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ON A CONJECTURE OF CLEMENS ON RATIONAL
CURVES ON HYPERSURFACES

CLAIRE VOISIN

0. Introduction

In [2], H. Clemens proved the following theorem:
0.1 Theorem. Let X C Pn be a general hypersurface of degree

d > 2n — 1. Then X contains no rational curve.
In [3],[4] Ein generalized Clemens theorem in two directions; he con-

sidered a smooth projective variety M of dimension n, instead of P n

(which is a mild generalization since any such M can be projected to
Pn), and general complete intersections I c M o f type (efi,... , dk) and
proved:

0.2 Theorem. If dι + ... + dk > 2ra — fc — I + 1, any subvariety Y
of X of dimension I has a desingularisation Ϋ which has an effective
canonical bundle; if the inequality is strict, the sections of Ky separate
generic points of Ϋ.

In the case of divisors F c l , this result has been improved by Xu
[11],[12], who proved:

0.3 Theorem. Let Y C X be a divisor, Y a desingularization of Y,
thenpg{Ϋ) >n-l ifΣdi > n + 2.

In [11], he gave more precise estimates for the minimal genus of a
curve in a general surface in P3.

Now these results are not optimal, excepted in the case of divisors. In
fact we will prove in the case of hypersurfaces the following improvement
of Clemens and Ein's results:

0.4 Theorem. (See 2.10.) Let X C P n be a general hypersurface
of degree d > 2n — I — 1, 1 < I < n — 3; then any subvariety Y of
X of dimension I has a desingularization Y with an effective canonical
bundle; if the inequality is strict, the sections of Ky separate generic
points ofY.
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In particular, this proves that general hypersurfaces of degree d >
2n — 2, n > 4 do not contain rational curves, which was conjectured
by Clemens. This result is now optimal since hypersurfaces of degree
< 2n — 3 contain lines. Similarly, general hypersurfaces of degree d >
2n — 3 do not contain a surface covered by rational curves, for n > 5,and
this cannot be improved since hypersurfaces of degree < 2n — 4 contain
a positive dimensional family of lines. The case n — 4, d = 2n — 3 = 5 is
Clemens conjecture on the finiteness of rational curves of fixed degree
in a general quintic threefold and is not accessible by our method.

0.5. In the first section, we will prove a very simple proposition (1.1)
concerning the global generation of the bundle TX(1)\X, where X is the
universal family of complete intersections, X C P n x UiH°(Opn(di))0,
where the last factor denotes the open set of Πiiί

0(Opn(cίi)) parametriz-
ing smooth complete intersections, and X C X is a special member
of the family. We will show how the theorems of Clemens and Ein
are deduced from this. Notice that this is only a formal simplification
of the proof of Ein, since the principle of the proof is certainly the
same. However, it allows to estimate the codimension of the sublocus
of UiH0(Opn(di))0 where the statement fails to be true. We also give
an improvement of Xu's theorem using a refinement of Proposition 1.1.
We finally recall from [9], the following kind of applications:

0.6 Theorem. IfΣidi > 2n — k + l, and X is general, no two points
of X are rationally equivalent.

0.7. The second section is devoted to the improvement of these
results in the case of hypersurfaces. The main technical point here is
Proposition 2.2, which concerns sections of the bundle f\2TX(l)\x. In
the above mentioned papers the authors used only sections of
f\2 TX{2)\χ, (which are easily obtained using the wedge products of
sections of TX(1)\X), which explains why their results can be improved
(by 1).

1. We will begin this section with the proof of the following propo-
sition 1.1; let Sdi := H0{OFn(di)), d{>2 and let ί c P x Π S* 0 be
the universal complete intersection; for t — (£χ,... ,£*.) E UiSdi , let
Xt '•— P^^it) C X be the complete intersection parametrized by t. We
assume that dimX^ > 2, and that H°(TXt(l)) — {0}, which is certainly
true if KXt > OXt(l) (with the first assumption), so is not restrictive
since this is the only case that we will consider for applications. Then
we have:

1.1 Proposition. The bundle TX{l)\χt is generated by global sec-
tions.

Proof. Consider the exact sequence of tangent bundles:
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1.1.1. 0 -> TXt (1) -> TX(l)lXt -> (ΠiS1*) ® Cχ ((l) -> 0.
Prom h°(TXt(l)) = 0, we deduce:
1.1.2. H°(TX(l)\Xt) = Kerμ, where μ : Π ^ * ® S1 -

is the coboundary map induced by 1.1.1.
Now Xt C P" is defined by ίx = ... = tk = 0, so we have the exact

sequence:
1.1.3. 0 -)• Tjr, -»> TPfo 4 Π ^ , (d,) -> 0,

where a{Xιd/dXi) - {X^U/dXj^,,... ,X,dtkdXj{Xt). 1.1.3 gives
then an isomorphism:

1.1.4.

,))
+ l))/a{(H°{TFfrt).

Now using the map p r u between 1.1.1 and 1.1.3:
1.1.5.

0 -

0 -

+ Tχt

Id

+ τXi

(1)
1
(1)

$OXt(l) -)• 0

I
di + 1) -> 0

we see immediately that the map μ of 1.1.2 takes its value in
Kerfs'1 (TX t(l)) -> i/ 1 (ΓP n ( l) | X J), and via the isomorphism of 1.1.4,
is simply the map:

1.1.6. μ : (US*) 0 S1 -> n ^ ° ( O X i (^ + l))/a(JH
r°(TPn(l)|XJ)

obtained by composition of the product:Sdi®Sx —> Sdi+ι, the restriction
to Xt, and the projection modulo Im(α).

1.1.7. Next let x G Xt be any point; tensoring everything with Xx

we get similarly isomorphisms:
1.1.8.

Kev{H\TXt{\) ®IX) -> f i

Mi + 1)

where α x : tf°(TPn(l)|X( ®X,) -> Π ^ ^ O x . K + 1) <8> Ix) is the map
induced by a in 1.1.3, and

1.1.9. H°(TX(l)lXt ®XX) = Keτμx,
where μx : (Π;Sd ) ® S x

x -> UiH^Ox^di + 1) ® 2;)/Im(αβ) is the
multiplication followed by restriction to Xt and projection mod. Im(o;x)
as in 1.1.6 ( Here S\ := H°(OXt(l) ®XX)).

Now the proof of 1.1 is finished with the obvious observation that μ
and μx are surjective: indeed, the map given by the inclusion

, ®lx) -> Hι{TΨn{l)\Xt) is injective since TP n ( l) | X ( is
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generated by its sections. Prom H°(TXt(l)) = 0, we have the exact
sequence:

1.1.10. 0 -> H°(TXtlχ) -> H\TXt{l) ®lx) -> H\TXt(1)) -> 0,
which induces an exact sequence:

1.1.11.

0 -> H°(TXt{x)

( 1 ( ( ) ) ^ ( ) 0 ,

that is:
1.1.12. 0 -> H°{TXtlx) -> M μ , ) -> Im(μ).
It then follows that Ker(μa) C Ker(μ) has codimension equal to:

d i m ^ S * ) + h°(TXt]x) = rank(TA'(l)|x). By the isomorphisms of
1.1.2, 1.1.6, 1.1.9, we conclude that H°(TX(l)lXt ®lx) C H°(TX(l)\Xt)
has codimension equal to the rank of TX, which means that TX(ϊ)\Xt

is globally generated at x.
Now Proposition 1.1 implies
1.2 Corollary. For anyl>0 the bundle /\ιTX®OXt(l) is generated

by global sections, and the bundle /\ι TX (8) OXt (I + 1) is very ample (in
the sense that its global sections restrict surjectively to its sections over
any 0-dimensional subscheme of length two of Xt).

Now TX\Xt has determinant equal to KXt = OXt(^idi — n — 1), so
we have:

1.2.1. Λ' TX β OXt (I) S /\N+«-k~ι nχ[Xt ® OXt (I - Σi di + n + 1),
where N = dim(0 i 5d i), so N + n — k = dim X. Thus we conclude:

1.3 Corollary. Ωχ+n~k~l\χt is generated by global sections when
I — Σi di + n + 1 < 0, and is very ample when this inequality is strict.

This gives immediately the following refinement 1.4 of Clemens and
Ein's results (0.2): Let M C UiSdi° be a subvariety, and let M A M
be an etale map; let y C Xj^ be a subvariety of the family obtained by
base change to M we assume that pr2 : y -> M is dominant of generic
fiber dimension I. Then we have:

1.4 Theorem. If Σidi > 2n — k + 1 — I + codimjVί, then any
desingularization Ϋt of the generic fiber Yt of pr2 : y —> λi has an
effective canonical bundle. If the inequality is strict, then the sections
of Kγt separate generic points ofYt.

Proof. We have dimy = N + I - codimjVί; by 1.3, if Σidi >
2n - k + 1 - I + codimX, then the bundle Ω%my is generated by

M \Xm

the global sections, for all m € M such that M is smooth at π(m),
since the map M -» M is etale. Let y be a desingularization of 3>,
and j : y —> X^ be the natural induced map; then j is generically
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an immersion. So it follows that Ω,^my . has a nonzero section, for

generic m G M. Since for a smooth fiber F m , one has an isomorphism:
Qdim y ^ jζ w e ^ a v e p r o v e ( j that the canonical bundle Kγ is

y \γm

 m m

effective, for generic m E Λί, as we wanted. Similarly, if the inequality
is strict, then again by 1.3, the bundle Ω^my^Xm is very ample, for any

m £ Λ4, so for a generic point m e Λ4, satisfying the conditions that
j is an immersion generically along Ϋm and that ym is smooth, we get
h h f Ω^my K i i f Ϋthat the sections of Ω^my . = Kγm separate generic points of Ϋm.

1.5. We explain now how we can obtain the following refinement of
Xu's theorem 0.3 in the case of hypersurfaces; of course, only the case
where d = n + 2 is to be considered, since the case d > n + 2 is covered
by Ein's theorem.

1.6 Theorem, Let X cΨn be a general hypersurface of degree d =
n + 2. Then for any irreducible divisor Y C X, any desingularization
Ϋ of X satisfies that the canonical map of Ϋ is generically finite on its
image.

We consider again X C P n x Sd , the universal hypersurface, and
I t C A ' a fiber of pr2; we have shown that TX(l)\Xt is generated by the
global sections, hence gives a map:

1.6.1. < / > : P ( Ω * ( - l ) | X t ) ^ P M .
The proof of the Theorem 1.6 will follow from
1.7 Proposition. On the set of GL(n + l)-invariant hyperplanes

ofTX(l)\XtJ the positive dimensional fibers of φ project onto lines con-
tained in X.

Here we consider the natural action of GL(n + 1) on

X C F 1 x Sd°.

The GL(n + l)-invariant hyperplanes are those which contain the tan-
gent vectors to this action.

1.8. Let us explain how 1.7 implies 1.6: it suffices to show that for
any etale map M -> Sd ,with a lifting of the GL(n +1) action, and any
GL(n + l)-invariant divisor 3̂  C XM , ( %M is the family obtained by
base change to Λί), any desingularization y of y satisfies:

1.8.1. The sections of Ky.y = Kγt give a map Yt •> P M generi-

cally finite on its image, for generic t G λd.
Now, at a point y where y -> XM is an immersion, Ty^y C TXM\y is

a GL(n + l)-invariant hyperplane. Let t G M be generic, and x,y two
points of Ϋu where y -> XM is an immersion. If Ty\x, Ty\y are not in
the same fiber of φ, then there is a section of TX(l)\Xt = Ω^+ n~ 2 |X t

(since d = n + 2), which vanishes on TJ)\X but not on T J ^ . In other
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words, the fibers of the map ψ : Yt- •> P M " given by the image
of H°(il%+n-2

lXt) in H°{Ω?+n-2

ιγ) S H°(KΫt) are contained over an

open set of Ϋt in the projection of fibers of φ.
So the positive dimensional fibers of ψ, over an open set of Ϋt must

be lines contained in Xt by 1.7. But if t is generic, the family of lines
in Xt has dimension n — 5, so lines in Xt cannot cover a divisor of X t,
which proves that ψ is generically finite on its image.

1.9 Proof of Proposition 1.7. Recall from 1.1.2,1.1.6 the iso-
morphism: H°{TX{l)]Xt) ^ Kerμ, where μ : Sd ® S1 -> # t

d + 1 is the
multiplication μ0 '• Sd ® Sι -» iJ°(0 X t (d + 1)) followed by the projec-
tion H°(OXt{d + 1)) -> i?t

d+1 := S d + 1 /J d + 1 , where J t is the jacobian
ideal of the defining equation F* of Xt. Let now H C Ker μ be a hyper-
plane and let K C 5 d ® 5 1 be a hyperplane such that K Π Ker μ = H.
A point x € X* is in the projection of φ~ι(H) iff the evaluation map
H -> T;t( l ) | x is not surjective. Let Kx := K Π 5 d ® 5^. Notice that
there is at most one point z such that Kx = Sd®Sl, so we may assume
that Kx is a hyperplane of Sd ® 5^, since we are interested in the de-
scription of the positive dimensional fibers of φ. Using the notation of
the proof of 1.1, we have the following exact diagramm:

1.9.2.

0

I
H°(τx(i)ιXt®τx)n.

I
H

0

I
TT v Tyrtl —t J\χ

I
-> K

0
I

TXt(l)x

I
μA Si+1/a(H°((TF"(l)®Xx)

I
A Rd+ι

Under the above cissumption, Kx C K has codimension equal to N :=
dimS'd. It is easy to see that the map μ is surjective, so we conclude
from 1.9.2 that

H°(TX(l){Xt®lx)nHcH

has codimension equal to rank(TA'(l) when μx is surjective. On the
other hand, since Kx is a hyperplane in Sd ® 5*, μx will be surjective if
Kx does not contain Ker(μg : Sd®S^ -> ίf°(OX t(d+l)®X x)). Thus the
projection to Xt of the fiber φ~ι (H) is contained in the set {x/ Ker μg C
ϋ^}, with one eventual supplementary point where Kx — Sd ® S^

Now suppose that H contains Kerμ0: Using the exact sequence:

1.9.3. 0 -> TX\Xt -> TΨn

ιXt Θ 5 d ® O X t ^ O X l (d) -^ 0,
where dF((u,g))(x) = uFt(x)+g(x), one sees easily thatTAΊχt contains
the bundle M r f |X t, where Mrf is defined by the exact sequence:

1.9.4. 0 -> M d ̂  Sd ® Opn -> Op»(d) -> 0.
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Furthermore one checks readily that Kerμ0 C Kerμ identifies with
the inclusion H°(Md(l)Xt) C H°(TX(l)\Xi) and that Md(l) is generated
by global sections. So, if H contains Kerμ0, then φ^ffi) corresponds
to hyperplanes Vx in TX(l)x,x E Xt such that Md\x C Vx. But it is
easy to see that Md\x together with the vectors tangent to the infinites-
imal action of GL(n + 1) generate TX(ΐ)x, so φ~ι(H) cannot contain a
GL(n + 1)—invariant hyperplane, when H contains Kerμ0.

Finally, assume that Ker μ0 (jL H; then we have:
1.9.5 Lemma. The set {x E Xt/ Kerμ J C Kx} is contained in a

line.
This is elementary: it suffices to note that if rr, y, z are three non-

colinear points of Xu then Kerμj5,Kerμo,Kerμo generate Kerμ0.
1.10. As in [9], from 1.3 we can also deduce information about

the Chow groups CH0(Xt) for general Xt. In fact, let Λd C HiSdi be a
subvariety, as in 1.4; then 1.3 gives us:

1.10.1. For Σi (U > 2n - k + 1 + codimΛΊ, the bundle Q$mM

s is

very ample, for any m G Λ4.
Now we conclude:
1.11 Theorem. For Σi d>i > 2n — k + 1 + codimΛί, no two distinct

points of Xm are rationally equivalent, if m, is a general point of M.
We recall from [9] how 1.11 is deduced from 1.10.1: if 1.11 is not true,

then there is an etale cover M of an open set of the smooth part of Λί,
and two distinct sections σ, r : M -¥ X^ such that for m E Λί,σ(m)
is rationally equivalent to τ(ra) in the fiber Xm. The cycle Z = σ(M) —
τ(M) is of codimension n — k in A^, and the assumption implies that a
multiple of it is rationally equivalent to a cycle supported over a proper
subset of Λ l It follows that its class [Z] E Hn~k{iV££) vanishes in

H°(Rn~kpr2*Ω1£~k) over an open set of Λ4. On the other hand, for

m 6 M,Hn-k(Xm,nn

χ-
k ) is dual of H0(Xm,Q^ίx ®KM~ι) by

Serre duality, and one checks the following: (see [9])

1.11.1. The class (az)m e Hom(H°(Xm,CVjfcΛ

ιγ ),KAm) ob-

tained as the image of [Z] by the composite:

is equal to σ* — r*.

Here σ*, r* are the pull-back maps of holomorphic forms by the sec-
tions σ, T : M -> Xjd- Now this is finished since by 1.10.1, Ω
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is very ample, when £\ d{ > 2n - k + 1 + codimjVi, which implies im-
mediately that for σ(m) Φ τ(ra), the map σ* — τ* cannot be zero at ra,
in contradiction with (az)m — 0.

2. In this section we will consider the case where k = 1, that is
hypersurfaces of degree d in Pn. Let X C Pn x (Sd)° be the universal
hypersurface; the main point in the previous section was to get the
global generation of /\ιTX(l)\Xt, using global sections of TX(l)>Xt. I
do not know the answer to the following question:

2.1 Question. When is f\2TX(l)^Xt generated by global sections, at
least for generic t ?

(This should be true when Kx is ample.)
However, for our applications, the following proposition will suffice

to improve the results of Section 1: view H°(/\2 TX(\)\Xt) as a space of
sections of a certain line bundle over the grassmannian of codimension-
two subspaces of TX(ΐ)^Xt. Assume n > 4 and Kx > Oχ(ϊ); then we
have:

2.2 Proposition. For generic t, H°(f\2 TX(l),Xt) has no base point
on the set of GL(n + 1)-invariant codimension-two subspaces ofTX\χt.

Here we are considering the natural action of GL(n + 1) on

X cPn x Sd : g(x,F) = (g(x),(g-iγ(F));

by invariant subspace, we mean subspaces containing the vectors tan-
gent to the orbits of GL(n + 1).

Proof. Consider the inclusion j : X «^ Ψn x Sd\ it gives the exact
sequence:

2.2.1. 0 -> TX\Xt -> T P V , θ Sd ® OXt % OXt{d) -> 0,
where dF((u,H))(x) = dFt^(u) + H(x) if Ft is the equation of Xt in
P n . Let Md be the bundle on P n defined by the exact sequence:

2.2.2. 0 -> Md -* Sd ® OPn -> OFn(d) -> 0.
Prom 2.2.2, we get an inclusion Md\Xt C TX\Xt and an exact sequence:
2.2.3. 0 -> Md{Xt -4 TX]Xt -»• T P ix, -> 0.
In particular, we obtain an inclusion:
2.2.4. H°(/\2 Md(l){Xt) C fΓ°(Λ2T^(l)|X t).
Now we have the following lemma:
2.3 Lemma. H°(/\2 Md(l)), viewed as a set of sections of a certain

line bundle on the grassmannian of codimension-two subspaces of the
bundle Md, has for base points the set {(x,T),a; G P n ,T C Md^,such
that T contains the ideal of a line Δ through x).

Proof. The exact sequence defining Md gives an isomorphism:
H°(f\2 Md(l)) ^ Ker μ', where μ' : Λ2 Sd®S1 -> Sd®Sd+1 is the Koszul
map defined by: μ ;((P Λ Q) ® A) = P ® AQ - Q ® AP. Now Kerμ'
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contains the elements: PAΛPB®C-PAΛPC®B+PBΛPC® A, for
P E S^"1, A, B,C E S1. It follows that the image of the restriction map:
H°(/\2 Md(l)) -> f\2 Md(ϊ)\x C Λ 2 ^ contains the elements PAΛPB,
for P E Sd-\A,B e SI where Sx

x := H°{Oψn{l)®Xx). Let Γ C MdiX :=
jyr0(Opn(cί)(8)XI.) be of codimension two, and suppose H°(/\2 Md(l)) van-
ishes on it. Then for any P G Sd~\ [T : P] x := {A e Si / PA e T} must
be an hyperplane, that is, the map nip : 5* —> Sd/T of multiplication
by P is not surjective. If [T : P]x = 5^ for generic P, then T = S£,
which is not true; otherwise mP has generic rank one. Differentiating
this condition at a generic point P e Sd~\ we find [T : P]x 5 f d"1 C T,
so 2.3 is proved since [T : P]x is the component of degree 1 of the ideal
of a line Δ containing x. The converse follows from the fact that if Γ
contains the ideal of a line Δ containing rr, the composite map:

2.3.1. #°(Λ 2 Md{\)) -»• Λ2 Md(l)lx -> Λ2(M r f | x/T)
factors through the restriction map:

2.3.2. ff°(Λ2 Md(l)) -»• H°(Λ2 Md

Δ(l)),
where M£ is defined by the exact sequence:

2.3.3. 0->M£ ^H°{OA{d))->OA{d)->0.
Now it is easy to see that H°(/\2 M£(1)) = {0}.
From 2.3 and 2.2.3, 2.2.4, we conclude immediately:
2.4 fact. Let V C TX\X be a codimension-two subspace which is a

base point of H°(/\2 TX(l)\Xt). Then VΓ)Md\x must be a hyperplane of

Md\x or must contain the ideal of a line Δ containing x.
To deal with the first case, we show:
2.5 Lemma. Let P be the quotient f\2 TX{ΐ)\Xt)/ Λ2 Md(ΐ)\χt. Then

the map H°(/\2 TX(l)\Xt)) -> H°(P) is surjective, and P is generated
by global sections.

Proof The first assertion comes from the vanishing: (see[6])

2.5.1. ff1(Λ2M<f(l)|^) = {0}.
In fact consider the exact sequence:
2.5.2. 0->Λ2Md(l),X t -+ h2 Sd®OXt(l) -+ Md®OXt(d+l) ->0.
It follows that:
2.5.3.

and this is equal to

Ker(Sd®H0{OXt(d+l))^H°(OXt(2d+l)))/lm(f\Sd®Sι).

But it is shown by M. Green in [6] that the following sequence is exact
at the middle:
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2.5.4. Λ2 Sd 0 S1 -> Sd ,
where the first map is the Koszul map μ' of 2.3. Since Ker(5d 0 Sd+1 —>
S2d+X) surjects onto Keτ(Sd ® H°(OXt{d+l)) -> #°(e>X ί (2d + 1))), we
conclude immediately, as in [5], that 2.5.4 remains exact after restriction
to Xu that is, by 2.5.3, that Hλ{f\2 Md(l)\Xt) = {0}.

As for the first statement, we have an exact sequence:

2.5.5. 0 -> Md 0 TP n ( l ) | X t -> P -> Λ2 TPn(l),χ t -> 0.

Again i ϊ 1 ^ 0 T P n ( l ) | X t ) = {0} by the exact sequence:

2.5.6.

0->M r f<g>TPn(l)|X t ^ 5 d ® T P n ( l ) | X t ^ Γ P n ( d + l ) , X t -> 0,

the equality jH r l(TPn(l)|X t) = {0} (n > 4), and the fact that
H°(TΨ"(d+ l)\Xt) is generated by H°(T¥n(l)lXt).

Finally f\2TΨn(l)\Xt is generated by global sections, as is
Md 0 TPn(l)jχ t, which follows from the Euler sequence and the fact
that Md{2) is generated by global sections. This last fact is seen as

follows: we have H°{Md{2)) = Keτ{Sd 0 S2 m4*" 5 r f + 2); this contains
the elements PA® B - PB ® A, ίoτ P £ Sd~2, A,B e S2. Evaluating
these elements in Md(2)|x, we get foτA(x) = 0,B(rr) ^ 0 the elements
PA,A(x) = 0,P G 5 d " 2 , of Mrf(2)x = iJ°((9pn(<i) 0 ^ ) . Clearly, they
generate H°{Oψn{d) ®XX).

Now 2.4 and 2.5 show:
2.6 Corollary. IfVc TX\X is a codimension-two subspace which is

a base point of H°(f\2 TX(l)\χt), then V Γ) Md\x must contain the ideal
of a line Δ containing x.

Indeed, if V Π Md\x is a hyperplane of Md\x, the map

H°(/\TX(l)\xt)->foτx\*/V)
factors through the map: H°(f\2TX(l)\Xt) -> Px which is surjective by
2.5.

2.7. To finish the proof of Proposition 2.2, we now specialize to the
case of the Fermat variety X defined by the equation F = ]Γ\ Xf = 0.
We may do it because of the following lemma:

2.7.1 Lemma. h°(/\2TX{l)\Xt) is independant oft E Sd°.

Proof. Using the exact sequence (see 2.5) defining P:

2 2

0 -> /\Md(l)\Xi -> f\TX(l)]Xt -> P -> 0,
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and 2.5.1, it suffices to prove that h°(/\2Md{\)\Xt) and h°(P) are inde-
pendant of t G Sd . For the first one, this comes from the exact sequence
(see 2.5.2, 2.5.4)

2.7.2.

0 -> #°(ΛMd{\){Xι)^}\Sd® H°(OXt(1))

-> Sd ® H°(OXt (d + 1)) -> #°(0χ t (2d + 1)) -> 0,

where all spaces, starting from the second one have constant rank.
For the second one, this follows from the exact sequence 2.5.4, with
Hx{Md <g) TP n ( l) | X t ) = {0}. So it suffices to know that H°(Md <g>
TP"(l) | X l ) and if°(Λ 2TPn(l) |X t) have ranks independant of t. But
this is immediate for the second one by Bott vanishing theorem, and for
the first one by the exact sequence:

2.7.3.

0 -+ H°(Md®TFn(l)lXt) -> Sd®h°(TΨn(l)[Xt)

where all terms starting from the second one have constant rank by Bott
vanishing theorem.

2.8. So let X be the Fermat variety, x £ X and V C TX\X be
a codimension-two subspace, which is a base point of H°(/\2 TX(1)\X),
and is invariant under the infinitesimal action of GL(n+1), which means
that it contains:

2.8.1. Jx := {(u(a ), - f i F)} C TX{x C TΨn

]x x Sd,
where u G H°(TΨn), and it is a lifting of u in the Lie algebra of GL(n+l),
so u - ΣiAid/dX^Ai e H°(OFn(l)) and fiF = ΣiAidF/dXi.

We know by 2.6 that V contains the ideal of a line Δ containing x:
IA(d) C Mdlx C TX\X. Let TΛ£ := ΓAr|x//Δ(d), and let J * be the
image of Jx in TXfc. Since V contains J^ and /Δ(^) 5 the map:

jy°(ΛTΛT(l)|X) -»• H°(hTX(l)lx) -> f\{TX/V)

factors through the map:
2.8.2. /? : H°(tfTX(l)\x) -»• tf(TX£/J*),

and it suffices to show that /3 is surjective, to conclude that V cannot
be a base point of H°(t\TX(l)\X).

Now we do the following: We can choose two coordinates X i 5X J 5

which give independant coordinates on Δ; also, we may assume that
not all coordinates Xk,k φ i,j vanish at #, because there are at least
two nonvanishing coordinates at any x e X. Let Ax := X{ — XXj, for
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λ e W and let P λ := {Xd~ι - A ^ X / " 1 ) / ^ - XXj) G Sd~2. Recall from
1.1.2, 1.1.6 the isomorphism:

2.8.3. H°(TX{l)ιx) £ Ker(μ : Sd ® S1 -
it follows that for any T e S2:

2.8.4. TPX ® Aλ E #°(T*(l),χ), since

TPX Aλ = Tpq*"1 - A*"1*/

Now we have:
2.8.5. T P Λ Θ Λ Λ ^ P Λ Θ Λ € H°(f\2TX(2)\X) vanishes on {Ax = 0}

for anyT.S G S2.
To see this, note that along {Ax = 0},TPλ ® Aλ gives a vertical

vector, that is an element of TX C TX, since in the exact sequence:
2.8.6. 0 -> TX|y -> ΓΛf|y Λ Sd -> 0,

one has π(TPx ® Aλ) = ΓP λ Aλ(y), which vanishes when ^4λ(y) = 0.
This vertical vector is easy to compute, retracing through the con-
struction of the isomorphism: H°(TX(l)\X) = Ker(μ); in fact we have
TPX Ax = T{Xf-χ - \d-ιXd~ι) in Sd+1, and this is equal to

(l/d)T{dF/dXi - X^dF/dXj).

Then we have the following:
2.8.7. For Ax(y) = 0, one has

(TPX ® Ax)y = {l/d)T(y)(d/dXi - Xd-ιd/dXj)

So clearly TP λ ® Ax and 5P λ ® Ax are proportional along {Λλ = 0},
which proves 2.8.5.

It follows that, after dividing by A\, we get a section
(ΓPΛ ® Ax Λ S'PΛ ® Aλ)/Aλ of Λ2 TX(Ϊ)\X. Clearly, if W C TX\X is the
subspace generated by the TPX ® Aλ, when T and A vary, the sections
(TPχ®AχΛSPχ®Aχ)/Ax generate the subspace Λ2 W(l) C Λ2 TX{1)\X

since for generic X,Aχ(x) Φ 0 (we have assumed that X^Xj are inde-
pendant on Δ).

So, to show that β (2.8.2) is surjective, it suffices to show:
2.8.8. The composite map: W <-+ TX\X -> TXfe/J* is surjective, or

equivalently:
2.8.9. WA + JX

Δ = T # £ , where WA is the projection of W in TXfc.
But W(l), viewed as a subspace of TPn(l)|a :Θ5d®C?x(l) is generated

by the elements (-{l/d)T(x){d/dXi-Xd-1d/dXj,TPx Ax(x)), for A e
Φ,T e 5 2, with P λ := {Xtl - Xd-ιX*~ι)l{Xi - XXj). Clearly, when
λ,T move, the restrictions to Δ of the elements TPX Aχ(x)) generate
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H°(OA(d)), since X^Xj are independant on Δ. Finally the kernel of
the projection WA -> H°(OA(d)) is generated by the vertical vector
(l/d)T(x)(d/dXi - X^d/dXj) for T(x) φ 0 and Ax(x) = 0. It follows
that, as a subspace of TΨn{l)lx Θ H°(OA(d)) ® 0,(1), WΔ is equal to:

2.8.10. {(ti,fl), u E< d/dXud/dXj > ®Ox{2)/dF(u) +g{x) = 0}.
So WΔ is of codimension n - 2 in TA^l)^, since d/dXi, d/dXj are

independant in TP n (-l) | a ; . To prove that WA + J* = 7Vt£ , it suffices
to verify that J* Π WA is of codimension n — 2 in J* .

But by 2.8.1 and 2.8.10, we find:
2.8.11.

jrf n WA = {(tx(a ), - f iF)/u(z) G<

where the equality holds in TX{1)\X C TP n (l) | x Θ H°(OA(d)) ® O e(l),
and this is clearly of codimension n — 2 in J^, since the projection
J ^ —> TΨ? is surjective, and djdX^ d/dXj are independant in
TPn(—l)|a. (this follows from the assumption that not all coordinates
Xk, k φ i,j vanish at x). So the proof of Proposition 2.2 is finished.

2.9. Although it should be clear from the reasoning in the proof of
Theorem 1.4, we repeat the argument which gives the next result:

2.10 Theorem. Let d > 2n - I - 1, 1 < / < n - 3; then for X cΨn

general of degree d and Y C X a subυariety of dimension Z, Ky is
effective, where Ϋ is any desingularization of Y. If the inequality is
strict, the canonical map of Ϋ is of degree one on its image.

Proof. It suffices to show that for any etale map M —> (Sd)°, and
for any GL(n + l)-invariant subvariety 3̂  C XM dominating Λ4, with
generic fiber dimension Z, if y is a desingularization of y, H°(Ky.γ ) Φ 0,

(resp. H°(Ky,y) separates the points of an open set of Yt when the
inequality is strict), for t generic in M.

But for t generic in M and y generic in Yu y is smooth at y and
Ty\y C TXM\V is a space of codimension n — 1 — /, invariant under
GL(n + 1). Now we have by Proposition 1.1 that TXM(l)^Xt is gener-
ated by global sections, and by Proposition 2.2 that H°(/\2TXM(l)^Xt)
has no base point on the set of GL(n + l)-invariant codimension two
subspaces of TXM(l)^Xt for t generic in M. Let y be generic in Yt

as above and let σ / + 1,... ,σn_3 be sections of TXM(l)\Xt, such that
< Ty\y, (σί)i=/ϊ...,n_3 > is a codimension two GL(n + l)-invariant sub-
space V oiTXM{l)\y\ there exists ω e H°(/\2TXM{l)lXt) which does
not vanish on V; now

ω(V)=ωΛσιΛ...Λσn_3(Tyly),
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and ω Λ σ/ Λ . . . Λ σn_3 is a section of

So if KXt > OXt{n - 2 - I), that is, when d > 2n - I - 1, there is a
section of Ω ^ z . v which does not vanish in Ω̂ f"1"' . = î v.v- Similarly,

ΛΛΊ |At j ; |yt <y\Yt J Ί

if the inequality is strict, there is a section of Ω^+' (—1) which does

not vanish in Ω^+ί (-1) = Ky^(-l); hence the canonical map of Ϋt

is of degree one on its image in this case.
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