andrews [2]). For more
general homogeneous contracting flows, see Andrews [1]. Besides con-
tracting flows, there has also been recent interest in expanding flows.
Similar results have been proved by Urbas [23], [24], Huisken [19] and
Gerhardt [13]. More recently, Andrews [1] has studied more general
expanding flows, especially flows with anisotropic speeds.

In each of the above papers, the hypersurfaces are evolving with
speed a homogeneous increasing function of the principal radii. For
expanding flows, one generally assumes in addition that the function is
concave. In a series of papers, of which this is the first, we investigate
expanding flows with speed an increasing function of the principal radii.
In particular, we shall not assume the function is homogeneous. Our
results generalize most of the previous results on expanding flows.

In this paper we study the motion of a smooth, strictly convex, em-
bedded closed curve in E2 expanding in the direction of its outward
normal vector with speed given by an arbitrary positive increasing func-
tion G of its principal radius of curvature. Our result is that there
exists a unique one-parameter family of smooth, strictly convex curves
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satisfying the above equation, which expand to infinity. Moreover, the
shapes of the curves become round asymptotically in the sense that
if one rescales the equation appropriately, the support function of the
rescaled curves converge uniformly to the constant 1 in C2-norm. Under
additional hypotheses on the function G, we prove that the convergence
is in C°°-norm.

In later papers we shall study expanding convex compact hypersur-
faces of dimension at least two. In Chow-Tsai [11] we study the case
where the speed is a non-homogeneous function of the principal radii.
Under certain assumptions on the curvature function analogous to those
considered by Urbas, etal., we prove that hypersurfaces remain smooth,
strictly convex and expand to infinity while their shapes asymptoti-
cally become round. In particular, after an appropriate rescaling, their
support functions converge to the constant 1 in C1-norm. In Chow-
Liou-Tsai [10] we consider the equation ut = F(Au + nu) on Sn which
corresponds to deforming a hypersurface Mn C Rn+1 in the direction
of its outward normal with speed a function of the harmonic mean cur-
vature.

2. Main result

Let 7 be a convex embedded closed curve in R2 parametrized by a
smooth embedding XQ : S1 —» R2. We consider the initial value problem

(2) X(x,0) =Xo(x), xeS\

where k(x,t) is the curvature of the curve given by X( , t) at the point
x, G : R+ —> R+ is a positive smooth function with G' > 0 everywhere,
and N( ,t) is the outward unit normal vector field to X( ,t).

Without loss of generality, we can assume that 7 encloses the origin
of R2 initially. Similar to Tso [22] and Urbas [24], we can reduce the
initial value problem (l)-(2) to an initial value problem for the support
function. The support function uo of 7 is defined by

where F : S1 ->- 7 C R2 is the inverse Gauss map of 7. Since F is
smooth, UQ(X) will be a smooth function on S1, and if 7 is a circle of
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radius r centered at (c\, C2) G M2, then UQ (X) =r + c\ cos X + C2 sin x for

allxeS1.

We compute the curvature of 7 in terms of its support function

UQ(X). The principal radius of 7 is given as

w^y = (uo)xx(x) + uo(x), x G S\

and equations (l)-(2) are equivalent to

(3) ^ = G f e + u),

(4) u(x,0) =uo(x), xeS\

together with the condition

(5) uxx(x,t) +u(x,t) >0,

whenever the solution exists. The main result of this paper is the fol-

lowing.

Theorem 1. Let G be an arbitrary positive function with G1 > 0

everywhere. For any smooth function uo : Sι —» M with (UQ)XX(X) +

uo(x) > 0 for all x G S 1 , there exists a unique solution u G C°°(Sι x

[0,T)) of equations (3)-(4) satisfying (5), where 0 < T < 00, such that

limt->τ u>min(t) = oo. Moreover, there exists a constant C depending

only on UQ such that

\uxx(x,t)\<C

for all x G Sι and t G [0,T). As a consequence, there exists a solution

R(t) to the ODE dR/dt = G(R) on [0,T) such that

timin(*) < R(t) <

and the support functions ϋ of the rescaled curves 7 = j/R satisfy

/oro«t6[0,T).

In the rest of the paper, we will consider equations (3)-(4), and prove

the long time existence of a solution satisfying condition (5).
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3. A lower bound for the principal radius

Standard parabolic theory guarantees the existence of a unique
smooth solution u(x,t) of (3)-(4) on Sι x [0,Γ) for some small T > 0.
Because our initial curve 7 is uniformly convex and encloses the origin,
we have (UQ)XX + (uo) > δ and UQ > δ on S1 for some δ > 0. Geomet-
rically, if our initial curve 7 is convex, it will remain convex during the
evolution. Therefore, we prove

Lemma 1. Letu(x,t) be solution to (3)-(4) with (UQ)XX+UO > δ > 0
for allx e S1. Then

(7) uxx(x,t)+u{x,t) >δ>0

for all{x,t) G S1 x [0,Γ).

Proof. By continuity, we have uxx + u > 0 on S1 x [0, ε] for some
ε > 0. Let υ(x, t) = G(uxx + u) on Sι x [0, T). Then o O o n ^ x [0, ε]
andυ(z,0) >G(δ) > 0.

We compute

-^ = G'(uxx + u) - {vxx + υ), on S1 x [0,ε].

Since G' > 0, by the weak maximum principle we have

v(x,t) > G(δ) > 0 on Sι x [0,ε].

and hence

uxx{x, t) + u(x, t) > δ > 0 on Sι x [0,ε].

Repeating the same process implies the above inequality in Sι x [0, Γ).

q.e.d.

4. The gradient estimate

The next result concerns the uniform estimate of the gradient of u,

which was proved in a previous paper as a special case of a more general

theorem based upon a variant of the Aleksandrov reflection method.

See Chow-Gulliver [8, Theorem 2.1]. However, for completeness, a brief

proof is given below.

Proposition 1. Let u(x,t) be a smooth solution to (3)-(4) on S1 x

[0, T) where G : I4. ->• K+ is a smooth function with G1 > 0 everywhere.
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Then there exists a constant λ > 0 depending only on UQ such that

(8) S i n (~2-

for all xux2eSι = M/2πZ and t G [0,T).
Proof. Given 0 G Sι, define WQ(X) = UO(X)—UQ(2Θ — X). Then WQ is a

Lipschitz function on the half circle [0—π, 0] with w$(θ—π) = ̂ #(0) = 0.
This implies that there exists a λ(0) G E such that λ(0) sin(0 — x) >
^ ( x ) for a l lβ-π < x < θ. Define ux(<Θ\x,t) = u(2θ-x,t) + \{θ)sin(θ-
x). Then ux^ is a solution to (3) with initial condition

where UQ : 5 1 —> E is given by

- re)

Since both ux^ and u are solutions to (3) with G' > 0, uxW = u on
({0-π}U{0}) x [0, T), and txλ^) > w0 on [0-π, 0], by the weak maximum
principle for parabolic equations of the second order, we conclude that

uHθ) _u > o in [0-π, 0] x [0, Γ). Therefore there exists λ > 0 depending
only on u$ such that

u(2θ - x, t) + λ sin(0 - x) > u(x, t)

for all θ e S1, x e [θ - π,0], t G [0,T). Setting a; =
(xi + X2)/2. We conclude that

and 0 =

(9) u(x2,t) + Xsin >u(xut)

for all xi,X2 ^ 5 1 , t G [0,T). Proposition 1 follows easily. q.e.d.
As an immediate consequence of Proposition 1, we have the following

uniform gradient estimate for u (Chow-Gulliver [8, Corollary 2.3].)
Corollary 1. Suppose u : Sι x [0,T) —> R satisfies the hypotheses

of Proposition 1, and let λ > 0 be the constant given in the conclusion
of Proposition 1. Then

(10)
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For each t e [0,T), let

y>max{t) = maxu(x,t), umin(t) = min u(x,t).
ζS1 ζS1

Since G is a positive function, umax(t) and um[Ώ(i) are increasing on
[0 T) and um\n(t) < umax(t) for all t G [0,T) unless we are in the trivial
case u(x,t) = f(t) with f(t) = G(f(t)) on [0,T). Proposition 1 implies

(11) Umax(ί) - Umin{t) <C On [0,Γ),

where C is a constant depending only on UQ.

5. The second derivative estimate

In this section we shall show that the second derivative of u is uni-
formly bounded, independent of time. This is the main estimate, which,
together with certain standard results, implies the long time existence
of a solution to (3)-(4). Before proceeding, we need some results on
functions which are not necessarily differentiable. The following discus-
sion on Lipschitz functions is based on Hamilton (1986) (see also Urbas
(1991)). Let f(t) be a Lipschitz function on some interval [α,6]. Then
we define

C if

«1L>C if ϋ m h t ' < ' + * > / ( ' > > C ί

dt ~ /ι\o h ~

ϊ±>c if>c if l i m t a f > c .
dt ~ h\o h ~~

Lemma 2. Let f(t) be a Lipschitz function on [α, 6].

(%) If f(a) < 0 and ^f < 0 whenever f > 0 on [α,6], ίften

< 0.

^ // /(α) > 0 and ^f > 0 whenever f < 0 on [o,6],

0.
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(in) If f(b) = 0 and ^f < 0 whenever f < 0 on [α,6], then
f(a) > 0.

iv̂  // f(b) = O and ^f > 0 whenever f > 0 on [α,6],

/(α) < 0.

/ For (i) and (ii) see Hamilton [16, Lemma 3.1]. Parts (iii) and
(iv) are analogous, so we omit the details of the proof. q.e.d.

Let Y be a compact set in Euclidean space and g : [α, b] x Y -ϊ R
be a smooth function. Define f(t) = sup{g(t,y) : y G Y} and h(t) =
inf{#(£,y) : y G Y}. Both f(t) and h(t) are Lipschitz functions on [α,6],
and we have the following estimate on their derivatives.

Lemma 3. Let Yx(t) = {y : g(t,y) = /(*)} and Y2(t)
= {V' 9(t,v)=h(t)}. Then:

,y) : y G *(*)}, /or α//1 G [α,6).

,y) : y G Yi(t)}, /or all t G (α,6].

> inf{| f f(ί,y) : y G y2(ί)}, for all t G (α,6].

Proof The proof of (i) is given in Hamilton [16, Lemma 3.5]. The
proof of the rest is similar. q.e.d.

We are now ready to estimate the second derivative of u(x,t). The
right quantity to estimate is w — \{u\ + ^ x ) , which is a constant
independent of space and time when initial curve 7 is a round circle.

Lemma 4. Let u(x,t) be a smooth solution to (3)-(4) on Sι x [0,T).
Then

t)\ <C onS1 x [0,T),

where C is a constant depending only on UQ.
Proof Set w = \{u\ + uxx). We compute

d w -
dt

=uxx [G(uxx + u)]xx + ux [G(uxx + u)]x

= r̂rx * [G'(uxx + U) (uxx + u)xx + G"(uxx + u) (u2

+ ux G'{uxx + u) - (uxx + u)x.
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Using
Wx = Uxx (uxx + U)x

and
wxx = uxx (uxx + u)xx + uxxx - (uxx + u)x.

we can rewrite the above equation as

(12) -^ =G'(uxx + u) • wxx + G"{uxx + u) - {uxx + u)x - wx

+ G'{uxx + u) (uxx + u)x(u - uxx)x.

In the argument below, we shall apply the maximum principle to equa-
tion (12) in a slightly unconventional way to obtain a uniform bound
for w. Initially, we have

where C\ is a constant depending only on ^o such that \{^)2 < C\.
Here | is the constant given in the conclusion of Corollary 1. For each
t E [0,T), define f(t) = max^^i w(x,t) = w(pt,t) for some pt G Sι.
At (pt^ί)? we have wx = 0 and wxx < 0, which imply either uxx = 0
or (uxx + u)x = 0 at (pt,ί). We now have /(0) < C\ and whenever
f(t) > C\ for some ί G (0,T), ιxxx can not be zero at {put) since if
uxx — 0 at {pt,t) we will have f(t) = i ^ ( p ί 5 t ) < \{\)2 < Ci, which
is a contradiction. This in turn implies (uxx + u)x = 0 at (pt,ί). As a
consequence of this, we obtain, from (12), that

dw
— < 0 at (pt,t),

whenever f(t) > C\. By Lemma 2 (i) and Lemma 3 (i) we obtain

f{t) <Cι for any te [0,T).

Therefore

w(x,t) = l(ul+u2

xx)<Cι on^xfCT),

and the conclusion of Lemma 4 follows. q.e.d

6. Higher derivatives

In this section we prove time-dependent estimates for the higher
derivatives of u. These estimates also follow from the standard results,
given the C2-estimate for u of the previous section.
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Lemma 5. Ifu<MonS1x [0,T) for some positive constant M,
then

(13) \uxxx(x,t)\ <C onS1 x [0,T),

where C < oo is a constant depending only on M, G, uo and t.
Proof We shall let C denote any constant depending only on M,

G, uo and ί, where C may change from line to line. Let w = dtu =
G(uxx + u). Then

dtw = H(w) (wxx 4- w),

where H = G1 G" 1 and ίί(ίi ) = Gf(uxx + u) > 0. We compute

= H(w)(wx)xx + H'(w)wx - (wx)x

+[H{w)+H'(w) w]wx.

Since 0 < ^ < tϋ < C, we have .//(w) + H'(w)w < C and hence the

maximum principle implies

wx<C.

Therefore

UXXX +UX < — — y

and

-ux<C.
G'{uxx + u)

The proof that uxxx > —C is similar and Lemma 5 follows. q.e.d.

Lemma 6. Under the same assumption as in Lemma 5, we have

(15) |« ( 4 ) 0M)| < C onSιx [0,T),

where υy*' = uXXXX) and C is a constant depending only on M, G, UQ
and t.

Proof. Since

wxx = G'{uxx + u){UW + uxx) + G"(uxx + u){uxxx + ux)
2

by Lemma 5, it suffices to show wxx < C. We compute

dt(Wχx) =[dt(wx)]x

=[H(w){wx)xx + H'{w)wx(wx)x + {H{w) + H'{w)w)wx)x

(16) =H(w)(wxx)xx + [2H'(w)wx](wxx)x + H'{w){wxx)
2

+ [H"(w){wx)
2 + H{w) + H'(w)w]wxx

+ [2H'(w)+H"(w)w](wx)
2.
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Since w <C and wx < C, the only bad term in (16) is H'(w) (wxx)
2,

which is not bounded above by C wxx. To cancel off the bad term,
consider the evolution equation

dt[\{wxγ] =H{w)[\{wx)%x - H(w)(wxx)
2 + H'(w) • {wxf • wxx

+ [H(w) + Hf{w)w](wx)
2,

and estimate

=H(w)[wxx + %(wx)
2]xx + [H'(w) - aH(w)](wxx)

2

+ 2H'(w) wx [wxx + f (wx)
2]x

+ [H"(w)(wx)
2 + H(w) + H'{w)w - aH\w){wx)

2)wxx

+ [H"(w) w + 2H\w) + aHf(w)w + aH{w)]{wx)
2,

where a is a positive constant.
We can choose constant α large enough, depending on M, G,

such that
H'(w) - aH(w) < 0 on Sι x [0, Γ).

Let B = wxx + f {wx)
2. We conclude that

dtB < H{w)Bxx + 2H'{w)wx -Bx + Cwxx + C,

whenever B > 0. Here we have used the estimate \wx\ < C from Lemma
5. Again, by the maximum principle we obtain B < C and hence

WχX < C.

The proof of the lower bound is similar and Lemma 6 follows. q.e.d.
Lemma 7. Let u(x,t) be a solution to (3)-(4) on S1 x [0,T), for

n > 5 we have

dt(u^) = H {u^)xx + H (uW), +H tι<*> + l ϊ

where each H is some expression involving only G, u, u^\- jz/71"1).
Proo/. For n = 5, this follows from a straightforward computation.

The case n > 5 can be proved by an induction argument. q.e.d.
Remark. Lemma 7 does not hold for n < 4.
Based on Lemma 7, we now have



322 BENNETT CHOW & DONG-HO TSAI

Lemma 8. Under the same assumption as in Lemma 5, we have

(18) <C onS1 x

where C is a constant depending only on M, G, UQ, t, k, ί.
Proof. Apply the maximum principle to (17) and use Lemma 6, an

induction argument, and the equation dtu = G(uxx + u). Lemma 8 then
follows. q.e.d.

As an immediate consequence of Lemma 8, we infer the following
existence and uniqueness result.

Proposition 2. There exists a unique smooth solution u(x,t) to
equations (3)- (4) on some maximal time interval [0,T) and

lunumin(t) = oo.

Proof. We know um\n(t) is increasing on [0,T), and if limt^r Umin{t)
is finite we will have u(x,t) < M on S1 x [0,T) for some constant M
since um9x(t) — um\n(t) is uniformly bounded. By Lemma 8, we can
extend the solution u(x,t) smoothly up to t = Γ and hence, by the
short-time existence theorem, extend u(x, t) beyond t = T, which is a
contradiction. This takes care of the case where T < oo. If T = oo, we
note that

where δ is the constant in Lemma 1. We therefore have lim^oo um[n(t) =
oo.

The uniqueness of the solution is standard and hence the proof of
Proposition 2 is complete. q.e.d.

7. Rescaling the equation and convergence in C2

In order to understand the asymptotic behavior of the solution it will
be convenient to work with the rescaled solution ύ(x,t) defined below,
rather than u(x,t) itself. We shall see that the quantitative behavior of
u(x, t) is same as some solution R(t) to the ODE

(20) ^ = G(R(t)).

Lemma 9. There exists a solution R(t) to (20) on [0, T) such that

(21) Umin(ί) < R(t) < Umax(t), Vt G [0, T),
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where u(x,t) is the unique solution to (3)-(4) on the maximum time
interval [0,T).

Proof. First note that if umax(t) = u(pt,t) for some pt G 5 1 , then

(22) -^(pu t) = G(uxx + u)< G(umax{t)) at (pu t)

for any t E [0,T). Similarly

(23) ^ ( g t , t ) > G ( ^ m

where u(qut) = umin(t).
Take an increasing sequence T{ G (0, T) with lim^oo T{ =T and let

be the solution to

(24) ^ - = G(Rf),

(25)

The domain of Rf (t) will be at least (Γj - ε*, Γj] for some εi > 0. Set
/(t) = umax(t) -Rf (t) on (Ti-εi,Ti\. It will be Lipschitz on (T*-ε^,Tj]
and f(Ti) = 0. For any t e (Ti - εi,Tί], compute

<limsup
/ι\0 Λ

and by Lemma 3 (ii) and (22) we know

-G(Rt

whenever f{t) < 0.

Lemma 2 (iii) now implies that

(27) /( ί )>0 forallίeίTi-ε^Ti].

Similarly we consider g(t) = umm{t)-Rf(t) and use Lemma 3 (iv), (23)
and Lemma 2 (iv) to conclude

(28) g(t) < 0 for all t e (T* - εh %}.
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Thus

(29) nm i n(ί) < Rf(t) < umax(t) on (T, - e» TJ.

Prom (29) and the basic theory of ODE's, we deduce that the domain
of Ri~{t) will be at least [0,7}], and for each % we have

(30) um i n(ί) < Rf(t) < umax(t) on [0,U].

Consider the sequence {Rf}^^ on any compact subinterval [0, T-δ]
of [0,T), the domain of Rf will cover [0,Γ — δ] for i large enough. We
may assume all Rf are defined on [0,T — ί]. Observe that each Rf(t)
is convex on [0, T — <5] and

(31) nm i n(ί) < Rf(t) < Rf(t) < umax(t) on [0, T - δ)

for j > i.
Define Λ+(ί) = lim^oo Rf(t), t G [0,T - <$]. Then i?+(ί) is convex,

and hence continuous on [0, T—ί], and i?̂ " -> J?+ uniformly on [0, Γ—ί].
We finally conclude that R+{t) is differentiable on [0, T - ί], and ̂  =
G(i?+). Let 5-^0. Then (21) follows when T < oo. The case where
T = oo is also clear. q.e.d.

Prom now on we will choose one R(t) satisfying (21) and use it to
rescale the solution u(x, t). Define the rescaled solution ύ(x,t) as

ΰ(x t)
U[X't}- R(t) •

Then we have
Lemma 10. Let [0, T) be the maximal time interval of existence for

u(x,t). Then

(i) \ΰ(x,t) - 1\ <-^ onS^frT),

(it) \ΰx(x,t)\ < ifa on51x[0,Γ),

(Hi) \ύxx{x,t)\ < !§y on 5 1 x [0,T),

where C is a constant depending only on UQ and R(t) —ϊ oo ast-ϊT.
Proof, (i) By (11) we have

u(x,t)-R(t)
R(t) R(t) ~ R{t)'
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(ii) and (iii) are consequences of Corollary 1 and Lemma 4, respective-

ly, q.e.d.

Remark. The significance of Lemma 10 is that we get convergence

to the unit circle in the C2-norm, that is,

vte[o,τ),

for an arbitrary positive function G with Gr > 0 everywhere.

8. The case where G is concave

So far we have only assumed that the function G is positive and

G' > 0. We shall now consider the case where G is a concave function.

Under an additional hypothesis we shall prove that the rescaled support

functions u converge in C°° to the constant 1.

It is a simple exercise to verify that when G is concave, the solution

R(t) to the ODE ^ = G(R) with R(0) > 0 will not blow up in finite

time. Therefore the maximal time interval of existence for u(x, t) is

[0,oo).

Lemma 11. If G : R+ -» R+ is concave with Gr > 0 everywhere,

then

(i) ™^\ is decreasing on (0,oo),
R{t)

(ii) ™° is increasing on (0, oo),
R[t)

(iii) m is decreasing on (0, oo).

Proof, (i) umsx(t)/R(t) is Lipschitz on any compact interval [o,6] C

(0,oo). Using Lemma 3 (i), we find

d^_ fumax(t)\ R(t)G(umBX(t))-umax(t)G(R(t))

dt V R(t) ) S R2(t)

Since G is concave, we have

(33) XG{x) < G{Xx)
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for all x E Rf = (0,oo), 0 < λ < 1. Applying (33) together with
R{t)/umax(t) < 1 to (32), we get

(34) M U Π - 0 ίoIΆlUE^
which and Lemma 2 (i) imply (i). The proof of (ii) is analogous to that
of (i). (iii) is an easy consequence of (i) and (ii). q.e.d.

In the following discussion, we shall use the Banach spaces of k-
times (Holder) continuously differentiate functions on S1 and S1 x /,
Ck{Sι), C ^ S 1 ) , Ck(Sλ x /), and Ck^{Sι x /), where / = [α,6] C R,
equipped with the standard norms. See, for example, Urbas [24] for
detailed definitions.

Lemma 12. For any 0 < TQ < oo, we have

where C is a constant depending only on UQ and G.
Proof. By Lemma 10 we have

(36)

for all t € [To,oo). Hence we only need to estimate the time-derivative
of ύ on S 1 x [To, oo). The equation for the rescaled solution u(x,ί) is

(37) ^ = ~G(R)ύ + ±

Applying (36) to (37) yields

_G(R(t) + C)-G(R(t)) G(R(t))
R(t) R(t)2 "

Since G is concave, G(y + C)-G(y) < C' independent of y E [i?(0),oo),
and G(y)/y is a decreasing function of y on (0, oo). Therefore

dt'' ' '^ R(t) "= R(T0)
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for all t e [To, oo), where C depends only on UQ. Similarly, one can show
that

for all ί E [To, oo). This completes the proof of the lemma. q.e.d.

Unfortunately, the linearized equation of (37) will not be uniformly
parabolic on the domain S1 x [0, oo). This makes us unable to quote
some standard theorems for parabolic differential equations. To remedy
this we need to rescale time also.

Let

τ(t)=logG(Λ(t))-logG(Λ(0))

for all t e [0,oo). We have τ(0) = 0, dτ/dt = G'(R(t)) > 0 and
lim^oo τ(t) = oo if we assume limx_>oo G(x) = oo.

Set ύ(x,τ) = ύ(x,t(τ)). We have ύx(x,τ) = ύx(x,t(τ)), ύxx(x,r) =
Ίίxx(x,t(τ)) and

(38)

du dudt 1 Γ l ^ / n x . 1^/r,/-
\--G(R) u+-G(R(uxθr dtdτ G'{R) [ R v ' ' R

Hence

If we linearize the above equation at ti, we obtain the equation

(40)

_G'(R(ύxx + ύ)) \G'(R(ύxx + ύ)) _ G(R)
G'(R) xx [ G'(R) RG'(R).

Lemma 13. // there exists a constant ε > 0 such that y Gr(y) >

ε > 0 for y sufficiently large, then

(41) l|ύ(^r

where C is a constant depending only on UQ, and ε.

Proof. Since ύ differs from u only by a change in the time variable,

by Lemma 12, it suffices to estimate \dύ/dτ\. Using Lemma 12 again

together with the hypothesis on G, we obtain

dύ dt dΰ
dt

Mr))
1 C S C A

< —. q.e.d.G'{R(t)) R(t) ~ ε
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Remark. The hypothesis on G in Lemma 13 is equivalent to the
condition that there exists ε > 0 such that G(y) — ε log y is an increasing
function of y on some interval [To, oo).

Lemma 14. Let C be a constant depending only on uo such that

R(t) - C < R(t)(ύxx(x,t) + ύ{x,t)) < R(t) + C,

for all x e S1, t >0, as given by Lemma 12. If there exists a constant
δ > 0 such that

for y sufficiently large, then equation (40) is uniformly parabolic on
Sι x [0, oo), and the coefficient of v is uniformly bounded from aboue.

Proof. By our hypothesis, using the concavity of G, we have for t
sufficiently large

1 ^ G'(R - O ^ G'(R(ύxx + ύ)) ^ G'(R + C) ^ f ^ Λ

ί - G'(R) ~ GVt) " G'(R) - δ > °

The upper bound for the coefficient of v also follows since
G(R)/(RGf(R)) > 0. q.e.d.

Remark. The hypothesis on G in Lemma 14 is equivalent to the
condition that there exists a constant δ > 0 such that G(y + C) — δG(y)
is an increasing function of y on some interval [To, oo).

Now we are in a position to use the result of Krylov and Safonov [20]
and standard parabolic theory to conclude (see also Urbas[24], Lemmas
3.9 and 3.10).

Lemma 15. Suppose that there exist ε, δ > 0 such that both G(y) —
εlogy and G(y + C) — δG(y) are increasing functions of y for y suffi-
ciently large. Let ύ(x,τ) be the solution of (38) on Sι x [0, oo). Then
for any τ G (0, oo), any positive integer k, and any α 6 (0,1) we have

where C is a constant depending only on Λ,α, ε, ί, G, 1/r and

To obtain the convergence of ύ(x, τ) to 1 in the Ck norm, we follow
the arguments in Urbas [24], apply an interpolation inequality of Hamil-
ton [16] and the estimate in Lemma 10 (i) to Lemma 15, and conclude
(we refer to Urbas [24] for the details).
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Proposition 3. Under the same assumption as in Lemma 15, we
have

for any σ < 1, where C is a constant depending only on fc,σ, G,uo
Added in proof. Recently the second author generalized the re-

sults of this paper to starshaped plane curves (see Tsai [21]). Even more
recently the results have been further generalized to embedded plane
curves with turning angle greater than —π (see Chow-Liou-Tsai [9]).
See K. S. Chou and X. P. Zhu [4], [5] for recent results for anisotropic
flows of plane curves.
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