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THE ATIYAH-JONES CONJECTURE FOR
CLASSICAL GROUPS AND BOTT PERIODICITY

YOULIANG TIAN

0. Introduction

In this note we construct a L-stratification of λik{G), the based
G-moduli space of instantons (or equivalently anti instantons) of charge
k over S4. The structure groups we concern ourself with here are SO(n)
for n > 6 and Sp(n). Then the general machinery of [6] is applied to
prove

Theorem A. For G = SO(n) with n > 6 or G = Sp(n) and for
all k > 0 and all primes p, the Taubes inclusion map i^ : Λ4k(G) —>
Mk+ι{G) induces an isomorphism in homology

fort<q = q(k) = [k/2] - 1 and A = Z or Z/p.
The stratifications also lead naturally to the computation of the fun-

damental groups. We shall show that Mk(SO(n)) are all simply con-
nected for n > 6, and that the fundamental groups of Λ4k(SP(n)) are
always Z/2. The argument of [6] can be applied to improve Theorem A
as to state that tk induces a homotopy equivalence through dimension
at least [k/2] - 1 for SO{n),n > 6 and at least [k/2] - 2 for Sp(ή). As
a consequence of it, we are able to confirm the Atiyah-Jones conjecture
that relates the homotopy of Mk to that of ΩQG, a connected compo-
nent of 3-fold loop space of group G (see [4]). To be precise, we shall
prove

Theorem B. For all positive integers k, the induced map (from ϋk)

on homotopy groups is an isomorphism for t < q{k) — [k/2] — 1 if
G = SO{n), n > 6; and for t < q(k) = [k/2] -2ifG = Sp{n).
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Following Kirwan [15], we also give the best possible ranges q(k) for
all classical groups except for a few possible cases when the sizes of the
groups are small.

The stable version of the Atiyah-Jones conjecture was proved by
Taubes in the general context where the structure group can be any
compact simple Lie group and the base manifold can be any compact
oriented Riemannian four-manifold (see [21], [11]). In the case where
the base manifold is 5 4, Boyer, Hurtubise, Mann and Milgram gave
the proof of the Atiyah-Jones conjecture for the most important case
where the structure group is SU(2) (see [6]). Following their ideas, the
author was able to prove the conjecture for general SU(n) using the
method that will be presented here (see [22]). Independently, Kirwan
[15] used an equivariant cohomology technique to prove the conjecture
for SU(n) when n > 2. Although her method failed to cover the crucial
SU(2) case, the range q(k) she got is best possible when n > 3. She
also obtained the similar stabilization result when n —> oo induced by
ΰ mapping from H*{Mk{SU{n))) to H*{BU{k)). This last fact has re-
cently also be proved by Sanders [20] for SU(n) and Sp(n) using a quite
simple method. We will use this stabilization in order to get the Bott
Periodicity. As for our main purpose, a combination of the previous
results for G = SU{n) [6], [15], [22] with Theorem B yields the proof
of the conjecture for all simple classical groups of SO(n),SU(n) and
Sp(n). Note also that the result for Spin(n) follows automatically from
that of SO(n). It is now conceivable that the result for any compact
simple Lie group can be done similarly. Much more difficult to prove is
the conjecture for general four-manifolds. Recently, Hurtubise and Mil-
gram have proved a homological Atiyah-Jones conjecture for G = SU(2)
and for manifold being a ruled surface [14]. However, compared with
the stability theorem of Taubes, all these results suffer from a common
defect - they all depend on the particular (nice) choices of the metrics
for the underlying four-manifolds. It seems that to prove the conjecture
for S4 equipped with a conformally non-flat Riemannian metric may be
very difficult, and it may be crucial in understanding the conjecture in
general cases.

The organization of the paper is as follows: Sections 1 through 4
mainly deal with the case where the structure group is SO(n). In Sec-
tion 1 we review a theorem of Donaldson which gives a holomorphic
description of the moduli spaces using monads for QP2. We then realize
his result in concrete linear algebra. In Section 2 we show that an in-
stanton bundle is completely determined, up to "framed" isomorphism,
by its behaviour restricted to a finite number of "jumping lines". This
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relates Mk to certain labelled configuration spaces, the fact that plays a
central role in proving Theorem A. In Section 3 we give a L-stratification
and outline the proof of Theorems A and B. In Section 4 we give the
dimension estimates for the strata obtained in Section 3. We also show
that Λ4k is simply connected for G = SO(n), n > 6. In Section 5, we
realize Donaldson's theorem about Mk in the case where G = Sp(n),
again in explicit linear algebra. We outline the stratification and state
the results. In the final section, we make use of the stabilization pro-
cesses as both k -> oo and n —> oo. The observation we make is that
the Atiyah-Jones conjecture yields Bott Periodicity, a fact that may lie
at the heart of the Atiyah-Jones Conjecture.

The author would like to thank the Institute for Advanced Study for
its support where the most part of this work was carried out. The author
would also like to thank Charles Boyer, Benjamin Mann, R. J. Milgram
and Clifford Taubes for their encouragement and helpful discussions.

1. A theorem of Donaldson

The well-known ADHM construction gives an explicit description of
moduli spaces of instantons in terms of linear algebra, or more precisely,
in terms of the monad description of holomorphic bundles over the com-
plex projective space QP3. There are real but not complex quadratic
constraints involved in these descriptions which in many circumstances
are difficult to deal with. Thus it is remarkable that Donaldson de-
duced a purely complex algebraic description of these moduli spaces
from ADHM construction using geometric invariant theory. We now
recall his result.

Let G be one of the classical group SU(n),SO(n) or Sp(n), and let
k > 0 be minus half the first Pontryagin index of a G bundle P over
S4 = R4 U {oo}. Denote by Mk(G) the framed moduli space whose
points represent isomorphism classes of pairs:

(anti self-dual G-connection on P, isomorphism P^ ~ (?).
Let Mk(Gc) denote the moduli spaces of holomorphic bundles on QP2

for the associated complex group, trivial on a fixed line l^ and with a
fixed holomorphic trivialization there. Then Donaldson showed

Theorem 1.1 [10]. There is a natural one-to-one correspondence
between Mk(G) and Mk(Gc).

Donaldson actually gave an explicit monad description of Mk for
G = SU(n) and indicated how in principle this could be generalized to
SO(n) and Sp(n). For our purposes we shall now realize his theorem
in concrete linear algebraic data. In this section we shall give the result
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for G = SO(n). Actually, we shall only need the result for n > 6
since Spin(3) ~ SU(2),Spin{4) ~ SU(2) x SU{2) which is not simple,
Spin(5) c- Sp(2) and Spin(6) ~ 577(4). Note that SO(n)c = SΌ(n,C).
It can be shown that an SΌ(n, C) monad over QP2 with minus half the
first Pontryagin index k is of the form (see [5], [19]):

where p = [rr,y,z] are homogeneous coordinates on QP2, A(p) = Axx +
Ayy + Azz is a linear matrix function in x,y, and z, and A(p)τ is the
transpose of A(p). It is subject to the following two constraints:

(1.2) A{p)τA{p) = 0 for all p

(1.3) A(p) is injective for all p e QP2.

Obviously GL(n, C) acts on A(p) from the right, and O(4fc+n, C) acts
on A(p) from the left. It turns out that two monads give an equivalent
holomorphic bundle over QP2 if and only if they differ by such an ac-
tion. By Donaldson's theorem, we are only concerned with those stable
bundles which have an additional property that the bundles represented
by these monads must be trivial over the fixed line l^ = {z = 0} with
a fixed trivialization. This can be reformulated as follows

(1.4) A^Ay = —A^AX is an isomorphism, and only the subgroup Go

of O(4fc + n,C) x GL(n,C) whose action preserves the natural
framing over z = 0 is permitted.

The moduli space M k is thus the quotient of the set of these monads
with properties 1.2 through 1.4 by the group Go. Let us put aside the
framing for the moment. Then we can first put Ax into the form

using an appropriate action since Ax has to be injective. By 1.2 we have
A^.AX = 0, i.e., aτa + aτa = — I2k So in virtue of the left action by
O(4fc + n, C), Ax can be put into the form

(1.5)
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The isotropy group of the action for 1.5 can be worked out to have
the form

-iguτon

0
On

which belongs to O(4k + n, C) x GL(2k, C), and where on e 0(n, C), h =

2[θ ~ (9~λ)T] + w(~~2uTu ~*~ 5 ) ' u 1S a n arbitrary n x 2k matrix and s
is an arbitrary 2k x 2A; skew-symmetric matrix. We shall denote this
isotropy group by G\. Write

Then fflfa + βjβ2 + bτb = O by 1.2, and (A - iβ2)
τ = -(ft - ift)

is an isomorphism by 1.4. By choosing u = —ionb(βι — iβ2) * we can
assume 6 = 0. By choosing s = 2{βλ + iβ2)(βi — iβ2)~1 which is skew-
symmetric and using the fact that β\β\ +aζβ2 = 0 (b = 0 now), we can
assume that β2 = —iβ\ — β is a skew-symmetric isomorphism. Now the
subgroup of G\ that keeps this form invariant is

ifo + Gr1)

0
[# + (g-1)'

0

Γ] o

Or

Under the action of this group, β \—> (g 1)τβg ι which clearly can be
given as

ισ = °\-h o

Throughout this paper we assume σ is always so defined. Thus we have
deduced special choices for Ax and Ay such that

(1.7)

Considering the condition 1.4, we find that it is the same as requiring
on to be the identity In. The symmetry group G\ is therefore reduced
to

0 xg'1 &g-1 = -σgτσ\.

J
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Now write

and go through the conditions 1.2,1.3 and 1.4 to obtain
Proposition 1.8. For a fixed group SO(n), the moduli space

Mk is the quotient of the subset of the set {(71,72,0) E M2jfcX2A;(C) x
E) x Mnx2k(C)} that subjects to the following conditions:

1.8.a) 7X

T = -σηxσ (i.e., (σ7χ) τ = -CΓ71),

1.8.b) 72

T = "72,
l.δ.c) 2 ( 7 l

τ

7 2 + 7 2

T

7 l ) + cτc = 0,

by the group action

7 i »—

forgeG = {ge GL(2k,C) : g~ι = -σg τσ} = Sp(k,C).

2. Superposition

Much of this section will follow along the same line as the previous
work [22], and it is slightly more complicated but nevertheless elemen-
tary. For clarity, I shall give a sufficiently detailed treatment.

L e m m a 2.1. Let 71, G and the action of G on ηλ be the same as
in 1.8. Then for each such jι there exists a g G G such that

0
9Ίι9 = \Q

where J is a k x k Jordan canonical form.
Proof. We shall write both ηλ and g in block form with each of

their blocks being a k x k square matrix. For example, we shall write

7i = I ΓΊ ΊDT ) It is then easy to see that if C and D (which are
\D B J

necessarily skew-symmetric) of 71 are zero matrices, then the lemma is
true. Thus we only need to show that we can make 71 into a diagonal-
block matrix using the action of the group G. We prove it by induction
on k. The case k = 1 is trivial. Take k — 2 and without loss of generality

we can assume J 5 = n I , (7 = I Λ ,Ό — \ » π J, where
V u ^2/ V—c U/ V—d *v

δ = 0,1, and c / 0 or ίί / 0. We may simply assume c φ 0. So if

λx = λ2 = £ = d = 0, then # = ί x ^ 2 j G £7 will make it work,
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where e i — ( π Q ) a n d e2 — ( n 1 ) Otherwise we can choose g

to be of the form g = ί 2_λ ί. 1, where t,u,υ,w E C such that

tu — υw — 1 to ensure that g belongs to G, and where / is a suitable
2 x 2 invertible matrix. It is a direct calculation that we can make 71
into a diagonal-block matrix under the action g by an appropriate choice
of the parameters involved.

Now assume the claim is true for k > 2, and we shall show that the
claim is also true for k + 1 . The idea is to use the result for k = 2 k times
to inductively make the last row and column of C and D zero. Each
time we choose a g that is modified from the identity matrix by changing
at most sixteen elements, the size of g when k = 2. For example, the
modification for gλ takes place at those elements that are located at the
intersections of both rows and columns being numbered 1, k + 1, k + 2
and 2(fc+l). The modification is so chosen that the resulting matrix will
have the property that the elements of C and D located at (1, k +1) and
hence at (k + 1,1) will be zero (since C and D are skew-symmetric).
For g2, the modification takes place at the intersections of rows and
columns numbered 2, k +1, k + 3 and 2{k +1). The result is to make the
elements of C and D located at (2, k +1) and (k + 1,2) zero. Thus after
k steps we have derived a new matrix 7χ that has the property that the
last row and column of its block C and block D are zero. So by the
induction hypothesis there exists a g to make the remaining parts of C
and D zero.

ΛT (J 0 λ , ., ( Dx D2\ ,
Now choose 7X = I τ , and write 72 = ^T n ) a n c * c =

\Ό J J \-^2 vsJ
(α b) block-wise accordingly. If we assume J = diag(Jι (xi),... , Jr (#r))
with # 1 , . . . , xr being r distinct eigenvalues and Ji(xi),. . . , Jr(xr) stan-
dard Jordan blocks, we shall also write Dk,a and b in obvious blocks
denoted as Dk(i,j),a(i) and b(i) respectively for k = 1,2,3, and z,j =
1,... ,r. We also need to introduce an equivalence relation on these
Jordan canonical forms. We say J = diag(Jι(xι),... ,J r (# r )) a n d
J' = diag(J[(x[),... , J'r(x'r)) are equivalent, denoted as J(x) ~ J'(x'),
if and only if r = rι and J^O) ~ J] (0) for all i after some permutations
of the diagonal blocks of J'(x') if necessary, where ~ is the symbol of
similarity relation. Denote then by J the set of equivalence classes of
Jordan canonical forms; the set J is finite. We write [J] for an element
of J. Thus we can write Mk = IJ[j] -M-k([J]) as a finite disjoint union
of sets according to the Jordan canonical forms of ηx.

For convenience, we choose a fixed representation for each [J], de-
noted by J by abuse of notation, as follows: Write J = diag(Jι(xι),... ,
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Jr(xr)). Then Ji(xi) is chosen in such a way that J^O) = Jj(O) if
Ji(0) ~ Jj(O) Moreover, the order of the diagonal blocks J^( ) is fixed.
Let S(J) denote the permutation group that permutes the diagonal
blocks and leaves diag(Jι(0),... , Jr(0)) fixed. So such J's are uniquely
represented up to the action of S(J). Evidently S(J) can be thought

as a subgroup of G. Denote Gj the subgroup of G that fixes ί π jT j ,

which can be seen to split as a product Gjλ x x Gjr (see [22]). Par-
ticularly, Gj and Gj{ are independent of the eigenvalues of J and Ĵ
respectively. Furthermore, the actions of S( J) and Gj commute. Thus
we have Gj x S(J) C G. Finally, we denote by Δ the diagonal variety
C , that is the subset of C with at least two coordinates being the
same. With the notation just introduced, we can formulate Λί* ([•/]) m

terms of J,Dι,D2iD3,a and b according to 1.8 as follows:
Lemma 2.2. For n > 6, Mk{[J]) is the quotient of the set

{(J,DuD2,D3,a,b) e (C\Δ) x Mkxk(C) x Mkxk(C) x Mkxk(C) x
MnXfc(C) x Mnxk(C)} which subject to the following conditions:

(2.2a) Dι and D3 are skew-symmetric,

2{JτD1-D1J) + aτa = 0,

(2.2b)

2(JD
3
 - D

3
J

T
) + b

τ
b = 0,

J + xI
k
 0 \

0 J
τ
 + xl

k

D
x
 D

2
 + yl

k(2.2c)

has rank 2k for all x,y E C,

-Dl-yh D3

\ a b )

by the group action

Dx D
2

for geGjX S{J) C G.
Before we give the main theorem of this section we shall need one

more notation. We define F Jf to be the subset of Mki (as defined in
1.8) such that 71 ~ Ji(0), where J^O) is a kι x kt Jordan block with
eigenvalue 0.
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trivial holomorphic fibration:

π:Mk([J])-+BF(C),

with fiber at any point

F J = Π X

the disjoint union of n([J]) copies of FJ, where n([J]) =

Proof. The map π just associates to a point in -M the distinct
eigenvalues of J, thought of as unordered. Obviously, there are n([J])
distinct J's up to the action of Gj x S(J) that map to the same point in
DFr(C). So we have seen that a fiber over each point is n([J}) disjoint
sets. To understand the fibers, we need to analyze Lemma 2.2. Two
facts which were essentially proved in [22, Lemma 2.11 and 2.12] are
needed to show this theorem.
Fact 2.3a): Equations 2.26) are equivalent to

a(i)τa(i) = 0,

2[J^D2(i,i)]+aτ(i)b(i)=0,

J b{ϊ)τb(i) = 0,

for i = 1,... ,r.
Fact 2.3b): The rank condition 2.2c) is equivalent to the condition that

MO)
0

0

a(i) b(i)

has rank kι for all y G C, and 2 = 1,... , r.
The proof of fact 2.3α) requires one to solve Dk(i,j), for i φ j , in

terms of J i 7 Ĵ  , DΛ(i,i), Dk(j,j), a(i),a(j),6(i) and b(j). This can be
done by a method of bootstrapping as in [22]. A simple formula will
be given in the last section. The proof of fact 2.36) can be outlined as
follows. We note that 2.2c) is equivalent to the condition that

(2.4)

( J — Xih
0

A
2 — yi

a

Jτ

A
k

0
-Xih

+ yh
A
b



hk
D(i)

0

0

Ki
0

0
c

In
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has rank 2k for all j /GC, and for i = 1,... ,r. Denote by Dk(i) the
matrix obtained from Dk by replacing all blocks of Dk by zero except
those j-column blocks Dk(i,j) where i φ j , and let K{ be the matrix
obtained from diag(Jι(xι — x^),... , Jr(xr — Xi)) by changing J^O) to
Iki Let

Then

is nonsingular. Left multiplying it by (2.4) reveals that the submatrix of
the resulting matrix formed by the columns where Ji(0) and J^(0) axe
located, deleting the obvious zero-block rows, is precisely the matrix in
2.36) (note: 2.26) is used in the calculation). This verifies the fact 2.36).
Since both 2.3α) and 2.36) actually do not involve the eigenvalues of J,
we see that the fibers at different points are precisely FJ. Moreover, it
is now clear to see the natural local holomorphic trivial fibration from
the map π.

So far we have been only doing linear algebra and leaving the more
interesting geometric counterpart unmentioned. To give an indication
of the geometry behind our analysis, we shall make some remarks. Re-
member that these monads construct certain semi-stable holomorphic
bundles over QP2. If we choose appropriate coordinates, then we can see
that x parameterizes all lines other than l^ through a fixed point in l^.
The bundle is trivial restricted to all but finite number of these lines.
A line to which the bundle restricted is nontrivial is called a jumping
line. The jumping lines are precisely given by x = —eigenvalues of 71.
J, the Jordan canonical form of 71, can be thought of as an invariant
of the versal deformations of the jumping lines in their formal neigh-
borhoods. It encodes the same information as the graphs associated to
the jumping lines introduced in [6]. The multiplicity (see [6]) of a jump
is the same as the corresponding size of the Jordan block. Thus the
sum of the multiplicities of the jumping lines is precisly &, the size of
α ,̂ which is the second Chern class of the bundle. Theorem 2.3 shows
a striking superposition phenomenon of these instanton spaces, namely,
such a bundle up to isomorphism is constructed by grafting "jumps"
to a trivial bundle. In particular, we can give an explicit formula for
Taubes' grafting map:

(2.5) Lk :Mk — > -
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using Theorem 2.3. For example, we can use dilation to map Mk con-
formally into a subset of it in such a way that all "jumps" will be inside
a unit disk. We then add a jump of "multiplicity" one outside of the
unit disk (see [22, p.125], |αi | should be defined using eigenvalues of α?i,
e.g. max{|eigenvalue of α?i|}). We shall adopt such a convention. It can
be shown that the space from direct limit process using the aforemen-
tioned map is really the one obtained by Taubes up to homotopy (see
[6]). Thus the following simplified version of a theorem of Taubes can
be applied.

Theorem [21] 2.6. Let G be a compact, simple Lie group. Let
Λ4k be corresponding instanton moduli space over S4 with minus half
the first Pontryagin index k. Let M^ be the direct limit of the M'ks
and let ϋ : Moo —> ΩlSU(ή) be the direct limit of maps ϋk. Then ϋ is
a homotopy equivalence.

3. Stratification

For a given Jordan block J ,̂ FJ{ as defined in the previous section is
not necessarily a manifold. However, it is a simple fact from algebraic
geometry that F Jι can be decomposed uniquely as a finite number of
disjoint smooth manifolds

l(Ji)

(3.1) FJ{ = U FJ*
s=l

such that dimcFJ/ < dimcFJ/" 1 (see [22]). Here the FJ? are obvi-
ously in descending order according to s. From now on we shall always
write Ji(0) = diag(Dι,... ,Dlt) such that the D^ are in descending or-
der according to their sizes, where the Dj are obvious (indecomposable)
Jordan blocks. Let J<(0) = diag(D\... ,£*«). Then we say J{ < J{ if
the size of Jι is greater than or equal to that of J{, and the size of Dj is
greater than or equal to that of DJ for all j = 1,... , it. (Note that this
ordering is slightly different from the previous one in [22], but it works
equally well). For each minus half the first Pontryagin index fc, we can
now introduce our index set

(3.2) I* = {J* = (JΓ,J2*V..,J,?')},

where the J** are in descending order first according to the order of Ji
we have just defined, then according to ŝ  as indicated in 3.1.

Now define l\ = {{J'1,... , Js

r

r) G lk : the size of Jr is 1}, and 1% =
lk \ I\. Then we can give the index set lk a well-ordering as follows:
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First I\ < Ifc, then order both I{ and Pk by the natural lexicographical
ordering, defined above. We denote this well-ordering by (I*. <). So
lib with this ordering is denoted by (!*,<). The particular choice of
the order I\ < 1̂  is important here. It is mainly due to the effect of
the Taubes grafting map 2.6, whose impact can been see through the
proof of Theorem A (see [6]). Roughly speaking, because the image of
the map 2.6 only lies in the strata whose indices belong to I^+1, and
because the (complex) codimension of the each stratum whose index
belongs to 1\ is greater than or equal to [k/2] as we will see in section
4, these strata whose indices belong to l2

k have no effect to the topology
of Mk in complex dimension less than [k/2] (or real dimension 2[k/2]).
Using Theorem 2.3, we can easily see that

(3.3) Mk =

where Mk{J*) are now smooth manifolds. This is because when re-
stricted to the fibration 2.3 both the base and the fiber of Mk(J*) are
now manifolds. Thus we have obtained a desired stratification of the
manifold Mk — the L-stratification (see [6]).

Theorem 3.4. The stratification 3.3 of Mk is a L-stratification:
i.e.,

3.4α The index set lk is finite with a fixed well ordering <.

3.46 //J ( o ) is the smallest element in (!*,<), then Mk(J{0)) is
an open dense subset of Mk.

3.4c For all J* G I*, the union of the submanifolds of the same or
smaller order

Z(Γ) = U Mk(K)
K<J*

is an open dense submanifold of Mk.

3Ad For all J* e lk the normal bundle u(Jm) of Mk{J*) in Mk

is orientable.
The proof of the theorem is straightforward, and we shall omit it

(see [22]). Two important features of this stratification are as follows:
Firstly, the stratification of Mk leads naturally to a homology Leray
spectral sequence converging to filtrations of the homology of Mk The
expression of the E1 term is rather simple (see [6]). Secondly, the strat-
ifications for Mk and Mk+i are preserved by the map Lk, i.e., the map
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Lk sends a stratum in Mk into a stratum in Mk+ι It is thus a beau-
tiful idea of [6] that in order to prove Theorem A of the introduction,
all we need to do is to analyze the dimensions of the strata and the
isomorphism ranges of the map Lk induced on homology of these strata.
We shall refer the reader to [6] for details. A sketch of the proof was
also outlined in [22]. The dimension analysis will be given in the next
section. Particularly, the Corollary 4.3a) is all we need, As to the latter,
a crucial lemma whose proof is rather involved is given by BHMM as
follows.

Lemma 3.5. [6, Lemma 7.8]. For all k and all primes p, the natural
inclusion i restricted to stratum J* induces an isomorphism in homology

(i(J*))t : Ht(Mk(r);Z/p)*Ht(Mk+1(ι(r)) ,Z/p)

for t < q(k,J*) = [j/2]j where j is the number of Ji in J =
diag(Jι,... , Jr) whose size is 1.

In the next section we will also show that the moduli spaces Mk are
simply connected for n > 6. Since πi(ΩoSΌ(n)) = π4(5O(n)) = 0 for
n > 5, the proof of the Atiyah-Jones conjecture reduces to the proof
of a conjecture of its homology version. Combining Theorem A and
Theorem 2.6 of Taubes, we then get our main result

Theorem 3.6. For n > 6 and k > 0, the induced map (from ϋk)

—>• πt(Ω3

0SO(n))

is an isomorphism for t < q(k) = [k/2] — 1.

4. Dimension counting and the fundamental group

In this section we give an upper bound on the dimension of each
stratum which suffices for proving Theorem A, and show that the Mk
are all simple connected for n > 6. Unless stated otherwise, dimension
will be complex dimension.

Prom Theorem 2.3 we have dim Mk{J*) = r + dimFJ[X + ••• +
dimFJ r

S r < r + dim FJf H h dim FJj:. So we need to analyze the
dimensions of FJ{. Assume that sizeJ; = ra;. To do so, we shall return
to Lemma 2.2. Observe that if we consider equations 2.26) as systems
of linear equations for Dλ,D2 and Z)3, then by comparing the defining
equations for GJ{ (linearized at the identity) with those of ZVs reveals
that for a = 0 and 6 = 0, the total number of parameters of the solution
space for Dλ, D2 and D3 is 2ra; less than the dimension of group Gj{.
Since the rank condition 2.2c) is an open condition (this is the case only

Ji is nonempty which is true when n > 6; see the proof of Proposition
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4.4). This implies that dimFJ{ = dimBΛ(Ji) - 2rai5 where BΛ(Ji) =
{(α, b) 6 M n x m . (C) x Mnxm. (C) : a and 6 solve 2.26)}. It turns out that
BΛ is given by a system of homogeneous quadratic equations. If we
write Jι = diag(Dι,... ,i}m) as in previous section, it is easy to verify
that

(4.1) BΛ{Ji) C BΛ{Dι) x ... x BΛ{Dm).

Lemma 4.2. Let Dι be a size kι block as in 4.1. Then the dimension
ofBΛiD1) is (2n-3)fci.

Proof Recall that D% is a (ki x fc^-matrix whose only nonzero
elements are Γs located just above the main diagonal. If we write
a = (αi,... , dki) and b — (61,... , &fcj, then the defining equations for
BΛ(Dι) can now be written as
4.2a) Σj αf- +iβ; = 0, for 1 = 1,... , ku

4.2b) Σj btj+kfj = 0, for 1 = 1,... , ku

4.2c) Σj hΊ+i-ιaj = 0, for 1 = 1,... , k{.

where

0\

The Jacobian of

A =

A' =

(aΐ
T

u
/o

T

these

• .

T

equations is

T T 1

• 4

... aτj

,B

B'

(2A
°\B

L 0
IB
A'

Ibl

bl-,

\b\

'bl

\ 0

6Γ \

' °ki-\

For these points of iJ^D*) that also satisfy rank condition 2.2c), i.e.,
rank (αi bk.) = 2, we can easily see that the corresponding Jacobian
is of maximal rank 3/ .̂ Thus the claim of the lemma follows.

Corollary 4.3. a): Let J = diag(Jι,... , J r) fee as before. Then
dimMk{J*) < (2n — 5)k + r (note: dimjVίfc = (2n — 4)fc). Moreover,
the equality holds if rank(J - xl) > size(J) - 1, for all x G C. 6): //
J* e l\, then r < [|]. This implies that dimΛίfc(J ) < 2(n - 2)fc - [|].

In the remaining of this section we shall show
Proposition 4.4. The fundamental group of Mk is trivial for all

k and all n > 6.
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Proof. The idea is the same as the one given in [22, Theorem 4.14]
followed from [13], so we shall sketch the proof. Let Mk(J^) and
Mk(J^) denote the first two strata of Mk as given in 3.4. Then the
complement of Mk(J^)U Mk(J^) in Mk has complex codimension at
least two, so Έλ{Mk) = ^i(Mk(J{0)) UMk(J{1))). Thus by a transver-
sality argument we conclude that any loop L C Mk{J^) U Mk{J^)
that represents a homotopy can be chosen to lie in Mk(J^) such that
the homotopy of L intersects Mk{J^) in finite discrete points. If we
restrict the projection map π in 2.3 to the union of these two strata,
the image of the projection can be easily seen to be simply connected.
Thus the image of L is contractible. Local triviality of the fibration
π : Mk(J{0)) —> DP*(C) permits us to shrink the loop L in the "hori-
zontal" direction. This process only stops at finitely many points where
the loop becomes "near" those points in Mk{J^) But as we can show
(see [22]), the loop can actually be continuously pushed through these
points, and eventually the loop is homotoped to the one on the fiber of
the first stratum, FJ(°K This shows that the fundamental group is a
quotient of the fundamental group of FJ(°\ It is clear from 2.3 that
FJW is homotopic to a fc-fold product of M\. To finish the proof we now
show that πι(Mι) = 0. From its definition it is easy to see that Mi is
homotopic to the quotient space { ( α ^ J E P x C : aτa = bτb = aτb =
0, rank (a b) = 2}/SX(2, C). Up to homotopy, we may assume that α, b
belong to the spheres of radius two and four in C™ respectively. Then
the condition that aτa = 0 and bτb — 0 imply that a E TλSι~ι, the unit
tangent bundle of the unit (n — l)-sphere (or Stiefel manifold ^(2,™)),
and that b E T2S2~1

1 the length two tangent bundle of the (n — 1)-
sphere of radius two. Since 5L(2,C) is homotopically a three-sphere,
using the homotopy long exact sequence for a fibration we can see that
our problem becomes to calculate the fundamental group of the set
Vn = {(α, b) e ΆSΓ1 x ΆSζ'1 C e x Cn : rank (α b) = 2, aτb = 0}
which turns out to be a manifold. Moreover, the projection of Vn to
TχSι~ι by its first factor is a fibration. The fiber is homotopically
TχSι~3. Applying the homotopy exact sequence for a fibration again,
we find that TΓ^K) = {0} for n > 5.

5. Sp{n) case

Now we sketch the proof for Sp(n). The stratification becomes sim-
pler than the previous case.

Proposition 5.1. The moduli space Mk(Sp(n)) is the quotient of
the set of (α!,α2,α,&) E Mkxk(C) x Mkxk(C) x Mnxfc(C) x Mnxk(C)
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satisfying the following conditions:

5.1a) OL\IOL2 are symmetric,
5.16) [aua2] +aτb-bτa = 0,

5.1c)

has rank k for all x,y G C by the action of the group O(fc, C) given by

i I T T 1

c%i i—>• goίig , a *—f ag , b •—> og .

Proof We could follow the same steps as in Section 1 to prove this
proposition, although Donaldson's treatment (see [10]) is more appeal-
ing. We shall sketch it here. The ADHM construction (which constructs
the moduli space of instanton bundles over QP3) gives the following de-
scription of Mk{Sp(n)) (see [1]): The data consists of {5,Λ}, where B
is a quaternion valued k x k matrix, and Λ is a quaternion valued n x k
matrix. The constraints on the data are a): Λ*Λ + B*B is real, where *
stands for quaternion conjugation and transpose; 6): B is symmetric; c):

For any quaternion x, ί . k 1 χ = 0 implies the quaternion vector

X = 0. There is an O(k) action given by B *--» gBgτ,A »-> Agτ. If we
write Λ = a + 6j, B — άι + a2j, then 6) is obviously the same as 5.1α).
The reality condition a) can be rewritten as follows:
5.2a) [α1? a2] + aτb — bτa = 0,
5.2b) [αi,αχ] + [ά2,α2] 4-α*α - α τα + 6*6 - 6T6 = 0.

Denote c = ί x) and d — I ,2 1 . Then the rank condition c)

is the same as the condition that rank ί , _ 1 = 2k. Using 5.2α) we

have

d c\T (c -d\ ( 0 -dτd-cτc\
0

id c\T (c -d\ _(
\-c d) \d c ) ~ \c

This implies that c) is the same as 5.1c). Now take the data (αx, α2> α> b)
as in the proposition and define a Hermitian metric by 11 (αi, a2, α, 6) 112 =
| | α i | | 2 + | |α 2 | |2 + 2 | |α | |2 + 2||6||2. Let O(fc,C) act on these data as in
the proposition. Then obviously the subgroup of O(fc, C) that fixes this
metric is precisely 0{k). Moreover, the moment map of this action is
μ = [άι, αi] + [c*2, ̂ 2] + α*α — aτά + 6*6 — 6T6 which is the left-hand side
of 5.26). Donaldson then showed that the conditions 5.16) and 5.1c)
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imply that the orbits of the action of O(k,C) are stable. By geomet-
ric invariant theory this implies that the above ADHM description is
equivalent to the proposition.

Starting from this proposition, the L-stratification becomes much
simpler. We can put OL\ into diagonal block form using the action of
O(fc,C) according to the eigenvalues of OL\ and their multiplicities. This
amounts to choosing an orthonormal basis (with respect to the standard
symmetric form) for each minimal invariant subspace of OLI . Denote a
diagonal block of aλ by N(i) + μd such that N(i) is a nilpotent matrix
and μi is a scalar. Denote by a(ij) a block of α2. Then the a(ij) satisfy
the following equation:

[(μi - μj)I + N(ί)]a(ij) = a(ij)N(j) + L,

where L = b(i)τa(j) — a(i)τb(j). The important issue is that the for-
mulation of L does not involve any a(ij). Note that from the above
formula we inductively have

+ V.

Again L' is formulated without involving any a(ij). Since N(j) is nilpo-
tent N(j)n = 0 if n is large enough, [(μi — μj)I + N(i)] is nonsingular if
i φ j since μi φ μj and N(i) is nilpotent. Thus a(ij) can be uniquely
determined by diagonal blocks. With obvious steps we get a theorem
similar to Theorem 2.8 in [22] (or Theorem 3.5 in [13]). By stratifying
the 'fibers' into smooth manifolds abstractly we can derive the desired
stratification. Theorem A is again a formal consequence of the strati-
fication. However, as we can check that the moduli spaces Mk(Sp(ή))
are not simply connected. In fact, ττι(Λ4k(Sp(n))) = Z/2, which is the
same as πi(ΩoSp(n)), since Λ4ι(Sp(n)) is easily seen to be homotopy
equivalent to KP471"1. Thus the argument of [6], [7] can be applied to
give the proof of the following theorem:

Theorem 5.3. For all positive integers n and k, the map (induced
from ΰk)

(#k)t : *t(Mk{Sp(n))) —> πt(Ω3

oSp(n))

is an isomorphism for t < q(k) — [k/2] — 2.
Remark. We have now superficially three different stratifications for

group SU(2) = Sp(l): [6], [22] and one that follows from Proposition
5.1. It is natural to expect that all of them are equivalent from the
geometry underlying the stratifications.
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6. The Atiyah-Jones conjecture and Bott periodicity

The purpose of this section is to point out a connection between the
Atiyah-Jones conjecture, Bott Periodicity and some "partial symme-
tries" present in these moduli spaces. To begin with, note from the
monad description of the moduli spaces that there are natural inclusion
maps

),k): Mk{K(n)) -+ Mk(K{n + l))

for K(n) = SU(n),Sp(n) and SO(n) respectively. These maps can
be described by adding appropriate rows of zeros to the appropriate
matrices. Geometrically, it amounts to the Whitney sum of adding a
trivial bundle. Kirwan [15] first showed that these maps j(K(n),k)
stabilize homotopically to BU(k), the classifying space for U(k) when
K(n) = SU(n). We shall call this stabilization Kirwan's stabilization.
Her result has recently been extended to symplectic groups by Sanders
[20]. Using the concrete description of Mk{K(n)) which we have ob-
tained, Sander's short proof fits nicely here. So I shall include it here.

Theorem 6.1. [15], [20] Let Mk(SU),Mk(Sp) and Mk{S0) de-
note the direct limits of the moduli spaces Λ4k(SU(n)),Λ4k{Sp(n)) and
Mk(SO(n)) (as n —> ooj respectively. Then we have the following ho-
motopy equivalences:

Mk{SU) ~ BU(k),Mk{Sp) ~ BO{k),Mk{SO) ~ BSp{k).

HereBU(k),BO(k) andBSp(k) are the classifying spaces for U(k),O(k)
and Sp(k) respectively.

Proof. From the monad description of the moduli spaces in [10]
and the preceding sections, we have seen that all those moduli spaces
are obtained by taking quotient of various affine algebraic varieties (say
Vk(K(n))) by the corresponding complex algebraic groups (say Gχ(k)).
All the actions of the groups are free. Gκ(k) remains the same when
n (the size of the structure group) changes. Note that the image of
Vk(K(n)) under the inclusion j(K(n + Ik — 1), k) o . o j(K{n),k) is
contractible (can be coned off) to a point that lies outside of the image,
where / = 1 for Sp{n), I = 2 for SU(n) and I = 4 for SO(n). This shows
that the direct limit of Vk{K(n)) as n goes to infinity is a contractible
CW complex. By the definition of the classifying spaces, this proves the
theorem.

Next, notice that the moduli spaces of all connections with struc-
ture groups SU(n), Sp(n) and SO(n) are naturally homotopic to
ΩlSU(n),ΩlSp(n) and ΩlSO(n) respectively [4]. Now we can perform
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the following direct limits

lim lim Mk(SU(n)) ~ lim
n—*oo k—¥oo n—>oo

lim lim Mk(Sp(n)) ~ lim
n—¥oo fc—>oo n—) oo

lim lim Mk(SO(n)) ~ lim Q3

0SO(n) = Ω3

0(SO).
n-+oo k—^oo n—>oo

The homotopy equivalence in each of the above identifications uses the
Atiyah-Jones conjecture which we proved, or more precisely, the stable
Atiyah-Jones conjecture solved by Taubes. By changing the orders of
the limits, we also have:

lim lim Mk(SU(n)) ~ lim BU(k) = BU,
»oo n > o o & * o o

lim lim Mk{Sp(n)) ~ lim BO{k) = BO,

lim lim Mk(SO(n)) ~ lim BSp(k) =

Here the homotopy equivalence in each of the above three identifica-
tions uses Kirwan's stabilization. As two limits homotopy commute
which is due to the fact that j(K(n),k) and the Taubes inclusions ιk

homotopy commute (actually, by choosing the Taubes inclusions ιk ap-
propriately the diagrams can be made commutative), we obtain Bott
Periodicity for Sp and SO and partial periodicity for SU (we get pe-
riod 4 instead of 2). Assuming that we have done the calculations for
πχ(ί7(3)),π2(C/(3)),π3(C/(3)) and π4(£/(3)), we recover Bott Periodicity
for U. One can clearly see that the Atiyah-Jones conjecture is in certain
sense a generalization of the Bott Periodicity. They are rooted in Morse
theory.

Now let us take a closer look at these two stabilization processes and
try to understand the similarity between Mk(K(n)) and Mn{K(k))
that the above discussion suggests. Firstly, if we consider the dimensions
of the pair as quadratic polynomial functions of A: and n, then the leading
order terms are the same. In the case where K(n) = SU(n), both
Mk(SU(n)) and Mn(SU(k)) are of the same dimension. Secondly, as
is also clear from Theorem B and Theorem 6.1, the lower homotopy
groups of the pair are the same. If we assume both k and n are not
too small, it is not hard to figure out the exact isomorphism range for
each pair (see below for more details). Thirdly, notice that Kirwan
actually obtained the best possible range q(k) = 2k + 1 for the Atiyah-
Jones conjecture when K(n) = SU(n). The q(k) was obtained as the
homotopy isomorphism range of the inclusion BU(k) -> BU(k+l). The
point which we want to make here is that the stable range q(k) as k —> oo
is in certain sense obtained by studying the limit spaces of Λ/ίk(SU(n))
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as n —> oo. It is not hard to see that Kirwan's argument extends to the
cases where K(n) = SO(n),Sp(n) using the explicit description of the
moduli spaces we obtained. Since BO(k) —>• BO(k + 1) —• BO induces
the homotopy isomorphism πi(BO(k)) -» πi(BO(k + 1)) for i < k and
since BSp(k) -> BSp(k + l) -» BSp induces the homotopy isomorphism
πi(BSp(k)) -> Έi(BSp{k + 1)) for i < 4k + 3, we can state the following
result (for a proof see [15]).

Theorem 6.2. ΓΛe 6es£ possible q(k) for the Atiyah-Jones con-
jecture are 4k + 3 if K{n) = SO(n), 2k + 1 if K{n) = SU(n) and k
if K(n) = Sp(n) with at most a few exceptions in each case when n is
small

On the other hand, Kirwan showed that πi(Mk{SU(n))) = 7Γi(BU)
for i < n — 2. We can ask the same question about the best possible
isomorphism ranges, say r(n), for Kirwan's stabilization Mk(K(n)) —>>
Λ/lk{K(oo)). The natural expectation would be that the partial sym-
metry still holds. Namely, we expect, with possibly a few exceptions,
that

Γ 2 n - 3 , for K(n) = SU(n),
r(n) = < n - 4, for K(n) = SO{n),

{ 4n - 1, for K(n) = Sp{n)

for the inclusion maps Ωl(K(n)) -> ΩQ(K(n + 1)) induce the homotopy
equivalences in the same ranges r(n) above. Now let us take a look at
the simplest case where k — 1. Then we have

4 7 1" 1 -> £0(1) - 1P°°,

CP°°,

S5p(l) - OF0 0.

Here TiX stands for the unit tangent vector bundle of X. So the above
expectation for r(n) holds when ϋΓ(n) = SU(n) and S'p(n) and may be
off by one in the case where K(n) = S0(n). Thus it may well be true
that the best possible r(n) are given by

Γ 2 n - 3 , for K(n) = SU{ή),
(6.3) r(n) = I n - 5, for K(n) = S0(n),

[ 4 n - l , for K{n) = Sp{n).

Finally we give an indication on how this partial symmetry might
be seen. It is in a certain sense related to the symmetry of the Grass-
manians Gr(n,n + k) and Gr{k,n + k). For simplicity, we shall only
treat the case where K(n) = Sp(n). The other two cases can be
done entirely analogously. Let E — [(aι,a2,a,b)] G Mk(Sp(n) and
let F = [(/?i,/?2,c,d)] E Mn{Sp{k)). We say E and F are related if
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there are representatives (αχ,α2,α,6) of E and (/?1?/32,c,d) of F such
that

ί

H =

is an automorphism o

S adτ cτ A
\ - c d* -/32*

71 and such that

HH* =

/# 0 0 0\
0 # 0 0
0 0 # 0
0 0 0 #.

As usual, * here stands for the complex conjugate transpose and #
means that there is no further restriction on these diagonal blocks. De-
fine £(fc,n) = {(E,F) E Mk(Sp{n)) x Mn(k)\E and F are related }.
A simple counting shows that for any E E Mk{Sp(n) there exist(s)
F G Mn(Sp(k)) such that £7 and F are related, and vice versa. So we
obtain the following diagram

where 7Γχ and π 2 are natural surjections to the first and second factors
respectively. It seems worth investigating this partial symmetry between
the pairs. One may hope that it can be helpful in understanding the
topology of these moduli spaces and related questions. One can also try
to do all of this for arbitrary four-manifolds. It is reasonable to hope
that comparison of these two stabilizations will be useful.
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