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ON THE RESIDUE OF THE SPECTRAL ZETA
FUNCTIONS OF KAHLER MANIFOLDS WITH

CONICAL SINGULARITIES

KEN-ICHI YOSHIKAWA

0. Introduction

Let π : M —» B be a family of Kahler manifolds, and p : ξ —» M
a holomorphic vector bundle with a Hermitian metric. Then, from
the work of Quillen, the Knudsen-Mumford determinant X(ξ) admits a
canonical Hermitian metric called the Quillen metric. In [9], [10], [11],
Bismut, Gillet and Soule calculated the curvature of λ(£) and obtained
the refinement of Grothendieck-Riemann-Roch theorem. In [3], their
result was generalized to the case of degenerating family of Riemman
surfaces by Bismut and Bost. But there is no result on the curvature
of Knudsen-Mumford determinant for family of Kahler manifolds with
boundary or singular Kahler manifolds.

As for the real case, in [4] - [6], Bismut and Cheeger extended the
result of Atiyah-Patodi-Singer on the index of the Dirac operator on
manifolds with boundary. They patched a cone to the boundary of the
manifold and considered a manifold with conical singularities. They
gave a detailed study of elliptic operators on such singular manifolds
and obtained the family index theorem.

To consider the extension of the formula in [4], [5] in the direction
of [7], [8] and [9] - [11], it is necessary to define the Quillen metric
for the family of manifolds with conical singularities. Therefore we
must consider the Ray-Singer analytic torsion on manifolds with conical
singularities. By definition, it is given by a certain sum of the derivative
at the origin of spectral zeta functions. Prom the results of Cheeger,
these zeta functions possibly have a simple pole at the origin. Thus it
is not clear whether the analytic torsion is defined for them.
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The purpose of this article is to establish a relation among the residue
of zeta functions at the origin and to show that the analytic torsion is
defined for certain singular Kahler manifolds.

Let (M, g) be a compact Kahler manifold with an isolated singularity
p. We say that p is a conical singularity if there is an open neighborhood
U of p, a metric cone X = C(N) on a compact Riemannian manifold
(N,gN) and a map i : U -4 CQX(N) such that i is an isometry between
the smooth part of U and CQ1(N); i.e.,

(0.1) i*gx = g\u, 9x = dr2 + r2gN.

In the above definition, CQ r(N) is the metric completion of C0,r(N) =
(0, r) x N. We say that X — C(N) is the model cone of the singularity

P
We consider the following special and important case. Let π : L —> Y

be a negative line bundle over a compact projective algebraic manifold
Y. When L is negative, we write L < 0. Then we can contract the
zero section of L, denoted by Z y , and obtain a new space X which
may possibly have an isolated singularity p. We say that X is the Stein
reduction of L. Since L admits a C* -action defined by

(0.2) T λ «) := λC,

X admits the induced C*-action which is also denoted by Tλ. Let gx be

a Kahler metric on X. We say that gx is a conical metric if it satisfies

the following condition: there is a positive integer a G Z+ such that

(0.3) T*χ9x = \X\2agx

for every λ E C*. If gx is a conical metric, then by setting N := {x G
X\distχ(p,x) = 1}, where distx(-, •) is the distance function on X, we
have the following expression:

(0.4) gx = dr2 + r2gN, gN := g\N.

Definition 0.1. Let (M, g) be a compact Kahler manifold with an

isolated singularity p. We say that p is a conical singularity associated

to a line bundle π : L -> Y if L < 0 and if the model cone X of

the singularity p is the Stein reduction of L whose metric is a conical

Kahler metric gx.
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For a Riemannian manifold (M,g), we denote by OM the sealer cur-
vature and by RICM the Ricci curvature. Define λ(x) and λ+(#) by

(0.5) X(x):= sup m c M ^ \ λ+(x):=max{\(x),0}.
ξTM{0} 9{ξξ)

We can now state our main theorem.
Main Theorem. Let (M,g) be an n-dimensional compact Kάhler

manifold with a conical singularity associated to a line bundle π : L —>
Y. Let (X,gx) be the Stein reduction ofL with a conical Kάhler metric.
If Ky — aL < 0 where a is the same integer as (0.3) and

(0.6) inf r

2 ( σ x - λ + ) > - ( n - l ) 2 ,

x-{py

then the following equality holds:

(0.7)
g=0

where Co,g(s) is the spectral zeta function ofO0yq, the Friedrichs exten-
sion of the Laplacian on (0,q)-forms on M. When n = 1 and 2, (0.7)
holds for every Kάhler manifold with conical singularities (cf. [29]).

Prom a theorem of Cheeger, each ζo,q(s) has at most a simple pole at
the origin. Therefore from the Main Theorem, we have the following
corollary.

Corollary 0.1. Let (M,p) be the same as in the Main Theorem.
Then we can define its analytic torsion by the following formula:

(0.8) T(M,g) := e x p ( - ^ | i = o

Our Main Theorem is a special case of the following theorem.
Theorem 0.1. Let (M,ρ) be a compact Kάhler manifold with a

conical singularity p whose model cone is (X,gχ). Let X be a desingu-
larization of X, and set

(0.9) Hq{X) := {/ € Ω,(X); J_ ^ oo, j£ \f\**dv < 00

where Ωq(X) is the space of holomorphic q-forms on X. Assume that
Y, the exceptional divisor of X, is smooth. If (0.6), Ήq(X) = 0
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(0 < q < n) and H°(Y,Ωq

γ) = 0 (0 < q < ή) hold, then (0.7) holds
for(M,g).

As the referee pointed out, it is expected that the formula (0.7) holds
for every Kahler manifold with conical singularities without various
assumptions in the Main Theorem, by using the local index cancellation
formula as in section 7. We also remark that the formula (0.7) holds
for the vector bundle case under the semi-positivity condition of the
bundle.

This article is arranged as follows. In section 1, we define a conic
degenerating family of Kahler manifolds for a given Kahler manifold
with a conical singularity. In section 2, we establish an estimate of
the heat kernels needed below. In section 3, we prove the Hardy and
Sobolev inequality on cones. In section 4, we prove the uniformity
of the asymptotic expansion of the trace of the heat kernels for the
family in section 1. In section 5, we prove the uniform lower bound of
the first eigenvalue of the Laplacians for the family. In section 6, we
prove the Main Theorem. Our proof is given as an application of our
previous results (cf.[27, Theorem B]), Cheeger's Theorem (cf. [13]) and
the theorem of [9], [10], [11]. In section 7, we treat the 2-dimensional
cases. In section 8, we shall show that Kahler manifolds with nodes
are examples for which the Main Theorem holds.

1. A conic degenerating family of Kahler manifolds

Let (M, g) be a compact Kahler manifold with a conical singularity p
of dimension n; i.e., there is a neighborhood U of p and an identification
such that

(1.1) (U,g) = (CZΛ(N),dr2+r2ds2

N)

for some compact Riemannian manifold (N,ds2

N). We assume that
X := (C(N),dr2 + r2ds2

N) is a Kahler manifold whose homothetic
transformation is holomorphic; i.e., Tx(r,x) := (λr,x) is a holomorphic
isomorphism on X where (r, x) is the polar coordinate of X — C(N).
Note that T{gx = X2gx where gx = dr2 + r2ds2

N. Let π : X -> X
be a desingularization, and g% be a Kahler metric on X such that on

(1.2) 9χ = π*9x, 9x = dr2 + r2ds2

N
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Set Mf := M - C*Λ(N). Then M :== M' UN π-^C^N)) is a desin-
gularization of M. Define a family of Kahler metrics {ge} by

(1.3)

where we use the identification Te : Goj€-i(iV) —>- CQΛ(N) to patch
7Γ~1(Co,e-1(^)) a n d f̂' Since Te induces an isometry between
(Cie-ii€-i(N),e2gx) and (Ciyl(N),gx), g€ is a smooth Kahler met-
ric on M, and (M, g€) converges to (M,g) as e -> 0. We remark that
{(M,#c)} is a conic degeneration in the sense of [27].

Set p : M := M x Δ* -• Δ* where Δ = {z E C; \z\ < 1} and
Δ* = Δ - {0}. Then TM is a holomorphic subbundle of TM. Let G
be a Hermitian metric on TM defined by

where M€ := p '^e) for e G Δ. Denote by R(TM,G) the curva-
ture of (TM, G) with respect to the Hermitian connection. Then
R{TM,G) e A^{M,EndTM). Let Td(Λ(TM,G)) G θp^'p(Λ^ί)
be the Todd form. Then / ^ / Δ T d ( # ( T M , G ) ) G ΘP<2A

P'P(Δ*), where
XW/Δ implies the integration along the fiber. The following proposition
is needed for the proof of the Main Theorem.

Proposition 1.1. /Λ / ί,ΔTd(iϊ(TM,G)) can be extended to a

smooth (1,1)-form on Δ where [ω]^^ denotes the degree (p,p)-part of
ω.

Proof. Since dimΛί = n + 1, we have

(1.5) [ / Td(i?(TM5 G))] = [ fτd(Λ(TM, G))\
[JM/A J JM€

 L J

[ Ί(n+l,n+l)
Td(Λ(ΓM, G))J = A A de Λ de where A is a relative (n,n)-

form on M. Since #e = g on M', it is clear that /M, A|M e is extended
to a smooth (l,l)-form on Δ. Therefore it is sufficient to show that
fπ-iίc* (N)) A\M€ extends to a smooth form on Δ.

Set X := XxA* and TX := Ker(p2) where p2 : X -> Δ* is the pro-
jection. Consider two Hermitian metrics on TX, g^ and G := \e\2gχ.
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Denote by R(TX,G) (resp. R(TX,gR)) the curvature of (TX,G)
(resp. (TX,gχ)) with respect to the Hermitian connection. By com-
putation

(1.6) R(TX,G) = R(TX,gjt).

Therefore,

r ~ ~ η (n+l,n+l)

(1.7) [Td(R(TX,G))\ = 0,

since every polynomial of R(TX,gχ) has no component of degree

Set y := π - ^ Q ^ ^ ) ) x Δ * c M and consider TX\y. Define an

embedding T : y ^ X by T{x,e) := (Γ|e|-i(x),e). Thus T*G =

which gives

(1.8) [τd(i?(TM,G))](n+1'n+1) =T* Qτd(i?(TX,G))](

Prom (1.7), the right-hand side of (1.8) vanishes. Therefore

fπ-ι(c* (N)) ^l^e = 0? which completes the proof.

2. Heat kernels for Schrδdinger operators on
asymptotically flat vector bundles

In this section, we shall generalize the result obtained in [27, §2] to
the cases of Schrόdinger operators on certain vector bundles.

Let (X, g) be a complete Riemannian manifold of dimension m — 2n.
We fix a point o in X, and set \x\ := dist{o,x) = d(o,x). Let ix be the
injectivity radius at x.

Definition 2.1. Let {X,g) and o be as stated above. We say that
(X, g) is an (pointed) asymptotically flat manifold if the following two
conditions are satisfied.

There is a constant c > 0 such that for all y E X, iy > c(l + \y\).
Set jy := c(l + \y\). Let B(yJjy) be the metric ball of radius jy

centered at y, and x — (x1, ,£ m ) the geodesic normal coordinate on
B(yJy). If we write g(x) = Σij 9ij(x)dxidxj on B(y,jy), then

-1 d a

0 — υ — ' Qχa
 %3 - | α |
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hold for all x G B(y,jy) and a > 0, where Co and Ka are constants
independent of rr, y. When y = o, we simply write f?(r) instead of
£(o,r).

Assumption 2.1. Lei (X,#) δe an asymptotically flat manifold.
We assume the fallowings.
1) There is a constant D > 0 such that for all f G C^{X)y

IM/IU2 > # 11/11 ^ if m > 2 and the same inequality for
(XxC,g+ds2

e) ifLm = 2.
2) There is a constant A > 0 such that Area(S(r)) < A r™"1 for

all r > 0, where S(r) := {x G X\ \x\ = r}.
Throughout this article, we assume that Assumption 2.1 is always

satisfied for asymptotically flat manifolds
Let (E,h,VE) be a Hermitian vector bundle of rank r with a Her-

mitian connection on X. Since E is trivial on each B(y,jy), we can
choose a unitary frame {si, , sr}. With respect to this frame, we set

We denote by Ω = (Ω^ ) = dω + ω Λ ω the curvature form of E.
Definition 2.2. We say that (£, Λ, VE) is an asymptotically flat

vector bundle on X if for every y G V, there is a suitable choice of
frame {si, ,sr} on B(y,jy) such that /^(y) = ί<j and

for all a: G B(y,jy), y G X and α, /3 > 0 where C and UΓα are constants
independent of re, y.

Let Δ β := V^* VE be the Bochner Laplacian on E. Then, for
F G Coo(Z,Herm(JE)), if := Δ^ + F is a self-adjoint Schrόdinger
opetator on E.

Definition 2.3. Let (£7, Λ, Vβ) be an asymptotically flat vector
bundle on X. We say that F is an asymptotically flat potential if
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holds for all x E B(y,jy), y E X and a > 0 where KQ are constants
independent of #, y.

Now we shall consider the heat kernel for the Schrόdinger operator
H := AE + F where F is an asymptotically flat potential. We denote it
by KE(t, x, y; H). When F = 0, we simply write KE(t, x, y). Then, the
parabolic Harnack inequality of Li and Yau, combined with a theorem
of Hess, Schrader and Uhlenbrock, gives an upper bound of the heat
kernel on each B(y,jy).

Lemma 2.1. Let q = q(x) E C°°(X) be an asymptotically flat
potential and H = Δ + q be a self-adjoint Schrδdinger operator on
L2{X). Then, for every p E X, x,y E B(pJp) and 0 < t < \j2

p =
|c 2 ( l + |p|)2, the following estimate holds for K(t,x,y;H):

K(t,x,y;H) <

where C and 7 are positive constants independent of p,x,y,t.
Proof. We can prove the above estimate using Theorem 3.3 and

Corollary 3.1 of [22], noting that asymptotical flatness implies
A < CR-2 in Theorem 3.3 of [22].

Now we consider the vector bundle case. Let (£7, Λ, VE) and F be
the same as in Definitions 2.2, 2.3 and H = AE +.F be a self-adjoint
Schrόdinger operator. Then, we have the following proposition.

Proposition 2.1. For everyp E X, x,y E B(p,jp) and0 < t < \j2

v,

(2.1) \KE(t,x,y;H)\ < C t ~ ψ

where C andj are positive constants independent o/p, x,y, t. Here the
norm \ \ is the operator norm on ΐlom(Ey,Ex).

Proof. Since F is asymptotically flat, there is an asymptotically flat
potential q E C°°(X) such that q(x) > 0 and -q(x)IE < F(x) < q(x)IE

for x E X. Then, by a theorem of [19, §3], setting H1 := Δ - <?, we
have the following estimate:

for all (t,x,y) E (0,00) x X x X. Therefore (2.1) is an immediate
consequence of Lemma 2.1 and the above inequality.
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To study the asymptotic expansion, we need a good parametrix.

Following [2], we identify E with £?(g)|Λ|2 where |Λ^| is the half density

bundle on X. We construct a parametrix as follows, (cf. [2, pp.82-87]).

Let x = (x1,- ,xm) be the geodesic normal coordinate centered

at y. In these coordinates, the metric tensor is represented by g =

Σij9ij{χ)dxιdxj. Set θ(x,y) = det(gij(x))*, and define a differential

operator B by

(2.2) B:=θ>oHoθ-ϊ.

Let τ(x,y) : Ey -» Ex be the parallel transport along the geodesic
joining y and x. Then, on B(y^jy)1 we can write τ(x,y) = (τij(x,y))
with respect to the frame in Definition 2.2. It is easily verified that
C~ιI < {τij(x,y)) < CI and each Tij(x,y) satisfies the following decay
condition for a > 0.

Lemma 2.2.

(2.3) | J ^ T . . ( a ; , y ) | < J ί ί α ( l

Proof. Since E is trivial on B(y,jy), we may represent τ(x,y) by

a matrix P(x). Set P(t,x) := P(expy(tξ)), where x = expy(ξd(x,y)).

Thus P(x) = P(d,x), d = d(x,y). Thus P(£,z) satisfies the following

ordinary differential equation.

±P(t, x) + ω(tξ)P(t, x) = 0, P(0, a) = /.

Using the above equality, we have

jt\P{t)\2 = - < ω(t)P(t),P(t) >-< P(t),P(t)ω(t)

Therefore, ^ | P ( ί ) | < |ω(t)| |P(<)|, which implies that

Since ω satisfies the decay condition (cf.Definition 2.2), we have \P{x)\ <
K, where if is a constant independent of x, y. In the same way, we
can prove I P ^ ) - 1 ! < K. This proves the lemma when a = 0.
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When a > 0, we prove by induction. We assume |V*~1P(ί,x)\ <
Cfc-iίl + lϊ/l)"**"1*. Then

dvkP(t) + ω(t)vkP(t)\ < ck(i + M)-(*+1\

at

Prom this, we have

Λ . . n.

-\VkP(t)\.
+ {1+ζl)k+1

This implies the following inequality

which in turn gives

dt

Since we can easily show that |V£P(£,α;)|t=o| < Ck(l + \y\)~k, we have

Setting t = d{x,y), we obtain the desired inequality for VkP(x).
Now, we define functions Ui(x,y;H) on B(y,jy) inductively by

(2.4) Uo(x,y,H):=τ(x,y)

Uj&y H) _ [ι 8i-ιBaui-1{x.,v\B) ^

τ(x,y) Jo τ{xs,y)

where x8 = expy(sx). Then we have the following proposition.

Proposition 2.2. For all x £ B(y,jy),

(2.6) \^Ui(x,y;H)\ < Ca(l + |y |)- | a | " 2 i ,

where Ca is a constant independent of x,y.
Proof. See [27, Proposition 2.1] for the proof.
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Definition 2.4. We fix a large integer N and define for k G {0,1}
a parametrix /*(£, x, y\ H) by

fk(t,x,y;H) :=T(t,x,y)(uo(x,y;H) +tu1(x,y,H) +

V ' / , . M α i / i __ . \/j.n—Λ-j-1+ p(t)T(t, x, y) (ίn-*+ 1nn_ f c + 1 (x, y; H) +

+ tn+Nun+N(x,y;H))\dy\K

(2.8) T(t,x,y) := ( 4 π ί ) - " ^ ^

where p is a cut off function defined by p(t) = 1 on [0,1], p{t) = 0 on
[2,oo) and \ft\ < 2. Set

(2.9) Fk(t,x,y;H) := KE(t,x,y;H) - fk(t,x,y;H).

Prom [2, Theorem 2.26], we obtain the following proposition.
Proposition 2.3.

(2.10) ( | + " . « < M , K J Ϊ )

= (4τr)-'ί"e- l ! !W iB,un+J, (0 < t < 1)

and

( 2 Π )

(^+Hx)Fk(t,x,y;H) = {Aπ)-n

Introducing

Gk{t,x,y;H):=Xv{x)(—+Hx)Fk(t,x,y;H)

and

Hk(t,x,y;H) := far ί KE(t-τ,x,z;H)Gk(τ,z,y;H)dυ,
Jo Jx
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yields the following lemma.
Lemma 2.3. On the domain t < 1 + |y|2,

sup |Ffe( , ,y) — iϊfc( , ,y)|

<C{ sup |F*( , ,y) |+ sup |fΓfc( , ,y)|}

where C > 0 is a constant independent of t, y. Here we omit H, E,
etc. for simplicity.

Proof. By the Weitzenbόck formula, we have for every
xX,E)

(Δ- - ^)|s|2 = 2|V5|
2 + 2 < Fs, s > - 2 < (H + ^Λs, s >,

at eft

where Δ~ := — d*d, and hence the differential inequality on [0, oo) x

B(y, \jy)

where c > 0 is a constant independent oft, y. This implies the following
inequality:

(Δ- - ^)exp(-cί/(l + \y\2))\Fk - Hk\
2 > 0.

Using this inequality and applying the maximum principle to exp(—ct/l+
\y\2)\Fk-Hk\

2, we obtain

sup exp(-cί/(l + M2))|Ffc( , ,y)- i ϊ f c ( , ,y)|
[0,t]xB(y,Jiv)

< sup exv(-ct/(l + \y\2))\Fk{;-yy)-Hk(;;y)\

(212) [ o , t ] M

< sup (
[o,ί]χaβ(2/,ijy)

+ sup exp(-cV(l + \y\2))\Hk(ΊΊy)\.
[Ό,t]xdB(y,±jy)

Since we restrict ourselves to the time interval [0,1 + |y|2], (2.12) gives
the desired inequality.
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With these preliminaries, we can state the following theorem.
Theorem 2.1. Let (E,h,VE) be an asymptotically flat vector bun-

dle, and F G C°°(X, End(E)) be an asymptotically flat potential. De-
note by KE(t, x, y; H) the heat kernel of the Schrόdinger operator H =

+ F. Then the following estimate holds:

\F a v VH)\ < ίctN+1{1 + lyl2)-(n+"+1) (* s i).
\Fk(t,y,y,H)\ < j

where C is a constant independent oft, y.

Proof. By Proposition 2.1, 2.2 and Lemma 2.3, we can prove the
theorem in the same way as [27, Theorem 2.1].

3. The Hardy and Sobolev inequalities on cones

Let (X,g) be a cone; i.e., X = M+ x N and g = dr2 + r2gN where
(JV, gN) is a compact Riemannian manifold, IR+ is the set of positive real
number, and r is the standard coordinate of R We denote by C(N)
the cone spaned by (N,gN), and also by Aξ(X) the space of p-forms
on X with compact support. Then, we have the Hardy inequality on
cones:

Proposition 3.1. Let (X,g) = C(N) be a cone of dimension m =
2n, and p φ n — l ,n, n + 1. Then for every f E AQ(X), the following
inequality holds:

(3-1) 3||r-1/H!2 < \\df\\h + \\δf\\h

where δ = — * cί* is the adjoint of d.

Proof. See Appendix (Proposition A.I) for the proof.
Proposition 3.2. Let (X,g) and p be the same as above. Then for

every f e Aξ(X),

(3.2)

Proof Since the Sobolev inequality holds on cones, we have

:Ά<c\\d\f\\\2

L2.
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From Kato's inequality |d|/| | < | V/| (cf.[19]) where V is the connection
on ΛPTX induced by the Levi-Civita connection, it follows that

where ΔB := V*V is the Bochner Laplacian. Thus the Weitzenbόck
formula (cf.[2]) leads to

where ΔH := (d + δ)2 is the Hodge Laplacian, and R := ΔB - ΔH

is a 0-th order differential operator. Since \R\ < Cr~2, we obtain the
desired inequality from Proposition 3.1.

We now consider the Kahler case. Let (X, g) be a cone as before. We
assume that (X, g) is a Kahler manifold. In this case we say that (X, g)
is a conical Kahler manifold. Although there is no Hardy inequality
for (n — l),n, (n + 1) forms on cones, we can have the inequality for
(0, n — 1)- and (0, n)-forms in the Kahler case under a certain curvature
condition. To state the condition, we prepare some notations. Let the
Ricci curvature and the scalar curvature be denoted by Ric^ and σx

respectively.
If we express g — ]ζ- gqdzldz^ and RiCχ = X)- pfjdzιdz\ then

pij = didj log(det(#)), σx = ^2gυpij,

where dι = j - and det(g) := det(^j). Since RiCχ is a quadratic form
on TX, we can define λ(x) by the largest eigenvalue of RiCχ on TXX.
Then we define λ+(α;) — max{λ(α;),0}.

Theorem 3.1. Let (X,g) be a conical Kahler manifold such that

(3.3) inf r2{σx{x) - λ+(a?)) > -{n - I ) 2 .

Then for every 0 < q < n, Hardy's and Sobolev7s inequalities hold; i.e.,

for every f G AQ

Q

(3.4)

and

(3.5)
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Since the Kahler condition of (X,g) implies 2(||<9/|||2 + | |5*/| |ia) =
H4f IU2 + ||^/IU25 the theorem holds for q < n — 1 by Propositions 3.1
and 3.2. For the proof in the remaining cases (q = n — l,n), we need
more some lemmas and propositions.

Lemma 3.1. // (3.3) holds, there is a constant e > 0 such that

(3.6) - Ricx +σxgx >{e-(n- l ) 2 }r" 2

5 x

and

Proof. First we remark that the curvature tensor Rx satisfies
|-Rχ(rx)| = r~2\Rx(x)\ since (X,g) is a cone. From the condition (3.3)
there is a constant e > 0 such that for every x E X

(3.8) r*(σx(x)-λ+(x))>e-(n-l)\

Since λ+ > 0, (3.7) follows immediately. By the definition we have

Ric x ( i ,0 < Hx)9x(ξ,ξ) < λ+(a?)ffx(ξ,0

for every ξ E TXX. Substituting the above inequality in (3.8) gives

r 2{-Ri<*(f,0 +σx(x)gx(ξ,ξ)} > {e - (n - l ) 2 }^( ί , f ) ,

and obtain (3.6).
Proposition 3.3. Let Kx be the canonical bundle of X, and denote

the Hermitian connection of Kx by Vκx Then, for every
f € AZ'°(X) = C?(KX),

Here we consider f as an element of AQ'°(X) and C£°(KX) on the
left-hand and the right-hand sides of (3.9) respectively.

Proof Let Vκx = Vi)0 + V0,i be the decomposition of the con-
nection into holomorphic and anti-holomorphic part. Then d = V0,i
Define D and D by

Π :=VS f lVo,i, D:=Vί f 0 Vi f 0 .
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Then by the Nakano formula (cf.[21]), we have

(3.10) D-O

where e(Rκx) is the exterior multiplication by Rκx, the curvature of
Kx, Λ is the interior multiplication by the Kahler form, and [α,6] is
defined by [α, b] := a o b — b o a.

We denote by Δ β the Bochner Laplacian defined by AB := V^ χ Vχx

Then, using the Kahler identities (cf.[21]), we obtain

(3.11) AB = D + D.

Combining (3.10) and (3.11) yields

(3.12) 2||β/||i, = \\VKχf\\l2 - {V=

Since y/^-ΪAe(RKχ) = —σx in the Kahler case, we have (3.9) from
(3.12).

Let TX be denoted by the holomorphic tangent bundle of X, and
Ω^Γ1 by the holomorphic vector bundle Λn"1TX*. Then there is a
canonical identification

-»• ( - l ^ - W dz*-1 A dzi+1 •••dznG ΩJ-1.

which preserves Hemitiaii metrics and connections.
Proposition 3.4. Let Vκx®τx be the Hermitian connection on

KX®TX. Then,

(3.14) 2||a/|||2 = | |V* x β Tχ/| | i a - Ricχ(/,/) + (σxf,f),

where f G Aζ~lt0{X) on the left-hand side and f G C™{KX ®TX) on
the right-hand side. Here Ricχ(/,/) is defined by

(3.15) Ric x(/,/) := j ΣPfjfihdvx,

where Ric* = J^^ pqdzidz? and / = Σ< fidz1 m * dzn ®^Ϊ in holomor-
phic normal coordinates.
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Proof. Let Vκx®τx = Vi)0 + V0,i, •, • and AB be the same as in
the previous proposition. Since i preserves the metric and connections,

(3.16) \df\ = |Vo,i/|,

where / G Aζ~li0(X) on the left-hand side and / e C^{KX ® TX) on
the right-hand side. As before by the Nakano formula

(3-17) D - D = yfΛ[e{RKχvrx), A]

where Rκx®τx is the curvature tensor of Kx <S> TX. Also the Kahler
identity gives

(3.18) AB = D + D.

Combining (3.16), (3.17) and (3.18) yields

(3.19) 2II0/H1, = \\VKχ9TXf\\h ~ (V^λe(RKχ^τx)f, /).

Since e(RKχ(S)Tχ) = e(Rτx) + e{Kx), yf-ΫkeiRxx) = -σx and

(3.20) < V=ΪAe(Rτx)f, f >=Σ PMi

in holomorphic normal coordinates in the Kahler case, we have the
desired equality from (3.19) and (3.20).

L e m m a 3.2. Let {X,g) be a cone C(N), and E be a Hermitian
vector bundle with a metric compatible connection VE on X. Then the
following inequality holds:

(3.21) / \VBf\2dvx>(n-l)2 f r-ψdυx
JC(N) JC(N)

for every f € CS°{E).
Proof Since T!+ is perpendicular to TN, we have \VEf\ > I V|_/ | ,

and therefore

/ \VEf\2dvx > I dvN / 0 °r 2 n - 1 |Vl
to oo\ Jc(N) JN JO ^
( 3 2 2 ) Λ ,00

> dυN r2'
JN JO or
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where we have used Kato's inequality |V^_/| > | J ; | / | | . Prom (3.22)

and the Hardy inequality (λ = 2n — 1 in this case)

(3.23)
Jo

it follows that

I \VEf\'dvx>(n-l)* I r-'f'dvx.
JC(N) JC(N)

Proof of Theorem 3Λ. First we prove (3.4). When q = n, by Lem-

ma 3.1, (3.7), Proposition 3.3 and Lemma 3.2, for every / e A°0'
n(X),

we obtain

( 3 ' 2 4 ) > IIVχx/||i, + ({e - (n - l)2}r-2/, /)

When q = n — 1, from Lemma 3.1, (3.6), Proposition 3.4 and Lem-

ma 3.2, we have for every g G A®'n~ι(X),

(3-25) > \\VKχ®τxg\\h

This completes the proof of the Hardy inequality. Next we prove (3.5).

When q = n, the Weitzenbδck formula and the Hardy inequality

yields

2

 A < c||Vκx/l£2

(3.26)
<

= C"{||S/||£a + Ild /IIM

The case q — n — 1 can be proven in the same way and is left to the

reader.
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Corollary 3.1. Under the same assumption of Theorem 3.1, the
following inequality holds:

(3-27) ||V/||i, < C{\\df\\l, + ll*/lliθ

for every f e ^'"(X).
Proof. From the Weitzenbόck formula, we have

(3.28) l |V/ | | ! 2 <| |a/ | | | 2 + C| |r- 1 / | | ! 2 ,

which together with Theorem 3.1 gives our desired inequality.
Let π : X -» X be a desingularization of X, and g be a Kahler

metric on X such that g = π*g on X' := X — π~1(Coiι(N)). Setting

(3.29) Ή.q(X) := {/ G Ω,(X); / ^^dv < oo, / | / | ^ d « < oo},
Jx l + rz Jx

where Ωq(X) is the space of holomorphic g-forms on X, we have the
following theorem.

Theorem 3.2. Let X satisfy the same conditions as in Theorem 3.1.
IfΨίq(X) = 0, then the following inequalities hold:

(3.30) ||(1 + rJ-Vlli.

(3.32) (AqfJ)<C(Π0JJ)

for every f G A°'g(X), tί Λere Δ g := V*V «5 Λ̂e Bochner Laplacian on
q-forms, and D0,g := (d + d*)2 is the Hodge Laplacian on (0,q)-forms
on X.

Proof Since X is Kahler, (3.31) and (3.32) follow from (3.30) in
the same way as Theorem 3.1 and Corollary 3.1. Therefore we need
only to prove (3.30). By using a partition of unity from Theorem 3.1,
we have

(3.33) ||(i + rrvili* < c(iιa/ιi£a + iiavni, + \\f\\h{κ))

and

(3.34) \\f\\]Ά < C(\\θf\\2

L2 + \\d*f\\2

L2 + \\f\\h(κ)),
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where K := π'^Co.iCΛO). If there is no constant such that

(3-35) | | / | | l 2 ( κ ) < C(||a/||2

i2 + \\d*f\\h),

then there is a sequence {/n} such that

\\fn\\h{K) = 1, llS/nlll. + ll^/nlli, "• 0.

By (3.34) we obtain | | ( l+r)-7 n | | L 2 + | | / n | | 2 _^ < M for some M < oo.
Taking a subsequence and using the Rellich lemma, we can find an
element g such that

(3.36) \\g\\L2(κ) = 1, ||(1 + r ) - 1 ^ ^ + \\g\\2

LΆ < M

and

(3.37) dg = 0, d*g = O.

Since X is Kahler, we know g G Wq{X). From (3.36) g is a nonzero
element of Uq{X). This contradicts Hq(X) = 0. Therefore there is
a constant C satisfying (3.35). Combining (3.33) and (3.35) gives the
desired inequality.

4. Conic degeneration of Kahler manifolds and behavior
of the heat kernels

Let {(M,gc)} be the conic degenerating family of Kahler manifolds
considered in section 1. Throughout this section we assume that {X,g)
satisfies the same condition as Theorem 3.2; i.e.,

i n f r 2 ( σ x ( z ) - λ + ( z ) ) > - ( n - l ) 2 and Hq{X)=0.

We denote by D ^ the Hodge Laplacian (8 + d*)2 on (0,q)-forms on M
with respect to g€. Let Klq{t, x, y) be the heat kernel of DQ q. Then its
trace

= ί tr
JM
ί

JM

has the following asymptotic expansion as t -> 0.

(4.1) Tr e-tDS.< ~ (4πί)-?{αo(e,ς) + tai(e,q) +t2a2(e,q)
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where α^e, q) is computed by using the parametrix constructed in sec-
tion 2 as follows. Let Ui{x\Πlq) := Ui(x,x',Ώe

θA) be the heat kernel
invariant constructed in the same way as (2.4) and (2.5) for H — Olq.
Then α^e, q) is given by

a>i(t,q) = / tr Ui(x;D€
0 )dve

JM

(4.2) = / tr Ui(x] De
0 )dv + f tr Ui{χ De

0 )dve

Jϋ JM-U

= em-2i I tr Ui(x, q)dv + ί tr m{x\ U€
o )dve,

JBio.t-1) JM-U

where Ui(x,q) := Ui(x,x\ Πo,g) is the same one as (2.4) and (2.5) for
(X, gx) and Ό — π " 1 (CQX(N)) . Our goal in this section is the following
theorem.

Theorem 4.1. For (X,#^) define bo,q(e,t) by

(4.3) boje, t) log T := / (4π)" n tr un(x, q)dv.
t JB(e-1)-B(e-1Vi)

where B(r) := K~1(CQ r{N)). Then the following estimate holds for
t e (0, l]

(4.4) I Ύr e-tD°>* - (Aπt)~n £ fli(c, q)t* - bo,q(e, t) log -\ < C,
2=0 τ2 = 0

where C > 0 is a constant independent of e, t.
For the proof of the theorem, we need two lemmas.
L e m m a 4.1. Let Le

Oq(t,x,y) be the heat kernel of the Hodge Lapla-
cian on (0,q)-froms on M with respect to the metric e~2ge. Let
K0,q(t,x,y) be the heat kernel of the Hodge Laplacian on (0,g)-forms
on X with respect to g^. Then, under the identification between M
and X on B(e~ι), the following estimate holds:
(4.5)

{
CtN+1

for y e B^'1), where \ | is the operator norm on End(Λ9Γ"*X) ; and
N is a fixed large integer.
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Proof. Let D0,ρ be the Hodge Laplacian on (0, g)-forms on X. Since
both Le

Oq(t) and K0^q(t) satisfy the same heat equation on B(y,jy), in
the same way as that used in the proof of Lemma 2.3 we find

sup |L^( , ,y) -ϋΓo,g( , ,y)|

^'Ό) <C{ sup |L$,ff(v,y)l + sup |tfo,ff(v,v)|}
[O,t]xd£(y,Jjw) [0,t]xβJ3(y,Jjy)

for y G ̂ (e" 1) where C > 0 is a constant independent oft, y. Applying
Lemma 2.1 to both £o,g(*) a n c^ -^o,9(*) gives

sup | ^ i g ( , ,y)--Koιg( , ,y)l
[ 0 , t ] B ( i i )

(4.7)
[o,t]

[0,*]

Setting jfe = iV + 1 for t < 1 and k = 1 for 1 < t < 1 + \y\2 in (4.7), we
have the desired estimate.

Lemma 4.2. There is a constant C > 0 independent of e,
ίftαί for t e (0,1]

(4.8) \K*Otq(t,x,x)\<Ct-n.

Proof. Using a partition of unity, we have from Theorem 3.2 it
follows that

(4-9) (Alf,f)(<C((Dlq + /)/,/)e

for every / £ A°iQ(M) where ( , )c implies the inner product with
respect to g€. Note that the inequalities in Theorem 3.2 are scaling-
invariant. Then, by the definition of the heat operator,

(4.10) (exp(-tΔJ)/, / ) e > Ce-C*(exp(-C*D^)/, f)e.

Let He

q(t,x,y) be the heat kernel of Aq. Then from (4.10) we have

(4.11) \K*iq(t,x,x)\ < Cect\H*q(t,x,x)l



432 KEN-ICHI YOSHIKAWA

which together with the theorem of [19] yields

(4.12) \H€
q(t,x,x)\<Kfo(t,x,x).

By [27, Theorem 3.1] thus we obtain

(4.13) K^0(t,x,x)<CΓn.

Combining (4.11), (4.12) and (4.13) our desired estimate.

Proof of Theorem J^Λ. We compute as follows:
(4.14)

I:=\f tτK^(t,x,x)dve(x)

-(4πί)~ n Σ «i(e> ?)*' " ftb.»(e, <) log - |
ί=o r

/ ί ^ , . , ^ n"^ , Π £ U ] J / ,
I < "ί""Γ T\ (~t Φ T l l4'7r'/'l \ "ί"T ί ( . | T ' I I I1/ >/71} i T l
/ I Ω/7V5 5 / V / / u>{l ιl/< '—~Ό ΠI I € V /

-bOyq(e,t) log-

+
/. T i—1

/ i \τ K€ (t r r\~(Aτrt\~n\^\τn('r ΪΎ V*

j
B(€-1)-B(e-1Vi)

(4π)-ntτun{x,q)dv 0(1)

< ί \F0(e-H,x,x)\dv
JBie-^-Bie-iVt)

/ \Le

0 (e-H,x,x) - K0,g(e-H,x,x)\dv
£ - )-β(€-i^)

\L'0Je-%x,x)\dv

+ I |(4πe-2ί)-"2tr u^q^e-HY^v

+p(e-H) f](6-2ί)i /_ I tr un+i(x, q)\dv

+0(1).

where we have used the formula

(4.15) Klq(t,x,y) = e->nLlq(e-H,x,y).
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We set δi(t, e) for the i-th term of the right-hand side of the last in-
equality of (4.14), and shall estimate each ^(t, e). Since 1 + \x\2 < e~2t
for x e B(e~ι) - B(e~l\/t), from Theorem 2.1 for k = 0 it follows that

(4.16) < Ce-H Γ r~3dr

-¥•
Similarly using Lemma 4.1 we obtain

(4.17) δ2(t,e)<C.

Moreover, from (4.15),

(4.18) / \L<0)q(e-%x,x)\dv= ί \K'Otq(t,x,x)\dv€

which together with Lemma 4.2 gives

(4.19) as(t, e) < CΓn vol(J5(Vί)) < C.

Thus by Proposition 2.2, we have

( 4 , 0 ) ^ ^

cΨ

and

(4.21)

2n-l

r 2 n - l

£ί7o (l+r»)«+«
7 * ,

since p(e"2ί) = 0 when t > 2e2. Combining (4.16), (4.17), (4.19), (4.20)
and (4.21) hence yields our desired inequality.
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5. Conic degeneration of Kahler manifolds and
the first eigenvalue of Laplacians

Let {(M,ge)} be the same as in the previous section, and Y be
the exceptional divisor of X; i.e., Y := ττ~1(p). In this section, we
assume that Y is smooth and satisfies H°(Y,Ωγ) = 0 for 0 < q < n.
Let λ?(e) > 0 be the nonzero eigenvalue of Do)9. Then we have the
following proposition.

Proposition 5.1. There is a constant Cq > 0 such that for every
0 < q < n and e e Δ*,

(5.1) λf (C) > Cq.

Proof. Noting that the Sobolev inequality is scaling-invariant, from
Theorem 3.2 we have

(5.2) \\4L^tt < C(\\dsh,,t + \\d*s\\L,<e + | | β | | L 8 , € ) .

We assume λl(e) —ϊ 0 as e —> 0. Let 5χ(e) be the normalized eigenform
for λ?(e); i.e.,

(5.3) aiqSl(e) = λx

Then we show that

(5.4) *(€)->* L\{M,g)

for some nonzero 5 such that s is holomorphic and s ± H°(M, Ωq) in the
inner product of (M,g) where L\(M,g) is the completion of AQ'Q(M)

by the norm | |/ | |L a + ||rf/||L2 + | |ί/| |L2. Let {fu , fN} be a fixed basis
of H°(M, Ω9). Then sx(e) _L {fu , fN} in the inner product of #e;
i.e.,

(5.5) / s^Af
JM

We set

(5.6) sx{e) :=
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where

(5.7) Λ ( Γ ) =

For simplicity, we consider the case a = 1. Then

\\SΛe)\\lίfi = \\h(e)\\ll(

(5-8) <l|5i(e)lli.,« + l|MiW
^ l + H ^ ^ e ) ^ , ,

Since dsι(e) = pedsι(e) + dp€ Λ Si(e), we have

i
(log|€|)27|€l r

< 2λ2(e) +

By (5.2) we know H s ^ e ) ^ ^ ^ < C. Therefore from (5.9) it follows
that ||si(e)||t2 o is uniformly bounded by a constant C independent of e.
Then due to the Rellich lemma, there is an element s € L\(M,g0) such
that Si(e) converges to s weakly in L\(M, g0) and strongly in L2(M, g0),
taking a suitable subsequence. Since

\\h(e)\\hfi > ll-iWIIi... - M<
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we obtain | |S| |L2 ) 0 = 1. In particular 5 φ 0. From (5.9), we have ds = 0.

Since s is square integrable with respect to g = g0, we may regard s as

a meromorphic g-form on M, which may possibly have a pole along Y

and is holomorphic outside of it. This implies that for some m > 0

(5.11) seH°(M,W{m[Y]),

where [Y] is the line bundle defined by the divisor Y.

Case 1 (1 < q < n). There is a coordinate system {Ua} near Y
such that on Ua, s can be represented by

s = aa Λ dζa + ba ,

where YΠUa = {ζa = 0}, aa G Γ ^ - ^ Ω 9 " 1 ) and ba G Γ(Ua-Y,Ωq).
Since the bundle [Y]\γ is defined by the system {gaβ := CαC/ΓΊv}? w e

have on Ua Π Uβ

(5.12) dβ = aagaβ, bβ = aaζβ + ba .

Assume that aa has a pole of order k along Y. Then

where α^ G Γ(ί7α, Ω9"1), and a'a does not vanish identically oi

we can regard the system {^1^} ^ a n element of H°(Y, Ω9"1

If fc > 1, since [Y]\γ is negative on y, we have

on Ua. Thus
1 \γ).

This implies a'a = 0 identically and is a contradiction. If fc = 1, then
« | y } G ̂ ( y Ω9"1) = 0, and a'a = 0 identically on J7α, a contradic-
tion. Therefore k > 0 and αα is holomorphic on ί/α. From (5.12), by
the same argument as on {αα}, we know that ba is regular along Y.
Thus

(5.13) β

which implies that 5 = 0, since s1(e) is perpendicular to H°(M, Ω9).
This contradicts the condition ||S||L2,O = l Hence we obtain a uniform
lower bound

(5.14) λ?(e) > C> 0.
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Case 2 (q=O,l or n). We first prove the case q = 0. In this
case, since X — p is connected, we know the uniform lower bound of the
first eigenvalue from [27, Proposition 4.1]. Since \\{e) is greater than
either λι(e) or Xl(e) (cf. [17, Lemma 1.6.5]), we obtain the uniform
lower bound of the first eigenvalue for q = 1. When q = n, since
λ?(e) > λ"~1(e) we also have the uniform lower bound.

Proposition 5.2. There is a constant C > 0 independent of e such
that

(5.15) A«(e)>CZ™.

Proof. By Theorem 4.1,

Tr p ( ^ )

for 0 < t < 1 where C is a constant independent of e. Setting t =
λf ( e ) " 1 ^ < 1 where Cq is the same constant as in (5.1), we have

I CqΛ t?(£)

(5.16) e~cH <Σe ~τ^r < Cλ?(e)n.

Inequality (5.15) follows immediately from (5.16).

6. Proof of the Main Theorem

In this section, we use the same notation as in sections 4 and 5. Let

Co,(z(s, e) be the spectral zeta function of Ώ€
o^ and

Tr e~tπ^ - (4πt)-Λ{α0(e, q) + aλt{e, ?) + •••}

be the asymptotic expansion of trace of the heat kernel as t —> 0. Then,
by the definition, we have the following expression of Co,9(s, e):
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)9(*,6) = - i - Γi-*(Ίt e-tDo, - hq)dt
1 \S) JO

(6.1) i ) J°
(4)-"A ( ) ft

Γ(β) ^ s - n + i sΓ{s)

where hq = άimHq{M^O^). Since Co,g(0,e) = (4π)~nαn(e,g), we have
the following formula:

^-|s=oCo,g(5,e) = A l V e-tαo., - (4πί)
as Jo

) -
.=0

Γ Γ Γι{Ύΐ e~tu^ - hq)dt.
Ji

Using the above formula in our conic degenerating case, we obtain the
following formula.

Proposition 6.1. As e —>• 0,
(6.3)

U C ( ) Γ / ( 4 ) - t ( ) A + O ( l )

= — / — / (47r) tr un{x,q)dv + C/(log — ) ,

where un(x,q) = un(x,x;ΏOiq) is the same as (2.4).
Proo/. We set the following Iu I2, h and compute each of them:

h : = j { ()

/2 : = (4π)-"Σ ^ ^ " (4τr)-"Γ'(l)αn(e,g) + Γ
i=o n

/ 3 : =
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First we compute:

(6.4)
/ |e|2

/

•I

M2

n - l

- f ^ / (4π)-ntr«n(x,(7)dt;

tΐ un{x\Ue

Q )dvt

- / (4π)^trun(α;^)^
t JB(VΪ)

— / (4π)"n tr un(x, q)dυ + 0(1) + 0( .
* JB{\<i\-λyft) J\e\2

4π)- f t tr un[x,q)dv + G>(log
IB(VΪ)

Since a,i(e, q) is bounded for i < n and is of logarithmic order by Propo-

sition 2.2, we have

(6.5) J2 = O(log—).

Finally, we estimate J3. Let {0 = λf(c) < A2(e) < } be the eigen-
value of DQ g, counted with multiplicities. Then, from Proposition 5.2
it follows that

(6.6) <

By Proposition 5.1,

(6.7) λf (e) > C,
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which together with (6.3), (6.6) gives

(6.8) I3 = 0(1).

Combining (6.4), (6.5) and (6.8) we obtain the desired estimate.

For the proof of Theorem 0.1, we need the following result of Cheeger
(cf. [13, Theorem 2.1] and [30, §5,6,7]).

Proposition 6.2. Let Z = C0,i(N) U Y be a Kdhler manifold with
a conical singularity, and denote the polar coordinate of C(N) by x =
(r, ω). Then, the asymptotic expansion of the diagonal of the heat kernel
of D0,9 the Friedrichs extension of the Laplacian on (0,q)-forms, is
given by

oo

(6.9) K0,q(t,x,x) ~ (47rt)-
i = 0

where Ci( ,q) G End(Λ0'g), and tr Ci(x,q) = ai(ω,q)r~2i on C0Λ(N)

with some smooth function ai( ,q) on N. Therefore ai(ω,q)r~2t is the

heat kernel invariant, being a polynomial of derivatives of the curvature

tensor of Coyι(N). Moreover, the asymptotic expansion of the trace of

the heat kernel is given by

t r ci(x,q)dvz)ti

(6.10) i=o Jz

+ - / (4π)-nan(ω,
I JN

and

(6.11) Ress=0 ζ(s) = J(4π)"n / αn(ω, q)dυN./
N

Combing Propositions 6.1 and 6.2,
Theorem 6.1. The following asymptotic formula holds as e

(6.12) A | s = o C θ g ( 5 j e ) = 2Ress=oCo,g(5,0)(log ^

Proof of Theorem 0.1. Let M be the family of Kahler manifolds
considered in section 1. Then each fiber is biholomorphic to M in a
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natural way. We fix a basis of each cohomology group Hq(M, O^) and
obtain an element of ΛmaxHq(M, OM), which is denoted by σq. Then
we can define an element of the determinant of the cohomology; i.e.,

(6.13) σ :=® g σ£- 1 ) 9 .

Since M = M x Δ*, σ can be regarded as a holomorphic section of
the Knudsen-Mumford determinant XKM on Δ*. We also denote this
holomorphic section by σ. Since each fiber M x {e} carries a Kahler
metric g€, we can define the norm of σ(e) by using the L2-norm of each
element of Hq(M,Oύ), a n d denote it by ||σ(e)||L2. Then ||σ( )||z,2 is a
smooth function on Δ*. Since the zero set of σ is an analytic subset of
M, we have the following estimate:

(6.14) 0 < d < \\σ(e)\\L2 < C2 < oo.

Following Ray-Singer (cf. [26]), we define the analytic torsion of (M, ge)

by

(6.15) T ( M , g e ) := e x p ( - ^

Then the Quillen metric || \\Q of \KM is given by

(6.16) ||σ

Using the familly index theorem of Bismut-Gillet-Soule (cf.
[11, Theorem 1.9]), we obtain on Δ*

= 2*i\[(6.17) 031og||σ||Q = 2πi / Td(JΪ(ΓM,G))
[JM/A J

Prom Proposition 1.1, the right-hand side of (6.17) extends smoothly on
Δ. By Theorem 6.1, log ||σ||Q is an integrable function on Δ. Therefore
as an equation of distributions on Δ, we have

3d log | |σ| |Q = 2πt / Td(R(TM, G))

(6.18) VM/AAS
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where Aα& is a constant and δ0 is the Dirac delta function supported at

the origin. Prom Theorem 6.1 and (6.14), it follows that A^ = 0 for

a + b > 0. Therefore

(6.19) Σ(- l ) g ^Co, g ( s , e)U=o = B log 1

where B is a constant. Thus again by Theorem 6.1, we know

(6.20) Σ t - 1 ) * ? * R e s * = o Co,g(5,0) = 0.
ςr=O

Proposition 6.3. £e£ X be a Stein reduction of a negative line bun-

dle L over a compact Kάhler munifold Y. Let gx be a conical Kάhler

metric of X for which (0.6) holds, and g^ be a Kάhler metric on L = X

such that gx = π*gx on X — K, where p : X -> X is a desingular-

ization, and K is a compact set containing the exceptional divisor Zy,

the zero section of L. Then we have the following vanishing theorem of

cohomology groups: For 0 < q < n,

(6.21) nq(X) = 0.

Proof We divide the proof into the case q < n — 1, q = n — 1 and

q = n.

Case 1 ( 0 < q < n - l ) . Let / be an element of Uq(X). Then

fCi ^ ^ r~2\p*f\2dvχ < oo, where N is the unit circle bundle of L,

and X = C(N)*. Moreover, we have

(6.22) GoA

< Cq sup I/I2 / r-Vl Λ {(p-ιγωx)
n-\

v Jv Λ

where Cq is a constant which depends only on q. In the above computa-

tion, we have used the convention that V = p~1(Coiι(N)) and that ωx,
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u)χ are Kahler forms of gx, g% respectively. If gγ is a Kahler metric
on Y, then we have the following relation.

(6.23) 9χ~9Y
r~\ζ\a,

where gλ ~ g2 implies that gx is quasi-isometric to g2i and r has the
same order as \ζ\a. Prom (6.23) it follows that

/ τ~2ω\ Λ ( ( p - 1 ) * ^ ) - * < C [ r~2ωnf2 Λ ( ( p " 1 ) * ^ ) 2

Jv Jv

<C ί
Jv

(6.24)

<C ί |C|2(α~1)ω^-1ΛdCΛd
Jv

<C [ |C|2(β"1)rfCΛdC<oo,
JA
[

JA

where ωγ is the Kahler form of gγ. Therefore, if / G Ήg(X), we have

(6.25) I r-2\{p-ιYf\2dvx <oo.
Jx

Let pe be the cut-off function defined by (5.7), setting a = 1. Let
fe '•= Pe{p~ι)*f- Then the Hardy inequality gives

(6.26) Hr-V.lli^Cd^lli. + llίΛlllO

Since dfe = dp€ Λ (p"1)*/ + ped(p~ι)*f, we estimate each term of the
right-hand side. By the definition of p€, we have

(6.27) ||dpe Λ (p-'YfWh <

Since / satisfies df = 0 and | |/| | J ^ < oo, we can apply integratation
by parts to / and obtain df = δf = 0. Therefore

(6.28) HrfΛII^ < MV

In the same way, we have

(6.29)
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Prom (6.28) and (6.29) it follows that

(6.30) r- 1 (p- 1 )V

which implies / = 0 and completes the proof for this case.

Case 2 (q=n). Let / be an element of Hn{X)- Since Kχ\γ

= Kγ — L from the adjunction formula, (Kg — (a — l)π*L)\γ = Kγ — aL
where we identify Y and Zγ. Since H°(Y, Kγ-aL) = 0 by the assump-
tion, H°(Y,Kγ-mL) = 0 for m < α. This implies that (C~m/)|zr = 0
for m < a — 1 where ζ is the local defining function of Zγ. Therefore
we have the following estimate near Zγ:

(6.3i) I/I < σicr

Hence,

/ [ r~2fΛf
))

/ \(y\

( 6 3 2 ) <Cn[
Jp-H

<oo,

since r has the same order as \ζ\a. Therefore,

(6.33) / r-2\(p-l)*f\2dvx < oo.
Jx

Thus in the same way as the Case 1, we can show / = 0 and completes

the proof for this case.

Case 3 (q=n-l). Let / be an element of Hn^λ(X). Since H°(Y, Kγ)

= 0, / vanishes along Zγ. We can express / Λ / as follows.

(6.34) / Λ / = aω^Γ1 + bω^Γ2 ΛdζΛ dξ.

Since / vanishes along Zγ, we have |α(£, )| < C\ζ\. Since ωx is quasi-

isometric to | C | 2 ( α " 1 } K Λ dξ + ωγ),

(6.35) fΛfΛωx< C ^ Γ ^ ί M + I&I \ζ\)dζ

Since r has the same order as |£|α,

(6.36) r'2\(p-lYJ\2dvx <
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which implies that

(6.37) / r-2\(p-l)*f\2dvx < oo.
Jx

Therefore, as before, we can show / = 0.

Proof of the Main Theorem. By Theorem 0.1 and Proposition 6.3,
it is sufficient to show that i?°(Y,Ωf,) = 0 for 0 < q < n. Prom the
condition Kγ-aL < 0, we know Kγ < 0, which implies H°(Y, Ω\,) = 0
for 0 < q < n by the Kodaira vanishing theorem.

7. Spectral zeta function of 2-dimensional Kahler manifolds

In the 2-dimensional case, (0.7) holds without the assumptions in

the statement of the Main Theorem.

Theorem 7.1. Let (M, g) be a compact Kahler surface with a conical

singularity p. Then the following equality holds:

(7.1)
q=0

Since Σ^=o(—l)9Co,g(s) vanishes identically, we have the following
corollary.

Corollary 7.1.

(7.2) R e s s = 0 Co,o(s) = τ> Resβ=o Co,i(5) = R e s s = 0 (0,2(5).

Proof We can express (M,g) by M = CQX(N) U M' where M' is a
manifold with boundary N. Let Ko,q(t,x,y) be the heat kernel of G0,g

on C(N). By the conformal homogeneity of C(iV), we have

tr K{t, x, x)dv = f{τηω, t)r2n~ιdr Λ dυN,

where ω is the variable on N. As t -» 0, the following asymptotic

expansion holds:

(7.4) /(r,ω,t) - (4πt)"n
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By Cheeger's computation, we obtain

(4π)~n f
(7.5) Ress=oCog( s) = — - — / an(ω)dvN ,

^ JN

where α<(ω) := di(l,ω). Set Me := C€A(N) UM', and let Ke
Oq(t,x,y)

be the heat kernel of Me with the Dirichlet boundary condition. Then
[24, Lemma 5.3] for x E C2eΛ(N)

In the interior of Me, we have the following asymptotic expansion:

2=0

where α̂  is the usual heat kernel invariant. Prom (7.7) it follows that

(7.8) ai(z,q) = a<(r,o;) = r"2ia,(a;).

Note that the relation (7.8) is extended to the whole cone C(N). There-
fore

(7.9) / a2(ω)dvN = / a2{x)dυ,
JN logr Jc1>r(N)

which together with (7.5) gives

(7.10) Res.=oCo,g(a)= ^ , 1 / a2(x)dυ.
2 l o g r y ( )

For the 2-dimensional Kahler manifolds, we have the following formulas
(cf. [17, Lemma 4.8.17] and [1, pp.82 and 225]):

(7.11) a2(x,0) = ( ^ e o { 5 H 2 - 2|p|2 + 2|iϊ|2},

(7.12) a2(x, 1) = ^ - l ^ 5 { - 2 0 | r | 2 + 86|p|2 -
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(7.13) α2(z,2) = ^ — { M M 8 -32|p | 2

(7.14)

(7.15) c2(T'M) = 3 ^ { | r | 2 - 4|p|

where r is the scalar curvature, p is the Ricci curvature, R is the total
Riemannian curvature, and T'M is the holomorphic tangent bundle of
M. From (7.11), (7.12), (7.13), (7.14) and (7.15), we have

(7.16) ^ ^
q=0 l ό i Z

Since c2(T'M) = χ(TM) and 2c2{T'M) - Cl{T'M)2 = Pi(T'M) for
2-dimensional Kahler manifolds, where χ(TM) is the Euler form, and
Pι(T'M) is the first Pontrjagin form of (M,#), the right-hand side
of (7.16) is expressed by a sum of χ(TM) and pι(T'M). Since both
χ(TM) and pι(T'M) vanish on cones, the right-hand side of (7.16) is
equal to 0. Therefore by (7.10) and (7.16), we obtain (7.1).

8. Examples

In this section, we treat some examples of Kahler manifolds with a
conical singularity which satisfy the conditions in the Main Theorem.

Proposition 8.1. Let F E C[z0, - ,zn] be a homogeneous polyno-
mial of degree m. Set

X(F) = {{zo, ~ ,zn)e C n + 1 ; F ( z 0 , • , s n ) = 0},

(8.1) gx{F) '•= \dzo\
2 + + \dzn\

2\x(F),

and denote by pχ(F) the Ricci curvature and by σχ(p) the scalar curva-
ture as before. Then the following inequalities hold:

IIV 2F|| 2 IIV 2F|| 2

(8 2) -T^iFπfW) ^ Pxw ^ °' - n i W ^ f ^ σ*^ * °
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where

w := C - •£» e e+1 v'F := <£k)'*j* e M(n+1;C)

|| II is the standard norm on C1"*"1, and || | |o p is the operator norm on
M(n + l C).

Proof. We identify the Hermitian metric with the Kahler form,
and the Ricci curvature with the Ricci form. For simplicity, we use the
following conventions:

By computation, we have

(8.3) px{F) = - Λ Λ - Ϊ | | V F | | ~ 4 22 {||VFII2^- - FiFά}dFi A dFj
i,j=O

from which it follows that

(8.4) px(F) < 0, σx{F) < 0,

and also that

n

Px(F) ̂  ~V~l||Vi^||~ / ^ dFj Λ dFj
i=O

(8 5 ) _ _./ZTιιτ7^ιι-2 ^ (f^FijF^dzjAdz-k
jyk=O i=0

where ωx^F) := >/—ΪΣ" j = o^t Λ cί^|χ is the induced Kahler form of
(X,g). Moreover, by (8.5) we obtain

(8.6) σx(F) > -n | |VF| |- 2 | |V 2 F| | 2

p .

Proposition 8.2. Let F G C[zo, ,zn] be a homogeneous poly-
nomial of degree m such that Y{F) := {[z0 : zλ : : zn] G Pn(C);
F(zo, ,^n) = 0} is a smooth hypersurface in Pn(C). Let L be the
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tautological line bundle o/Pn(C). Then X(F) is the Stein reduction of
L\γ, and gχ{F) satisfies

(8-7)

Proof. Since the Stein reduction of L is C 1 4" 1, it is clear that X(F)
is the Stein reduction of L\Y(Fy Since gχ(F) is the restriction of the
Euclidean metric, it is also clear that (8.7) holds.

Definition 8.1. Let V be a n-dimensional complex space and p be
an isilated singularity of V. p is said to be a hypersurface homogeneous
singularity if there is a homogeneous polynomial F (Ξ C[z0, , zn]
and a isomorphism from a neighborhood of p to a neighborhood of
0 £ X{F). F is said to be the defining equation of p.

Definition 8.2. Let p be a hypersurface homogeneous singularity
defined by F 6 C[^o, , £n]?

 a n < ^ 9 be a Hermitian metric of V. g is
said to be the induced Euclidean metric near p if

(8.8) g\up=i*(\dz0\
2 + . + \dzn\

2),

where Up is a neighborhood of p, and i is the identification map from

Up to X{F).

Theorem 8.1. Let (M,g) be a compact Kάhler space of pure dimen-

sion n with at most a hypersurface homogeneous singularity p defined

by F G C[zo, , zn] If 9 ^s ^ e induced Euclidean metric near p and

,„„, 11*11
(8 9) Sf
then (0.7) holds for {M,g).

Proof. By the assumption of the theorem and Proposition 8.2,
(M, g) is a Kahler manifold with a conical singularity associated to
the line bundle π : I/|Y(F) ~> Y(F), a n d (X(F),gX(F)) is the Stein
reduction of £|γ(F) Prom Proposition 8.1 and (8.9), (0.6) is satis-
fied for (X(F),gχ(F)). Therefore if Kγi<F) - L\Y(F) < 0 is satisfied,
(M,#) satisfies the assumptions of the Main Theorem. Since KY(F)
= (n + l - ™)L\γ(F) by the adjunction formula, inequality (8.9) gives

(8.10) KY{F) - L\Y{F) = (n - m)L\γ(F) < 0.
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Corollary 8.1. Let p be the n-dimensional node, i.e., the hypersur-
face homogeneous singularity defined by the following polynomial:

(8.11) F2(z) = 4 + 4 + + 2?n.

Let (M, g) be a compact Kάhler space of dimension n > 2 with at most

one node. If g is the induced Euclidean metric near the singularity,

then (0.7) holds for (M,g).

Proof By Theorem 8.1, it is sufficient to verify (8.9) for

(X(F2),gX{F2)). Prom (8.11) it follows that

for every x G X(F2). Since n > 2, (8.9) holds.

Example 8.1. Let M = {[z0 : Zl : • • : z n + 1] G P n + 1 ( Q ; ΣΓ=o *? =
0} be the compactification of X(F2) = M Π Ϊ7 n + 1 in P n + 1 (C) where
Ui := {[zo'.zn '.i Zn+^Zi φ 0}. Set D^ := P n + 1 (C) - C/n+1. Since,
on Ϊ7n +i, both the Euclidean metric ## and the Fubini-Study metric
gFS have the potential function

(8.12) φE := \\z\\2 = £ \Zi\\ φFS{z) := log(l + | |^ | | 2 ),
i=0

we can patch gE and gFs to obtain a new Kahler metric p(n + 1) on

P n + 1 (C) such that ^ n + 1 ) = ^ on B(l) and g(n+V = gFS on P n + 1 (C) -

B(2) where B(r) is the Euclidean ball of radius r. Set gM := 3 ^ + 1 ^ | M

to obtain a Kahler space (M,gM). It is clear from the construction

that (M, g) is an example satisfying the condition of Corollary 8.1.

Example 8.2. Let M ^ = {[z0 : zλ : - : sn +i] G P n + 1 ( Q ; •Fln ) (^)
:= Σ<Lo ̂ I71 = 0} be a compactification of X(F^) = M ^ Π t/n+i Let
^(n+i) j : ) e ̂ ^ e s a m e Kahler metric of P n + 1 (C) as in Example 8.1. Set
#m+1^ :==

 9\M{ΎI+1) which coincides with the induced Euclidean metric
near the singularity and with the restriction of the Fubini-Study metric
near M ^ + 1 ) Π D^. By computation,

(8.13) sup " " " , : m v / l l o p = (m - I ) 2 sup
χ6x(F<Γ)) ||VJdn)(a:)||a o<t£i

Set

(8.14) φn(t) := ^ ^ { 1 + j ^ y M ί -
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and

(8.15) C{n) := sup{ra G Z+; φn(rn) < 1}.

From Proposition A.2 (see Appendix), we have

(8.16) n(m - I) 2 sup 1 + " ^ < (n - 1 ) V » M
o<t<i 1 + nrm x

If m < C(n), then (Λf^,<^) is an example satisfying the condition
of Theorem 8.1. Since

Φn(t) ~ (* - l)(t - 2 ) ^ n " ^ < ( t _ i )2 n - A ( n _> o o ) j

there is a constant .D > 0 independent of m and n such that if n >
J9(m — l)2(m~1)J then m < C(n). Therefore, there is an example satis-
fying the condition of Theorem 8.1 whose singularity has any arbitrary
multiplicity.

Appendix

In this appendix, we prove the unequality (8.16) and the Hardy
inequality on cones for p-forms.

Proposition A.I. Let X be a cone C(N) of dimension 2n with
the conical metric gx = dr2 + r2g^. Then for p Φ n — 1, n, n + 1, the
following inequality holds for every f G AQ(X):

(A.i) siir-Vlli* < iwHi, + \\δf\\ll,,

where δ = — * d* is the adjoint of d.
Proof. Let / ( p ) = ω[p^ + ω^"1^ Λ dr be a p-form with compact

support. By computation, we have

(A.2) df = dNω\p) + {dNωt1] ~ (-l)p^ω[p)} Λ dr ,

(A3) δf =
Λ dr
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where d^ and δN denotes the exterior derivative and its adjoint on N

respectively, and m = 2n — 1. Again a computation leads to

\\df\\2c{NJ + \\δf\\2

c(N)

OO

+
Jθ

(A4) +j£ r^Wδvωt^WUr

-2(-l)pr(δNω{

)

p\ωip-ι))N}dr

1
Γ r-m+2(p-l) || A_

Jo dr

Since | > ί p ) | > | f μ ί p ) | | , we have
(Λ.5)

Jo4

where we have used the following equality:
/•OO ( \ 1 \ 2 z OC

(A.6) Jo 4 Jo

+ / r{(7

Jo

where g e C^°((0,oo)). Similarly
/•OO J

I v—ϊ7Ί-{~2(p—1) II /fyjm—2(p—1) \P l j ιι

(A 7) Jo drK 2 "
{A '> >(m-2p + 3)2 f°°

~ 4 Jo
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Prom (A.4), (A.5) and (A.7) it follows that

+ Γ r-»M-a(P-l)||^.

(A g\ Jo

( } ( r o » 1 )

4

Using the Cauchy-Schwarz inequality, (A.4) and (A.8), we obtain

\\df\\2

c{N) + \\δf\\2

c(N)

= Z"00 r m - 2 ( ί H - 1 ) ίZr {| |dΛr^ I ' ) | |^ + \\SN^^\\2

N
Jo

(A9)

>C

where C = min{(n-p—l)2-l,(n-p+l)2-l}. Sincep φ n - l , n , n + l ,
C > 3 and we have the desired inequality.

Proposition A.2. For t > 2 we define a function

(A10) φn(t) := ^ ^ { 1 + j^Mt - 2)}-}.

Then for m>2,

(All) n(m - I) 2 sup ]+ "f t < (n - l)2</»n(m).
o<ί<i 1 + n t m L
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Proof. Set Fm(t) := (1 + nt)/(l + nf71) for t e [0,1]. Let α G (0,1)
be the number such that Fm(ά) = maxίG[0,i] Fm(t). Since F'm{a) = 0,
a satisfies

(A12) n(ra + l ) α m + m ^ " 1 - 1 - 0.

Therefore

/ A -1 Q\ 17 / Λ \ 1 ι ^ H 7 ^ ~~ 1J

771

Set/3 := {n(m-l)}-i. Then, /? is a solution of f(t) := n ( m - l ) t m - l =
0. Since /(α) < 0, we have a < β. Therefore (A. 13) yields

(A14) Fm(α) < 1 + —{n(m - 1 ) } ^ = ^ ~ J φn(m + 1).
m nm2

Hence (A.ll) follows from (A.14).
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