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GLOBAL ASYMPTOTIC LIMIT OF SOLUTIONS OF
THE CAHN-HILLIARD EQUATION

XINFU CHEN

Abstract
We study the asymptotic limit, as ε \ 0, of solutions of the Cahn-Hilliard
equation

1

under the assumption that the initial energy

is bounded independent of ε. Here / = F', and F is a smooth function
taking its global minimum 0 only at u — ± 1 . We show that there is a
subsequence of {ιte}o<e<i converging to a weak solution of an appropriately
defined limit Cahn-Hilliard problem. We also show that, in the case of radial
symmetry, all the interfaces of the limit have multiplicity one for almost all
time t > 0, regardless of initial energy distributions.

1. Introduction

In this paper, we shall study the asymptotic limit, as ε \ 0, of the

solutions of the Cahn-Hilliard equation

uε

t(x,t) = Δυε(x,t), (z,ί) G Ω x (0,oo),

vε = -εAuε + ε~ιf(uε), (rr, < ) G ί ϊ x [0, o o ) ,

lkuE = l ί ^ = °> (x> t)£dΩx [0, oo),
nε(τ 0) — iι^(τ\ T C O
LL IΛ/« V/I — t«Γ) V **s I , •*-> C u u
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Here Ω is a bounded smooth domain in IR^ (N > 2) , and f(u) is the
derivative of a potential F satisfying

' (a) F e C3(IR), F(±l) = 0, and F(u) > 0
for all u Φ ±1;

(1.2) I
(b) F' = f and for some p > 2 and c0 > 0,

For the initial data «Q, we assume

(1.3)

sup / (^\Vuε

0(x)\2 + -F(uε

0(x))dx < ε0 < oo,
o<ε<iJn v ^ ε Jo<ε<iJn

ε±- [ uε

o(x)=moe(-l,l) Vee(0,l],
|M| Jn

Note that (1.1) differs from the usual Cahn-Hilliard equation (see
[20]) only in the scaling of time so that t here represents t/ε in the usual
formulation. Equation (1.1) is widely accepted as a good model to de-
scribe the complicated phase separation (in the original time scale) and
coarsening (in our current time scale) phenomena in a melted alloy that
is quenched to a temperature at which only two different concentration
phases can exist stably. Here vε is the chemical potential, and uε is a
scaled concentration where uε = ±1 represents the two stable concentra-
tions. The parameter ε is the "interaction length" which is very small.
The Neumann boundary conditions reflect the conservation of mass and
insulation from the outside. For more physical background, derivation,
and discussion of the Cahn-Hilliard equation and related equations, see
[7], [8], [9], [18], [19], [20], [34], [39], [52] and the references therein.

The Cahn-Hilliard equation (1.1) is a mass preserved and a gradient
flow with the energy functional

(1.4) εε(t) := / eε{uε)dx, eε(uε) := ^|V</|2 + -F(uε).
Jn z ε

In fact, one can direct verify the following identities: for alH > 0,

(1-5) [u(,t)=0, /
at Jςi at Jn

The evolution of the concentration undergoes two stages called phase
separation and phase coarsening, respectively. During the first stage,
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the alloy becomes a fine-grained mixture of two different phases, each of
which corresponds to a stable concentration configuration. This stage
usually takes a relative short time during which the nucleation, spinodal
decomposition, and formation of the phases can be observed. In terms
of equation (1.1), the solution uε quickly approximates the value 1 in
one region Ω+ and the value —1 in another region Ω̂~ whereas the
remaining region f t = Ω\ (Ω/" UΩ̂ ~) is a thin region, usually considered
as a hypersurface called interface. At the end of the first stage, one can
formally show that the energy Sε(t) defined in (1.4) is proportional to
the total area of the interface.

When the phase regions are formed, the evolution of the concen-
tration enters into the second stage during which the phase regions are
coarsened, the originally fine-grained structure becomes less fine, and
the geometric shapes of the phase regions become simpler and simpler,
eventually tending to regions of minimum surface area. In terms of the
Cahn-Hilliard equation (1.1), this phenomenon corresponds to the be-
havior of the solution that the interface moves and eventually tends to
a surface having minimum surface area (whereas its enclosed region has
a fixed volume).

It was formally derived by Pego [53] that, as ε \ 0, the function υε

tends to a limit v, which, together with a free boundary

Γ = U0<t<τ(Tt x {*}),

solves the following free boundary problem:

Aυ = 0 inΩ\Γ t , t e [0,T],
^υ = 0 ondΩ, te [0,T]

v =σκ on Γt, te [0,T],

V =j[&i/]ri on Γt, ί€[0,Γ].

(1.6)

Here

(1.7)

K and V are, respectively, the mean curvature and the normal velocity
of the interface Γ̂ , n is the unit outward normal to either dΩ or Γt,
[^r;]rt = 3 ^ + — jfav~ a n d v+ a n d v~ are respectively the restriction
of v on Ω+ and ΩjΓ, the exterior and interior of Γ̂  in Ω. Also uε -» ±1
in Ωf for all t E [0,T]. Under the assumption that (1.6) has a smooth
classical solution, rigorous justification of this Pego's result was recently
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carried out by Alikakos, Bates and the author in [1], using asymptotic
expansions and spectral analysis. Using energy methods, Stoth [61]
recently obtained a global (in time) convergence result for the case of
three-dimensional radial symmetry and Dirichlet boundary conditions.

The main purpose of this paper is to formulate a weak solution to
the free boundary problem (1.6) and to show that the solutions of (1.1)
approach, as ε \ 0, to weak solutions of (1.6).

For completeness, we continue to discuss the dynamics of (1.1) after
the second stage, though it is not the concern of this paper. Notice
that equilibria of (1.6) are either a single sphere or spheres of same radii
lying in Ω or intersecting Ω orthogonally. In case when the equilibrium
is a sphere or spheres of same radii lying in Ω, there may not be a
corresponding equilibrium of the Cahn-Hilliard equation (1.1). In fact,
Alikakos and Fusco [2, and the reference therein] showed that if the
"interface" of the solution of (1.1) is close to a single sphere lying in Ω,
then the interface will move superslowly (with a speed of order O(e~ e))
toward the closest point on c?Ω. (Bronsard and Hilhorst[ll] proved a
similar result in the one-dimensional case). They referred such kind
of solutions as "bubbles". After a super long time, the bubble will
touch the boundary 5Ω. At this moment, the bubble will quickly col-
lapse to a "half" bubble orthogonally attached to dΩ. We believe that
this collapse process will take O(ε) time (in the time scale as (1.1)),
though its detailed dynamics is totally unclear. Once the half bubble
is formed, it will move along the boundary finding a final destination
which minimizes its surface area (in Ω). Here we say a final destination
since it corresponds to a local minimizer of the energy functional 8ε( ).
For related results, see Kohn and Sternberg [47]. Here we would like
to point out that the motion of a half bubble is again described by the
free boundary problem (1.6) with the extra constraint that the interface
Tt intersects 3Ω orthogonally, though rigorous verification is still under
way.

Problem (1.6) is often referred as the Mullins-Sekerka problem.
In studying solidification/liquidation of materials of zero specific heat,
Mullins and Sekerka [50] first studied the linear stability of a special
radially symmetric solution of (1.6) in IR3 and showed that the spheri-
cal shape (of the interface) is stable when the radius of the interface is
small, and otherwise unstable.

Problem (1.6) is also called (two phase) Hele-Shaw problem since
if one replaces v by a constant in one of the region enclosed by Γt,
it becomes the (one phase) Hele-Shaw problem (with surface tension)
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arising from the study of the pressure of immiscible fluid in the air [35].
Concerning the existence of smooth solutions of the free boundary

problem (1.6), recently the author [23] established the local (in time)
existence of a solution in the two-dimensional case and, when the initial
curve is nearly circular, the global existence and long time behavior of
the solution. Very recently, Hong, Yi and the author [26] established
the local existence of a unique smooth solution to (1.6) in any space
dimension. We would like to mention that it was Duchon and Robert
[33] who first established the local existence of the one phase Hele-
Shaw problem in the setting that the initial curves are given by a graph
y = f(x) G i / 5 / 2 ^ 1 ) . In case / is sufficiently flat, they also established
the global existence and long time behavior. An extension of their result
to the case where the initial curves are small analytic perturbations of
a circle was recently carried out by Constantine and Pugh [30].

Another gradient flow for the same energy functional £ ε( ) in (1.4)
is the Allen-Cahn equation

uε

t=Auε-ε-2f(uε),

which originally was introduced by Allen and Cahn [4] to describe the
motion of antiphase boundaries. It was formally derived that, as ε \ 0,
the zero level set of uε approaches a surface which moves with a normal
velocity V equal to the mean curvature K of the surface; see, Allen
and Cahn [4], Fife[39], Rubinstein, Sternberg, and Keller[54]. Rigorous
justification of this limit has been successfully carried out in recent years.
The one-dimensional case was extensively examined by Fife h Hsiao [41],
Carr & Pego [21], [22], Fusco & Hale [41], Fusco [43], Bronsard & Kohn
[12], etc. The radial symmetric case was shown by Bronsard & Kohn [13]
whereas the general case was proven by de Mottoni &; Schatzman [31],
[32], Chen [25], Chen & Elliott [27], Nochetto, Paolini, & Verdi [51] and
others, under the assumption that classical solutions of V = K exist.
Finally, it was Evans, Soner & Souganidis [36] who first established
a global result: for all time t > 0, the limit of the zero level set of
the solution of the Allen-Cahn equation is contained in the generalized
solution of the motion by mean curvature flow established in [29], [37],
[57]. More recently, Ilmanen [46] showed that this limit is actually one of
the Brakke's motion by mean curvature solution [10], which is a subset
of the unique generalized solution of the mean curvature flow established
in [29], [37]. More recently, Soner established more delicate result [58]
with more general initial data [59]. Related results for area preserved
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Allen-Cahn equation can be found in [14, and the reference therein],
[28].

Though both the Allen-Cahn equation and the Cahn-Hilliard equa-
tion are gradient flows of the same energy functional, their dynamics
are pretty different since the former does not preserve the mass. Many
celebrated PDE tools such as the maximum and comparison principles
can be used for the former but not for the latter, thereby causing intrin-
sic difficulties in studying the Cahn-Hilliard equation. Nevertheless,
some of the tools such as the energy method [12], [13], [46], [57] and
the varifold approach [46] are shared by both equations (up to certain
degree).

Another dynamics related to the energy functional £ ε( ) in (1.4) is
the phase field system:

ε[aεuε

t - Auε] + ε-ιf{uε) = σείεTε, c%ε - ΔT ε = -iεu\,

which models the solidification process. Here α ε, σε, ^ε, and cε are
non-negative parameters, Tε is the temperature and uε is a phase order
parameter with uε ~ — 1 and uε ~ 1 corresponding to solid and liquid
phases respectively. Notice that if α ε = cε = 0 and σε = tε = 1, the
phase field system becomes the Cahn-Hilliard equation, and if aε = 1
and σε = 0, it becomes the Allen-Cahn equation. Convergence results
for various situations of the non-negative parameters αε,crε, £ε, and cε

were formally derived by Caginalp and others [15, and the references
therein], [16]. All Caginalp's formal asymptotic limits (which include
the Allen-Cahn and the Cahn-Hilliard limits) were recently rigorously
verified, under the assumption that the corresponding limit problems
have unique local smooth solutions, by Caginalp and the author [17],
by using a method similar to that used in [1] and a spectral estimate in
[24]. More recently, Soner[60] studied the global (in time) behavior of
the phase field system for the case aε = σε — cε = 1 and ίε = y/F(uε).
He showed that a subsequence of {(^ε,Tε)}εG(Oji] converges to an ap-
propriately defined weak solution of the Mullins-Sekerka problem with
kinetic undercooling. Here we shall use some of his varifold approaches.

This paper is organized as follows: In Section 2, we shall recall
several definitions from geometric measure theory. Then we define a
weak solution of the limit Cahn-Hilliard equation which can be regarded
as a generalized solution to (1.6). Also, we state our main result. In
Section 3 we establish certain ε-independent estimates for the solution
of (1.1). These estimates allow us to draw convergent subsequences of
{(uε,vε)}. With the help of a key result, Theorem 3.6, we show that
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the limit is a weak solution to the limit Cahn-Hilliard problem. Section

4 is devoted to the proof of Theorem 3.6 which concerns with the upper

bound of the discrepancy measure ξε(uε)dxdt where

(1.8) f (uε) :=

It is displayed in a general context so that it may be used for other

similar problems such as the Allen-Cahn equation, phase-field systems,

etc. Finally in Section 5, we study the radially symmetric case, which

provides more complete result than that in [61] and explains certain

important features of the Cahn-Hilliard dynamics.

In the rest of this paper, £ ε( ), e ε(u ε), σ, and ξε(uε) are defined as

in (1.4), (1.7), and (1.8).

2. Preliminary

2.1. Basic notation.
In the sequel, £(x, R) denotes a ball centered at x with radius R in

TRN, BR = 5(0, R), and B'R is a ball in IR^" 1 centered at the origin 0'.

Also, SN~ι is the unit sphere in IR^, and ΰ a generic element in SN~ι.

If n = (n1, ,n^), we denote by n ® n the matrix {T^Π^NXN We

use I to denote the identity matrix (δij)NxN For any N x N matrices

A = (dij) and B = (6^), A : B := tτa,ce(AτB) = Σ<j=i aijbij
By C™(D) we denote the space of ra-th differentiate functions with

compact support in D where D can be open or closed. Note that if D

is compact, then C™(D) = Cm(D). We use φ to denote a generic

test function in C™(D), and Ϋ a generic vector valued test function

in CQ1(D; ΊRN). The action of a functional on a test function will be

denoted by ( , •).

We assume that Ω is a smooth bounded open domain in IRΛ (N > 2).

The inner product in L2(Ω) will be denoted by ( , •) and the usual L9(Ω)

norm by || \\QIQ. We denote by χ# the characteristic function of a set

E.

For reader's convenience, we recall several definitions from geometric

measure theory [38], [55].

Radon measure. Let D be either an open or a closed domain. If L

is a bounded linear functional on Co(D) satisfying (L,φ) > 0 whenever

φ > 0, the measure μ generated by

μ(A) — sup (L,φ) for all A open in D
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is called a Radon measure on D. We use (μ,ψ) (ψ E Co{D)) to denote
the value JD ψdμ (= (L, ψ)), and use spt(μ) to denote the support of μ.

If {μ 7} is a sequence of (Radon) measures on D, we say μJ -> μ
as (Radon) measure on D if as j —> oo, (μi,ψ) -ϊ (μ,ψ) for every

If μ is a Radon measure on Ω x [0, T] for every T > 0, we also call
μ a Radon measure on Ω x [0, oo).

BV functions. Let u E Lι(Ω). If the distributional gradient Du
defined by

(Du,Ϋ) := (u,-divy) VF E C^(Ω]ΊRN)

can be extended as a bounded linear functional over Co(Ω; IR^), then we
say that u is a function of bounded variation, denoted by u E BV(Ω).
If u E BV(Ω), we use D{U to denote the measure generated by the
functional (tx, — ψXi) on Co(Ω). We denote by \Du\ the Radon measure
generated by

\Du\(A) = sup / udivY, VA open C Ω.
ΫeCo(A 1RN)i\Ϋ\<l''A

One can show [38] that D{U is absolutely continuous with respect to
\Du\) and there exists a |Z)u|-measurable unit vector valued function ΰ
such that Du — ΰ\Du\, \Du\-&.e. .

BV set. Let E be a set in Ω. If χE E BV(Ω), then we say E
is a BV set, or a set of finite perimeter. We denote DχE = VE\DXE\-

Clearly, in case dE is smooth, uE is the unit inward normal of E on dE.
Varifold. Let P = SN~1/{v,—is} be the set of unit normals

of unoriented N — 1 planes in IR^. A varifold (or, more precisely, an
(N — l)-varifold) V is a Radon measure on Ω x P. If V is a varifold,
the mass measure ||V|| is a Radon measure on Ω defined by

\\V\\(A)=ff dV{x,p).
JJ ΛxP

First variation of a varifold. Let V be a varifold. Its first
variation δV is a linear functional on C^Ω IR^) defined by

(δV,Ϋ) := / / VΫ(x) : (l-p®p)dV{x,p)
ΩxP
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Mean curvature vector. Let V be a varifold. If there is a
-measurable vector valued function H such that

-{δV,Ϋ) = (\\V\\,H •¥):= J (Ϋ(x) • H(x))d\\V\\(x)

G C^Ω IR^), then we say that H is the mean curvature vector of
V.

2.2. Definition of a weak solution.

Definition 2.1. A triple (E,υ,V) is called a weak solution to the
limit of the Cahn-Hilliard equation if the following holds:

1. E = \Jt>o(Et x {t}) is a subset of Ω x [0, oo) and

XE G C([0, oo); L1 (Ω)) Π L°°([0, oo); W(Ω));

i.e., v e L2((0,T);ί/rl(Ω)) for every Γ > 0;

3. V = V(x,p,t) is a Radon measure on Ω x P x (0, oo) and for
almost every t E (0, oo), Vt := V( , ,ί) is a varifold on Ω, and there
exist a Radon measure μι on Ω, //-measurable functions c\, , c^, and
//-measurable P valued functions p*, ,p^ such that

(2.1)

//-a.e.,

(2.3) II ψ{x,p)dV\x,p)
JJ ΩxP

JV

P);

4. For every T > 0, almost every < G (0, oo), and almost every
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T G ( 0 , t ) ,

(2.4) ί ί \- 2XEtΦt + VWψ] = / 2χEoφ(Ί0)
Jo Jn L J Jn

(2.5) - <Z?χft, vΫ) :=

(2.6)
τJn

Before explaining our definition, first we introduce our main result.

2.3. Main result.

Theorem 2.1. Assume that (1.2) and (1.3) hold. Let (uε,υε), ε G
(0,1], be the solution of (1.1). Then there exists a sequence {εk}^-ι
such that Sk \ 0 as k -» oo; and the following holds:

1. There exists £ c Ω x [ 0 , o o ) such that uεk —> — l + 2χ# a.e. in

Ω x (0,oo) and in Cι/9([0,T\]L2(Ω)) for any T > 0;

2. There exists v G L?oc([0,oo); Hι(Ω)) such that

vεk —> v weakly in ^ ( ( O ^ J ff^Ω)) for all T > 0;

3. There exist a Radon measure μ and measures μij, i, j = 1, , N,
on Ω x [0, oo) such that for every T > 0,

eεk(uεk)dxdt —> dμ(x,t) as a Radon measure on Ω x [0,Γ] ,

(2.7)

εkUε

x

kuε

x

kdxdt —> dμij(x,t) as measure on Ω x [0,T] ,

4. There exists a Radon measure V on Ω x P x (0,00) swcΛ £Λα£

(£J, v,y) «5 α ίi eαA; solution of Definition 2.1., dμt(x)dt = dμ(x,t) (μf

as in (2.4) and μ as in (2.7)), and

[T(δV\ Ϋ) dt= Γ fvΫ: \dμ(x, t)l - (dμφ, t)) 1
Jθ Jθ Jn L V / NxNl

(2.8) Vf G C o H Ω x M IR^).

Observe from (2.8) that for V to be a varifold, one needs to show

that (ηfl)NxN < I. This will be our main task of Section 4.

In case of radially symmetry, we can identify the varifold V and the

value of v on
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Theorem 2.2. Assume that (1.2) and (1.3) hold, that Ω = Bχ}

and that UQ is radially symmetric. Then with the same notation as in
Theorem 2.I.,

dμ =2σ\DχEt\dxdt as Radon measure on Ω x [0, oo),

=er ® erdμ, as Radon measure on Ω x [0, oo),
NxN

dV(x,t,p) =2σ\DχEt\dxdtδzrdp

as Radon measure on Ω x [0, oo) x P ,

υ(x,t) = —7-—-er ΰEt on spt(\DχEt\) for a.e. t>0
\x\

where er = A and δgr is the Dirac measure concentrated at
{er,-er} G P.

2.4. Remarks on the definition of weak solutions.
Assume that (E, v, V) is a weak solution of Definition 2.1.
1. Observe that (2.4) implies

ί 2χE) = Δυ in Ω x (0, oo) (in distribution sense),

(2.9)
JL = 0 on 9Ω x [0, oo) (in distribution sense),

lim Eι = EQ .

Hence, (2.4) is a weak formulation of all the equations in (1.6) except
the third one.

2. Since χE G C([0, oo);L1(Ω)), every Et is uniquely defined. Also,
by (2.9), we have (χE)t G L2((0,oo);iϊ"1(Ω)), which implies χE G
C ^ ί ^ o o J L^Ω)) by the assumption χE G L°°([0,oo);5F(Ω)) and
the Sobolev imbedding (cf. [48]).

3. The definition of V in (2.4) can be written as

dV\x,p) = T,f=lc\{x)5pt.

Prom (2.2), it follows that

ix) = Έf=ιc\{x)dμ\x) > dμ*(x),
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so that from (2.2), the function

(2 10) m " 2σ|StU
is WV1]] measurable, m G [l,oo) for |i}χ# t |-a.e, and m G [l,oo) U {ex)}

for ||V*||-a.e.
Now suppose that we have

s u p μ>χ«,ιw«.r)nn)<(io-

Then by Theorem 7.1 of [60], we know that (DχEt,vΫ) is a bounded
linear functional over Co(Ω; ΊRN), namely, υ is |i?X£t| measurable. Since
m = oo for tt||V*|| \ | JDX^J" a.e., ^ is ||V*|| measurable, and therefore
we can write (2.5) as, for a.e. t > 0,

~{δV\Ϋ) = (\\V% —ΰEt -Ϋ) VF G CQHΩ I R ^ ) .

Hence, by the definition of the mean curvature vector,

(2.11) — VEt = σHyt μ — α.e.,

m

where Hyt is the mean curvature vector of V*. (Note that this implies

If we further assume that
limsup I P

 NJ > 0 μι - a.e.,
r\0 r

then, by the Allard theorem [3] or a less general theorem of Almgren [5],
V1 is rectifiable (cf. [3], [5], [38] for definition). From the expression of
V* in (2.4) it thus follows that c\ = 1, c2 = = cN = 0, HV̂ *|| = μι, and
p\ is the unit normal to the unoriented tangent plane of μι. In addition,
Hyt = H\DχEt\ for I^XEtl a.e. where H\DXE\ is the mean curvature
vector of 1-Dχ̂  J. (In case dEt is smooth, it is the mean curvature
vector of the hypersurface dEt. ) Hence, from (2.11) it follows

(2.12) —=σκ \DXEt\-&.e.,
m

where n = UEt H\DχE \ is the "generalized" mean curvature of "spt(|Z>χ£t|)".

Thus, if m = 1 for μ-a.e., i.e, if

(2.13) μ = 2σ\DχEtl μ-a.e. in Ω x (0,oo),
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then (2.12) is a weak formulation of the third equation in (1.6).

In conclusion, if we have (2.13), then Definition 2.1 is an acceptable
weak formulation of (1.6).

4. Generally, we cannot show (2.13) for the limit of the solutions
of the Cahn-Hilliard equation, except for the case of radially symmetry
as shown in Theorem 2.2.. In fact, equation μ = 2σ\Dχβt\ may not
hold for every (#,t). For example, by adding phantom interfaces in
the initial data (namely, oscillations on UQ such that 2|Z)χ£0|(Ω) =

iDlim^o^oK^) < limε\o |£^ol(^))> w e c a n easι^Ύ construct examples
such that μ°(Ω) > 2σ\DχEQ\(Sl). Also, it may be possible that at some
later time, m > 1 at certain lower dimensional set contained in spt(/i).
Hence, we can regard allowing m > 1 as a special property which helps
us to extend the classical solutions of (1.6) beyond the time where the
topological changes occur.

5. On the other hand, m defined in (2.10) has to satisfy certain con-
straints, since otherwise, there would be too many weak solutions. For
example, given smooth Γo and any constant m > 1, if we let (vm,Γm)
be the unique (local) solution of (1.6) with σ replaced by σm := σra,
then one can easily check that if we define Eψ to be the set enclosed by
Tψ, and define Vm by (VmY := 2σmUN-ι[Tψ δVrm where HN~ι[Tψ
is the (N — 1)-dimensional Hausdorff measure restricted to Γ™, then
(Eπι,vm,Vrn) will satisfy all the conditions to be a (local) weak solu-
tion, except the inequality (2.6).

Hence we impose (2.6) an an "entropy" condition to confine m. Here
we provide the following example as our reasoning: Suppose that m > 1
is space independent, that

UtG[o,τ](spt(|i?χ^|) x {ί})

and UiG[0)T](spt(//) x {t}) are smooth space-time hypersurfaces, and
that m = 1 when t = 0 (i.e., μ°(Ω) = 2σ|.Dχ£;0|(Ω) ). Then one can
easily calculate

±\DXEt\{n)=- f KV
dt Λpt(|Dχ£t|)

2σm
\Vv\\
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Hence, comparing it with (2.6), we deduce that 2σ\DχEt\(Ω) > μ*(
where equality is possible only if m = 1, μ-a.e.. Since we know that
μ*(Ω) > 2σ\DχEt\{Ω) for a.e. t > 0, we must have m = 1 and
2σ\DχEt\{Ω) = μ*(Ω) = μt(Ω) for a.e. t > 0. One notices that this
argument works also for arbitrary function m > 1 if we know that
KV > 0 on dEt- One can check that the condition KV > 0 on dEt al-
ways holds for radial symmetric smooth weak solutions. Therefore, we
know that in the case of radial symmetry, a smooth weak solution of
Definition 2.1 is a solution of (1.6).

However, we do not know in general if the condition (2.6) is sufficient
to guarantee that a smooth weak solution of Definition 2.1 is actually
a classical solution of (1.6). If (2.6) is not sufficient, then we need
additional "entropy" conditions to confine m.

6. Clearly, a local (in time) classical solution of (1.6) is a local (in
time) weak solution of Definition 2.1., if we define Eι to be the region
enclosed by Tt and define V* by V1 = 2σHN-ι[TtδpEt.

3. Convergence

In this section we shall show that the family {(t/, ^ε)}o<ε<i is weakly
compact in some functional spaces so that we can draw convergent sub-
sequences.

In the sequel, all positive constants independent of ε will be denoted
by the same letter C.

3.1. Basic estimates.
The following estimates are a direct consequence of (1.5) and the

properties of F in (1.2):

Lemma 3.1. For every ε E (0,1] and every ί, r > 0,

f [
ί°° ί

/ / |V*/|2 < So,
Jo Jςi

— I uε( ,t) =mo,
l"l Jn

\ue\P < C(l + £o) (p as in (1.

{\ue\-l)2<CeS0.

L/Ω

/ ί\n.e\ i \ 2

Jet
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3.2. Compactness of {ίxε}o<ε<i.
To show the compactness of {uε}, it is convenient to introduce a

function wε defined by

wε(x, t) = W{uε(x, ί)), (z, t) e Ω x [0, oo),

where

W{u) = / J2F(s)ds, F(u) := min{F(u), 1 + |u|2}, uelR.
J-i

Observe that

/ |Vtι;e(-,t)| = / t/2F(u )|Vue| < / eε(uε) = fβ(t), Vt 6 [0,oo).
Ω Jn JΩ

Also by the properties of F, there are positive constants c\ and C2 such
that

ciltxi - u2\
2 <\W(uι) - W(u2)\ < c2\uλ - u2|(l + \ux\

(3.1) Vui,ti2 eIR.

Lemma 3.2. TΛere exi5ί5 a positive constant C which is indepen-
dent of ε such that

Proo/. The idea to show the continuity of uε or κ;ε in t is to use
the equation u\ = Avε. For this purpose, let p be any fixed mollifier;
namely,

peC°°(ΊRN), O^p^linlR*, p = 0 in ΈίN \BU [ p=l.
JJRN

For any small η > 0, we define

uε

η{x,t)= I p(y)uε(x-ηy,t)dy, xGίi,<>0.
JBi

Here we have assumed that uε has been extended to

{x 0Ω|dist(z,Ω) <ηo}

by

),ί) = uε(s -ηn(s),t), s e dΩ,η e [0,ryo],ί > 0,
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where 770 is a small positive number, and n(s) is the unit outward normal
to 5Ω at s e <9Ω.

By the properties of mollifiers, for any η £ (0,770) and every t > 0
we have

(3.2)

ί \uε

η-uε\2dx< ί ί p(y)\uε(x-ηy,t)-uε(x,t)\2dydx
Ja Jn JBi

(3.3) <ci / f p(y)\wε(x-ηy,t)-wε(x,t)\dydx
JίϊJBi

(3.4) <C»7||Vt^(-,t)||i^<Ci7, (by (3.1)).

For any 0 < r < t < 00, by using uε(x, t)—uε(x, τ) = JT uε

s(x, s)ds =

f* Aυε(x,s)ds, we can calculate

[(υ°,{x,t)-υ*,(x,τ))(ue(x,t)-υ<(x,τ))dx
JΩ

= - f I Vvε(x,s)(Vuε

η(x,t)-Vuε

η(x,τ))dxds
JT JΩ

<2{lr fa |V* ε | 2 ) 1 / 2 (ί - τ)WsuPs€[0)Oo) | |V^( ,S) | | 2,Ω

by the estimates on Vvε in Lemma 3. land Vu£ in (3.2). This estimate,

together with the estimate for ||u^ — wε||2,Ω in (3-4) then yields

(3.5) / \uε(x,t)-uε(x,τ)\2dx<C(η + η-1(t-
J

<C(t -

if we take η = min{r;o, {t —
Finally, using the second inequality in (3.1) we obtain

/ \we(x,t)-wε{x,τ)\dx
JΩ

<C2\\uε(;t)

- uβ(.,τ)||a,n(|n|1/a + |K(-,t)||2)n + ll«ε(
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This completes the proof of the lemma.

Lemma 3.3. Let {εj}^.1 be any sequence satisfying βj \ 0 as j —>•
oo. Then there exist a subsequence {sjk} of {SJ}, a non-increasing
function S(t), and a set E C Ω x [0, oo) such that as k -» oo,

for αZ/ΐ>0,

wεjk(χ,t) -> 2σχE a.e. in Ω x (0,oo)

andinCιl*{[0,T} Lι(ϊl)) for all T > 0,

uεjk(χ,t) -» — 1 + 2χ# α.e. m Ω x (0, oo)

andinCι/9{[0,T]-,L2(Ω)) for all T > 0.

/n addition, there exists C > 0 sucΛ £Λα£ £^ := {x (x,t) e E}
satisfies the following:

1. Forany0<r<t< oo, /Ω \χEτ - χEt\ < C\t -

2. For any t e [0,oo), | ^ | = \E0\ = ±ψ*\tl\;

3. XE e L°°([0,oo);βF(Ω)) and /or every t > 0,

Proo/. The convergence of £εjk (ί) follows from the monotonicity of
the function Se(t).

Since bounded set in Wl)l(Ω,) is precompact in Lq(Ω) for any
qr G [1, ]^rγ), from the estimate on wε in Lemma 3.2. we immediately
conclude that there exist a subsequence {εjk} of {εj} and a function
w(x, t) such that as k -» oo,

(x, t) -> ιt;(α;, t) a.e. in Ω x (0, oo)
1 for all T > 0.

Let u(x,t) be the function defined by the relation w(x,t) = W(u(x,t)).
Then in view of (3.1), we see that uεj* -> u a.e. in Ω x (0, oo). Conse-
quently, by the estimate for i/, we know that uεkj —> u in C1/9([0,T];
L2(Ω)). Furthermore, by the estimate for (|?/| — I) 2 in Lemma 3.1
we have \u\ = 1, that is, there is a set E C Ω x [0, oo) such that
u = — 1 + 2χ#. This also implies that w = 2σχ#.
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Using the time estimate for uε in (3.6), we obtain, for all
0 < τ < t < oo,

/ IXEr-XEkl = I \XET ~XEt\
2 = lim - I |u*M-,t) -u*M-,τ) | 2

n Jn *-><*> 4 Jn

Also, since the average of uε( ,t) is mo for every ε and every ί, we
have | £ t | = ±±f*|Ω|. Finally since \Dwε(-,t)\(Ω) < Sε(t), by the lower
semicontinuity of the BV norm, |jDχ^|(Ω) = ±\Dw\{Ω) < ^
This completes the proof of the lemma.

3.3. Weak compactness of {vε}o<ε<i
The following estimate depends only on the elliptic equation

(3.6) vε =

and the assumptions Jne
ε(uε) < £o and JQu = rao|Ω| with mo E

(-i,i)

Lemma 3.4. There exist a large positive constant C and a small
positive constant εo such that for every ε G (0, εo]

\\vε(;t)\\HW < C(€ε(t) + ||VW

ε( ,<)||2>Ω) V< e [0,oo).

Proof. By the Sobolev imbedding, it suffices to estimate the average
vε(t) of vε( ,t) over Ω. For simplicity, in the sequel, we shall suppress
the t variable.

Let Ϋ(x) E C^Ω IR^) be any function. Multiplying the equation
(3.6) by Y Vuε and integrating over Ω we obtain

/ Ϋ - Vuευε = / Ϋ Vuε(-εAuε + ε~ιf{uε))
Jn Jn

(3.7) = - ί DΫ : (eε{uε) I -εVuε ® Vuε

eε(uε)Ϋ.ndn./
dn

Integration by parts for the left-hand side yields

f Ϋ Vuεvε = f uεvεΫ - ndςι - I Ϋ Vvεuε

Jn Jdn Jn

_ f (vε - vε)uε div Ϋ - ϋε I uε div Ϋ.
Jn Jn
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Hence, for any smooth φ with -^φ = 0 on dΩ, substituting

Y = Vφ gives the formula

(3.8)

vε = . }, [ ί [D2φ : (e(uε)I - εVuε ® Vuε) - uεVφ • Vvε

-uεAφ(υε-ϋε)]j.

Now we choose φ. Let η be & small positive constant to be deter-
mined, and let Uη be defined as in the previous subsection. Denote by
ΰε

η the average of uε

η over Ω. We define φ to be the unique solution to

-Aφ=uε

η-ΰε

η in Ω,

^Φ=o on an, f φ = o.
Jίϊ

Observe from the definition of uε that we have

IKHoo,Ω <1 + sup / p(y)Lε(a; - ηy)\ - 1 dy
I € Ω 7 B ( 0 , 1 ) '

<1 + Cη-Nl2\\{\uε\ - l ) | | 2 f Ω < 1

Similarly, we can show that

so that by an elliptic estimate,

Therefore, the numerator in (3.9) can be estimated from above by

: (e(uε)I - εVuε <g> V«ε) - uεVφ • Vυε - uεAφ(vε - vε

α) [εε(t) + | |ω

ε | |2,Ω||vυ

ε | |2 ) Ω + | | u ε i M K - ^ I | 2 , Ω ]

< Cη-\l + ει'2η-Nl2){εε(t) + ||Vt/||2)Ω).

Using the definition of φ, we can calculate the denominator in (3.9) by

/ Aφuε = I («ε - ΰε

η)uε

= [ (uε - uε)uε + 1 (uε2 - 1) + |Ω|(1 - nε2)
JΩ Jςi
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Recall that ΰε = ra0 G (-1,1), /Ω \uε2 - 1| <

We then have

L
Therefore, from (3.9) we deduce that

Taking η small but independent of ε, we then obtain the assertion of
the lemma.

Corollary 3.5. There exist positive constants C and εo such that
for all ε E (0, ε0] and all T > 0,

T+l

i < C

Consequently, for every subsequence {εj}JLι satisfying βj \ 0 as
j —>• oo, ίΛere exisί α subsequence {εjk} and a function v G Lfoc([0, oo) 5 ί ί 1 (Ω))
such that as k —ϊ oo,

υejh -> v weakly in L2((0,T), i ϊ 1 (Ω)) VT > 0.

Moreover,

/ / |vυ|2 < ε0.
Jo JΩ

3.4. An upper bound for the discrepancy measure ξε(uε)dx.
To obtain a weak solution, here we state a theorem concerning the

upper bound of the discrepancy measure ξε(uε)dx defined in (1.8). Its
proof will be given in the next section.

To state our theorem, for every ε G (0,1] we define

Ke := Uu,υ) G#2(Ω) x L2(Ω) - εAu + ε~ιf(u) = v

(3.9) in Ω , ^ u = 0on <9

Also, we denote by w+ the positive part of w, namely, max{w,0}.
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Theorem 3.6. There exist a positive constant ηo G (0,1] and con-

tinuous, non-increasing, and positive functions M\{η) and M2(η) de-

fined on (0,770] such that for every η G (0,770], every ε G (0, M^], and

every (uε,vε) €:K,ε, we have

(3.10)

/ (ξε(uε)Ϋdx < η f eε(uε)dx + εM2(η) I vε2!.
JΩ V J JΩ JΩ

3.5. Convergence: Proof of Theorem 2.1.
With all the previous preparation, we can now prove Theorem 2.1.

Let {^o(')}εe(o,i] be a family of initial data satisfying (1.3). Let
(uε,υε) be the solution of (1.1) with initial data UQ. By the previous
estimates, we can draw a subsequence {ε^l^lj, such that as k —> 00,
£k \ 0 and the first three assertions of Theorem 2.1 hold.

Since W(u£k) -> 2σχE and | IW(ιz ε ) | < eε(uε) for every ε and
every (x,t), by the lower semicontinuity of the BV norms, we have
\DχEt\dxdt < dμ.

Sending k to 00 in the differential equation Δυ ε f c = (u£k)t = (l+uεk)t
and using the convergence of uεk and v£k, we obtain the identity (2.4).
Moreover, for any Ϋ G C{[0,T]]C^{Q]ΊRN), integrating (3.7) (with ε =
ε&) from t = 0 to t = T and sending k -> 00 yield

(3.11)

/ ί 2XEdiv(vΫ)dxdt= ί ί DΫ:(ldμ-(dμij)NxN).
Jo JΩ Jo JΩ V '

To finish the proof of Theorem 2.1, it remains to construct V.
To do this, we first study the measure μ( ,t) . Notice that for any
0 < r < T < 00,

(3.12)

/ / dμ(x,s) = lim / / eEk{uεk)dsdt = I 8(s)ds.
JT JΩ k^oojτ Jn Jτ

One then can show that, for a.e. t G (0,00), there exists a Radon
measure μt(x) on Ω such that for any g G C(Ω), as function of ί,
/^ g(x)dμt(x) is measurable in t G (0,00), and for any 0 < r < t < 00

/ / g(x)dμ(x,s) = / / g(x)dμsds.
JT JΩ JT JΩ
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Therefore, in the sense of Radon measure,

dμ(x,t) = dμt(x)dt.

By (3.12), we have μ*(Ω) = 8(t) for a.e. t G (0, oo). Consequently, for
a.e. t G (0, oo) and a.e. r G (0,ί),

μ*(Ω) = S{t) = lim εεk(t) = lim {^(^) " / f |Vt/*|2)
fc-κx> k-+oo L Jτ JΩ '

=ε(τ)~ lim / / \Vυ£k\2

k-+oojτ Jn

<ε(r)- f [\Vv\2 = μτ(U)- f [\Vv\2.
Jτ Jn Jτ Jfί

Next, we study the relation between μij and μ. Observe that for

/ ί ΫT (εkVu£k ® Vuεk) Z< I ( \Ϋ\ \Z\eεk(u£k)
o Jn v ' Jo Jn

f\Ϋ\\Z\t£k(u£k).
Jn

Using Theorem 3.6, we know that as k —> oo the limit of the second
term on the right-hand side is non-positive. Hence, by sending k —> oo
we obtain

(3.13) / [γτ.(dμij).Z<[ f\Ϋ\\Z\dμ.
Jo Jn v JJNXN JO 7Π

Therefore, in the sense of measure \dμij(x,t)\ < dμ. Consequently, there
exist /i-measurable functions V{j{x,t) such that

dμij(x, t) = Vij(x, t)dμ(x, t) μ- a.e. (x, t) G Ω x [0, oo).

Clearly, by the definition of μij and (3.13), we have

o < (1

Thus, we can write

) =Tιζzl\iΰi®ΰi μ-a.e.
NxN
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where λ<, < = 1, , iV, are μ-measurable functions, and ΰ^ i = 1, , JV,
are μ measurable unit vectors, and they satisfy

(3.14) 0 < λ i < l ( i = l,...,JV),

Σjliλ* < 1, Σ ^ ®ΰi=I, μ- a.e.

It then follows from equation (3.11) that for a.e. t G (0, oo) and every

ΫN

ί ί N

2 / χEtdiv(v( ,t)Ϋ) = / DΫ : (i -yj\i{x,t)ΰi{x,t)®ΰι)dμt{x)

N

= / DΫ :Σct

i{x)\l-ΰi{x,t)®Vi{x,t)}dμt{x),

where

Clearly, for a.e. ί > 0, 0 < c\ < 1 and Y?=l c\>l for μ*-a.e. Now define
p\ = {ΰi(x,t),-ΰi(x,t)} e P and V1 as in (2.4). Then V defined by
dV(x,t,p) = dVt(x,p)dt satisfies the fourth assertion of Theorem 2.1.
This completes the proof of Theorem 2.1.

Remark 3.1. If one can show that Vt is rectifiable, then for
||V*|| a.e.,FX)ί( ) := F(x,t, •) is the Dirac measure supported on
the normal of the unoriented tangent plane of ||V*||. It thus follows
that c\ = 1,4 = ••• = C1N = °> ll^ll-a.e.. Consequently, λx = 1 and
λ2 = = \N = 0, μ-a.e.. The definition of λ; hence implies that
\ξε(uε)\dxdt ^ 0 as Radon measure on Ω x (0, oo).

4. The elliptic equation -εAuε + ε~ιf(uε) = vε.

This whole section is devoted to proving Theorem 3.6. We first study
the blow-up problem.

4.1. The equation ΔU = f(U).

Lemma 4.1. Assume that U G Hγoc(JRN) satisfies the equation

(4.1) ΔU = f(U) in ΊRN".

Then U e C 3 ^ ) , -l<U<lin 1RN, and

(4.2) |VC/(x)|2 < 2F{U(x)) Vx G ΊRN.
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Moreover, if the equality in (4-2) holds at some point in IR^, then the
equality holds in all ΊRN, and U either is trivial or is a planer wave;
namely, either U is a constant function being 1 or —1, or there exist
xo G ΊRN and a unit vector e€ SN~ι such that

where q(-) is the unique solution to the ODE

(4.3) q = f(q), q(0) = 0, g(±oo) = ±1.

Lemma 4.2. The assertion of Lemma 4.1. remains true if
U € fl^IR"-1 x [0,oo)) satisfies

ΔU = f(U) in ϊ t ^ x ^ o o ) ,

^U = 0 on JR"-1 x {0}.

Proof of Lemma 4-2. The assertion follows immediately from Lemma
4.1. if we extend U into IR^ evenly.

Proof of Lemma 4 1 We shall prove the lemma in three steps.
Step 1. First we show that U is bounded. Let ζ( ) € C°°(JR.N) be

a cut-off function; namely,

0 < C < l i n JRN, C = l in B1/2, ζ = 0 in B N \ S i .

For k = ^ a n d a n y n3"*1 ̂ o € K ̂ , multiplying (4.1) by ζk(x-x0)U(x)
yields

0= fζkU(-ΔU= fζkU(-

= / [cfc|vc/|2 + ζkuf(U) + kζk~ιuvu • vc]

> J [ζk\VU\2 + ζkUf(U) - \ζk\VU\2 - δζk\

where δ can be any small positive constant. Since Uf(U) > cι\U\p — c<ι
for all U €. IR, by taking δ = ci/2 it follows from the last inequality that

so that, for any xo e M^, | |^| |H1(B(X0,I/2)) - & w h e r e C depends only
on ci, C2 and p. Consequently, by elliptic regularity theory (cf. [40]), we
have
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Since f'(s) > CQ whenever \s\ > 1, by comparing the function U with the
auxiliary functions ±(1 + ̂ eVi+M 2 ) for fixed small δ and δι G (0, oo),
one can show that \U\ < 1.

Step 2. Next, we prove (4.2). In fact, L. Modica had proved in
[49] that any C3{ΊRN) bounded solution of (4.1) satisfies (4.2). Here for
reader's convenience, we provide a self-contained proof.

We define, for every small positive constant δ,

Wδ:=
l-\VU\2-F{U)-Gδ{U),

where

Gs(u) := δ [l + jΓ exp ( - £

One can directly calculate

AWδ =D2U : D2U + VU • V(AU)

(4.4) - (/ + Gδ')AU - (/' + Gδ")\VU\2

=D2U : D2U - / ( / + Gs') - 2Gδ"(Wδ + F + Gδ)

by substituting the relation AU = f(U) and |Vί7|2 = 2(Wδ + F + Gδ).
Prom the definition of Wδ, VWδ = D2U • VU - (/ + Gδ')VU which
implies that

\VU\2D2U : D2U >\D2U • VU\2 = \VWδ + (/ + Gδ')VU\2

Gδ')VU • VWδ + (/ + Gδ')
2\VU\2.

It then follows from (4.4) that, when \VU\ > 0,

(4.5) >(/ + Gδ')
2 - (f + Gδ')f - 2Gδ"(F + Gδ)

=(Gδ')
2 + [Gδ'f-2Gδ"(F + Gδ')]

where in the last equality, we have used the fact that

Gδ'f - 2Gδ"(F + Gs) = Gs' [f + jq^(F + <?*)] > 0,

since Gδ>δ and Gδ > 0 whenever U € [-1,1].
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We are now ready to show that sup^iv Ws < 0. In fact if
η := supjpΛΓ Ws > 0, then there exists xo such that w(xo) > \η. Con-
sequently, for any positive integer &, there exists ŷ  G B(xo,k) which
attains the maximum of the function Wk := Ws + ^vζi^ψ11) i n ^N•
Hence, at y ,̂ Wk > η, Vw* = 0, D2Wk < 0. This translates, via the
definition of Wk, that at y :̂

\VWδ\ = \η\Vζ\ < Cη/k,

AWδ < \ηAζ < Cη/k2.

But this contradicts (4.5) since as k -> oo, the left-hand side is
< O(l/k) (noting that Gs" < 0) whereas the right-hand side is

Therefore, we must have sup^N Ws < 0, which, by the definition of
s, implies that

\ <F + Gδ<F + 3δ in IR^.

Sending δ -> 0 we thus obtain (4.2).
Step 3. Now we show the second assertion of the lemma. Assume

that equality in (4.2) holds at some point in IR^ and that U φ ±1.

Then the function Wo := ̂ —ψ F{u) attains its maximum. However,
the same calculation as before but with 5 = 0 shows that Wo cannot
attain a local maximum unless Wo is a constant. Hence, we must have
Wo = 0 in IR^. Consequently, |VC/|2 = 2F{U) in IR2.

Since we assumed that U ψ ±1, by maximum principle, U(x) G
(—1,1) for all x G IR^. Noting that q( ) is monotonic, there exists
a unique function z such that U(x) — q(z(x)). It then follows from
the identity |VC/|2 = 2F(U) that |Vz| = 1 in ΊRN\ namely z is a dis-
tance function. Furthermore, substituting U = q(z) into the equation
Δf7 = f(U) yields Az = 0 in IR^. Since z grows at most linearly, the
properties of harmonic functions then imply that z is a linear function.
This completes the proof.

Remark 4.1. A parabolic version of Lemma 4.1 was first obtained
by Ilmanen [46] in studying the Allen-Calm equation Ut = ΔU — f(U)
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in JRN x (0,oo). Assuming that ί7( ,0) 6 (-1,1) and writing C/(x,ί) =

q(z(x,t)), Ilmanen [46] showed that |Vz| < 1 provided that |Vz( ,0)| <

1. Later, Soner [58] extended Ilmanen's result by dropping the crucial

condition |Vz( ,0)| < 1. Since in both their papers they studied the

function z, they need the technical assumption {q"/qrY < 0, which is

equivalent to the condition

(4.6) f2>2Ff Vu<E(-l,l).

Now suppose we are studying equation (4.1) in a bounded domain. From

our proof we can see that Wo = | Vu|2 — 2F(u) satisfies the maximum

principle (but not minimum principle); namely, if Wo obtains an interior

maximum, then WQ is a constant function. This conclusion is regardless

of the condition (4.6) and does not need the assumption \U\ < 1. On

the other hand, with the assumption (4.6) and \U\ < 1, one can show

that the function WQ := 2F(U) ~~ * sa*isfies the maximum principle;

namely, WQ cannot attain an interior non-negative maximum unless it

is a constant function. Clearly when F(U) is small inside the domain

but large on the boundary, controlling Wo maybe more useful than

controlling Wo

4.2. The equation -ΔC/ + f(U) = V.

Lemma 4.3. Let Ω be a domain given by

U:={(x',xN)eBR;xN>Y(x')},

where R>2 and Y1 satisfies

(4.7) y ( 0 ' ) < 0 , Vx,Y(0') = 0', \\DI,Y\\CO{BIR)<R-\

Also, let (U, V) € H2(U) x L2(Ω) be any pair of functions satisfying

(4.8) -ΔU + f(U) = V in Ω,

(4 9) mu = ° o n {(*

Then for every η > 0, there exists a large positive constant R(η) which

is independent ofU, V, and Y such that if R> R(η), then

ί ( 2 \+ / Γ ι2 2/

J \ ' " J l

(4.11) + / |VC/|2.

!;|Γ/|>l-77}
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Proof. We need to distinguish the case where U is close to trivial
functions 1 or - 1 from the the case where U is far from trivial. For this
purpose, we define

Ωi = {x 6 Bι IΊ Ω \U\<1- r?}.

Denote by 2* the number $^ if N > 2 and any number, say 7, if

N = 2. Set m = ψ^. We consider two separate cases: (i) |Ώχ| < ηm

and (ii) |Ωi| >ηm.
(i) First we consider the case where |Ωχ| < ηm. Note that

(4 1 2 )

by Sobolev's imbedding and the assumption on the measure of Ωχ On
the other hand, a basic elliptic estimate (cf. [40]) shows that

llw| | 2 A n f t]

2 ) B 2 n ή + | | V E Γ | | 2 A n Λ ] .

It then follows from (4.12) that

HVflU < cη[\\v\\2tB2ΠU + ||/||2)β2nή + | | v ι η ι 2 A n f t ] .

Consequently,

|VC/|2 < Cη2 ί \v2+f2+\VU\2] + ί |Vί7|2,
Q JB2n(l L J J{x£BiΠΩ \U\>l-η]\U\>l-η]

and the assertion of the lemma follows. We remark that in this case, we
need only R(η) > 2 and do not need the assumption that ||V\\2 B n ^ is
small.

(ii) Next we consider the case |Ωχ| > ηm. We show the assertion
of the lemma by a contradiction argument. If the assertion were not
true, then there exists a sequence {(U*}V*9SV)}jL2 such that for each
j > 2, (U',yf,p?) satisfies (4.7)-(4.10) with R = j , but (4.11) is not
true for (Uj,Vj). Of course, we have, for each j > 2, |Ω'| := \{x 6
BiΠίtf; l^'l < l - i 7 } | > ι ? m .

Using the same technique as in Step 1 in the proof of Lemma 4.1,
we can show that for any fixed r > 0, if j > r + 2, then | |ϊ/ J |
H/ll2,Brnίϊi is bounded with a bound depending only on r.
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Let Yj be the function in (4.7) for Ω 7. We consider two separate
cases: (a) lim inf^oo YJ(0) = —oo; (b) d := lim infj-̂ oo 1^(0) > —oo.

In case (a) , we can select a subsequence {jk} from {j} and a function
U G H?0C(1RN) such that as k -> oo,

WV) -
Vi* _

IP* _

f(ujk) -
F(Wk) -

In addition,

•> —oouniformly i

+ 0 in L2(Br),

+ U in # 2 (5 r )

+ /(t/) in L9(£

+ F(£0 in Lι{B

U satisfies

n any compact subset of ]

Vr>0,

and a.e. in Br,

r) and a.e. in Br

?r), Vr > 0.

Vr>

Vr

o,
> 0,9 G [1,2),

= υ in IK .

It then follows from Lemma 4.1 that

lim / (\VUjk\2-2F(Ujk)Ϋ = I (\VU\2-2F{U))+
k-^ooJBl \ J 7Bi v

(4.13) =0.

On the other hand, the assumption that \Ώ?k \ > ηm will make the right-
hand side of (4.11) uniformly (in jk) positive. In fact, since W -> U a.e.
and Yjk(0) -> -oo, we must also have \{x G Bx \U\ < 1 - η}\ > r/m.
Consequently,

lim η ί (\VUjk\2 + F(Ujk)) = I η\\VU\2 + F{U)]
*->oo JBl \ J JBl I J

(4.14) >ηm+1 min F(s).

But the last inequality and (4.13) imply that (4.11) must hold for Uj

with large enough k. Hence, we obtain a contradiction, which shows
that the assertion of the lemma holds.

The case (b) is similar. We can obtain a subsequence (CP ,Y3 )
which converges to (ί/,rf). The function U satisfies —AU + f(U) = 0
in {x xN > d} and β^U{xf,d) = 0 for all x' G IR^" 1. Following the
same argument as in case (a) and using Lemma 4.2 instead of Lemma
4.1 we derive the same conclusion. This completes the proof of the
lemma.
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4.3. Control of the bulk energy.

If we call the region where \uε\ > 1 — o(l) as the bulk region, and call
the region where \uε\ < 1 — o(l) as the interfacial region, the following
lemma shows that the bulk energy is small, comparing to the interfacial
energy.

Lemma 4.4. There exist positive constants Co and ηo such that for

every η G [0,770], every ε G (0,1], and every (uε,vε) G Kε,

(4.15)

I \eε{uε)+ε-ιf\uε)\
J{xeΩ]\uε\>l-η} L J

<Coη ί ε\Vuε\2 +
J{xeΩ]\uε\<l-η}

vε2.[

Proof. Let CQ be as in (1.2)(b). For any η G [0, co/2], we define g(u)

such that g(u) = f(u) if \u\ > 1 — 77, g(u) = 0 if \u\ < 1 — Co, and g(u)

is linear in the remaining part. Clearly, 0 < g2 < fg for all u. From the

identity

/ vεg(uε) = f \ - εAuε + ε~ιf {uε)]g{uε)
Jn Jnι J

= J^[εg'(uε)\Vuε\2 + ε-1f(uε)g(uε)},

we have, since | JQvεg(uε)\ < / Ω [ | ^ 2 + ±g2) < / Ω [ | ^ 2 + £

\εf'{uε)\Vuε\2 + ±f2(uε/
nn{\u\>ι-η]

(4.16) <E- t vε2~ I εg'(uε)\Vuε\2.
z Jn Jnn{\u\<ι-η}

Since |/(±(1 - η))\ = O(η), one has g'{u) = 0{η) when \u\ < 1 - η.

Also since / ' > co|tx|p~2 when |tι| > 1 — Co, F(u) < Cf2(u) whenever

\u\ > 1 — co The assertion of the lemma thus follows from (4.16).

4.4. Proof of Theorem 3.6.
Let η > 0 be any fixed small positive constant and R = R(η) be as

in Lemma 4.3. Assume that ε G (0, R~2] is arbitrarily fixed.

Let {xj}j£j be a maximal collection of points in Ω such that

inf \x{ — xj\ > ε.
eJΐφ3 "
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Set BJ = B(xj, ε)(ΊΩ. Clearly, Uj^jB^ = Ω, and there exists a constant
C(N) depending only on the space dimension N such that

(4.17) and Y,XB(Xj,Re) <C(N)RN

for all i £ f i .

For each j € J, we define

W(y) = uε(Xj + εy), V>{y) = ευε(Xj + εy), O> = {y | Xj +εy€ Ω}.

It is easy to check that

(4.18) -ΔyUj + f(Uj) = Vj in '

Notice that for each j G J, dSV is isomorphic to the surface obtained
by magnifying dΏ, by a factor of ε, so that either 9ΩJ Π BR is empty
or dΩ 7 Π Bβ can be represented, after a rotation, as a graph yjy =

,yjv-i) with Yi(tf) < 0, P y 'y J (0') = 0, and

Hence, by further assuming ε1/2C(||9Ω||^2) < 1, one sees that (after a
rotation) F 7 satisfies (4.7).

We decompose J into two disjoint sets A and B defined by

Λ := {j e J ||tf lla.Bto.J

First we consider the case where j G *Λ. In this case, we have

It then follows from Lemma 4.3. that

F(U>) + f

\VUj\2.
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Transferring back to uε and υε we obtain

(uηΫ <η ί (eε(uε) + ε"1/V)
J JB(xj92e)ΠΩ VB(xj92

ί ε\Vuε\2.

Summing up j € A and using (4.18) yields

+ C{N) f ε\Vuε\2

J{xeΩ:\uε\>l-η]

<Cη ί eε(uε) + Cε ί υε2,
Jn Jn

where in the second inequality, we have used Lemma 4.4 and the fact
that }2(u) < CF{u) when \u\ < 1.

Next we consider the case where j G B := J\A. By a local elliptic
estimate, we have

\VUj\2 <C ί (f2{Uj) + \Vj\2 + \Uj\2)
» JB2n

ni ^ '

<c + c

Transferring this estimate into (uε,υε) and adding up j G β, we then
obtain

]\Bj\ + CC{N)ε f v

(4.19) +CC(N)ε~1 ί f2

j - rv ί ^ε2

+ Oε / v ,j€B

where in the second inequality, we have used Lemma 4.4 with η — 0
to control the integral involving f2. Finally, since for every j G #,
IB(X Rε)nnυε2 - Λ" 2 ε i V " 2 > εr~2i?~2|^^|/|.Bi| where |JBX| is the volume
of the unit ball, follows that

V \Bj\ < ε2\Bλ\R2 y* [ vε2< £\Bi\R2C{N)RN I vε2

j e B jeBJB(xJ9Rε) Jn
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by (4.18). Substituting the last estimate into (4.19) we obtain

e\Vuε\2 < CC(N)[1 + RN+2]ε ί vε2.
Jn

Combining the estimates for the case j G Λ and the case j G B
yields

/ Uε(uε)Ϋ <Cη I eε(uε)+εM(η) f vε2.

Renaming Cη as η we thus completes the proof of Theorem 3.6.

5. Case of radial symmetry.

In this section we shall restrict our attention to the case of radial
symmetry. Hence, we assume that Ω = B\. We denote by Sr the sphere
of radius r in IR^ and by ω^ the area of unit sphere S\. For convenience,
we shall not distinguish functions of x G B\ from functions of r G [0,1).
We do distinguish, however, the integrals of dx from that of dr, due to
the consideration of singularities at the origin.

5.1. Equal partition of energy.
In the previous section, we have shown that the discrepancy measure

ξε(uε)dxdt is non-positive in the limit. In this section we shall show
that, in the case of radial symmetry, the limit is actually zero, as the
following theorem proclaims.

Theorem 5.1. Assume that {(wε,^ε)}ee(o,i] *s a family of radially
symmetric solutions of (1.1) with initial data satisfying (1.3). Then

lim ξε(uε) dxdt = 0.
/o

Proof. Since (uε,vε) is radially symmetric, ξε(uε) = ξuε2 — ^F(uε

and

(5.1)

-ε<4 r - e ( J y

r " 1 ) t 4 + -εf(ue) = υε, T e (0,1), t G (0, oo).

Multiplying this equation by rN~ιuε

r and integrating over (0, r), we
obtain

Γ rN-2eε{uε)dr + ̂ ~j (ξε{uε) + vεuή

(5.2) - Γ rN~2 (uεvε + -^—rvεuε) dr = 0.
Jo ^ N — 1 J
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rl/2 rl

/ rN-2eε(uε)dr <C / rN~ι\ξε(uε)\dr
Jθ Jl/2

Integrating this identity from r = 1/2 to r = 1 then yields

r l/2

r"-2eε(uε)dr <C
l/2

(5.3) + C I (fN-2\vεuε\ + fN-ι\vεuε\)df
Jo

<C ί eε(uε)
Ja

+ C( | | r" 1 / 2 ti e | | 2 > n| |r- 1 /V| | 2 > n + l|ne||2,n||<li2,n).

Since H Γ - ^ ^ I I ^ < \\vε\\Hl{n) a n d

llr-^Vib^ < σ + σiir-^ίu^ii g <

it then follows from (5.3) that

N-2eε(uε)dr < CMε(t), M ε(ί) := 1 + \\

As a consequence, this estimate implies that

(5.4) / eε{uε)dx < CδMε{t), Vie (0,1),
JB6

and that, via (5.2),

(5.5) sup
0<r<l

Hence, for any small δ and 7?,

N-λ (ξε(uε) + vεuή I < CMε(ί).

ί
Jn

< ί eε(uε)dx
JBδU{\uε\>l-η}

ί \\ve\(l-η)+rι-NCMe(t)\.

The last integral can be controlled by

K | < 1 -η})1'2 < C{δ,η)y/ΪMε(t).

Hence, using (5.4) to control the energy in JB<$ and using Lemma 4.4 to
control the energy in {\uε\ > 1 — η} we then obtain

/ ξε{uε)
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where C\ is independent of ε, 77, δ and ί. The assertion of the theorem
thus follows by integrating the last estimate in (0, T) and sending first
ε to 0 and then δ and η to 0.

Corollary 5.2. Let {εj}(^zl be any sequence of positive numbers
converging to 0. Also let (uεJ,υεi) be the radially symmetric solution
of (1.1) with initial data satisfying (1.3). Assume that as j -> 00,
eεi(uεi)dxdt converges, as Radon measure, to dμ(x,t). Then, for any
ψ(x,t)eC0{[0,oo);C(U)),

/ φdμ= lim / / εΛVΦ\2φdxdt
Jn 3^00 Jo Jn

= Jim Π I —F(uεJ)<ψdxdt
3->°o Jo Jn εj

= lim Γ I \VW(uε*)\ψdxdt,
3^00 Jo Jn

where W{u) = J\ y/2F(s)ds.

5.2. No interfaces piling up.
The lower semicontinuity of the BV norm states that if w^ —> w in

L^Ω), then \Dw\(Ω,) < liminf^oo \Dwj\(Ω). We only have inequality
because certain oscillations of wJ may not be carried out to the limit
function w.

In our case, there are possibilities leading to the discrepancy between
the limit of the measure lim IDW^u^KΩ) and the measure of the limit
IDWXlimu^KΩ) = 2σ\DχEt\(Ω) One possibility is caused by the pres-
ence of phantom interfaces. That is, even if u = limϊxε = — 1 a.e. near
Sr so that |£W(u)|(SV) = 0, for a sequence of ε, uε may go up and down
(several times) near an o(l) neighborhood of Sr. This instance up and
down (known as phantom interfaces) produces energy which is carried
to the limit of the measure, but not to the measure of the limit. Even
if u does have a jump across Sr, so that \DW(u)\(Sr) = 2σ|5'r|, still uε

can have arbitrary odd number of jumps (visually, interfaces piling up)
so that (i\m\DW(uε)\){Sr) = (2m + 1)|SV|, where m is a non-negative
integer. Another possibility is that uε is uniformly away from ±1 by
a distance of order O(\fε) so that ^F(uε)dxdt could carry non-trivial
measure to the limit in the set where \DW\ = 0. The second possibility,
of course, has been ruled out by Lemma 4.4 for almost all time. Now
in this subsection, under the assumption of radial symmetry, we shall
rule out the first possibility; namely, there are no phantom or piling up
of interfaces for almost all time.
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Theorem 5.3. Assume that {(uei,ve0}^:i are radially symmetric
solutions of (1.1) with initial data satisfying (1.3) and that as j -» oo,
6j \ 0, eεi(uεi)dxdt -* dμ(x,t) as Radon measure on Ω x [0,T), and
Φ -> - 1 + 2χE in Cι/9([0,T]',Lι(Ω)) for any T > 0. Then for any

x [0,oo)),

/ / ψdμ(x,t) = 2σ ί f φ\DXEt\dxdt.
o JΩ JO Jn

Clearly, Theorem 2.2. follows from Theorem 5.3 and the third remark
in Subsection 2.4.

To prove Theorem 5.3, we need the following lemma which is a purely
elliptic result; namely, it deals with functions of r that satisfy (5.1).

Lemma 5.4. For every small positive constant δ, there exist a small
positive constant εo(δ) and a large positive constant C(δ) such that for
every ε G (0, εo(δ)], if functions uε(r) and vε(r) satisfy (5.1), and

(5-6) \\vε\\m(B1)<S-1, I eε(uε))dx<£o
Jβ\

then the following holds:
1. //(α, 6) C (<5,1] is an open interval where \uε\ < \ — C(δ)yfε, then

uε is strictly monotonic in (α, b) and \b — a\ < C(δ)ε | lnε | .
2. Define Aε = {r <E [2<S, 1 - 2δ]\ uε{r) = 0}. Then

rl-2δ

/ rN

J2δ
<2σ

< /
J2δ

l-2δ+C(δ)ε\\nε\

/
2δ-C(δ)ε\\nε\

3. For any r G Aε,

vε(r) < C{δ)ει'\

4 If r\ and r<ι are two different elements in Aε, then
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Proof of Lemma 5.4- From the estimate (5.5), it follows

\\ξe(us(r))\\Laom))<C(δ),

which implies, in (α, 6), |ε2t4| > 2F(uε) — C(δ)ε > 0. Moreover, solving
the equation εuε = ±y/2F(uε) + O(ε) we obtain

uε(a) O(ε)

εds

~ C ε

<C(δ)ε\\nε\.

This proves the first assertion of the lemma.
Note that,

-V(« ) = ίbrN-ι[\Wr(uε(r))\
Ja

=(o + O(ε| lneD^-^l^ίu^ft)) - W(uε(a))\

Applying Lemma 4.4 with η = Cyfε, after a routine calculation, we then
obtain the second assertion of the Lemma.

Now we prove the third assertion. Let r G Aε be arbitrary, and
define

U(p) = uε(r + εp), a = εvε(r), β = ε(N - l)/r.

Then ί7 and P = Up satisfies the ODE system

(5.7)

\ - α - βP + Ae(p), p € {-

where

Since υr G L2([ί/2,1]) and P = εuε is bounded in [-e"1/4^"1/4] with a
bound depending only on δ and £o (by elliptic estimates and the energy
bound for u ε), we have
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Now consider the ODE system

(5.8) Uf = P, P1 = f(U)-a-βP

for small parameters a and β. One can use the phase plane technique

to conclude the following:

1. Let ^ ( α ) be the unique root of f(U) = a near ±1. Then

(U+(a),0) and ί7~~(α),0) are saddle stationary points of (5.8).

2. There exist positive constants c*o and βo and a C2 function c(β)

defined on [—/?o,/?o] such that for every β 6 [O,/?o], the ODE system

(5.8) has a heteroclinic orbit connecting (J7+(α),0) and (J7~(α),0) if

and only if α = c(β) orα = c(—β). Namely, if we denote respectively by

ηf(a,β) and 7^(α, β) the stable and unstable manifolds of (I7±(α),θ)

(i.e, trajectory that enters or leaves (ϊ/ : t(α),0)), then 7+ = 7" if and

only if a = c(/3), and 7" = 7+ if and only if a = c(—β). In addition,

c(β) = -σβ + O(β2) for small β.

3. If a e [—αo,«o] and /3 E (0, βo] satisfy the relation

then for any trajectory of (5.8) with ί/(0) = 0 and ±P(0) > 0, at lest

one of the following is true:

(a) For some t* G (0, C|ln/3|], P(t) does not change sign in (0, t*)

and |I7| —> 00 as t -> t*;

(b) For some t* G [—C\ ln/3|,0), P(t) does not change sign in (ί*,0)

and \U\ —> 00 as t \ ί*;

(c) U 6 (U-(a) + i/?9/8,t/+(α) - £/?9/8) either in [0,oo) or in

(—oo,0]. In the former case the positive half trajectory rotates around

certain points on (ί/~(α), U+(a)) x {0} infinitely many times, so that

for some positive constant C depending only on αo, /?o? and /,

fjC In \β\

/ F(u)dp > j
Jo

for all positive integer j. A similar case happens in the latter case.

The proof is omitted. We refer interested readers to Smoller

[56, Chapter §C §D], or Aronson k Weinberger [6], or Fife & Hsiao

[41].

From the properties of the solution of (5.8), a perturbation argument

then shows that if \a - c(±β)\ > 2/?9/8 (the signs ± go along with the

signs of P(0)), then (5.7) could not have a solution in (-ε~1 / 4, ε 1 / 4) such
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that /fci/4 F{U)dp is bounded by £o Thus, we must have

α = c(±β) + O(/39/8). This yields the third assertion of the lemma.
The last assertion follows from the third one since if r\ and r2 are

neighboring elements of Aε, then uε(r\) and uε(r2) have different signs
so that

σ||«Ίjri (n:

This completes the proof of the lemma.
Proof of Theorem 5.3. We prove the theorem by a contradiction

argument. Assume the assertion is not true. Since

2σ\DχEt\dxdt < dμ,

there exists T > 0 such that

/ [dμ(x,t)>2σ[ ί \DχEt\dxdt.
Jo Jn Jo Jn

Also since \ims\o J^ JBδ dμ = 0 (by the estimate (5.4)) and

lim^o/o fBl\i
ists δ > 0 such

fTf ίT ί
/ / dμ>2σ I

./O JBχ_3δ\B3δ Jθ JQ

Consequently, by the definition of dμ, there exists a large positive integer
J such that for all j > J,

rT r . rT

0 IBI\B(I-6) Φ = 0 (by the properties of measures), there ex-
0 h tnat

/ / dμ? (x)dt >2σ [ I \DχEt\dxdt + δ(T + 2£0),
o JBL2S\B2S JO Jn

where dμ\ := eε(uε)dx. Recalling that μ\(Ω) = Sε{t) < EQ for any ε
and every ί, we then have that

measured G [0,T] με

t

j{B^2δ\B2δ) > 2σ\DχEt\(Ω)+δ} > 2ί, Vj > J.

Also note that the set {t e [0,T] ||υε||^i(Ω) > ί"1} has measure

— ̂ 2 Jo H^H/f̂ Ω) — ̂ 2 °̂ — ̂  Hence, for each j > J, there must exist
tj e [0, T] such that

(5.9) llv^M îh^r1,

μg(fli_2tf \ B2δ) > 2σ\DχEtj |(Ω) + δ.
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We now show that (5.9) is impossible for sufficiently large j .
For each j > J , we define

Ai :={r € [ί, 1 - δ] r G s p t d Z ^ (r)|)},

^ :={r € [2ί, 1 - 25] uε'(r,ίj) = 0}.

Clearly, |.Dχ#t.|(Ω) > ΣreAJ UNTN~1. Also, by the first inequality in

(5.10) and Lemma 5.4(2), there exists a large integer J\>J such that

Hence, by the second inequality in (5.10),

Since uεi -> — 1 + 2χ^ in

hj := y/ε] + sup / \uεj(r,t)+ 1— 2χEt{r)\dr-ϊθ as j —>• oo.

We claim that (5.10) and the definition of hj imply the existence of

J2 ^ J\ such that

(5.11) min \n - r2\ < 4hj, Vj > J 2.

In fact if AεJ C U r €^i(r — 2/ij,r + 2/ij), since the total number of
elements in A7 is bounded independent of j , then inequality (5.10) and
the assumption AεJ C UrGy4j(r — 2/ij,r + 2/ij) imply that AεJ has more
elements than A7 for sufficiently large j (so that hj is sufficiently small).
Hence, for some r G AJ, there are at least two elements of Aeί in (r —
2/ij,r + 2/ij), which concludes (5.11). (This corresponds to piling up of
interfaces.)

If the condition Aei C Ur€i4j(r — Ίh^r + 2hj) does not hold, then
there exists r\ G A7 such that r\ 0 Ur€i4j(r — 2/ij,r + 2Λj). Therefore,
XEt = 1 or = —1 in the interval (r\ — 2/ij, r\ + 2hj), so that by Lemma
5.4 (1) and the definition of hj, there must exist r 2 G AεJ such that
2̂ £ ( n - 2/ij, r i) U (ri, r i + 2/ij), and (5.11) follows. (This corresponds

to phantom interfaces.)
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However, (5.11) cannot hold for sufficiently large j since Lemma 5.4.
(4) claims that (recalling the first inequality in (5.10))

i •- *

mm n — ro C(δ)

for all j > J whereas hj -» 0 as j —> oo. This contradiction shows that
the assertion of the theorem must be true, q.e.d.

Remark 5.1. Though μ*(Ω) is non-increasing in ί, our Theorem
5.3 does not imply that \DχEt\(Ω) is non-increasing in t since μ*(Ω) =
μ*(Ω) + μt(dΩ) where μ*(dΩ) may not be identically zero for a.e. t > 0.
In fact, besides shrinking the radius of the interface to decrease the
energy, moving an interface toward the boundary of Ω and then making
it disappear also does the job. If the distance from the interface to the
boundary is neither too large (so that it does not move away from the
boundary quickly) nor to small (so that it does not disappear very fast),
then it will stay there for a time interval. For example, let ?/( ,0) be
defined by uε(r, 0) = 1 in [0,1 — dε], = — 1 in [1 — dε + ε, 1], and linear in
[1 — e/ε, 1 — dε + ε]. If dε is not too small, due to the mass conservation,
we believe that this interface will stay for a time interval [0,T], and
hence, although in the limit, uε —> 1 in Ω x [0, oo) so that μ*(Ω) = 0,
μ*(<9Ω) = limSe(t) > 0 for a.e. t e [0,T]. Of course, if dε is small,
the interface moves toward the boundary 9Ω and then disappears very
fast so that in the limit, μt(dΩ) = 0 for all t > 0. Our analysis in this
section may be extended to show that

μt(dίΐ) = m(t)ωN for a.e. t > 0,

where m(t) is a non-negative integer valued non-increasing function.

Remark 5.2. Theorem 5.3 shows that, regardless of the distribu-
tion of the initial energy, for almost every ί, there are no phantom in-
terfaces (the spheres (Ω Π spt(μ*)) \ spt(\DχEt)) and all interfaces have
multiplicity one (i.e., 2σ\DχEt\ = μι on spt(|Z}χ£t|)). This is a sharp
contrast to the motion by the mean curvature equation as the limit of
the Allen-Cahn equation, where there are phantom interfaces and in-
terfaces of any odd finite integer multiplicity. For example, consider
Ϊ / ( ,0) defined by uε(r,0) = 1 in [0,1] \ [1/2 - de - ε, 1/2 + dε + ε],
= —1 in [1/2 — e/ε, 1/2 + dε] and linear in the rest of the interval
[0,1], where dε is not too small, say, dε = y/ε. Clearly uε(r,0) -> 1
as ε —> 0. If one takes this uε(r, 0) as the initial data for the Cahn-
Hilliard equation, we can conclude that S£(t) —>• 0 for every t > 0.
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On the other hand, if one takes this as initial data for the Allen-Cahn
equation, one can show that uε -¥ 1 in Ca([0,T];Lι(Ω)) as ε ->• 0, but
eε(uε)dx —> ^σωjsιrN~ιδ{r — r(t))dr where r(t) is the solution of the mo-
tion by the mean curvature equation r* = — (N — l)/r with r(0) = 1/2.
That is, the two (phantom) interfaces act as if they did not see each
other.

5.3. Examples of the solutions of the limit problem.
In this subsection, we shall point out a few features of the solution of

the limit problem (1.6) in radially symmetric case. For this purpose, we
shall take for granted that the limits obtained from the solutions of the
Cahn-Hilliard equation are classical solutions of (1.6). (We conjecture
that Theorem 5.3 is sufficient to do this.)

Now assume, as before, that Ω = B\. Also assume that for every

t > 0, spt(|Z?χ£t|) = U io{rj(^)} where J(t) > 1 is a finite integer and

1 > rι(t) > " > r J ( ί ) > 0 Vt > 0.

We assume that J(t) changes its value only at times when r\ —> 1, or
rj(t) -> 0, or rj(t) - fj +i(t) -> 0 for some j = 1, , J(t) - 1. (This is
equivalent to assume that there is no nucleation of interfaces.)

We assume without loss of generality that σ = 1.
A. The ODE systems.
Since v is harmonic in (rj(ί), rj+i(ί)), using the interfacial condition

in Theorem 2.2, we have (assuming WLOG that χβt = 0 near r = 1)

(5.12)

r e [ r i , l ] ,
. - r 2-N_r.2-N-

. β fN-l

υ(r,t) =
re [rj+ι,rj], j = l. , J - 1 ,

where Vj = rj(t) and J = J(t). Here we understand that if N = 2, then
r2~N should be replaced by lnr.

Hence the weak formulation of {2χβ)t = Δt; yields

rj(t) := jtrj(t) = (-l)j+l[vr(rj(t) + 0,*)- tvfoίt) - 0,t)].

It then follows that

(5.13)

rj(t) = -ή-N(t){9j-1/2(t) + gj+ι/2(t)} j = 1, , J(t)
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where

(5.14)

J = 2, . . . ,J( ί ) ,
07-1/2 =

= l,J(t) + l.

Here again, when N = 2, the quantity 2-NZ^-^ should be understood

as

Lemma 5.5. Let J° >2 be an integer and {r^}j=0 be real numbers
satisfying 1 > r\ > > r^0 > 0. Let [0,ίχ) δe £Λe maximal time
interval where (5.13) has a smooth solution with J(t) = J° and Γj(0) =
r P, j = 1,... , J ° . TΛen ίΛe following hold:

1. rj(t) < 0 /or α/Z j = 1, , J(ί) and a// ί G [0, ίi);

2. tι < oo;

3. miiii^xjo.! inf ί€[0)t l) |rj-(i) - rj+ϊ\ > 0;

^. limt/*tlrjo(t) = 0.

Proof. The first and second assertions of the lemma follow directly
from the ODE equations. In the sequel, we denote Γj(ίχ) = l im^^ rj(t)
for all j = 1, , J°. Also, we denote ro(ί) = 1.

We show the third assertion by a contradiction argument. Assume
that the assertion is not true. Then there exists i E {1, '" >« °̂~1} such
that ri-i(t\) > ri(t\) = rΐ+i(ίi) > 0. We show that this is impossible.
In fact, since r^-i — rι is bounded away from zero in [0,<i], subtracting
the equations for r̂  and π+i we have

=N\9i+3/2 -9i-l/2)

- N ( N - 2)(N - ί T + T T + 7 °
-IV (1M Z)(1V

2-N Jl-N Jl-N _ Jl-N
ΐ+2 Γ i+1 ri ri-l

where C is a constant. (Here for i = 1 or i = J° — 1, the second equality
needs obvious modification.) Integrating this inequality from t to t\ — δ
(δ > 0) and then sending δ to 0, we obtain that

-*) VfG[0,ti),
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which implies

rf (ί) < - / -^
J h- s

as t -» ίi, which is impossible. This contradiction shows the third
assertion of the lemma.

The last assertion of the lemma follows from the second and third
assertions, q.e.d.

By Lemma 5.5, we can conclude the following:
1. No interfaces will collide.
2. The only possibility that an interface disappears is by approaching

the origin.
3. If J° = 1, then it is an equilibrium.
4. If J° = 2, then there is a finite time t\ such at ίi, the smaller

interface disappears, and the dynamics reaches an equilibrium.
5. If J° > 2, then there exist to := 0 < t\ < t<ι < tjo__ι < tjo := oo

such that J(t) = J° — i in [tj, U+ι) for alH = 0, , J° — 1; in particular,
the dynamics reaches its equilibrium in the finite time ίjo_!.

B. Motion of "phantom" interfaces.
Finally, we consider the special cases where there are interfaces that

are very close initially. By abusing the language, we also call them
"phantom" interfaces.

For simplicity and the purpose of illustration, consider the case
where J° = 3, and

r° = 1/2, r° = 1/2 - δ, r°3 = 1/4,

(i.e. E0(r) = [0,1/4] U [1/2- δ, 1/2]),

where δ is a very small parameter. Clearly, the first and second inter-
faces are "phantom" interfaces.

From the ODE system (5.13) and the proof of Lemma 5.5, we can
easily show that the quantity r\(t) — Γ2(t) and r^{t) vary in 0(1) magni-
tude, if Γ2 is away from r^\ namely, before Γ2 catches up r% in O(δ) time,
the distance between r\ and r<ι is O(<5). Hence, the pair of "phantom"
interfaces {ri,Γ2} move toward the origin with a speed of order O(ί""x),
whereas the "real" interface r% does not show appreciable movement in
0{δ) time.

After O(δ) time, the pair of "phantom" interfaces {ri,r2} get very
close to the "real" interface Γ3, so that all the three interfaces cluster
near r = 1/4. Now by the conservation of the mass, one can show
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that there is a new grouping: the interfaces r<ι and r$ pair together
as "phantom" interfaces moving toward the origin rapidly, whereas the
interface r\ is detached from the cluster, leaving behind as a "real"
interface.

Finally, after another O(δ) time, the new pair of "phantom" in-
terfaces {r2,Γ3} disappear successively at the origin, and the system
reaches its equilibrium.

Using a similar analysis, one can study the cases where there are
arbitrarily number of interfaces which form a number of clusters initially.
In this case, one has to use the smallest distance among neighboring
interfaces as a criterion to distinguish "phantom" (cluster) or "real"
interfaces.

For any cluster, if the number of interfaces are odd, then the inter-
face with the largest radii will not move appreciably in a short time,
whereas the remaining even number of interfaces move very fast toward
the origin. In addition, if one groups these remaining even number of in-
terfaces pair by pair, then the distances between these pairs may change
significantly. (Hence, multiple time scales maybe needed.) If a cluster
has even number interfaces, then all of them move towards the origin
very fast, though the relative speeds of different pairs maybe very large.
(Again, in this case multiple time scales are needed.)

When a cluster of interfaces approach an interface or a cluster of
interfaces, if we consider all of them as a single cluster, then it moves
by the way we just described in the preceding paragraph.

Finally, after a very short time, all the "phantom" interfaces are gone
by disappearing at the origin, leaving all "real" interfaces, i.e, interfaces
that are well separated.

Remark 5.3. We believe that the above described motion of "phan-
tom" interfaces is actually the short time dynamics of the phantom
interfaces of the radially symmetric solution uε of the Cahn-Hilliard
equation (1.1) where δ can be arbitrarily small, say O(ε). That is,
phantom interfaces are not annihilated; they move toward the origin
with a speed proportional to the inverse of their distance, so that they
disappear after o(l) (with respect to ε) time. Clearly this kind of mo-
tion of "phantom" interfaces is totally different from its one-dimensional
counterpart, where "phantom" interfaces annihilate each other. Also,
it is different from the Allen-Cahn dynamics where phantom interfaces
can be either annihilated (if their distance is o(ε| lnε|) or propagate as
regular separate interfaces (if their distance, say, is > ε | lnε| 2).
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Remark 5.4. In studying the motion by the mean curvature flow
and its counterpart, the Allen-Cahn equation, a formula called mono-
tonicity formula (cf. [46]) plays an essential role. In terms of the Allen-
Cahn equation, this monotonicity formula ensures the "finite" propaga-
tion of the energy density eε(uε); namely, the total energy in a ball Br

at any time in any time interval [to, to + δ] is totally controlled by the
energy in a ball B2r at time to, where δ depends only on r but not on
ε. Clearly, from the examples of radial symmetry of the Cahn-Hilliard
equation, this kind of monotonicity formula may not be true since, for
example, if initially (t = 0) there are only a pair of "phantom" interfaces
(zero level set of uε) with O(ε) distance located near r = 3/4, then in
O(ε) time, it will pass over all the balls of any size; therefore, the energy
in Bι/4 at time t G (0,0(ε)] cannot be controlled by the energy in Bχj2

at t = 0. The lack of monotonicity formula is the main difficulty for
us to establish a very close relation between the measure 2σ\DχEt\ and
the measure μ in Theorem 2.1.
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