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DISCRETE SURFACES WITH CONSTANT
NEGATIVE GAUSSIAN CURVATURE

AND THE HIROTA EQUATION

ALEXANDER BOBENKO & ULRICH PINKALL

1. Introduction

Surfaces with constant curvature (especially, with constant negative
curvature K = — 1, which we will call shortly K-surfaces) were one of
the favorite objects of investigation in differential geometry in the 19th
century (see [2], [10]). During this classical period many properties,
which nowadays might be called integrable were discovered and many
explicit examples of surfaces were constructed.

Later on the fashion of constructing explicit examples changed to
proving that certain examples do not exist. The structure of the spaces
of surfaces with constant curvature was partially clarified. Typical
examples of the results were theorems proving that the only surface
satisfying some prescribed assumptions is a round sphere.

A modern period of interest in this theory started with the paper [24]
by Wente, where the simplest tori with constant mean curvature (ab-
breviated to CMC) were constructed. This turned out to be an inter-
esting alternative to the theorems mentioned above. Further progress
is mostly due to the theory of integrable equations - theory of solitons,
which appeared in 1960's. Though this theory was oriented basically
towards problems of mathematical physics, it deals in many cases with
the same equations as differential geometry. The sine-Gordon equation

(1.1) φxt- sin 0 = 0,

which is the Gauss equation for the K-surfaces, is one of the fundamen-
tal examples in this theory [11]. A characteristic result obtained with
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the help of this theory is the classification and explicit description of
all CMC tori [21],[5].

One should mention also the role of calculations in this theory. Of
course, people were always interested in seeing appearances of the sur-
faces described by explicit formulas, or differential equations or vari-
ational principles which they have. In the pre-computer era this was
really a difficult problem (see, for example, the impressive calculation
tables in [23]). Often these explicit formulas involve complicated func-
tions, and differential equations and variational principles usually allow
to investigate surfaces only locally. Computers simplify these problems
a lot, but solve completely the problem with explicit formulas only. As
a top achievment in this area one should probably consider the soft-
ware for calculations on hyperelliptic Riemann surfaces, developed by
M.Heil for SFB 288, which makes visible, in particular, all the CMC
tori, by visualizing the theta functional formulas of [4],[5].

On the other hand the question of proper discretization, which is
of the main importance for numerical solution of differential equations
or variational problems describing the surfaces, can hardly be consid-
ered as completely solved. One can suggest various discrete problems,
which locally have the same continuous limit and nevertheless have
quite different global properties. For example, taking a proper discrete
variational principle for the minimal surfaces one can speed up the
area-minimizing process a lot [20].

Taking into account the connection between surfaces with constant
curvature and integrable systems one can suggest two approaches to
define proper discrete analogues to the K-surfaces:
(i) to postulate natural discrete analogues of some geometrical prop-

erties,

(ii) to construct a discrete integrable system, corresponding to a con-
tinous one. Schematically these two mechanisms are shown in a
diagram below.

In the present paper we show that these two approaches yield the same
definition of the discrete surfaces with constant negative curvature,
which we call discrete K-surfaces.
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Surfaces with constant curvature

description

Geometrical properties Integrable systems

discretization

Discrete surfaces

Actually both methods mentioned above were already applied to

the problem under consideration. Let F(x,y) be an asymptotic line

parametrization of a K-surface, forming a Chebyshev net (see for details

§2). It means that the images of the straight lines x — const or y —

const under the map F : R 2 -+ R 3 are asymptotic lines and

where N is the Gauss map. The angle φ(x, y) between the asymptotic

lines satisfies the sine-Gordon equation (1.1).

Wunderlich in [25] suggested the following natural geometrical dis-

cretization F : Z2 -> R 3 (see §3):

1) Every point F n , m and its 4 neighbors Fn_i,m, F n ? m _i, F n + i , m , F n ? m + i

belong to one plane Vn,m>

2) All edges of the net F n , m are of the same length. In [25] important
geometrical properties of discrete K-surfaces were established and a
discrete analogue of the Backlund transformation was constructed, but
a discrete analogue of equation (1.1) was not discussed.

On the other hand, Hirota in [14] without using any relation to
geometry constructed a discrete integrable analogue to equation (1.1):

( - "I-

(1.3)

In the present paper we show that the papers [25] and [14] stud-

ied essentially the same mathematical problem. Using a quaternionic
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description of surfaces in R 3 we formulate geometrical properties of

the discrete K-surfaces in a modern language of integrable systems and

show that the angles between the edges of discrete K-surfaces satisfy

the equation

(1.4) φn+l,m+l + Φn,m ~ Φn+l,m ~ Φn,m+1

= 2arg(l - fce"<0n+1 m) + 2arg(l - ke'^^1),

or in our notation of the diagonally oriented lattice (see (6.2))

Φu + Φd-Φι-Φr = 2arg(l - ke~iφι) + 2arg(l - ke~iφr),

which is natural to be called a discrete sine-Gordon equation. §§3-6
are devoted to the description of geometrical properties of the discrete
K-surfaces, in particular, the relation between equations (1.3) and (1.4)
is established in §6. It turns out that the discrete sine-Gordon equation
arises by averaging from the Hirota equation.

As in the smooth case the discrete K-surfaces are closely related to
the Lorentz-harmonic maps. The Gauss map N(x, y) of the K-surface,
parametrized as above, comprises a Lorentz-harmonic Chebyshev net
in S2, which means

The first condition in the definition of a discrete K-surface allows us to

define the Gauss map naturally in the discrete case as a unit normal

to the plane Vn<m. In §3 we show that this map is a Lorentz-harmonic

discrete Chebyshev net in S2. This means that all the scalar products

(1.6) < Nn^Nn^m >=< JVntm+i, JVn,m > = cosΔ

are independent of n, m, and

(1 7) -Wn+l.m+l — Nn+ιjm — A Γ n m + 1 + iVn j m

II N n + l t m + 1 + N n + h m + 7Vn,m + 1 + 7Vn,m.

The properties (1.6) and (1.7) are clearly natural discrete analogues of
(1.5).

§5 makes this geometrical picture familiar for specialists in the the-
ory of integrable systems. We introduce a "spectral parameter" λ, in-
terpret it as describing deformations preserving geometrical properties



DISCRETE if-SURFACES 531

and prove the Sym formula

for the discrete K-map F : Z2 -> R 3 in terms of the corresponding
extended (i.e., depending on λ) quaternionic frame Φn,m(λ) E SU(2).

A simple mechanism to solve the Cauchy problem and to reconstruct
step by step a discrete K-surface starting from Cauchy data

(19) N N N N = N

is presented at the end of §6. In the next section it is used to describe
discrete K-surfaces with two straight asymptotic lines, which in turn
leads to a discrete analogue of the Painleve III equation.

Unfortunately, this simple geometrical method does not allow us to
control the global behavior of the surface (for example, to control the
periodicity of the evolution of the initial broken loop (1.9)). A typical
discrete K-cylinder, obtained in this way is shown in Figure 1:

For this reason, starting in §8, we use methods from the theory of
integrable equations, which are based on an analytic solution of the
problem. We calculate explicitly the solutions to the Hirota equation
and the correponding extended frame Φn,m(λ). We determine in this
way the discrete K-surface F n > m and its Gauss map iVnm.

FIGURE 1. A typical discrete K-cylinder.

In §8 the Backlund transformation for discrete K-surfaces is pre-
sented. If some solution h°™m of the Hirota equation together with the
corresponding function Φ ^ ( λ ) is known, this procedure allows us to
construct new /î ™,ΨĴ ™(λ), which solve the same equations and de-
scribe a new discrete K-surface. Applying this transformation to the
trivial solution h£*m = 0 we construct the discrete pseudospheres.



532 ALEXANDER BOBENKO & ULRICH PINKALL

The rest of the paper is devoted to the finite-gap integration of
the Hirota equation. Geometrically, we are interested in discrete K-
surfaces, whose Gauss map Nn^m is periodic with some period (JV, M)
(1.9). In §9 it is shown how multiplying the rotations of the frame along
the loop (1.9) one associates a transfer matrix T f^(λ) and a spectral
curve

d e t ( O λ ) - μ ) = 0

to such a surface. The spectral curve is an invariant of the discrete
K-surface and is a hyperelliptic Riemann surface of finite genus.

An extended frame Φn,m(λ), which is also an eigenfunction of the
monodromy matrix, is called a Baker-Akhiezer function. For the usual
sine-Gordon equation (1.1) this function was first introduced by A.Its
(see [3]), who obtained a theta function formula for it. It is a function
with essential singularities and poles. In the discrete case the Baker-
Akhiezer function is a meromorphic function on the spectral curve X.
The analytical properties of Φn,m(λ) established in §10 allow us to
reconstruct it in §11 by explicit formulas in terms of theta functions
and abelian differentials of X.

The Baker-Akhiezer function constructed in §11 is complex valued
and is parametrized by the following parameters: the spectral curve
X, singularities P^^Po G X and vector D G Jac(X) in the Jacobi
variety of X. It has the geometrical meaning of a frame only if it lies
in SU(2) for real λ. The corresponding specification of the parameters
X,P^^PQ^D^ which guaranties Φ n m (λ G R) E SU(2) is obtained in
§12. §13 presents a final formula for the discrete K-surface generated
by the finite-gap solution.

Generally, this map is quasiperiodic. §14 contains the periodicity
conditions for Fn^m to be periodic with the period (TV, M), and also
the simples examples, generated by spectral curves of genus g = 1.
As in the smooth case [4] the periodicity conditions are formulated in
terms of the spectral curve X and do not involve the vector D G RΛ
In contrast to the smooth case, a change of D induces a non-trivial
deformation of the corresponding discrete K-surface even in the case
where the spectral curve is of low genus g — 1,2.

The simplest compact discrete K-surfaces are constructed in §15.
The spectral curve is of genus 2 in this case and is of the same symmetry
type as the curves generating the Wente tori.
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We hope that the remarkable similarity of the geometrical properties,
as well as of the analytical constructions and formulas, in the smooth
and the discrete cases, which is visible throughout the present whole
paper, convince the reader that the discretization which we study here
is a proper one.

In our paper [9] in a similar way we define discrete analogues of the
CMC surfaces. This case is more difficult for investigation since the
corresponding Gauss equation is an elliptic version

Au + sinhΐi = 0,

of the sine-Gordon equation, which is more difficult to discretize. Con-
cequently, the geometrical properties of the discrete CMC surfaces,
which we postulate, are not so transparent as in the case of discrete
K-surfaces and would not have been guessed without using the theory
of integrable systems.

We would like to mention here also two recent papers [7], [8], which
show that the applications of the discrete sine-Gordon equation (1.4)
extend beyond differential geometry. This equation, written in expo-
nential form (see §6 for notation)

(1.10) Q u Q Q k Q k

™α 1-kQtl-kQ/

can be considered over a finite field. An integrable cellular automaton
with a Lax representation was defined in this way in [7]. Another
interesting application is the quantum version of (1.10)

(l.ii) QuQd = τ-

which was obtained in [8], based on the results of [12]. Here the fields
Q's are unitary operators, which do not commute anymore. Actually
the commutation rules are such that among the operators Q's on a
horizontal zigzag line only the nearest neighbors do not commute:

QdQι = e^QtQd, QdQr = e2i^QrQd.

The equation (1.11) determines an integrable quantum evolution and
is called the quantum discrete sine-Gordon equation. For the periodic
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solution of period 2 one gets the discrete quantum pendulum [8] - a
quantum mechanical system generalizing the Hofstadter hamiltonian.

2. Smooth surfaces with constant negative
Gaussian curvature

First we consider smooth surfaces with constant negative Gaussian

curvature and present here some fragments of their theory, most of

which are classical. A more detailed presentation of the theory is given

in [17], [6].
Let us consider a surface T with negative Gaussian curvature. For

each regular point of T there are 2 directions, called asymptotic direc-
tions, where the normal curvature vanishes. We use asymptotic line
parametrizations of T

For such a parametrization the vectors Fx,Ft,Fxx1Fyy are orthogonal
to the normal vector JV, i.e.,

(2.1) Fx,Fy,Fxx,Fyy±N.

The fundamental forms are as follows:

I = <dF, dF >= A2(dx)2 + 2AB cos φdxdy + B2(dy)2,

II = - < dF, dN >= 2 < Fxy, N > dxdy,

where φ is the angle between the asymptotic lines and

A = \FX\, B = \Fy\.

For the constant negative Gaussian curvature case:

lf = d e t J J / d e t J = - 1 ,

we get

// = 2 AB sin φdxdy

and the following Gauss-Codazzi equations:

(2.2) φxy-ABsinφ = 0,

(2.3) Ay = Bx = 0.
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If A and B do not vanish we call this parametrization a weak Chebyshev
net.

The Gauss-Codazzi equations are invariant with respect to the trans-
formations

(2.4) A-+XA, B-^λ-'B, λeR.

This fact implies the following well known theorem.
Theorem 1. Every surface with constant negative Gaussian cur-

vature posesses a one-parameter family of deformations preserving the
second fundamental form, the Gaussian curvature and the angle φ be-
tween the asymptotic lines. This deformation is described by the trans-
formation (2.4).

This one-parameter family of surfaces is called an associated family.

Equations (2.2, 2.3) can be represented as the compatibility condi-
tion

Uy-Vx + [U,V] = 0

for the following system

(2.5) Φ* = t/Φ, Φ y - FΦ,

(2.6)

Equations (2.5, 2.6) are the equations for the moving frame of the

asymptotically parametrized surface with K = — l j i^ l = λA, \Fy\ =

λ^B in the su(2) representation. To show this (for more details see

[6]) let us identify a 3-dimensional vector space R 3 with the space of

imaginary quaternions su(2)

X — (Xi,X2-)X?>) € R <—> X — —i
α=l

(2.7)
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Prom now on we represent vectors in this matrix form. The scalar
product is written as follows

Let us remark that for λ G R the matrices ί7(λ), V(λ) G su(2), there-
fore there is a solution of (2.5): Φ(s, ί, λ) G SU(2).

It can be easily checked that the following formulas describe the
moving frame of a surface with K = — 1, |Fa.| = XA, \Fy\ = λ" 1^:

(2.8) Fx = -iλΛΦ"1 ( ^ / 2 0 JΦ,

, / 0 eiφ'2

(2.9) F ^ " ^ ( e ^ 0 J
(2.10) TV^-iφ-VaΦ,

where Φ = Φ(^,t, λ) G 577(2). Moreover, as was first observed by A.
Sym [22], the dependence on λ allows us to integrate the formulas (2.8),
(2.9) for the moving frame.

Theorem 2. Let φ(x,y),A(x),B(y) be a solution of (2.2). Then
the corresponding immersion with K = —1,\FX\ = λA, \Fy\ = X-1B is
given by

β\Tf

(2.11) F = 2 Φ - 1 — , λ = e\
at

where Φ(x,ϊ/,λ = e*) G 517(2) is a solution of (2.5), (2.6). The Gauss
map is given by

(2.12) N = - iφ-V 3 Φ.

To prove this theorem we note that F determined by (2.11) lies in
su(2) and

F — 2 Φ " 1 — Φ F — 2Φ"1—— Φ

following from (2.5), (2.11), coincide with (2.8), (2.9).
We consider not only immersions but more generally weakly regular

surfaces, i.e., the surfaces with A φ 0,B φ 0 for all x,y. In this case
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the change of coordinates x —> x(x),y —» y(y), conformal with respect
to the second fundamental form, reparametrizes the surface so that the
asymptotic lines are parametrized by arc-lengths (generally different
for x and y directions)

(2.13) A = \FX\= const, B = \Fy\ = const.

We will call this parametrization an anisotropic Chebyshev net. In
this parametrization the Gauss equation and the system (2.5), (2.6)
become the sine-Gordon equation with the standard Lax representation
[11] (the deformation parameter λ is called a spectral parameter in the
theory of integrable equations). If A — B then the parametrization
is called a Chebyshev net. The associated family of an anisotropic
Chebyshev net contains exactly one Chebyshev net.

At last we mention also a well known fact, which also can be easily
checked.

Proposition 1. The Gauss map N : R2 —» S2 of the surface with
K = — 1 is Lorentz-harmonic, i.e.,

(2.14) Nxy = pN, p:R2^R.

It forms in S2 the same kind of Chebyshev net as the immersion func-
tion does in R3:

(2.15) \Nx\ = λA, \Ny\ = \-1B.

3. Discrete weak Chebyshev net and its Gauss map

By a discrete surface we mean a map F : Z 2 —>• R 3 . We use the

following notation for the elements of discrete surfaces (n, m are integer

labels):

F n m - for the vertices,

[Fn+l,m,Fn,m],[Fntm+uFn,m] " &Γ the βdgβS,
(^n+i.m+ij^n+i.m^n.m^n.m+i) - for the elementary quadrilaterals

comprised by the indicated vertices. We define a discrete weak Cheby-
shev net (discrete surface with constant Gaussian curvature) using nat-
ural discrete analogs of the properties (2.1), (2.3) in the smooth case.
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n-l,m

FIGURE 2. A piece of the surface with the indexes
of the vertices indicated.

Definition 1. A discrete surface with constant Gaussian negative
curvature (we will call these surfaces discrete K-surfaces) is a map

F : Z 2 R 3

possessing the following properties:
i) For each point F n > m there is a plane Vn,m

 s u c h

n+l,mj -^n-l,m) ^n,m+l 5 -^n.m-l vi rn,

ii) The lenghts of the opposite edges of an elementary quadrilateral
are equal

= An Φ 0,

= B m Φ 0,

where we have incorporated into the notation that An does not depend
on m and Bm not on n.

Remark. The easiest example of the discrete K-surface is a map
F : Z2 -> R2 possessing the property (ii). All these planar surfaces
are made out of parallelograms and can be easily reconstructed from
two broken lines F n 0 and F 0 ) m ; n,m £ Z. We do not consider planar
surfaces here.
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FIGURE 3. An elementary quadrilateral.

Let us consider an elementary quadrilateral of a discrete K-surface
and denote the vectors forming its edges as in Figure 3. The definition
of a discrete K-surface yields

(3.1) |a| = |a'|, |b| = |b'|, a + b' = b + a',

which implies the equality of the opposite angles of the quadrilateral.
First, we consider discrete K-immersions *, i.e., assume that in each

plane Vn,m the four edges are cyclically ordered as in Figure 2, and
quadrilaterals do not degenerate

(3.2) 0 < α , / 3 < π .

Let iVn>m denote a unit normal vector to Vn,m (Gauss map) whose
direction is chosen according to the orientation of the surface:

N -
|a||b|sinα'

[a x b']

(3.3) iV

n+l,τn

[a' x b]
n ' m + 1 |a'||b|sin/3'

[a' x b']
1 ~ |a'||b'|sinα'

1 later on a more general class of discrete K-surfaces will be considered
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where [x] denotes the vector product. The discrete analog of (2.13) is

given by the following proposition.

Proposition 2. The Gauss map of the discrete K-immersion com-

prises a discrete weak Chebysheυ net in S2, i.e., the angles between the

normals associated with the opposite sides are equal:

(3.4) < ΛΓn,m,iVn+1>m > = < JVn,m + 1, JV n + i , m + 1 > = c o s Δ ^ ,

(3.5) < iVn>m, JVn>m+1 > = < Nn+hm, 7Vn + 1 > m +i > = cos Δ ^ ,

where < , > denotes the scalar product, and we have incorporated into
the notation that ΔĴ  does not depend on m, and ΔJ^ not on n.

Proof. Two equalities (3.4), (3.5) are proved in the same way. We
present a proof of (3.4). Due to (3.3) it is equivalent to

(3.6) < [a x b], [a x b'] > = < [a' x b], [a' x b ' ] > .

Introducing three vectors

A = a + a', B = b + b', C = a' - a = b ' - b

and using (3.1), we see that

(3.7, a ^ , a ^ , b = E _ £ , b ^

and

(3.8) < A , C > = < B , C > = 0 .

Rewriting (3.6) in terms of A,B, C, we get

< [A x B] + [(B - A) x C], [A x B] + [(B + A) x C] >
1 ' < [A x B] - [(B + A) x C], [A x B] + [(A - B) x C] > .

The orthogonality (3.8) implies the proportionality

[A x B] = qC, qeH,

which, combined with the trivial identity < C, [X x C] > = 0, proves
(3.9).
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Definition 1 of the discrete K-surface implies that if for some quadri-
lateral the directions of two normals coincide, then the whole surface
lies in a plane. We choose Δ's in the interval (0, π) so that

The trivial identities

>= 0,

>= 0,

combined with the equalities

>= 0,

j >— 0,

following from (3.4), (3.5), show that for a weak Chebyshev net in S2

one of the two possibilities

(3.10) (i) ΛΓn>m + ΛΓn+1>m+1 || 7Vn+1,m + Nn%m+U

(3.11) (ii) Nn,m - 7Vn+1?m+1 || JVn+l jm - Λ^n,m+i

holds.

The following definition is a natural discrete analog of (2.14).

Definition 2. A map N : Z2 —> S2 is called Lorentz-harmonic if

for any n, m

(3.12)

iVn,m), p : Z2 -> R.

Proposition 3. TΛe Gαiί55 map o/ ίΛe immersed discrete K-surface

is Lorentz-harmonic.

Proof. Due to (3.3) we have

N , N _[axb] + [a'xb']

-Ύn+l.m

|a||b|sinα ''

[a' x b] + [a x b']

|a||b| sin/3
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Rewriting the vector products in terms of the vectors (3.7) we get

[axb] + [a' x b']

= i([(A - C) x (B - C)] + [(A + C) x (B + C)])

= ^[A x B],

[a x b] + [a x b']

= i([(A + C) x (B - C)] + [(A - C) x (B + C)])

= | [ A x B].

It proves the proportionality of the vectors AΓnm4-7Vn+1?m+1 and AΓn+1 m +
Nn+i,mi which is equivalent to (3.12).

Proposition 4. Any Lorentz-harmonic weak discrete Chebyshev
net N: 2? —> S2 is the Gauss map of a discrete K-surface, which is
determined by N uniquely up to a homothety and translations.

Proof. The edge [Fn+i,m, Fn,m] is orthogonal to both normal vectors
Nn+itm

 a n d iVn.fin the vector product of which does not vanish. This
implies for the edges of the elementary quadrilateral of the discrete
K-surface:

SL = a[Nn+hm x iV n , m ],

b = /3[iVn,m x JV n ι m + i],

a' = a'[Nn+ltm+1 x JV n t m + i],

l.m X ^ n + ]

The closing condition a + b ; = b + a' yields

[Nn+l,m X (OLN^ + β'Nn+lfm+1)]
1 } = [(βNn,m + α'JVn+1,m+1) x JVnι

Since all the vectors

lim+u βNntm+a'Nn+ltm+u AΓn>

in this expression do not vanish, they all belong to one plane. Since
due to the nondegeneracy of the quadrilateral we assumed (3.2), the
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planes generated by N n + 1 , m , JVn,m+1 and iVn,m,iVn+1)m+1 are different,

and their line of intersection is parallel to iVn+1)m + iVn)m+1 || JVnιm +

-Nn+i,m+i This yields the proportionality

JV n + l f f I l + 1,

or equivalently, a = /?', β = a1. The weak Chebyshev property implies

a = ±a',β = ±β'. The case

(3.14) a = -a',β=-β'

is degenerated, since

[(N n + 1 , m + JVn>m+1) x (Nntm + ΛΓn+1,m+1)] = 0

together with

[{Nn+l,m - JVn,m+l) X (^n,m + ^n+l,m+l)] = 0,

following from (3.13), (3.14), show that iVn+1?m and Nn^m+1 are parallel.

This makes the surface planar and contradicts our assumption. Finally,

we have

a = β = a' = β',

which finishes the proof:

(3.15)

Thus the proof of Proposition 4 is complete.
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4. Quaternionic description of discrete Lorentz-harmonic
weak Chebyshev nets in S2 and the Hirota equation

The Gauss map can be represented in the following matrix form
(compare with (2.9)):

(4.1) Nn,m = -iφ-^σaΦn.m, Φ»,m G SU(2).

Introduce the matrices

lying in SU(2). The conditions

^ = < JVn>m,JVn+liTO > = - - tr(JVn,mJVn+1,TO)

^ = < Nn>m,Nn>m+ι > = - -

= ^ t r (V-> 3 V n , r a a 3 )

allow us to parametrize ZY and V as follows:

(4.3)

Let us consider an elementary quadrilateral and denote it by

U — Wn,m, V = Vn>m, ZY = Un,m+\ > V = Vn-j_i)m,

the matrices associated with its edges. Substituting (4.2, 4.3) into the
compatibility condition

(4.4) VU = W'V,
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we get

cos ̂  cos ̂ -{e^'^ - e*^ ' ) ) = sin — sin — ( e ^ ' " ^ - e^ ' "^) ,
Δ Δ Δ Δ

cos ^ sin ^(e '( e ' + i > - e ^ ' ^ ) = sin ̂  cos ^( e ' (V+« _ j&-<)).

Rewriting the above equations as

Δ" Av . 1.
cos -— cos — sin -(—a 4- a + 7 — 7 )

Z Δ Δ

(4.5) = exp i ( - α - α' - )8 + iS' - 7 - V - ί + ί')

Δw Δυ 1
x sin — sin — sin -(/3 + β' - δ - ί'),

Au Av 1
cos -— sin —- sin —(a + a1 + δ — δ1)

Δ Δ Δ

(4.6) = exp Ua - a1 + β + β' - 7 + 7' - δ - ί;)

Δ u Δυ 1
x sin — cos — sin -{β - β' + 7 + 7'),

we see that in the case

(4.7) a + a' + δ - δ' φ 0, a - a' - 7 + 7' ^ 0,

equations (4.5), (4.6)

(4.8) β + β-δ-δ' βO, - α - α ' - / ? + / ? ' - 7 - 7 ' - 5 + < 5 ' Ξ 0 ,

)9 - /3; + 7 + y / Ξ 0, a-a' + β + β' - Ί + Ί' -δ-δ' = Q,

where we have used the notation e = e' for e = e'{ mod 2π) or, equiva-

lently, eie = eie'. yield

Equations (4.7), (4.8) imply

Substituting the above equations in (4.5), (4.6) we obtain

Δ n Av Au Av

cos — cos — = ± sin — sin — ,

Δn Av Au Av

cos — sin — = ψ sin — cos —
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with two possible choices of signs. The last equations can be rewritten

in the form

Δ w ± Δ υ Δ n ± Av

cos = 0, sin = 0.
Δ Zι

This contradiction means that the assumption (4.7) was wrong and
one of the expressions in (4.7) must vanish. So there are two cases to
consider:

(4.9) cos ^ cos ^ ( e ^ ' + f ) - e i ( α + y ) )

(ii) α - α ' - 7 + y = 0, β + β' - δ - δ' = 0,

(4.10) cos — sin —(e*^"1"') - e'*4'-"))

= sin — cos — ( e ^ ' + « - e * ^ " ^ ) .

We postpone the discussion of the second case (which turns out to
correspond to the possibility (3.11)) until Appendix and henceforth
assume that (i) is valid.

The matrices Φn,m (and ZYnjm and Vn>m as a corollary) are determined
by (4.1) up to the gauge transformation

Φ n > m -> exp(ien ) mσ 3)Φn > m,

(4.11) Un,m -> exp(ien+1)mσ3)ZYn>m exp(-ie n , m a 3 ),

Vn,m -

Let us choose the gauging in such a way that

(4.12) /?n)m = 7 n , m Ξ θ

for all n, m. Given eo,o, the condition (4.12) specifies all en > m in a unique
way. The equations (4.9) in this gauge become as follows:

(4.13) a + a' = δ' -δ,

(4.14) cos ψ cos ψ(eia' - eia) = sin ψ sin ψ(e~iδ - eiδ').
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The first equation can be easily resolved

(4.15) C*n,m = 7̂1+1,771 ~~* ">n,rn ) ^n,m = ™n,m+l + ^n.πi-ί

where /ιn>m now can be associated with the corresponding vertices.
Finally, hn,m satisfy the equation

i/ιn,m) - exp(i/ιn+1?

(4.16) - t a n ^ t a n ^

i/ιn+i,m

or equivalently,

(4.17) — A;n?m s i n ( - ( Λ n + i > m + i + /ιn,m + Λn+i,m + ^

Δ u Δ υ

Km = tan - ^ tan -ψ.

This equation is clearly a discrete analogue of the sine-Gordon equation,
which can be obtained as a limit k —> 0. Equation (4.17) first appeared
in Hirota [14] without any relation to geometry. We prefer to treat not
this but another equation as a discrete sine-Gordon equation. In the
smooth case the sine-Gordon equation describes the angles between the
asymptotic lines (see §2), and, as we have shown, the Hirota equation
has another geometrical meaning. Therefore in §6 we derive an equation
describing the angles between the edges of discrete K-surfaces and call
it a discrete sine-Gordon equation, which is simply related to the Hirota
equation.

Remark. There is an ambiguity in the definition of /ιn>m from
geometrical data:

^2n,2m ~~̂  ̂ 2n,2m + S + T,

(4.18) /*2n+l,2m ~> ^2n+l,2m + S - T,

* ^ n ^ m + l — S + T,

"* ^2n+l,2m+l ~ S ~T
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with the same S and T for all n, m. The origin of S is the nonuniqueness

in the definition (4.15) of hn^m for given α, $, whereas the variation of

eo,o in the gauging induces T in (4.18).

Proposition 5. The Gauss map (4.1) determined by a solution of

the Hirota equation forms a Lorentz-harmonic weak Chebyshev net in

S\

Proof. Up to a common rotation Φ~ 1

m . . .Φ n ? m the normal vectors at

the vertices of an elementary quadrilateral are as follows:

N
n+ltm =

To prove the parallelism JVn>m + iVn+1 m + 1 || 7Vn+1,m + Nn+hm we show

that

σ3 + {VU)-ισ3VU = r{U~ισ3U + V'ισ3V)

with some real r, or equivalently,

Uσ3V~ι + V -ισ3W = r{σ3UV~ι + UV~ισ3).

Calculation of both sides using (4.13) yields

V υ ~ v
where

Au Av Δ n Δ v

p = cos — cos — ( e i a + e i α ') - sin — sin — ( e ~ i δ + eiδ),
Δ Δ Δ Δ

Au Aυ Au Av _ c
q — 2 cos — cos — eιa + 2 sin — sin — e .

Δ Δ Δ Δ

The addition of a vanishing term to q gives

g = 9 + cos — cos — ( e i a > - eia) + sin — sin — (eiδ' - e~iδ)H H 2 2 v ; 2 2 v ;

= cos —- cos — (eia + eia>) + sin —- sin — (e~iδ + eiδ'),
Δ Δ Δ Δ
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which proves the equality of the arguments

argp = argg ( mod π),

which finishes the proof of the parallelism Nn^m + ΛΓ n + l m + 1 || ΛΓn+1 m +
iVn+1>m. The property to be a weak Chebyshev net in S2 follows from

(4.2, 4.3).

5. Associated family and formula for immersion

The Hirota equation is invariant with respect to the transformation

(5.1)

which is an analog of the Lorentz transformation (2.4) in the smooth

case. This transformation changes the matrices ZVn,m, Vn,m as

0 0

Due to Propositions 4, 5, the matrices Un,m (λ),Fn,m (A) describe
a one-parameter deformation family of discrete K-surfaces and their
Gauss maps. To describe this family more precisely it is convenient to

o o
present the matrices Un,m (A), Vn,m (A) in the form

(5.2)

° l TT ° - 1
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Δ
cot-ie i Λ-+1--< Λ-» iλ

(5.3) Un,m(\) = I 2 Δ"
2

Vn,m(λ)

(5.4)

1 Ki _. _. λ 2

i— t a n — — e 2 / l n m + 1 ιhrι,m ^

The compatibility condition

is nothing else but the Lax representation for the Hirota equation.

Theorem 3. Let /ιn>m be a solution of (4.16). Then the immersion

of the corresponding discrete K-surface with the angles Δ^(λ),Δj^(λ)

given by

is described up to a homothety by the formula

\?-b) rn,m — * Ψ n , m T̂ 5 Λ — β ,

0

where Φ n , m (λ G R) G 517(2) zs α solution of the system

o o o o oo

(5.6) Φn+l,m = l7n,mΦn1m, Φ
Moreover, the Gauss map is given by

(5.7) ΛΓn>m = - i φ "^σa Φ
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Proof. We see that (5.7) coincides with (4.1). Since the Gauss map
determines the discrete K-surface up to homothety (Propositions 4,
5), to prove the theorem we have to show only that (5.5) describes a
discrete K-surface and (5.7) is its Gauss map. For the vectors of edges
we have

Ei P - 9 iT# - 1 (TT " I 9 U °

0

" I
n,m

F - F - - 9 iTf - 1 ί917*-1*™ TT -1 \ J?f

T/ -1 Λ .?,
Γn,m—\ Γn,τn — ^ ^ n,m\ o. ^ n,m—l) ^n,m

All these vectors as well as Nn^m (forming a frame associated with the
o o

vertex Fn,m) have common factors φ ~^m on the left and Φ n , m on the
right, which describe a rotation of this frame as a whole. Considering
the local geometry of the frame we can neglect this rotation. Direct
calculation yields 2

2Doing this calculation it is more convenient to work with the matrices L/n,m(λ),
o o

Vn,m(λ)i which differ from Un,m,Vn,m by a scalar factor (see the Remark at the
end of this section).
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where we have used the identities

smΔ«(λ) - Λ t t , smΔ^(λ) 2 Δ , ,
λ2 + cot2 - ^ 1 + λ" 2 tan 2 -ψ

following from (5.1). These vectors are orthogonal to — zσ3, which
proves the orthogonality of the corresponding edges to 7Vn>m. The
property (ii) of the definition of the discrete K-surfaces is also evidently
satisfied since the lengths of the edges | [ F n + i ι m , F n ι m ] | , | [ F n , m + i , F n , m ] |
are independent of m and n respectively.

Formulas (3.4), (3.5), (5.8) imply the following corollary, which fol-
lows also from Propositions 2,4.

Corollary 1. Under the action of the one-parameter deformation
family {associated family) the edges and the normals of the discrete
K-surface transform as follows:

< Nn+hmjNntm > =

where the angles Δ(λ) are determined by (5.1).

Corollary 2. The vectors of the normals and edges of the discrete
K-surface, described in Theorem 3 are related as follows:

(5-9) Fn+hm - F n , m = [Nn+ltm x

Proof. To prove this specification of Proposition 4 let us write down

the vector product as a matrix commutator, using the isomorphism

(2-4),

[AxB] = ±[A,B].

In the moving frame used in the proof of Theorem 3 the normal vectors
are equal to

o o
Nn,m = - iσ 3 , iVn+1>m = -i U ~ m σ 3 Un,m
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Calculating the vector product and using (5.8), we get

[Nn+^m x Nn,m] = --[U -*mσ3 Un,m,σ3]

I f) p » Λ n , m - t Λ n + l , m \

-ih +ih

e n,m «+i,m o y
0 _ i °

^ U n,m U n,m j OX -*n+l,m ^n,m

The second equality in (5.9) follows from the first one and Proposition 4,
but it also can be easily checked by a direct calculation.

o
Remark. To find F n m , N n j m it is enough to determine Φ n , m (λ) up

o
to a scalar factor. Indeed, if Φ n , m differs from Φ n , m by a scalar factor,

Φn,m (λ) - /n,m(λ)Φn,m(λ),

the immersion and the Gauss map can be written in terms of Φ n , m as

follows:

/? — 9vD - 1 n > m I g r lop f
-1 n,7τι *Ύ n,m r\, ι̂  **•* oi l w σ J n,m

tr=O
1 ^ fiyu _. i

= 2

where

6. The discrete sine-Gordon equation

Formulas (5.8) allow us to determine the angles between all edges

(see Figure 2 for the notation of the angles)

Φn,m — —hn,m+l ~ ^n+l,m + 7Γ,

(6.1) ^ }

m = -Λn,m-i - Λ n -i, m + π,
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Let us consider again a small piece of the discrete K-surface and derive a
difference equation for the angles between edges, which can be regarded
as a difference analog of the sine-Gordon equation (2.2). Now if we
orient the lattice diagonally (Figure 4), the following theorem holds.

FIGURE 4. The angles between edges of discrete K-surface.

Theorem 4. The neighboring angles between the edges of a discrete
K-surface satisfy the equation

(6.2) φu + φd-φι-φr = 2arg(l - fee"**') + 2arg(l - A: re"^)5

where
Δ,u Δ? Δu Δv

kι — tan —- tan -—=-, kr = tan —- tan —-
Δ Δ Δ Δ

are the products associated with the quadrilaterals, corresponding to φ\
and φr respectively.

Proof. There are two angles φ^m and φn+i,m associated with the
quadrilateral {Fn+hm+uFn+ltm,Fntm9Fntm+1). The other two are the
same because of the symmetry of the quadrilateral

(6.3) φ<»m = φ{:l,m+1, φ%ltm = ^ U i -

Due to (6.1) the Hirota equation (4.16) relates these two angles

Δ" Δ"
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or equivalently,

+ Φnll,m = * + 2 arg(l - fcn,

(6-4) Ξ π + 2arg(l - λ ^

The sum of angles around a vertex is equal to 2τr, so

or using (6.3) we get

Φί'l + ̂ l,m-X + ̂ L + ̂ Sl^-! S 0.

The Hirota equation (6.4) allows us to rewrite this as an equation for

M 's

= 2arg(l - ftn-Lm

+2arg(l - fcn,m_

Turning the lattice by 45° we get this equation in the form (6.2). Note
that by symmetry all the angles φ^ 's, φ^ ;s, φ^ 's satisfy the same
equation (6.2).

In the exponential form Q = el(ί> equation (6.2) reads as follows:

J 5 ) Q»Qd = Ϊ—TFΓ'Λ—ΓTT

Let us consider now a small piece of the Lorentz-harmonic Cheby-
shev net in S2 generated by the Gauss map Nnj7n (see Figure 5). The
difference equation for the angles between the arcs of the big circles in
S'2, generated by the corresponding normals can be easily derived from
equation (6.2).
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FIGURE 5. Lorentz-harmonic Chebyshev net in S2.

Theorem 5. The neighboring angles between the arcs (see Figure 5)
of the Lorentz-harmonic Chebyshev net in S2 satisfy the equation

(6.6) -Ψι-Ψr = 2arg(l 2arg(l

Proof. Let us denote by Λn,m the plane containing the vectors NniTn

and iV n + l m , by Bn^m the plane containing the vectors iVnm and Nn > m + i ,

and by ^ L ^e angle between these two planes (see Figure 6).

The vectors a = j F n + i , m - F n , m and b = F n , m + i - F n > m are orthogonal

to An,m and # n , m respectively. Moreover, formulas (5.9) (see also Fig-

ure 6) imply the following relation of ^ m with the angle φ$m between

the edges [ F n + 1 , m j F n , m ] and [F n j m +i,F n > m ] (see Figure 2):

Then (6.6) follows from (6.2).
Now we are already in a position to construct discrete K-surfaces,

solving the Cauchy problem for equation (6.6). Let us consider some
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initial staircase loop

in S2. Equation (6.6) describes a discrete evolution of this loop. Indeed,
the initial loop provides us with the angles

(the angle ψ^ is related with the angle φ^ = ψ^ + π and satisfies the

same equation (6.6) for ψ). Using the evolution equation (6.2) we can

then determine ψ£} f°Γ a ^ ^?' a n c ^ a s a corollary (since the lengths of

all the arcs are known), the coordinates Nkfί of all points of the discrete

Gauss map.

FIGURE 6. Relation between the angles φ and ψ.

Even simpler, one can reconstruct all iVn>m, n,m G Z using the

property (3.12) of AT to be Lorentz-harmonic. Equation (3.12) uniquely

determines 7Vn,m+i by N n > m , N n +i, m , ΛΓn+1>m+1:
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Finally, the formulas (5.9) describe the corresponding discrete K-surface.
Remark. One cannot apply the same recepie to the initial staircase

loop

Such a loop can not be chosen arbitrary and should satisfy the re-
strictions (5.9). Indeed, if the neighboring edges are not parallel, they
uniquely determine the Gauss map

which should be related to the edges as described by (5.9).
Beside various cylinders one can construct by these elementary meth-

ods also discrete analogue of the Amsler surface. These surfaces are
constructed in the next Section.

Unfortunately, it seems to be impossible to construct compact dis-
crete K-surfaces in this way. This simple geometrical method does not
allow us to control a global behavior of the surface (for example, to con-
trol the periodicity). For this reason, starting §8, we will use methods
from the theory of integrable equations, which are based on an analytic
solution of the problem. We calculate explicitly the solutions to the Hi-

o
rota equation, the corresponding function Φn,m (λ) and determine in
this way the immersion Fn^m and its Gauss map Nn,m.

From now on we consider mostly special cases of discrete weak Cheby-
shev net, which we call as follows:

Δ^ = Δ u, Av

m = Aυ - a discrete anisotropic Chebyshev net,
Au = Av - a discrete Chebyshev net.
In these cases k = kι = kτ in (6.2) is the same for all the surface:

Au Av

k = tan —- tan — .

7. The discrete Amsler surface

Let us return for a moment to smooth Chebyshev nets. For such
a net we normalize A = B — 1 in (2.2), and the angle between the
asymptotic lines is described by the sine-Gordon equation

φxy -smφ = 0.
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If the solution φ(x, y) depends on r = yjxy only, i.e.,

(7.1) φ(x,y) = φ(r),

then the equation reduces to the third Painleve equation (PIΠ)

(7.2) Φrr + ^--

The corresponding surfaces were first studied by Bianchi [2]. It turns
out that they possess nice geometrical properties. Amsler computed
and sketched [1] a surface with K = — 1 having two straight asymp-
totic lines Lx,Ly and showed that this surface belongs to the class
(7.1). More precisely, there is a one-parametric family of the Amsler
surfaces, parametrized by the angle φ between Lx and Ly, which can
be chosen arbitrarily. This one-parametric family corresponds to the
one-parametric family (see [16]) of the smooth solutions of the PHI
equation (7.2).

Coming back to the discrete case, let us consider two great circles
C u, Cv on the sphere S2 with the angle φ between them, and suppose
that the images of the normals iVn>m for n = 0 and m = 0 belong to
these circles

(7.3) NOfk G C"\ Nkt0 G C\ Vn G Z.

Relations (5.9) show that the edges [^,0,^+1,0] and [Fo^Fo^+i] for
all k G Z lie on two straight lines Lu and Lv in R3, and φ = φ + π is
the angle between them.

Starting with the normals (7.3) and using the property (5.9) of the
Gauss map to be Lorentz-harmonic one can easily reconstruct step by
step iVnm for all n,m G Z

Π n . . Aτ Tϊ ~ U V n+l,m "Γ
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FIGURE 7. Smooth and discrete Amsler surfaces, φ = π/2.



DISCRETE K-SURFACES 561

In the case of a discrete Chebyshev net ΔJJ = ΔJ^ = Δ for fixed Δ one
gets a one-parametric family of surfaces with two straight "asymptotic
lines" Fk,0 G Lu,F0,k G Lv,k G Z. The parameter here is the angle
φ between Lu and Lv. The smooth and discrete Amsler surfaces with
φ = π/2 are presented in Figure 73. Having in mind the relation to
the PHI equation in the smooth case, it is natural to expect, that the
discrete K-surfaces just described generate discrete Painleve equations,
may be exactly those, which were recently found in [19]. Using the
results of [18] Tim Hoffmann was able to show that the angles between
the edges of the discrete Amsler surfaces in addition to the discrete
sine-Gordon equation satisfy the restriction

(7.4) +m(ei*».)« - e<'~ + β"*-- - e~iφ^) = 0.

Combined with (6.2) this restriction gives rise to a difference equation
describing the angles φk = φk,k of the discrete Amsler surfaces at the
diagonal n = m = k, which is a discrete analogue of the PHI equation.

8. Dressing up procedure (Backlund transformations)

Here we describe some version of the Backlund transformation for
discrete K-surfaces. For this purpose we use the analytical formalism of
the dressing up procedure, suggested in the theory of integrable equa-
tions (see [15]). If some solution h°™m of the Hirota equation together
with the corresponding solution Φ ^ of the system

(8.1) Φn+l.m - ^n,mΦn,m, Φ

is known, this procedure allows us to construct new

i^new χTjnew
nn,m > ψn,m'

which solve the same equations.

3The authors are grateful to T. Hoffmann, who produced this figure.
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The matrices

•*n,m 0 \

e

Un,m = iλσx + tx I Q e

Δ Δ
u = cot( — ) , v = cot(—)

(we come back to the notation (4.15)) satisfy the following symmetries:

(8.3)

(8.4)

Let Φ ^ ( λ ) be a solution of (8.1), satisfying both these reductions.
The function ΦJ}^(λ) is represented in the form

where Q(λ) is a matrix polynomial in λ, satisfying the symmetries (8.3),
(8.4):

= QNλN + ... + Qo

with fixed leading coefficient

QN=eυen = ^ ^ n ( i QN=odd = ^ 1

The matrix Q(λ) is determined by the conditions that

are nonsingular at the zeros of det Q(X)
Theorem 6. Let Ab U Ak U Sb U 5^ 6e α 5ê  of paremeters:

A = {λj, λ2,..., λ^, λ G C},
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in general position, and Φo / d(λ) be a solution of (8.1) with some hn^m

as coefficients, satisfying the reductions (8.3), (8.4), where by general

position we mean that detΦ o / d (λ) does not vanish at the points in A,

X[s do not coinside, A ΓΊ A = A Π (—A) = 0. Then the function

where the coefficients of Q are determined by the linear system

(8.5) Φ—(λ»)ί 0 = 0 , i = l, ...,#,

(8.6)

satisfies the system (8.1) with some h™m
Proof The symmetries (8.3), (8.4) for Q imply

u y

The system (8.5), (8.6) is a system of JV linear non-homogeneous equa-

tions for N variables (we calculate the complex dimensions). To calcu-

late the number of equations we note that each vector equation (8.5)

represents two scalar equations, whereas (8.6) results in one scalar equa-

tion. As a matter of fact, due to the reductions (8.3), (8.4) (Xk = — λh)

vanishing of the first component of the vector

implies that the second component also vanishes.
The conditions (8.5), (8.6) mean that in the neighborhood of Λ the

function ψ n e υ ; can be represented as follows:

n,m\Λ) — ψn,m
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where Φn > m is holomorphic and invertible. This representation shows
non-singularity of

T TT16W ( \ \ χΓfTlCW ( \ \ ί VJV716lf / λ \ \ — 1 ^ ^t «τy / λ \ vr, — X / Λ \

at points in Λ. The equations (8.5), (8.6) together with the symmetries
(8.3), (8.4) give all 2N zeroes of detQ(λ), which are

Λ6 U (-Λ6) u F ϋ (-Λ*) UAλU (-Λ*).

The arguments above and the reductions (8.3,8.4) prove non-singula-
rity of U™e™ at all these points, which implies the following general
form for U^6^:

Substituting the asymptotics at λ ̂  oo in

jjnew r\ ττold Γ\ — ^
Tl,T7l ^vf l+1,771 71,771 T^ 72,771

and taking into account the reductions (8.3,8.4), we get (8.2) with some
a™™. The same arguments yields the form (8.2) for

jrnew r\ yold r\ — \
vn,m ^5n,m+l *n.m^n.m'

We apply the dressing up procedure to the vacuum solution of the
Hirota equation h^d

m = 0. The corresponding Φ-function is equal to

χljold _ Tjnym

* 71,771 ^ V

i (\ 1 \ ί(u + iλ)n(l + -{)m 0 W l l \

H1-1/^ ° (u-iλπi-±r)[i-i)

To construct discrete pseudospheres we take only one point Xk E Λ, N =

Equation (8.6) yields

Qn,m T6 ' ,

φn<m = 2arg(l + iSgn,m(r)), S e R,
fu + r\n fvr-l\m

9n,m = I —Γ )

\u — r / \vr + 1/
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The calculation of (φ"^)-iψne™(λ = 1), using the concluding Remark
of the §3, gives the following formula for the immersion:

r nu mv
cos φ +
cos φn,m +

+ 1 u2 + 1 t>2 -f 1

0 - e - < β — \J
where

n

v —

Finally, in the most symmetric case u — υ,r = 1, we get

Fi = - sin0 n > m sin a(n + m),

(8.7) F2 = - - sin ̂ n > m cos α(n + m),
Δ

1 ?i

F 3 = - cos φΛtm + ^2 1 (n - m),

where

( 8 . 8 ) ^ m

α = 2arg(l + m" 1 ).

If α is a rational factor of π, then F n > m given by (8.7) is a periodic
function of n + ra, and the corresponding surface closes up in this direc-
tion. We call these surfaces discrete pseudospheres, because they are
discrete analogues of the pseudosphere, which is the simplest smooth
surface with the Gaussian curvature K — — 1. The asymptotic line
parametrization F(x,y) of the pseudosphere is given by the formulas

Fi = -s'mφs'm(x + y),

F2 = --s'mφcos(x + y),

F3 = -
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and the corresponding surface is presented in Figure 8.
To compare, Figure 9 presents a discrete pseudosphere with relatively

small edges.
For a given a = π/N (ZN rotational symmetry) the discrete pseudo-

sphere depends on an additional parameter S, and one gets a one-
parametric family of deformations. In the smooth case the corre-
sponding deformation of the pseudosphere is trivial and is just its
reparametrization. Figure 10 demonstrates the dependence of the dis-
crete pseudosphere on S.

FIGURE 8. The smooth pseudosphere.

FIGURE 9. The discrete pseudosphere for

u = cotfζ a = I and 5 = 1 .
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FIGURE 10. The discrete pseudospheres for u = cot^
and S = 1 and for S = 0.535898

9. The spectral curve

Now we start to describe a wide class of discrete K-surfaces con-
taining, in particular, all the surfaces with periodic Gauss map AΓnm.
For this purpose the finite-gap integration technique from the theory
of integrable equations is used.

Let us consider a discrete K-surface, the Gauss map of which is
periodic with a period (TV, M)

Arguments of §6 show that all the N-loops of the surface with the period
(AT, M) are closed. To fix ideas, let us consider the loop
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or, equivalentely (see (5.9)), the brocken line

Fn.m-) Fn-\-l,mi ? Fn+N,mi Fn+N,m+1 > 7 Fn+N,m+M

of the corresponding discrete K-surface. In general this broken line is
not closed, but the angles between its edges are periodic with the same
period (TV, M). Schematically this broken line is shown in Figure 11.
To simplify the notation we set n = m = 0.

h h
0.0 1.0

(2) (3)

(Φ +Φ ) κ r C
h h

N-l.O N.0

FIGURE 11. The period of the broken line.

The relations (6.1) between the angles and the Hirota variables /ιn>m

show that /ιO)o and hί0 can be chosen arbitrary 4, all other hn<m are
then uniquely determined by the geometrical data:

2))kβ = Λfc-i,o - Λfc+i,o + ίr,

ΦN,0 Ξ hN,l + Λ-TV-1,05

Jc = hN,k+1 - hN,k_x + π,

Multiplying the matrices (5.3, 5.4) successively along the correspond-
ing edges of the broken loop we get the transfer matrix of the Hirota
model

Obviously this matrix satisfies the relations

rpH TT rpH TT — 1
-Ln-\-l,m ~ un+N,m+M •*- n,m

un,m'>

τ"+ί = vn.(9.1) H y-l
a,πι r n,m'

4This corresponds to the umbiguity (4.18)
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Although the geometrical data of the K-surface are periodic, the Hirota
variables, and consequently the matrices [/n,m, V^m, in general are not.
To bring the equations (9.1) to the Lax-form (see below) we introduce
the transfer matrix of the discrete sine-Gordon model.

Definition 3. The matrix

rpSG p ^ p
±n,m c ±n,m'>

where

+M ~~ ""n+N,m+M ~~ ™

is called the transfer matrix of the discrete sine-Gordon model.
Proposition 6. The eigenvalues of the tranfer matrix T f^(λ) do

not depend on the normalization (4.18) of the Hirota variables and are
uniquely determined by the geometry of the initial contour
Nn,rm . . . , Nn+N,m+M

The transfer matrix satisfies the equations

fool τSG —Π τSGΠ~~ι TSG —V τSGV~ι

implying the independence of the eigenvalues o/Tϊf^(λ) on n and m.
Proof. The matrices ί7n,m? V^m can be reduced to the form

7Ύ _ Λσ3\""n+\,m ~~ h"n,m)τTp2σ3\h"n+l,m ~~ h>n,m)
un,m — c ^ c 7

T/ 0oσ3\hn,m+l "I" hn,m)1[/p~2σ3\h'n,m-\-l ~^~ ""n,m)
vn,m — e z V C ^ ,

τj-(cotΎ- i λ \ y - ί 1 λ t a n ^ "
\ iλ cot %- / ' \f tan %- 1

For the transfer matrix To

s^ this implies (again to simplify the no-
tation we set n = m = 0)
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where

Too = (_

The eigenvalues of TQQ and Γ0)0 coincide, which proves the first state-
ment of Proposition 6. The equalities (9.2) can be checked by direct
calculation.

The characteristic polynominal

det(Oλ) - μ) = 0

defines an algebraic curve X, which, due to Proposition 6, is an invari-
ant of the discrete K-surface. The substitution

Δ

reduces this curve to the hyperelliptic form

M2 = ( t Γ T ^ Λ » _ detΓ S G (λ).

Because of the symmetries

(9.3) Un>m(-X) = σ3Un<mσ3, Vn>m(-X) = σ 3Fn, r o(λ)σ 3,

the transfer matrix satisfies the reduction

(9.4) T S G ( - λ ) = σ 3 T S G ( λ ) σ 3 .

Both tr T 5 G(λ) and detΓ 5 G(λ) are functions of Λ = λ2 :

tr TS G(λ) = ί(Λ), detTS G(λ) = rf(A).

The curve X by virtue of (9.4) posesses the involution

τi • (\,μ)->(-\,μ).

The quotient X = X/τi is an algebraic curve

( 9 . 5 ) rt
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which is called the spectral curve. This curve is central for our further

calculations.

Proposition 7. The spectral curve X is of the form

with the

9N =

9N =

9-M z

9-M Γ

where

coefficients gi

1

— s in 2 | (/i n +Λr

= -92,
= — # 2sin 2 |(/ι

> ί 2 =

Y and g-M

+l,m+M ~ ^

n+ΛΓ+l,m+M

tn+7V,m+M -

JV odd,

+ hn^m), N even,
M odd,

.m — hn.m),M even,

Proof. The formulas for gN follow from the asymptotics of TSG at
Λ -> oo

(9.6) Γ n ^ = (iλ)7V

In the same way the asymptotics at Λ —> 0 yields the formula for g-w
Remark. Due to Proposition 7 the coefficients gN->9~M can be

interpreted geometrically. Let us present this interpretation for a stair-
case loop with even N — M — 2n, Nn+2k,rn+ik = Nnim. In this case
both 92k ,9-2k ^ r ^ nontrivial. Both h^+i ~ hi and h^+2 — h2 are inte-
grals of the surface and can be expressed as alternating sums of angels
(see the numeration in Figure 12).

h4k+1 - Λx = -φψ + ΦT - • • • - Φ%-2 + 4$,

hik+2 - h 2 = φ[A) -φt) + ... + φ{t3 ~ ΦΪti

Remark. The parities of N and M influence the branching of the

covering X —> Λ at Λ = oo and Λ — 0. This leads to a slight difference

in the consideration of the four cases of even or odd N and M, which

should be treated separately, although in similar ways. Prom now on

we restrict ourself to the case of both N and M odd i.e., to the case

where
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FIGURE 12. Additional invariants of the staircase loops
with even number of stairs.

The spectral curve X in this case is of the genus

(9.7) g = k + l + l

and has the branch points at Λ = oo and Λ = 0.

10. The Baker-Akhiezer function. Analytic properties
o o

Let us denote by u and υ the square root factors in Un,πn Vn,m (5.2)

(10.1) u2 = Λ + cot2 — , v2 = 1 + Λ"1 tan2 ^

and by Φn>m(λ,u, v) the matrix solution of
O Λ O Λ

Φn+l,m —Un,m ^n,m-i ^n,m+l —Vn,m ^n,m

with the normalization ΦOjo(λ, IA, υ) = /:

o o o o

^n,m = V n , m - l Vn>θl7n-l,O Uθ,O

Let also i7(Λ^,λ) be an eigenvector of T0

5^(λ) with the first compo-
nent Hλ normalized to Hλ = 1. These two functions Φn j m(λ,u, υ) and
H(M,\) are defined on a 8-sheeted covering X of the spectral curve
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X. Namely the covering X —> X is defined by the equations (10.1) and
λ2 = Λ. The double-valued functions λ, u,v on X become single-valued
onί

The Riemann surface X possesses the involutions

Ti : λ -* - λ ,

r2 : u -> — u,

r3 : υ -> —υ,

τ4 : M -» -Λ4,

and the quotient of X with respect to the group { T I , T 2 , T 3 } generated

by the involutions ri,τ 2,r 3 is X = -X7{τi,τ2,τ3}.

Whereas in the case of both N and M odd the covering X -> X

defined by the function λ = Λ/Λ considered in the previous section is

unramified, the covering X -> X is ramified at the zeroes of u and i>. In

Figure 13 the hyperelliptic Riemann surface X is presented. The branch

points Λ = oc and Λ = 0 are connected by a cut [0, oo]. The contour C

surrounds all other branch points, the contour l0 connects two points

PQ~ and Po~ on X with the same Λ coordinate Λ(P0

±) — ~~ tan 2 ^ , and

the contour l^ connects the points P^ with Λ(P^) = —cot2 4r (we

prefer to think about the point Λ = oo as a usual point of X and to

draw Poo to the right of it).

FIGURE 13. The spectral curve X.

We fix the branches of λ , w , u o n l \ {£,4x»M bY saying that λ
changes its sign on C and is positive on the upper edge of the cut
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[0, oo] on the first sheet of the covering X —> Λ, u and υ change sign
when one crosses ί^ or ί0 respectively and are normalized to behave
as

(10.2) H _> i? υ _> i
Λ

in some small neighborhood of infinity U^. If the contour i^ chosen
as in Figure 13, then both u and v are positive at Λ — 1, i.e.,

u(Λ - 1) > 0, υ(A = 1) > 0.

Let P denote a point of X with coordinates (λ, M,u,v).
Definition 4. The vector-function

is called a Baker-Akhiezer function (BA).
A BA function is a rational function of Λ4,\,u,v, satisfying the

equations
O O ς,~

Φn+l,m =Un)m Ψn,m, ^n,m+l =Vn,m Ψn,m, Tnmψn,m = /i^n,m.

Perhaps only the latter needs some comments. This equation is a con-
sequence of the identity

rpSG φ _ αy rpSG
^n.m^ τι,m ^n,m-Lo,O 5

which follows from (9.2) and the definition of Φ n , m .
The BA function transformes in a very simple way under the invo-

lutions τ1,r2,τ3:

(10.3)

Two last identities are trivial and to prove the first identity let us write
down the formula for the eigenvector H(M, λ):

(10.4)

MM X) - μ ~ A{λ) - 2 M + ^(A)-A(Λ)tι(jvι,λ)- B{χ) - 2 β ( λ )



DISCRETE tf-SURFACES 575

where we have used the following notation for the elements of ̂ 0 0

T S G , n _ / ^ ( λ ) 5 ( λ Λ

The symmetry

or equivalently

l(-λ) = A(λ), B(-λ)
/~i( \\ /~i(\\ Γ)/ \ \

O^ — ΛJ — —O^Aj, -^\ — ̂ /

derived from (5.2),(9.1), imply

1

2B(-λ)

Finally, we may also consider the BA function as an analytic function

o n l \ {£,̂ 00,̂ 0} satisfying the symmetry relations

(10.6) < B , = (- l ) n

In other words, ^ n m acquires o factor

along a loop 7 on X. Here <, > is the intersection number.

The polar divisor V of ψn,m o n l \ {PQ1, P^} is defined by H (since

Φn > m is regular there) and consequently does not depend on n, m. If

both JV and M are odd, then the highest order terms XN and λ~M of

the matrix T o ^ at λ -> 00 and λ -> 0 are off-diagonal, i.e.,

A(λ) = Σ α*λfc , S(λ) = Σ bkλ
k,

k=-M+l k=-M
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where bNib-w,cM,C-M do not vanish. Combined with the equation
(9.5) of the curve, this implies the regularity of H at λ = oo and λ = 0.
The poles of H are situated at the (N + M)/2 zeroes of the polynomial

B(A) = 6 n Λ ^ + . . . + &_M - XMB(X)

(by taking into account the symmetry (10.5)). Over each zero Az of
B(A) there lie two points Λ+, Λ~ of the curve X. Moreover, for one of
these two points the numerator Λ4 — ̂ y^ in (10.4) vanishes too. This
fact follows from the curve equation

A-D k \ (A-D k \ ngnι—« M) —— + M)=-BC,

which shows that one of the factors on the left-hand side must vanish

at the zeroes Λ^ of B. On the other hand, these two factors differ by

the hyperelleptic involution M -> —M, and therefore their zeroes are

Λ+ and Λ~ respectively. Finally we get a non-special5 polar divisor V

of degree (N + M)/2 = k + έ + l=g coinciding with the genus of X

(see(9.7)).

To investigate the behavior of the BA function at the points P ^ , P^

let us introduce a function V>njm which differs from φn^m by a scalar

factor, so that

Written in terms of the matrix elements of

it takes the form
7

Ψn,m =

which is an eigenvector of T ^ . Quite the same arguments as those used

for the function h show that the second component of the normalized

5The divisor of degree g on the hyperelliptic surface of genus g is called special
if it contains a pair of points P+,P~ interchanged by the hyperelliptic involution
Λ(P+) = Λ(P~), and non-special otherwise. There is no nontrivial function with
non-special pole divisor of degree g.
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(the first component is 1) function ψn,m

τ2\ + τ22h

has a pole divisor of degree g. Since the pole divisors V + noo + raO
of the functions r n + ruh and r2λ + r22h coincide (Λ = oo is a pole of
degree n, Λ = 0 is a pole of degree m) and are of degree g + n + ra,
the zero divisors of these two functions have a common part Aι,m of
degree n + m. Moreover, it is clear that

where P^m1P^m are some points.

To determine Λn,m let us introduce a matrix

Taking determinants of the equality Φ n + i , m = Un,m

ΛdetΦ n + i , m ΛdetΦ n > m^̂ ^ = detUntm M ,
ntm

we note that the left-hand side as well as both factors on the right-hand

side are invariant with respect to the involutions τλ and τ 4 . Therefore,

they are rational functions of Λ. On the Λ-plane the function det Ϊ7n>m

has a pole at Λ = oo and a zero at Λ = P^. The function λ det Φn,m/Λί

has a divisor of poles π(V) + raO + noo and a divisor of zeros π{An,m) +

^ ^ 0 + ^Y^OO, where π : X —>• Λ is the projection on the Λ-plane.

Finally, comparing the poles and zeros of the right- and the left-hand

sides of (10.7), we get

π ( P » J = Poo

The equality

π(Pn» J = Po

is proved in the same way. Now we come back to the BA-function

1

unv

and suppose P+ = Po^o, Po

+ = -Po.o τ h e function V>i,i has zeros at
P + , Po

+ and poles at P ^ , Po~. It is easy to see that the presence of P ^
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among P^m (as well as the presence of Po~ among P ^ m ) corresponds to

the degeneracy of the discrete If-surface. Indeed P£m = P^Pn+i,™ =

P ^ yield Vn+2,m = Ψn}m or, equivalently, [/n+i,m£7n,m= /• The lines
Fn+2,m and Fn,m> m E Z of the discrete UT-surface, coincide in this case.
Therefore from now on we set

and the function φntm has poles at nP^+mP^ and zeros at
Remark. In the case of JV, M odd, which we consider, the ambiq-

uity (4.18) in the geometrical definition of the Hirota variables can be
used to normalize them to be periodic, so that

h>n+N,m+M = hn^m, Vn, 771.

Prom now we use this normalization.

The value of the BA-function at Λ = oo can be easily calculated.

The asymptotics (9.6) of T^ gives

D = o(λ%

M = (i\)N + o(\N), λ->oo

and the folowing value of the eigenvector:

(10.8) F u r Λ = o°' Λ G W ° °

For the function Φ n > m with Λ G U^^ taking into account the fixation

(10.2) of branches, one gets

which, combined with (10.8), proves the normalization

= oo,
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We formulate all the established analytical properties of ψnim in a
theorem.

Theorem 7. The BA-function ^ n > m is meromorphic on

X \ {A '005 Ό}? α ^d £Λe following holds:

1) The function ru>nv™"φn,rn is single-valued on X. In other

words, ψn^m acquires the jumps (10.6) on the contours L^l^t^.

2) The leading terms of' VVi.m α ί ^ e points P^,P^ are of the form

φn,m(P) = (A - Poo)± n / 20(1), P -»• P ± ,

(10.9) ^ n , m ( P ) = (Λ - P 0 ) ± m / 2 O ( l ) , P -> P o

±.

^ V^n^ ^ normalized at A = 00 as

(10.10) ^«,l»

o/e divisor V of ψn,m on X \ {P^,P^} is nonspecial, of
degree g and independent of n,m.

11. The Baker-Akhiezer function. Explicit formulas

The function ψn,m(P) of Theorem 7 can be explicitly expressed in
terms of Riemann theta functions and Abelian integrals. Moreover, in
this context it is natural to extend the class of periodic solutions of
the Hirota equation and to consider the class of finite-gap solutions.
In this Section, motivated by Theorem 7, we show that for an arbi-
trary hyperelleptic Riemann surface X of genus g with branch points
Λ = 0,00 and arbitrary non-special divisor V of degree g, the function
Ψn,m{P) with the properties 1-4 of Theorem 7 is unique, and we obtain
an explicit formula for this function6. In the next sections we specify
X and V corresponding to the discrete UΓ-surfaces and discuss their
periodicity.

Theorem 8. For any hyperelleptic Riemann surface X of genus g
with branch points Λ = 0,00 and non-special divisor V of degree g in

6The formulas of this section axe similar to the formulas for the Baker-Akhiezer
function of the usual sine-Gordon equation (2.1), obtained first by A.Its (see [3]).
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the general position, the function ψnim(P) with the analytical properties
formulated in Theorem 7 is unique.

Proof. Let us suppose that there exist two functions with the
properties 1-4 listed above. Let f'n m and f^m be their first components.
Since V is non-special and in the general position, the zero divisors V'nm

and VI m of f^m and f^m on X \ {P^,P^} are also non-special. But
then the quotient /n,m//ή,m ιs a meromorphic function on X with a non-
special pole divisor Vnπι of degree g. By the Riemann-Roch theorem
such a function is constant. The proof for the second component of
φn^m is the same.

Let £, ̂ oo, ί0 be the contours as shown in Figure 13 and let a canonical
basis of cycles αn, 6n, n = 1,... , #, be chosen so that a- and fr-cycles do
not intersect the contours ^ooAb and the cycle C is equal to the sum
of all α-cycles, i.e.,

C = aι + ... + ag
g.

o o

FIGURE 14. The canonical basis of cycles
of the spectral curve.

The normalized holomorphic Abelian differentials

(11.1) = 2πiδn,m

define the period matrix Bn,m = Jbn dwm, in terms of which the Rie-
mann theta function is defined:

θ(z) = Σ exp(- < Bm,m > + < z,m >), z e C9,
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which is a quasiperiodic function

( ' ' = exp{- | < BM, M > - < z, M >}0(z),

on the Jacobian

Jac(X) = CV{z -^ z + 2πiN + BM; N,M e Zg}.

Let us introduce two normalized differentials of the third kind

(11.3) j ^00,0 = 0

with singularities of the following form:

(ii.4) <mco = ±1-—^—-

The reciprocity law (see, for example, [13]) allows us to express the

periods of Abelian differentials of the third kind in terms of the nor-

malized holomorphic differentials:

ί fP~ f ίP°+

(11.5) Un= dΩoo = / dwn, Vn= dno= dwn.
hn Jpz, Jbn Jp-

Here the integration paths [P<̂ , i ^ ] , [PQ", Po""] coincide with ^oo>V The
exponentials

f00(P)=exp(ί dΩ^), / 0 ( P ) = e x p ( / dΩ0),
«/Λ=oo J A=oo

of these integrals have the following:
l)They have singularities of the form

(11.6) /oo(P) = ( λ / Λ ^ ^ ) ± 1 O ( l ) , Λ -+ P±,

/o(P) = ( λ /Λ^A) ± 1 0( l ) , Λ -> P±.

2) They have jumps on i^ and £0

(11.7) /+(P) = - / - ( P ) , Pefoo /0

+(P) = -/ 0 -(P), P e 4
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3) They are preserved when running through the loop an. Running
through bn they get the factors eUn and eVn so that

4) They are normalized at Λ = oo as

/oo(A = oo) = /o(Λ - oo) - 1.

Let us note also that by the Riemann theorem (see, for example,

[13]) for a vector D G Cg in general position the zero divisor of

(11.8) θ( dw + D)

is of degree g and non-special. Moreover, any non-special divisor V

of degree g can be represented as a zero divisor of the theta function

(11.8), where V and D are related by the Jacobi inverse problem

Here K is the Riemann constant.
Theorem 9. The BA function \pn^m{P) given by the formulas

,h (p dw + Ωn,ro)fl(£>)

(11.9)

/)2 (pλ _ .Λ£dw + Ωn,m

has the analytical properties 1-4, formulated in Theorem 7. Here

Δ = π ί ( l , l . . . ,1),

rP rP ,

/ dw = ( dwx... , /
«/oo «^oo »/oo
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and the integration paths in (11.9) coincide.
Proof. The normalization (10.10) is evident. The asymptotics (10.9)

follows from (11.6). The divisor V is produced by the denominators of
(11.9). The jumps (10.6) on 4 o Λ are due to (11.7). Using the nor-
malization (11.1,11.3) and the periodicity (11.2) of the theta function
one can easily show that V>n,m

 ιs preserved when one runs through any
closed contour

9

7 =

on X. On the other hand the function φ^m aquires the factor

(—1)^=1 m ί . For the basis shown in Figure 14 this factor is equal
to (-1) < 7 ' £ > , which shows that \ψl m does not change sign. Hence the
theorem is proved.

Theorem 10. The function (11.9) solves the system

(11.10) V>n+l,m = -U^mφn^ V>n,m+1 = -Vn,mψn,m
U V

with the matrices ϋ7n)Tn, Vntm of the form

i l l I D E / — I α n ' m ^ I V — I * \Cn>m I
V *λ bn,mj \jdn>m l )

The coeficients of these matrices are equal to

Δ)fl(Ωn,m)

m + A)

(11.12) cn,m = t a n — ε 0

dn,m = tan — ε 0

where the signs ε^, ε0 = ± 1 are determined by the labeling of the points
P^ and P^ (see the Remark below) and are defined by

(11.13) εoo = -iexp( / dΩoo), ε0 = - iexp( / dΩ0),
J a Ja
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with the integration path a along a cut [0, oo] (a does not intersect the

contours ôo?A) shown in Figure 13).

Proof. Let us consider the function

Ψn+l,m = - Γ •Λ , Ψn,m
U \ IΛ On%mJ

For any α n > m , δn,m the function φn+i,m possesses the properties 1,3,4 of

Theorem 7 and has the asymptotics (10.9) at the points P^,P^ (one

should replace n by n + 1). Specifying α n > m and 6n>m one can obtain

also a higher order zero of ψn+i,m at P —> P ^ Indeed, let

/

Then, choosing

J n,m J n,m

one gets

Vin+1,ro = (Λ - P0 0)("+ 1>/20(1), P -> P + .

The uniqueness (due to Theorem 8) of the function with these analytic

properties implies

Ψn+ltm = Ψn+l,m

The second equation (11.10) is proved in the same way.

To get formulas (11.12) for the coefficients of the matrices ί7n,m5 Kι,m
it is more convenient to substitute the value of ΐ/Vm at Λ = 0 into
(11.10). In order to calculate -0^(Λ = 0) let us integrate Ja dw, Ja dΩo^o
along some path α, which goes from Λ = oo to Λ = 0 along the cut
[oo, 0] and does not cross the α-cycles: fa dw = Δ,

ί
lnim)

(11.14)
<m(A = 0) = i» A)
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where we used the notation

(11.15) iQoo = exp( / rfΩoo), ig0 = exp( / dΩ0).
J ex J a.

Because of the normalization (11.3) for a cycle C = αi + . . . + ag going
around the cut [oo, 0] we have Jc dQ^^ = 0. The cycle a — τ4a is
equivalent to £, but crosses each of the contours i^.ί^ once. Therefore
we have

exp( / dΩooϊ0 - / dΩoo^) = - 1 .
Jot Jr^OL

On the other hand,

which implies

( / o) = - 1 ,exp(2 /
J a

and, finally, goo,g0 = ±l.
Substituting (11.14) into (11.10) yields

.02 T Λ V / ' 72,771 ψl ^^ V, /•

Taking into account

Au

u(A = 0) = cot — sign u(A = 0),

Δv

Xυ(A = 0)= tan — sign(λ?;(Λ = 0)),

we get the formulas (11.13) with

(11.17) εoo = ôo sign u{A = 0), ε0 = g0 sign(λί;(Λ = 0)).

For the contours ί^^ i0 shown in Figure 13, sign u(A = 0) = sign(λ?;(Λ =
0)) = 1 and consequently

£oo — 9oo-> ^o — go-

Remark. The signs εoo,ε0 defined by (11.17) are independent of
the choice of ί^ and l0, but depend on the labeling of the points
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and P^ (we still have not fixed which of the two points P^ is P ^ and

which of P^ is Po

+). The exchange P ^ f* P ^ or Po

+ o Po~ implies

ôo «•* — £oo or ε0 «-» —ε0 respectively.
Corollary 3. The function hn^m defined by

(11.18) eih— = (εo)m(ε c x

satisfies the Hirota equation (4.16).
Proof. The system (11.10) implies

The matrix in this formula is independent of λ and has a λ-dependent

vector φn^m in its kernel, therefore it must vanish identically:

(11.19) ί7n,m+lKι,m ~ V^^U^m = 0.

The coefficients (11.11) of these matrices are of the form

Au Au 1
(11.20) α n > m = cot —X n ,m, Km = cot — — — ,

Δ Δ Λn^m

Av Av 1
Cn m = tan —Y n m , dn m = tan —— - - — .

Substitution of these expressions into (11.19) yields

(11.21) " " " X

1,771

(11.22) X n , m + 1 - Xn<m = tan — tan — ( - Yn+ι,m).

Equation (11.21) can be easily solved:

with the usual ambiguity (5.3) in definition of /in,m. Equation (11.22)
becomes in this case the Hirota equation for /ιn,m. Formula (11.18)
presents a solution to system (11.23) with Xn,m, Yn,m defined by (11.20,
11.16, 11.14).
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Remark. The exchange P^ ++ P^ implies εoo <-+ —e^ and U <-»
—U in Ω n > m . In the same way P o

+ ++ Po~ implies ε 0 «•> —ε0, V <-ϊ —V.
These transformations are equivalent to

ice : ^oo <•> - ε o o , n <->• - n ;

(11.24) i 0 : ε 0 «->> —ε0, m <->• —m,

which preserve the Hirota equation.

12. Reality and formula for the angles

All the functions in Section 11 are complex-valued. Here we shall
obtain restrictions on the parameters that ensure the reality of /ιn>m

dictated by our geometrical problem. First of all, let us derive some
properties of the spectral curve X in the periodic case. The matrices
U(\),V{\) and, as a corollary, also TH(X) and TSG(X) in Section 9
satisfy the reduction

which implies the existence of an antiholomorphic involution

r 5 :

of the spectral curve (9.5). The set of the branch points Aj,j =
1,... ,2# of this curve is symmetric with respect to the conjugation
Λ -> Λ. Moreover, one can easily see the absence of positive branch
points Aj > 0. Indeed, for positive Λ (or, equivalently, real λ) the
matrices [/, V, TSG are quaternions

This point λ G R cannot be a branch point of X, since M. in (9.5) does
not vanish:

M2 = ( Q ~ 5 ) 2 - bb < 0, Λ > 0.

Now let us consider the general finite-gap case. Let X be a hyperel-
liptic Riemann surface with branch points subdivided into two families:

a) Λj , 1 < j < 2k, are negative and ordered in the following way

2k

0,
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b) Λ2fc+i, i = 1,... , 2(g — k), are complex and

The integer k may be chosen arbitrary between k = 0 and k = g. In

the case k = 0 (k = (?) the branch points of the type a) (type b)) are

absent.

On such a surface we can always construct a canonical basis of cycles

(see Figure 14 for an example of such a basis), which transforms under

τ 5 as follows:

(12.1)

= - α n j n = 1,... ,p,

τφn = bn, n = 1,... ,fe,

τ 5 α n = bn-an, n = k + 1,... , p.

Note that the involution does not change the sheets of X. This im-

plies the following symmetries of the normalized differentials and of

the period matrix:

τ*dwn = dwn, n = 1 , . . . ,g

n,m = / T*dwm = / dwm = Bn,m, n<k,
Jτ5bn Jbn

Bn,m = * dwm = /
Jbn—

dwm =
bn—an

1,7715 n> k.

The theta function defined by such a B-matrix

(12.2)

B = BR + J, BRe Mat(g, R), J = πi

is conjugated as follows:

/0 0\

1/

(12.3) 0(2r) = 0(z + Δ o ) , Δ o = diagj = πi(0, . . . , 0 , 1 , . . . , 1)
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(zeroes at the first k places). In the chosen basis the vectors U and V

are real (τ54o — 4o,T5^o = 4 ) Using the representation (11.5), we get

(12.4) Un = / τζdwn = dwn = Un, Vn = Vn.

Now we are in a position to consider the reality conditions for /ιn,m.
The real-valuedness of /ιn>m given by formula (11.18) is equivalent to

θ(Un
= 1.

θ{Un + Vm + D)

Using (12.3,12.4), this relation can be rewritten in the form

θ{Un + Vm + D + Δ)θ{Un + Vm + D + A + Δo) _

θ(Un + Vm + D)θ(Un + Vm + D + Δo) ~

and leads to the following restriction on the structure of the vector D:

Π25Ϊ %
[iZ 0) Δ x - π ^ l , . . . ,1,0,. . . ,0), NeZ\

(zeros at the last g — k places in Δi), where DR G R 9 .

Theorem 11. Let X be a hyperellίptic Rίemann surface with branch

points Λ = 0, oo; an antiholomorphic involution r : Λ —> A and a

canonical basis of cycles, which is transformed by τ as indicated in

(12.1). Then formula (11.18) describes real finite-gap solutions to the

Hirota equation if the imaginary part of the vector D is of the form

(12.5). The whole variety of real finite-gap solutions to the Hirota equa-

tion corresponding to the fixed spectral curve X, after factorizing by the

symmetries (11.24,2.18) of the equation, is subdivided into 2k connected

components fixed by the different possible choices of the vector D and

labeled by the Z^-valued vector K in

(12.6) D = DR + ^ + πi(K, 0,... , 0),

where K = {Ku... , Kk) e Z% comprises the first k components of the

last vector in (12.6).

All periodic real solutions to the Hirota equation, corresponding to

non-singular spectral curves, belong to the set of real finite-gap solutions

described above.
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The angles of the discrete K-surface, corresponding to the finite-gap
solution (11.18), are as follows:

e ^n m

θ(U(n + 1) + Vm + D)θ(Un + V{m + 1) + D)

Λ < 2 >

θ(U(n + 1) + Vm + D + A)θ(Un + V{m + 1) + D + Δ)

θ(Un + V(m + !)+£> + A)θ{U(n -
~ £ o o £ o θ{Un + V{m + 1) + D)θ(U(n -

(12.7)

n - 1) + Vm + D)θ(Un + V(m - 1) + D)

θ(U{n -l) + Vm + D + A)θ(Un + V(m - 1) + D + Δ)'

n + 1) + Vm + D + Δ)fl(£/n + F(m - 1) + £> + Δ)
Vm + JD)^(E/n + F(m - 1) + D)

Proof. To reduce (12.5) to the form (12.6) let us note that the
solution (11.18) is invariant 7 with respect to translations of D by
lattice vectors of the Jacobian:

D -> D + 2πiN + BM, N, M E Zg.

Since the imaginary part of the period matrix is of the form (12.2), one
can choose M E Z9 to reduce (12.5) to (12.6).

In §10 considering the discrete If-surfaces with both period numbers
(TV, M) odd, we showed that in this case the Hirota field can be chosen
periodic, and investigated the properties of the spectral curve and the
BA function in this case. One can easily see that this consideration
works for any JV, M if the Hirota field is periodic.

Formulas (12.7) follow from (6.1).

7If ^2 Mi is odd then one has to replace eιh by — eιh, but this transformation
preserves the class (4.18).
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13. Formula for immersion in terms of theta functions

Taking into account formula (5.5), written in terms of the matrix
o

valued solution ψ of the linear system (11.10), it is not suprising that
with the help of the BA function one can not only describe the angles
(12.7) of the discrete if-surface, but also derive an explicit formula for
the corresponding immersion F : Z 2 —V R 3 .

Indeed, the functions φ(P) and φ(r4P) correspond to the same 8

λ,u,υ and therefore solve the same linear system (11.10). Combined
together

these two functions comprise a matrix valued function

Φ(P) = 0(Ω) Θ(Q)

(13.1)
\ 0(Ω + A)

'a'ίT *>W

υ

Δ)

x
-na-m _

where

(13.2) a =

crnβ
Θ(D)

and the integration path [oo,P] does note intersect the contours £, ̂ oo,
ίQ. This formula needs clarification: the hyperelliptic involution π of
X corresponds to the combination TχT4 of X. We have chosen the
branch of λ on X so that its sign is changed by π. Therefore, due
to the symmetry (10.3), r4 is equivalent to the combination of π and
φ —> σ3ψ. To get (13.1) one should also use the symmetries

/ dw = — dw, eJ°°
Joo «̂ oo

- e
r

8Recall that the involution TA of X only changes the sign of M and preserves
\,u,v.
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The last equality follows from the fact that one of two paths [oo,P],
[oo,7rP] crosses ί^.

Starting with the solution (13.1) one can easily get a desirable so-
o

lution φ n > m (λ) E SU(2) to be substituted into formula (5.5). The
addition formula for the theta function

fl(Ω)g(Ω

0(O)0(Δ) '

which can be found, for example, in [4] (or proved directly by analysing
analytical properties of the left-hand side) allows us to calculate the
determinant of the first matrix factor in (13.2). The second matrix in
(13.1) can be simplified by multiplication with a factor independent of
n and m.

Now let us consider the points P — (Λ, μ) of X with real positive
Λ-coordinates. These points correspond to the associated family of the
discrete K-surfaces, described in §5. Since the contour £ is separated
from the cut [oo,0], all the points near [oo,0] can be parametrized by
λ E R, and in the next two theorems we prefer to use this notation for
the point P.

o

Theorem 12. The function ψ n j m (λ) E SU(2) given by the formula

fABUα-/3» 0
. — n f t — m

(13.3)

°_e(n + A + £dw) .
° Θ(n + A) ' υ

Θ{O)Θ(A) '

is a solution of the system (5.6) with the coefficients (11.18). Here the
point λ lies on the uper edge of the cut [oo,0],λ > 0, the integration
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path goes along the upper edge of [oo,0], a and β are defined by (13.2).

All \,u,v in (13.3,5.6) are positive.
o

Proof. The only statement to be proved is that Φ n ) m (λ) defined

by (13.3) belongs to SU{2). All differentials are invariant with respect

to τ 5, i.e.,

τhdw = dw,

For Λ > 0 we have

/ dw — / τζdw = / dw = — dw,
J oo «/oo «/oo «/oo

GίΩoo = - / ί/Ωoo, / dΩo = ~ / ί/Ω0,
t/OO J OO «/OO

which imply

|α| = \β\ = 1, A= D, B= -C.

To prove the theta functional identities we use (12.3), (12.5) to obtain

θ( dw + Ω n > m ) =θ{
J oo J o

= θ(- ί
•/o

oo

Theorem 13. The coordinates of the discrete K-surface (the

discrete anisotropic Chebysheυ net) and its Gauss map, corresponding

to the finite-gap solution (11.18) of the Hirota equation {where A™ =

Δ u , ΔJ^ = Av) are given by the formulas

2Λ?
(13.4) F3

+4Λii?n,TO,

iN2 = - r n ,

N'=

mAD-BC
AD + BC

Aΰ-BC
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where

A = θ(f dw + Ωn)Tn), B = θ(f dw — Ωn,m)?

\dw + Ωn,m + A),D = -θ(f^dw - Ωn,m + Δ),

rn,m = a2nβ2m, α = i e / o > ~ , β = J~dςι\

Ωn,m = Un + Vm + D.

The lower indices Λ in (13.4) denote the partial derivatives with respect

and ^-k, ^Y2-, ̂  denote the values of the corresponding differentials at
the point λ. The determinant AD — BC can be calculated also as

) fp fp

-θ( dw)θ{ dw + A).
J oo J oo

A DAD-

All the discrete K-surfaces with the periodic Gauss map and with both
odd coordinates JV, M of the period, are described by these formulas.

Proof. To derive formulas (13.4, 13.5) let us recall the Remark at

the end of §5 and use a non-normalized function

anβm 0 ^
0 a~nβ—na—m

Then Theorem 3 implies the following formulas for the immersion in

the quaternionic representation

F = 4 A [ Φ " 1 Φ A ] t Γ = 0 , N = -zφ- 'σaΦ, Λ - e2t.

Substituting (13.3) into these formulas, rewriting them coordinatewise
and canceling some factors, we finally get (13.4), (13.5).

It is very easy to get rid of the conditions ΔĴ  = ΔU,ΔJ^ = Av

and to generalize Theorem 13 to discrete weak Chebyshev nets. This
generalization is used in §15 to describe compact examples.
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Let cJΩ^dΩ™, n,m G Z be normalized Abelian differentials of the
third kind with the singularities

oo

1 dΛ

at the points

p n __ K pm __ Δ^

and

(13.6) Un=[dΓί^ Vm=[dΩ™
Jb Jb

be their period vectors (C/n, Vm E R p in the basis shown in Figure 14).

Theorem 14. The coordinates of the discrete weak Chebyshev net

(see §§3 — 6) and its Gauss map, corresponding to the finite-gap solution

(11.18) of the Hirota equation are given by the formulas (13.4), (13.5),

where A,B,C,D are as in Theorem 13 and

Rn,m =

(13.7) r n , m =
k=l 1=1

k=l 1=1

All discrete weak Chebyshev nets with the periodic Gauss map with

the period (N,M), where both JV, M are odd, are described by these

formulas.

14. Periodicity and simplest examples

In general the immersion (13.4) is not periodic.

Proposition 8. The discrete anisotropic Chebyshev net Fn,m(λ0)

described in Theorem 13 with λ = λ0 possesses the following periodicity

properties with the period n,m^n + N,m-\-M:

1) The angles φ$m between the edges of this surface are periodic if

and only if



596 ALEXANDER BOBENKO & ULRICH PINKALL

(14.1) UN + VM = BRL,

where BR is the real part of the period matrix, L G Zg is integer

and its g — k last coordinates Lk+λ,... , Lg are even; or equiva-

lently, in a more invariant way, there exists a differential dΩNiM

of the third kind with the singularities

N dA Λ / - x ,

dςiNM-±M^L- + 0(l) P^P±
Δ Λ — IQ

all the periods of which are proportional to 2πi

(14.2) - ^ / dΩNM EZ, Vα e Hτ(X, Z).
ΔΈl Ja

2) The Gauss map A^n>m(λ0) is periodic if and only if, in addition,
the equality

(14.3) ( - 1 ) " exp{2 / ° dΩNM} = 1
Joo

or, equivalently,

( - l ) M e x p { 2 / °dίlNM} = l
Jo

holds.

3) The immersion FniTn(\0) is periodic if and only if, in addition to
the conditions stated above under 1), 2), the differential dQ>NM

vanishes at the point λ0

(14.4) dΩNM(λ0) = 0.

Proof. Under the transformation n,m —» n + N,m + M the argu-
ments of all the theta functions in (12.7) are shifted by UN + VM. For
the angles φ£jm to be periodic it is necessary that this shift belongs to
the lattice of the Jacobian

UN + VM = 2πiK + BL, K.LeZ9.
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Taking into account the reality properties of U,V,B we get (14.1). If
(14.1) holds, then the differential

NdΩ,^ + M d Ω 0 - < L,dw >

possesses all the properties of dΩN,M listed in 1) and vice versa: the
differential dΩ,NiM — NdΩ,oo — MdΩ0 is holomorphic and all its α-periods
are multiples of 2πz, and therefore it equals < L,dw >,L E Zg. The
comparison of the imaginary parts of the periods b^l > k yields the
parity of L^l > k.

The coordinate N3 of the Gauss map is always periodic if (14.1)
holds. For the coordinates JVi + iN2, using the periodicity properties
(11.2), we get

AC ίx°
(n + BL)= 4 n ίΩ)exp(-2< / dw,L>).AD-BC

Multiplying by a2Nβ2M leads to

(iexp( I*0 dΩoo))2Λί(exp( f** dΩ0))2 Mexp(-2 < Γ dw,L >),
^oo J oo Joo

which gives the factor (14.3). Under the conditions 1), 2) Fι + iF2 is
periodic. Using the differentiated equality (11.2)

— - [ L) = exp{-- <BL,L> - < fdw + R,L>)
Z J

^rθ( dw + R)-<^-,L>θ( dw + R)),
oh Joo ah Joo

one can get

DAA - ADA + CBA - BCA

AD-BC

dw
dh

Then the periodicity of F3 implies (14.4).

Let us consider now the discrete K-surfaces generated by the spectral
curves of genus g = 1. To make the surface especially symmetric we
set ΔĴ  = ΔJ^ = Δ (a discrete Chebyshev net) and suppose that the
spectral curve X possesses one more involution

(14.5) r6 : Λ -
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We distinguish τ 6 from πτ 6 by the condition that τ 6 has 4 fixed points

Λ = ± 1 on X. This involution acts on the chosen basis of cycles as

follows:

— — α, Tg6 = —b.

In the symmetric case of the discrete Chebyshev net

Poo = 1/Pθ,

the involution τ 6 interchanges the differentials cίΩoo and dΩ0 :

TgdΩoo = εdΩ0, ε = ± 1 ,

where the sign ε depends on the labeling of the singularities P^,P^.
For the &-periods we get

U = -εV,

which shows that the theta functions in formulas (13.4, 13.5) depend

only on the combination

(14.6) U(n-εm).

Let us take a "basic" surface of the associated family with t — 0, or
equivalently, λ = 1. Then Rn,m in formula (13.4) depends only also on
n — εm :

(14.7)

Here we have used the symmetry

Since λ = 1 is a fixed point of τ 6, we have

/ λ = l / λ = l

/3 = exp( / dΩ0) = exp(ε / cίΩoo) = ( - α / ε ^ ) 5 ,

which shows that r n m is a function of the combination n + εm
'n,rn — Oί μ —
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We set ε = 1 (the opposite sign ε = - 1 is equivalent to the replacement

Since the transformation

(14.8) n,ra -» n + Kum + Kλ

does not effect the arguments (14.6) of the theta functions and the
linear term (14.7) in F 3 , the surface under consideration is periodic
with the period (14.8) if α 4 K l = 1, i.e.,

(14.9) exp(4ίί1 / rfΩ^) = 1, Kλ e Z.
Jo

fλ=l

/o

The Gauss map of the surface possesses the second period

(14.10) n,m->n + K2,m-K2, K2eZ

if

(14.11) K2U/BR e Z

in the case of a "vertical" cut (g = 1, k = 0,Λ2 = Ai, |Ai ί2| = 1, the
period B = BR + πi,BR E R ). In the case of a "horizontal" cut
(g = l,fc = l,Λi < 0,Λ2 = 1/Ai, the period B = BR is real) the
periodicity (14.10) is equivalent to

(14.12) 2K2U/BR e Z.

Since the differential

Ldω

responsible for the translational periodicity (14.4) never vanishes at
λ0 = 1, the period (14.10) is a translation in R 3. The surface is not
compact and looks like a cylinder. The equalities (14.11, 14.12) are
equivalent to (14.1).

The periodicity conditions (14.9) and (14.10) or (14.12) for the Gauss
map are two conditions on two real parameters: the singularity P^ < 0
and the branch point Ai, which is either real negative ("horizontal"
cut) or lies on the unit circle ("vertical" cut). Under these conditions
one gets a discrete set of Poo,Ai. As usual, there are no periodicity
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conditions on the vector ΰ E R o n the Jacobian, which plays the same
role as the parameter S in Section 8. Finally, we have one-parametric
families of discrete K-surfaces, parametrized by D G R.

Figures 15 and 16 present examples of the discrete K-surfaces with
"vertical" and "horizontal" cuts. When this cut shrinks to a point,
the translational period of the surface becomes infinite and we get the
discrete pseudospheres of Section 8.

FIGURE 15. The discrete K-surface with a spectral curve
of genus g — \ and a "vertical" cut Λ2 = Ax

FIGURE 16. The discrete K-surface with a spectral curve
of genus g = 1 and a "horizontal" cut Λx < Λ2 < 0

15. Compact examples

For the general case of a weak Chebyshev net Proposition 8 reads as
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follows:

Proposition 9. The discrete weak Chebysheυ net Fn^m(λ0) described
in Theorem 14 with λ = λ0 is periodic with the period n,m —> n+7V, m+
M if and only if there exists a differential dΩNiM of the third kind with
the singularities

possessing the properties (14.2), (14.3), (14.4). This differential equals

N M

(15.1)
n = l

where L £ Z9 is integer, and its g — k last components are even. This
implies in particular the period equality (the periodicity condition for
the angles)

N M

(15.2) ΣlT+Σvm = BRL.
7 1 = 1 7 7 1 = 1

If there exist two differentials dΩ/Vi.Mi a n d dΩjv2,M2 with independent
pairs (JVi, Mi), (JV2, M 2), possessing all the properties (14.2, 14.3, 14.4),
then the map F n > m is doubly periodic, i.e.,

771 rp 771
•Γ n-\-N\ ,m-\-M\ -^n+7V2,77i+M2 -^n,77i?

and the corresponding discrete K-surface is compact.

To describe the simplest compact discrete K-surfaces let us consider

a spectral curve X of genus 2 with an additional involution

(15.3) τ 6 : Λ -> I/A,

which has 2 fixed points lying over A = 1. We assume that the branch-

points

(15.4) A l5 Λ2, Λ3 = 1/Λ2, Λ4 - 1/Aχ

of X are complex conjugate Λ2 = Ai (see Figure 17).
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FIGURE 17. The symmetrical spectral curve of genus
g = 2 with the basis of cycles.

Let us assume also that the edges of the discrete K-surface under
consideration are of K different lengths, or, more precisely, that there
are K different singularities P ^ , k = 1,... K and Po*, k = 1,... K,
which are pairwise symmetric:

(15.5) Po

k =

The involution r6 acts on the canonical basis indicated in Figure 17
as follows:

(15.6)

which implies

= -bu

i = — dω2

for the normalized holomorphic differentials. For the differentials dΩ^ 0

due to the symmetry (15.5), one gets TgdΩ^ = edQ^ where the sign
€ = ±1 depends on the "±" labeling of the singularities P^^. Let us
fix it by setting

(15.7) = dil*.

To get a doubly-periodic discrete K-surface one needs two differen-
tials dΩ,NljMl,dΩ,N2^M2 satisfying the periodicity properties. In the case
of the symmetry (15.3) the spectral curve X covers two curves X+,X_
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both of genus 1, defined as factors of X by the involutions τ6 and
respectively

X -> X+ = X/τ6, X -> X. = X/τ6r4.

Here r4 is the hyperelliptic involution of §10. Therefore it is natural to
look for the differentials

which are symmetric and antisymmetric, respectively, with respect to

(15.8) τ6*dΩ± = ±cfΩ±.

In other words, they can be projected to X+ and X_ respectively. In
this case Kλ and K2 are multiples of some K G N,

Kλ = NK, K2 =

and the differentials dΩ± are described by the following formulas

K

dΩ+ = N 2.(dΩoo + ύ?Ω0) — Lι(duJι — d(v2),
k-l

K

The period matrix of the curve with the involution (15.3) is also
symmetric :

(15.9) B^Bn + πiί^Y BR= ("Λ, BReMat(2,R).

Let us consider the "basic" discrete K-surface of the associated family
λ = 1. Then the number of the periodicity conditions to be satisfied is
reduced by factor of 2 due to the symmetries of the periods and of the
values of the differentials and the integrals at λ = 1.
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First, let us consider the intrinsic periodicity (14.1). Formulas (15.6,

15.7) imply that the b—periods (13.6) of dΩ1^ and dΩ^ are related as

follows:

Uk = (U}> Uk

2), Vk = (Vλ\ Vk) = (-[/*, -Uk).

For the bλ-periods of dΩ± this gives

I
hi

K

κ

Due to the symmetry

ί dΩ± = T ί dΠ±
Jb2 hi

it is enough to satisfy the periodicity condition (14.1) for the period &i

only. By Proposition 8 both Lι,L2 must be even :

L\ = 2Zi, L2 — 2t27 n , ^ ^ Z.

This allows us to rewrite the intrinsic periodicity conditions as follows:

(15.10) JL,, = -JL-£(ui

where α, 6 G R are the elements of the period matrix (15.9).

The rotational periodicity (14.3) can be investigated in a similar way.

For the differential cίΩ_ it is automatically satisfied :

(15.12) /

To prove (15.12), let us remark that

/•I z l pi z oo

/ dΩk

0 = / dnl = dϊll + /
^0 Joo JO Jo

dnl,
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which yields

exp( / dΩ1^- dΩk

0) = — , e o o = ±1.
Jθ Jθ ^ o o

Combined with the identity

exp( / dωi + dω2) = ±1,
Jo

obtained in the same way, this finally proves (15.12). For the differential
dΩ+ the same arguments

Γ1 ίι

exp( / dΩ1^ + dΩo) = ie^ exp(2 / rfΩ^),
J o Jo

exp( / dωx — dω2) = — exp(2 / dωλ)
Jo Jo

imply the rotational periodicity condition

(15.13) exp(4JV^ / dΩ1^ - 8h ί dωλ) = 1.

Because of the symmetry

the translational periodicity condition (14.4) is always satisfied by dΩ+

at λ0 = 1. By the same reasons,

For the differential c?Ω_ this condition (14.4) is formulated as follows:

(15.14) M g ^ ( A = 1) -2Za^(A = 1) =0.

The following proposition is proved.
Proposition 10. Let X be a spectral curve of genus 2 with the

branchpoints as above (15.4), for which the singularities P^i0 are sym-
metric (15.5) and the periodicity conditions (15.10), (15.11), (15.13), (15.14)
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are satisfied. Then the formulas (13.4), (13.5), (13.7) describe a compact
discrete K-surface, which is doubly periodic with the periods {KN, KN),
{KM,-KM).

FIGURE 18. A compact discrete K-surface, which
corresponds to a symmetrical spectral curve

of genus g = 2
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There are four periodicity conditions (15.10), (15.11), (15.13), (15.14)
to be satisfied, and there are K + 2 free parameters: K different singu-
larities P^, k = 1,... , K (or, equivalently, K different lengths of edges
Δ l 5 . . . ,Δ#) and the real and imaginary parts of Kλ. This indicates
that there are no doubly periodic discrete K-surfaces with all edges of
the same length, but one can hope to construct such surfaces comprised
by edges of two different lengths.

An example of doubly periodic discrete K-surface is presented in Fig-
ure 18. The surface in this figure has edges of two different lengths.
This example was constructed by Matthias Heil, who solved numeri-
cally the periodicity conditions (15.10, 15.11, 15.13, 15.14) using the
software for doing calculations on hyperelliptic Riemann surfaces de-
veloped by him at SFB 288.

The smooth surfaces generated by the symmetric spectral curve con-
sidered in this section are undeformable. In contrast to this, in the
discrete case the spectral curve X and the points P^, satisfying the
periodicity conditions, generate families of discrete K-surfaces. In the
cases of the surface, presented in the coloured picture at the end of the
paper it is a 2-parametric family, parametrized by a vector D G R 2. By
variation of D one moves the closed F n , m net in the meridian or parallel
directions. The form of the smooth counterpart remains recognizable.

16. Appendix

We consider the postponed case (4.10) and show first that

(16.1) #n+l,m+l - Nn,m || JVn+1,m - iVn+i,m.

By a suitable gauge transformation (4.11) we can obtain

(16.2) /jΞ^'ΞίΞίΈO.

In this gauge (4.10) looks as follows:

(16.3) α-α'ΞΞ7-y,

(16.4) cos ̂  sin ^{eia> - e~ia) = cos ψ sin ψ{e^' - e"**).

The arguments of the proof of Proposition 5 show that (16.1) is equiv-

alent to

V ~ισφl' - x 1 '
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where U and V are the matrices in the gauge (16.2). By using (16.3),
calculation of both sides yields

where

/\ /\ . . / /\ /\ . . /
p = cos —- sin —τ-{eιOί + eιa ) + sin —- cos — ( e 2 7 + e~27 ),

Au Av . Δ u Δ υ

q = 2 sin — cos — e * 7 — 2 cos — sin — e m .
Δ Δ Δ Δ

The addition of a vanishing term to g

Δ u Av Au Av

g = ρ + s i n — - c o s - — ( e 7 — e 7 ) - c o s — s i n —- (e — e )
Δ 2ι Δ Δ

Δ" Δ" - Δ u Δ" •
= sin — cos — (e87 + e'lΊ ) - cos — sin — (eta + e~ιa )

Δ Δ Δ Δ

gives the equality of the arguments

argp — argς ( mod π),

and finally (16.1).

Now we prove that in the case of discrete Chebyshev net,

Au = Aυ,

the discrete surfaces described by (4.10) degenerate to discrete curves.
Equation (16.4) reads as follows:

exp(ia') — exp(-ia) — exp(rγ;) — exp(—iη)

and has 3 possible solutions

(a) a = 7, a1 = 7',

(b) a = —7' + π, a1 = — 7 + π,

(c) a' = —α, 7' Ξ -7, 2α = 27.
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The case (a) implies U = V, W = V, which proves the degeneracy
of the surface

The case (b) implies U = -V" 1, V = - I T 1 , which gives

The last case (c) splits into two possibilities. If a = 7, then α' = 7' and
we get a special case of (a). If a = 7 + π, then α' = —a, 7' = —α + π,
which yields

V = -σ 3Vσ 3, W - σ3W-V3, V - -W"1,

and finally, iVn>m = iVn+i,m+i This finishes the proof of the degeneracy.
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