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ON THE RESIDUE OF THE SPECTRAL ZETA
FUNCTIONS OF KAHLER MANIFOLDS WITH
CONICAL SINGULARITIES

KEN-ICHI YOSHIKAWA

0. Introduction

Let 7 : M — B be a family of Kéhler manifolds, and p : £ - M
a holomorphic vector bundle with a Hermitian metric. Then, from
the work of Quillen, the Knudsen-Mumford determinant A(§) admits a
canonical Hermitian metric called the Quillen metric. In [9], [10], [11],
Bismut, Gillet and Soulé calculated the curvature of A(¢) and obtained
the refinement of Grothendieck-Riemann-Roch theorem. In [3], their
result was generalized to the case of degenerating family of Riemman
surfaces by Bismut and Bost. But there is no result on the curvature
of Knudsen-Mumford determinant for family of Kahler manifolds with
boundary or singular Kahler manifolds.

As for the real case, in [4] - [6], Bismut and Cheeger extended the
result of Atiyah-Patodi-Singer on the index of the Dirac operator on
manifolds with boundary. They patched a cone to the boundary of the
manifold and considered a manifold with conical singularities. They
gave a detailed study of elliptic operators on such singular manifolds
and obtained the family index theorem.

To consider the extension of the formula in [4], [5] in the direction
of [7], [8] and [9] - [11], it is necessary to define the Quillen metric
for the family of manifolds with conical singularities. Therefore we
must consider the Ray-Singer analytic torsion on manifolds with conical
singularities. By definition, it is given by a certain sum of the derivative
at the origin of spectral zeta functions. From the results of Cheeger,
these zeta functions possibly have a simple pole at the origin. Thus it
is not clear whether the analytic torsion is defined for them.
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The purpose of this article is to establish a relation among the residue
of zeta functions at the origin and to show that the analytic torsion is
defined for certain singular Kahler manifolds.

Let (M, g) be a compact Kahler manifold with an isolated singularity
p- We say that p is a conical singularity if there is an open neighborhood
U of p, a metric cone X = C(N) on a compact Riemannian manifold
(N,gn) and a map i : U = Cj,(N) such that i is an isometry between
the smooth part of U and Cj,(N); i.e.,

(0.1) i*9x = glu, gx =dr’+r’gn.

In the above definition, Cj . (N) is the metric completion of Cy ,.(N) =
(0,7) x N. We say that X = C(NN) is the model cone of the singularity
.

We consider the following special and important case. Let 7 : L - Y
be a negative line bundle over a compact projective algebraic manifold
Y. When L is negative, we write L < 0. Then we can contract the
zero section of L, denoted by Zy, and obtain a new space X which
may possibly have an isolated singularity p. We say that X is the Stein
reduction of L. Since L admits a C*-action defined by

(0.2) T5(¢) = A¢,

X admits the induced C*-action which is also denoted by 7). Let gx be
a Kahler metric on X. We say that gx is a conical metric if it satisfies
the following condition: there is a positive integer a € Z, such that

(0.3) Tygx = |A\**gx

for every A € C*. If gx is a conical metric, then by setting N := {z €
X;distx(p,z) = 1}, where distx(,) is the distance function on X, we
have the following expression:

(0.4) gx =dr’ +r’gn, gy :=g|n.

Definition 0.1. Let (M, g) be a compact Kahler manifold with an
isolated singularity p. We say that p is a conical singularity associated
to a line bundle 7 : L — Y if L < 0 and if the model cone X of
the singularity p is the Stein reduction of L whose metric is a conical
Kahler metric gx.
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For a Riemannian manifold (M, g), we denote by o), the scaler cur-
vature and by Ricys the Ricci curvature. Define A\(z) and A, (z) by

05) Az)i= sup =GO 3 0y ax(A@),0).
EET. M—{0} 91(57 6)
We can now state our main theorem.

Main Theorem. Let (M,g) be an n-dimensional compact Kahler
manifold with a conical singularity associated to a line bundle = : L —
Y. Let (X, gx) be the Stein reduction of L with a conical Kihler metric.
If Ky — aL < 0 where a is the same integer as (0.3) and

©08) of ri(ox =) > ~(n 1%,

then the following equality holds:

(0.7) D (—1)%g - Res,=o o,4(s) =0,
q=0

where (g 4(s) is the spectral zeta function of Oy 4, the Friedrichs exten-
sion of the Laplacian on (0,q)-forms on M. Whenn =1 and 2, (0.7)
holds for every Kdhler manifold with conical singularities (cf. [29]).

From a theorem of Cheeger, each (o ,(s) has at most a simple pole at
the origin. Therefore from the Main Theorem, we have the following
corollary.

Corollary 0.1. Let (M,g) be the same as in the Main Theorem.
Then we can define its analytic torsion by the following formula:

(0.8) T(M,9) —exp(——ls_o(Z( 1)7qo,4(5)))-

g=0

Our Main Theorem is a special case of the following theorem.

Theorem 0.1. Let (M,g) be a compact Kahler manifold with a
conical singularity p whose model cone is (X, gx). Let X bea desingu-
larization of X, and set

(0.9) ’H(X)—{feQ(X),/l dv<oo,/|f|»—1dv<oo}

where (X ) is the space of holomorphic g-forms on X. Assume that
Y, the exceptional divisor of X, is smooth. If (0.6), H,(X) = 0
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(0 < g <n)and H(Y,Q}) = 0 (0 < g < n) hold, then (0.7) holds
for (M, g).

As the referee pointed out, it is expected that the formula (0.7) holds
for every Kahler manifold with conical singularities without various
assumptions in the Main Theorem, by using the local index cancellation
formula as in section 7. We also remark that the formula (0.7) holds
for the vector bundle case under the semi-positivity condition of the
bundle.

This article is arranged as follows. In section 1, we define a conic
degenerating family of Kahler manifolds for a given Kahler manifold
with a conical singularity. In section 2, we establish an estimate of
the heat kernels needed below. In section 3, we prove the Hardy and
Sobolev inequality on cones. In section 4, we prove the uniformity
of the asymptotic expansion of the trace of the heat kernels for the
family in section 1. In section 5, we prove the uniform lower bound of
the first eigenvalue of the Laplacians for the family. In section 6, we
prove the Main Theorem. Our proof is given as an application of our
previous results (cf.[27, Theorem B]), Cheeger’s Theorem (cf. [13]) and
the theorem of [9], [10], [11]. In section 7, we treat the 2-dimensional
cases. In section 8, we shall show that Kahler manifolds with nodes
are examples for which the Main Theorem holds.

1. A conic degenerating family of Kdahler manifolds

Let (M, g) be a compact Kéahler manifold with a conical singularity p
of dimension n; i.e., there is a neighborhood U of p and an identification
such that

(1.1) (U,9) = (C51(N),dr* + r*dsy)

for some compact Riemannian manifold (N,ds%). We assume that
X = (C(N),dr? + r’ds¥) is a Kahler manifold whose homothetic
transformation is holomorphic; i.e., Ty (7, z) := (Ar, z) is a holomorphic
isomorphism on X where (r,z) is the polar coordinate of X = C(N).
Note that T;gx = A2gx where gx = dr? + r2ds%. Let 7 : X — X
be a desingularization, and gz be a Kahler metric on X such that on

X —nY(Cs,(N)),

(1.2) 9% =7'gx, gx =dr’+r’ds}.
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Set M' := M — Cj,(N). Then M := M' Uy 7=(C;,(N)) is a desin-
gularization of M. Define a family of Kahler metrics {g.} by

(o) = {gx (@), €17 (Coums(V)),

(1.3) - g(z), €M,

where we use the identification T, : Cj ..(N) — Cg,(N) to patch
1 (C;-1(N)) and M'. Since T, induces an isometry between
(Cye-1,-1(N),€%gx) and (Cy1(N),9x), g is a smooth Kéhler met-
ric on M, and (M, g.) converges to (M, g) as ¢ — 0. We remark that
{(M,g.)} is a conic degeneration in the sense of [27].

Set p: M := M x A* - A* where A = {z € C;|z| < 1} and
A* = A — {0}. Then TM is a holomorphic subbundle of TM. Let G
be a Hermitian metric on TM defined by

(1.4) Glriz, = 9yl

where M, := p~!(e) for ¢ € A. Denote by R(TM,G) the curva-
ture of (T'M,G) with respect to the Hermitian connection. Then
R(TM,G) € AYY(M,EndTM). Let Td(R(TM,G)) € ®,AP?(M)
be the Todd form. Then [y, , Td(R(TM,G)) € @,<2AP?(A*), where
Iy /A implies the integration along the fiber. The following proposition
is needed for the proof of the Main Theorem.

- (1,1)
Proposition 1.1. [fM/A Td(R(TM, G))] can be extended to a

smooth (1,1)-form on A where [w]®P) denotes the degree (p,p)-part of
w.
Proof. Since dimM = n + 1, we have

.1 1,n+1
(1.5) [ /M/A Td(R(TM,G))l - / [ra(r(raz, o))"

€

~ (n+1,n+1)
Set [Td(R(TM, G))] = A Ade A de where A is a relative (n,n)-

form on M. Since g. = g on M’, it is clear that [,,, A|u, is extended
to a smooth (1,1)-form on A. Therefore it is sufficient to show that

f ~1(C5,1(N)
Set X := X x A* and TX := Ker(pz) where p, : X — A is the pro-
jection. Consider two Hermitian metrics on TX, g5 and G := |e|’g%.
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Denote by R(TX,G) (resp. R(TX,gz)) the curvature of (TX,G)
(resp. (T'X,g%)) with respect to the Hermitian connection. By com-
putation

(1.6) R(TX,G) = R(TX,g3).
Therefore,
(1.7) [Td(R(TX,G))] (et o,

since every polynomial of R(TX ,9%) has no component of degree
(n+1,n+1).

Set Y := n~1(Cs,(N)) x A* C M and consider TX|y. Define an
embedding T : Y — X by T(z,¢€) := (Tj-1(z),€). Thus T*G = G|y,
which gives

(18) [Td(R(TM, G))] (n+1,n+1)

— T ([Td(R(TX, &))] ("H’”H)) .

y

From (1.7), the right-hand side of (1.8) vanishes. = Therefore
f,,-l(q (V) A|p, =0, which completes the proof.

2. Heat kernels for Schrodinger operators on
asymptotically flat vector bundles

In this section, we shall generalize the result obtained in [27, §2] to
the cases of Schrodinger operators on certain vector bundles.

Let (X, g) be a complete Riemannian manifold of dimension m = 2n.
We fix a point o in X, and set |z| := dist(o,z) = d(0,z). Let i, be the
injectivity radius at x.

Definition 2.1. Let (X, g) and o be as stated above. We say that
(X, g) is an (pointed) asymptotically flat manifold if the following two
conditions are satisfied.

There is a constant ¢ > 0 such that for all y € X, i, > ¢(1 + [y|).

Set j, := ¢(1 + |y|). Let B(y,J,) be the metric ball of radius j,

centered at y, and z = (z!,- - -,2™) the geodesic normal coordinate on
B(y, j,). If we write g(z) = ¥, ; 9i;(z)dz*dz? on B(y, j,), then
aa

Cy'I < (gij(z)) < Col, %gij(x) < Ko(1+ Jy])~t
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hold for all z € B(y,j,) and a > 0, where C, and K, are constants
independent of z, y. When y = o, we simply write B(r) instead of
B(o,7).
Assumption 2.1. Let (X,g) be an asymptotically flat manifold.
We assume the followings.
1) There is a constant D > 0 such that for all f € C§°(X),
lldfllz= > D - IIf”L_"%r_n!. if m > 2 and the same inequality for
(X xC,g +ds?) if m=2.
2) There is a constant A > 0 such that Area(S(r)) < A-r™! for
all r > 0, where S(r) := {z € X;|z| =r}.
Throughout this article, we assume that Assumption 2.1 is always
satisfied for asymptotically flat manifolds
Let (E,h,VE) be a Hermitian vector bundle of rank r with a Her-
mitian connection on X. Since E is trivial on each B(y,j,), we can
choose a unitary frame {s;,---,s,}. With respect to this frame, we set

hij (:B) = h(sia Sj)(iL‘), vEsz Z wz] ’5.1 (III)

We denote by Q = (Q;;) = dw + w A w the curvature form of E.

Definition 2.2. We say that (E,h,V?) is an asymptotically flat
vector bundle on X if for every y € V, there is a suitable choice of
frame {sy,- -, s,} on B(y, j,) such that h;;(y) = d;; and

hi;(z)] < Ka(1 + |y|) =",

_ Is}
C7'I < (hyi(z)) < CT, I%

o°
| 55w (2)] < Kp(1+ yl)~0oH

for all z € B(y,j,), y € X and , 8 > 0 where C and K, are constants
independent of z, y.

Let AP := V& . VF be the Bochner Laplacian on E. Then, for
F € C~(X,Herm(E)), H := AF + F is a self-adjoint Schrodinger
opetator on E.

Definition 2.3. Let (E, h,V?) be an asymptotically flat vector
bundle on X. We say that F is an asymptotically flat potential if

aa

|5 Fis(2)] < Ka(1+ Jyl)~(1eh+2
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holds for all z € B(y,j,), y € X and a > 0 where K, are constants
independent of z, y.

Now we shall consider the heat kernel for the Schrodinger operator
H := AP + F where F is an asymptotically flat potential. We denote it
by KZ(t,z,y; H). When F = 0, we simply write K¥(t, z,y). Then, the
parabolic Harnack inequality of Li and Yau, combined with a theorem
of Hess, Schrader and Uhlenbrock, gives an upper bound of the heat
kernel on each B(y, j,).

Lemma 2.1. Let ¢ = ¢q(z) € C®(X) be an asymptotically flat
potential and H = A + q be a self-adjoint Schrodinger operator on
L*(X). Then, for every p € X, z,y € B(p,j,) and 0 < t < 152 =
121+ |p|)?, the following estimate holds for K (t,z,y; H):

2
K(t,2,y; H) < Gt exp(- 2420
where C and vy are positive constants independent of p,z,y,t.

Proof. We can prove the above estimate using Theorem 3.3 and
Corollary 3.1 of [22], noting that asymptotical flatness implies
A < CR™? in Theorem 3.3 of [22].

Now we consider the vector bundle case. Let (E,h,V?) and F be
the same as in Definitions 2.2, 2.3 and H = AF + F be a self-adjoint
Schrodinger operator. Then, we have the following proposition.

Proposition 2.1. For everyp € X, z,y € B(p,j,) and0 <t < ijf,,

2
(2.1) IKE(t2,y; H)| < Ot exp(~ 20000
where C and -y are positive constants independent of p,z,y,t. Here the
norm | - | is the operator norm on Hom(E,, E,).

Proof. Since F is asymptotically flat, there is an asymptotically flat
potential ¢ € C*°(X) such that g(z) > 0and —q(z)Ig < F(z) < q(z)Ig
for z € X. Then, by a theorem of [19, §3], setting H' := A — g, we
have the following estimate:

|KE(t,z,y; H)| < K(t,z,y; H')

for all (¢,z,y) € (0,00) x X x X. Therefore (2.1) is an immediate
consequence of Lemma 2.1 and the above inequality.
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To study the asymptotic expansion, we need a good parametrix.
Following [2], we identify E with E®|A|* where |A#| is the half density
bundle on X. We construct a parametrix as follows, (cf. [2, pp.82-87]).

Let z = (z',- - -,z™) be the geodesic normal coordinate centered
at y. In these coordinates, the metric tensor is represented by g =
Y 9ij(x)dzidz?. Set O(z,y) = det(g;;(z))%, and define a differential
operator B by

(2.2) B:=0*0Hof 3.

Let 7(z,y) : E, — E, be the parallel transport along the geodesic
joining y and z. Then, on B(y, j,), we can write 7(z,y) = (7(z,y))
with respect to the frame in Definition 2.2. It is easily verified that
C~'I < (1i5(z,y)) < CI and each 7;;(z,y) satisfies the following decay
condition for a > 0.

Lemma 2.2.

(02

a3 —|a
(23) | (@ )] < KoL+ fyl)

Proof. Since E is trivial on B(y,j,), we may represent 7(z,y) by
a matrix P(z). Set P(t,z) := P(exp,(tf)), where z = exp,({d(z,y)).
Thus P(z) = P(d,z), d = d(z,y). Thus P(t,z) satisfies the following
ordinary differential equation.

S P(t,2) +wlt)P(tz) =0, P(0,2)=1.

Using the above equality, we have
d
EZ'P(t)I2 = — <w(t)P(t), P(t) > — < P(t), P(t)w(t) > .

Therefore, £|P(t)| < |w(t)| - |P(t)|, which implies that

IP()] < exp( [ o(s)lds).

Since w satisfies the decay condition (cf.Definition 2.2), we have |P(z)| <
K, where K is a constant independent of z, y. In the same way, we
can prove |P(z)™!| < K. This proves the lemma when a = 0.
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When a > 0, we prove by induction. We assume |VX~1P(t,z)| <
Cik-1(1 + |y|)~*-Y. Then

L94P() + w(V*P(O)] < Cull + ly) "+,

From this, we have

d k 2 k 2 C k
i < . —_
IV POR < 2] [V POF + 5 e VPO
This implies the following inequality
Co Ck
vtp VFP(t)| + ————,
VPO < IV POl (e
which in turn gives
d Co Ck Co
—lo VEP(t < )
& ST PO T S T
Since we can easily show that |V P(t,)|:=0| < Ci(1 + |y|)~*, we have
Ck C'ot
VEP(t)| € ————{1 + exp(———

Setting ¢ = d(z,y), we obtain the desired inequality for V*P(z).
Now, we define functions u;(z,y; H) on B(y, j,) inductively by

(24) ' Uo(IE,y; H) = T((L‘,y)
uw(z,y, H) [ 5! Bou;_1 (x5, y; H)
29 o T e

where z, = exp,(sz). Then we have the following proposition.
Proposition 2.2. For all z € B(y, j,),

(2.6) |-aaz—aui(z,y;H)| < Co(1 + |y|) 1%,

where C, is a constant independent of z,y.
Proof. See [27, Proposition 2.1] for the proof.
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Definition 2.4. We fix a large integer N and define for k € {0,1}
a parametrix fi(¢,z,y; H) by
fi(t,z,y; H) =T (¢, z,y) (uo(z, y; H) + tus (z,y; H) + - - -
+t"*u,_x(z,y; H))|dy|?

2.7
(2.7) + p(M)T(t, 2, y) " g (2,4, H) + - - -
+ 1" Nu, v (z,y; H))dy| 2,
2
(2.8) T(t, z,y) == (4nt)™" exp{—%},

where p is a cut off function defined by p(¢) = 1 on [0,1], p(¢) = 0 on
[2,00) and |%| < 2. Set
(2.9) Fi(t,z,y; H) := K®(t,z,y; H) — fu(t,z,y; H).

From [2, Theorem 2.26], we obtain the following proposition.

Proposition 2.3.

(2 + H,)F; (t,z,y; H)

(2.10) ot .

= (4n)""tNe~ " Bounn (0<t<1)
and

(;% + Ho)Fylt,a,55H) = (4m) e 7 By,
(2.11) + (gi + Hx){P . T(tn_k+lun_k+1 4.
+t"Nu,n)} (> 1).
Introducing
0
Gk(ta z,y; H) = Xy(m)(gt' + Hz)Fk(t, Z,Y; H)

and

t
Hk(t,zayiH) :=/ dT/ KE(t-T,:E,Z;H)Gk(T,Z,y;H)dU,
0 X
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yields the following lemma.
Lemma 2.3. On the domain t <1+ |y|?,

sup |Fk('a',y) —Hk(',"y)l

[0,t]x B(y, %Jv)

<¢{ sw  |R(9)l+  sup  [He(h,9)l)
[Ort]xaB(y’%jv) [O’tlxaB(yv%jv)

where C > 0 is a constant independent of t, y. Here we omit H, E,
etc. for simplicity.

Proof. By the Weitzenbock formula, we have for every
s€C®(R, x X, E)

(A — %)|3|2 =2|Vs|?+2< Fs,s > -2< (H + 2)5,8 >,

ot
where A~ := —d*d, and hence the differential inequality on [0, 00) X
B(y, 3Jy)
(A'—E)IF —H> > _—C|F — H|?
ot/ kT R = Tt T R

where ¢ > 0 is a constant independent of ¢, y. This implies the following
inequality:

0
(A7 = 5 exp(—ct/(1 + [y["))| Fi — Hyl* 2 0.
Using this inequality and applying the maximum principle to exp(—ct/1+
[y|*)|Fx, — Hi|?, we obtain

sup  exp(—ct/(1 + |[y*))|Fx (-, y) — Hi(-,-,v)]
[0,6]% B(y,37y)

<  sup  exp(—ct/(1+ |[yP)Fe(--,y) — He(- )l
[O,t]XBB(y,%jV)

< sup exp(—ct/(1+ [yI*)|Fe(,,y)l
[0,41x0B(u,}3»)

+ sup  exp(—ct/(1+|y*)IHe(,"y)l-
[0.0%0B(y.}4y)

(2.12)

Since we restrict ourselves to the time interval [0,1 + |y|?], (2.12) gives
the desired inequality.
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With these preliminaries, we can state the following theorem.

Theorem 2.1. Let (E,h,VE) be an asymptotically flat vector bun-
dle, and F € C*(X,End(E)) be an asymptotically flat potential. De-
note by KE(t,z,y; H) the heat kernel of the Schrodinger operator H =
AP + F. Then the following estimate holds:

CtN+1 1+ y2 —(n+N+1) t
|Fe(t,y,y; H)| < ( \ ,_(l_)km - (
CA+[yf)~nH D= (1
where C is a constant independent of t, y.
Proof. By Proposition 2.1, 2.2 and Lemma 2.3, we can prove the
theorem in the same way as [27, Theorem 2.1].

3. The Hardy and Sobolev inequalities on cones

Let (X,g) be a cone; i.e., X = R, x N and g = dr? + r’gy where
(N, gn) is a compact Riemannian manifold, R, is the set of positive real
number, and r is the standard coordinate of R. We denote by C(N)
the cone spaned by (N, gy), and also by A5(X) the space of p-forms
on X with compact support. Then, we have the Hardy inequality on
cones:

Proposition 3.1. Let (X,g) = C(N) be a cone of dimension m =
2n, and p #n—1,n,n+ 1. Then for every f € Aj(X), the following
inequality holds:

(3.1) lr=" fIIZ2 < NdfliZ= + 6 £1IZ

where § = — x dx 1is the adjoint of d.
Proof. See Appendix (Proposition A.1) for the proof.
Proposition 3.2. Let (X,g) and p be the same as above. Then for
every f € A§(X),

(3.2) I£1l, 22 < Clldfllzz + 16f1]22)-

Proof. Since the Sobolev inequality holds on cones, we have

112 22, < ClldIf]IIZ5-
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From Kato’s inequality |d| f| | < |V f] (cf.[19]) where V is the connection
on APTX induced by the Levi-Civita connection, it follows that

11 2s; < C(APS, 1)

where AB := V*V is the Bochner Laplacian. Thus the Weitzenbock
formula (cf.[2]) leads to

IF1? 20 < C{(ATS, f) + (Rf, )},

where Af := (d + §)? is the Hodge Laplacian, and R := AF — AH
is a 0-th order differential operator. Since |R| < Cr~2, we obtain the
desired inequality from Proposition 3.1.

We now consider the Kahler case. Let (X, g) be a cone as before. We
assume that (X, g) is a Kdhler manifold. In this case we say that (X, g)
is a conical Kahler manifold. Although there is no Hardy inequality
for (n — 1),n,(n + 1) forms on cones, we can have the inequality for
(0,n—1)- and (0, n)-forms in the Kahler case under a certain curvature
condition. To state the condition, we prepare some notations. Let the
Ricci curvature and the scalar curvature be denoted by Ricx and ox
respectively.

If we express g = 3.5 g;jdz'dZ’ and Ricx = 3,5 p;d2z*dZ’, then

Pij = 3i51 log(det(g)), ox = Egﬁﬂii,
i

where 0; = % and det(g) := det(g;;). Since Ricy is a quadratic form
on TX, we can define A\(z) by the largest eigenvalue of Ricx on T, X.
Then we define A\, (z) := max{\(z),0}.

Theorem 3.1. Let (X,g) be a conical Kihler manifold such that

(3.3) igfrz(ax(w) —Ai(z) > =(n—1)2

Then for every 0 < q < n, Hardy’s and Sobolev’s inequalities hold; i.e.,
for every f € AY(X),

(3.4) =132 < CUIOFNZ2 + 110+ F1I72)
and

(3.5) 11 22 < CllOfII72 + 1 F1I72).
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Since the Kihler condition of (X, g) implies 2(]|0f||2. + [|0* f||22) =
lldfllLz + ||0f]|2, the theorem holds for ¢ < n — 1 by Propositions 3.1
and 3.2. For the proof in the remaining cases (¢ = n — 1,n), we need
more some lemmas and propositions.

Lemma 3.1. If (3.3) holds, there is a constant € > 0 such that

(3.6) —Ricx +oxgx > {e— (n —1)*}r2gx
and
(3.7 ox > {e—(n-1)*}r2

Proof. First we remark that the curvature tensor Ry satisfies
|Rx(rz)| = r~%|Rx(z)| since (X, g) is a cone. From the condition (3.3)
there is a constant € > 0 such that for every z € X

(3.8) r’(ox(z) — A+ (2)) 2 € — (n — 1)
Since A, > 0, (3.7) follows immediately. By the definition we have
Ricx (§,€) < Mx)gx (§,€) < A (2)gx (§,€)
for every £ € T, X. Substituting the above inequality in (3.8) gives
r’{—Ricx (§,€) + ox(2)gx (§,€)} = {e — (n — 1)*}gx (£, 9),

and obtain (3.6).
Proposition 3.3. Let Kx be the canonical bundle of X, and denote

the Hermitian connection of Kx by Vk,. Then, for every
f € AP°(X) = C{(Kx),
(3.9) 20011172 = IVx fll32 + (0x £, f)-

Here we consider f as an element of Ay°(X) and C°(Kx) on the
left-hand and the right-hand sides of (3.9) respectively.

Proof. Let Vi, = Vi, + Vo, be the decomposition of the con-
nection into holomorphic and anti-holomorphic part. Then 9 = V, ;.
Define O and O by

O:= VB’IVQJ, |j = VI,OVI,O'
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Then by the Nakano formula (cf.[21]), we have
(3.10) 0 -0 = V=T[e(Riy), Al

where e(Rg, ) is the exterior multiplication by Rk, , the curvature of
Kx, A is the interior multiplication by the Kahler form, and [a,b] is
defined by [a,b] :=aob—boa.

We denote by AP the Bochner Laplacian defined by A® := Vi Vi, .
Then, using the Kahler identities (cf.[21]), we obtain

(3.11) AB =0+0.
Combining (3.10) and (3.11) yields
(3.12) 210f117: = IVkx fll7z — (V-1Ae(Rky)f, ).

Since v—1Ae(Rg,) = —ox in the Kahler case, we have (3.9) from
(3.12).

Let TX be denoted by the holomorphic tangent bundle of X, and
Q%! by the holomorphic vector bundle A"~!TX*. Then there is a
canonical identification

i:KX®TX3dz1---dz"®%

(3.13) . 9z
— (=1)77'dzt - d2? "V AdZI - d2 € Q%L

which preserves Hemitian metrics and connections.

Proposition 3.4. Let Vik,grx be the Hermitian connection on
Kx @ TX. Then,

(3.14) 2101122 = IVkxerx flliz — Ricx(f, ) + (ox £, f),

where f € Ay "°(X) on the left-hand side and f € C(Kx ® TX) on

the right-hand side. Here Ricx(f, f) is defined by
(3.15) Ricx (f, f) 1=/X2Pi3fifjdvx,
i,J

where Ricx = ¥,; pijdz'dz’ and f =%, fidz' - - - dz" ® 2 in holomor-
phic normal coordinates.
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Proof. Let Vi,erx = Vio+ Vo1, 0, 0 and AP be the same as in
the previous proposition. Since i preserves the metric and connections,

(3.16) 10£] = Vo, fl,

where f € A7"°(X) on the left-hand side and f € CP(Kx ® TX) on
the right-hand side. As before by the Nakano formula

(3.17) O -0 = v-1[e(Rkxorx), Al

where Ry, orx is the curvature tensor of Kx ® TX. Also the Kéhler
identity gives

(3.18) AR =0+0.
Combining (3.16), (3.17) and (3.18) yields
(3.19) 210£112: = IVxorx fllz2 = (V=1Ae(Riyarx)f; f)-
Since e(Rk,grx) = €(Rrx) + e(Kx), vV—1Ae(Rk,) = —ox and
(3.20) < V-1Ae(Rrx)f,f >=)_pifif;
ij

in holomorphic normal coordinates in the Kahler case, we have the
desired equality from (3.19) and (3.20).

Lemma 3.2. Let (X,g) be a cone C(N), and E be a Hermitian

vector bundle with a metric compatible connection VE on X. Then the
following inequality holds:

(3.21) /c o |VEfPdvx > (= 1) /C =2 fduy

(N)

for every f € C§°(E).
Proof. Since TR, is perpendicular to TN, we have [VE f| > IV‘;Z_ fl,
and therefore

/ |V 2 dvx 2/ va/ r2"‘1|Vf¢f|2dr
c(N) N 0 T

(3.22) - 5
2n—1 2
> [y [ roni (i),
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where we have used Kato's inequality IV‘;% fI = |Z|fll- From (3.22)
and the Hardy inequality (A = 2n — 1 in this case)

oo d ()\ _ 1)2 (o)
. AMLg)2 > 1 A-2 2
(3.23) /0 r(59)° 2 — /0 r = f2dr,
it follows that

/ IVE fPdug > (n—1)2 / =2 f2dyy.
C(N)

C(N)

Proof of Theorem 8.1. First we prove (3.4). When ¢ = n, by Lem-
ma 3.1, (3.7), Proposition 3.3 and Lemma 3.2, for every f € Ay™(X),
we obtain

2{10f1IZ> + 19" 1z} = 2010117
= IV fliiz + (ox £, f)
2 IV fllze + ({e = (n = 1)*}r72f, f)
2 €llr = fIIZa

(3.24)

When ¢ = n — 1, from Lemma 3.1, (3.6), Proposition 3.4 and Lem-
ma 3.2, we have for every g € AJ"!(X),

2{119gl1Z + l10°gllZ-} = 2/163lI%
= ”VKx®Txg”%2 - RlCX(gag) + (ngag)
(3.25) > |Vixerxgllis + ({e — (n — 1)’}3,9)
2 ellrgllzs.

This completes the proof of the Hardy inequality. Next we prove (3.5).
When ¢ = n, the Weitzenbock formula and the Hardy inequality
yields

A1y < Ok FI2
.26 < C{A0FIE: - Cllr FIa)
<ClfiE.
= C{IBf s + 151132

The case ¢ = n — 1 can be proven in the same way and is left to the
reader.
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Corollary 3.1. Under the same assumption of Theorem 3.1, the
following inequality holds:

(3.27) IV£IZ= < C(I0F 172 + 16* £I72)

for every f € AYY(X).
Proof. From the Weitzenbock formula, we have

(3.28) IVAIIZ2 < 10f11Z2 + Cllr ™ £I1Z2,

which together with Theorem 3.1 gives our desired inequality.
Let 7 : X — X be a desingularization of X, and § be a Kahler
metric on X such that § = 7*g on X' := X — n71(Cp,;(N)). Setting

~ ~ 2 2n
(3.29) H,(X):={f€ Q,,(X);/X 1|i|r2dv < oo,/x |f|7=Tdv < oo},

where , (X' ) is the space of holomorphic g-forms on X, we have the
following theorem.

Theorem 3.2. Let X satisfy the same conditions as in Theorem 3.1.
If Hy(X) = 0, then the following inequalities hold:

(3.30) 1@ +7)7 flIZ2 < C(IOFIZ2 + 0% flIZ2),
(3.31) IF1I? 2, < C(I0S 172 + 19* FIIZ2),
(3-32) (Agf, f) < C(Do,f, f)

for every f € A% (X), where A, := V*V is the Bochner Laplacian on
g-forms, and O 4 := (0 + 0*)? is the Hodge Laplacian on (0,q)-forms
on X.

Proof. Since X is Kahler, (3.31) and (3.32) follow from (3.30) in
the same way as Theorem 3.1 and Corollary 3.1. Therefore we need
only to prove (3.30). By using a partition of unity from Theorem 3.1,
we have

(3.33) 1@ +7) 7 fllZ. < CUBFNG: + 10*F 1132 + £ 1172 (x))
and

(3.34) IF1? 20, < CUIOFNZ2 +10* FIIT2 + 112 (k)
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where K := n71(Cp,1(N)). If there is no constant such that
(3.35) 17122y < CUIOFNZ2 + 18* FI7:),
then there is a sequence {f,} such that

WfallZezy =1, 10fallzz + 18" fallZ2 — O.

By (3.34) we obtain ||(1+7)7! fallz2 +||f,,||2L_35I < M for some M < co.

Taking a subsequence and using the Rellich lemma, we can find an
element g such that

(3.36) lgllzza =1, (@ +7)"glles + llgll} aa <M
and
(3.37) 0g =0, 0*g=0.

Since X is Kihler, we know g € #,(X). From (3.36) § is a nonzero
element of H,(X). This contradicts #,(X) = 0. Therefore there is
a constant C satisfying (3.35). Combining (3.33) and (3.35) gives the
desired inequality.

4. Conic degeneration of Kdhler manifolds and behavior
of the heat kernels

Let {(M,g.)} be the conic degenerating family of Kahler manifolds
considered in section 1. Throughout this section we assume that (X, g)
satisfies the same condition as Theorem 3.2; i.e.,

igl(fr2(ox(a:) A (z) > =(n—1)? and H,(X)=0.

We denote by O , the Hodge Laplacian (8 + 8*)? on (0,q)-forms on M
with respect to g.. Let K; ,(t,,y) be the heat kernel of (05 ,. Then its
trace

Tr e—th).q = /M tr Ké,q(t, z, :ll)d’Ue (1‘)
has the following asymptotic expansion as ¢t — 0.

(4.1)  Tr e e ~ (47t)~ % {ao(e, q) + tas (€, q) + t2as(e,q) +- - -}
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where a;(e, q) is computed by using the parametrix constructed in sec-
tion 2 as follows. Let u;(z;005 ) := u;(z,z;05 ;) be the heat kernel
invariant constructed in the same way as (2.4) and (2.5) for H = [Jg .
Then a;(e, q) is given by

ai(f,Q) = /_ tr ’U,,,("L', D(e),q)dve

M
(4.2) = / tr u;(z;0g ,)dv + _troug(z; 05 ) doc

17

= e"‘—Zi/ tr u;(z, q)dv +/ tr u;(z; 05 ) dve,
B(o,e—1) M-U

where u;(z,q) = ui(z,7;0o,) is the same one as (2.4) and (2.5) for
(X,9%)and U = 7! (C51(N)) . Our goal in this section is the following

theorem. 3
Theorem 4.1. For (X 9% ) define by 4(€,t) by

(4.3) bo 4 (€, t) log - / 4m)~" tr u,(z, q)dv.
(e=1)- B(f“\/_)
where B(r) := ~1(Cs,(N)). Then the following estimate holds for
t € (0,1]
n—1 ) 1
(44) [ Tre oo — (4mt)™ 3 aile, )t — bog(e; ) log 2| < C,
=0

where C > 0 is a constant independent of e, t.

For the proof of the theorem, we need two lemmas.

Lemma 4.1. Let L§ ,(t,z,y) be the heat kernel of the Hodge Lapla-
cian on (0,q)-froms on M with respect to the metric e 2g.. Let
Ko 4(t,z,y) be the heat kernel of the Hodge Laplacian on (0, q)-forms
on X with respect to 9%- Then, under the identification between M
and X on B(e™!), the following estimate holds:

(4.5)
CtN+1 ( )
) t<1
|L8,q(t,y,y) — Ko ,(t,y,9)| < (1+ gL2)n+N+l 2
Trppr  dstsiih)

for y € B(e™'), where | - | is the operator norm on End(AYT"*X), and
N is a fized large integer.
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Proof. Let 0o, be the Hodge Laplacian on (0, g)-forms on X. Since
both L§ (t) and Ko (t) satisfy the same heat equation on B(y, j,), in
the same way as that used in the proof of Lemma 2.3 we find

sup lL(e),q('?'v y) - KO,q("'a y)l
(46) [0,t]xB(y,%4y)

< C{ sup |L(€),q('7"y)| + sup IKO,Q('v', y)l}
[0,t]x8B(y,33y) [0,t)x8B(y,34y)

for y € B(e!) where C > 0 is a constant independent of ¢, y. Applying
Lemma 2.1 to both L§  (t) and Kp ,(t) gives

sup IL:),q('7'vy)—KO.q('a'7y)|

[Ort] X B(yv%jv)

1 2\2
(4.7) < Csupt™ exp(—l(—-{;M—)—)
(0.1 ¢

<Ce(l+y)™ ?;1}])(::(1 +y?)7hE.

Settingk=N+1fort<landk=1for1<t<1+|y]*in (4.7), we
have the desired estimate.

Lemma 4.2. There is a constant C > 0 independent of €, t such
that for t € (0,1]

(4.8) |K .t z,2)| < O™

Proof. Using a partition of unity, we have from Theorem 3.2 it
follows that

(4.9) (ALf e < C((O5,, + DS, f)e

for every f € A®?(M) where (-,-). implies the inner product with
respect to g.. Note that the inequalities in Theorem 3.2 are scaling-
invariant. Then, by the definition of the heat operator,

(410) (exp(_tAZ).ﬂ f)e > Ce_Ct(eXp(—Cth),q)f, f)e
Let H(t,z,y) be the heat kernel of A5. Then from (4.10) we have

(4.11) IKS (8,2, 2)| < Ce®!|HL(t,, )],



432 KEN-ICHI YOSHIKAWA

which together with the theorem of [19] yields

(4.12) |H;(t, z,z)| < Kgo(t, z,z).
By [27, Theorem 3.1] thus we obtain
(4.13) Kgo(t,z,z) < Ct™™.

Combining (4.11), (4.12) and (4.13) our desired estimate.
Proof of Theorem 4.1. We compute as follows:

(4.14)
I:= l/ tr K ,(t,z, z)dv.(z)
74
n—1
-n i 1
—(4mt) Za,-(e, q)t* — bo (€, t) log; |
=0
n—1
< /_ {tr K, (t,z,z) — (4mt)™" Z tr u;(z; Df,,q)t"}dvé(x)
v =0
—bo 4(€, t) log %’
n—1
+ ’/ {tr K;  (t,z,z) — (4nt)™" Z tr u;(z; Dg,q)t"}dve(:v)
M =0
. t 62 nn—l t ;
= (1 B2, = (" S itz ) () o
—/ (4m) ™™ tr u,(z, q)dv| + O(1)
B(e=)-B(e1 VD)
</ |Fo(e™2¢, z, z)|dv
B(e~1)-B(e~1V1)
+ |L§ (7%, z,z) — Ko (e7%t,z,z)|dv
B(e-1)—B(e-1vT)
+ L¢ (7%, z,x)|dv
B(e‘ls/i)l O,q( ZI
+/ e 2t)™ Y tr ui(z, q)(e72t)¥|dv
o 87D Tt (o, (0
N
+p(e™%t €t i/ tT Uppi(z,q)|dv
@COSE  E)

+0(1).
where we have used the formula

(4.15) K (tz,y) = €2 LG (7%, 2,y).
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We set 6;(t,€) for the i-th term of the right-hand side of the last in-
equality of (4.14), and shall estimate each 4;(t,€). Since 1+ |z|*> < €%t
for z € B(e™') — B(e"'v/t), from Theorem 2.1 for k = 0 it follows that

-1

€ 2n—1
01(t,e) < / Ce 2t dr

e-1i (1 + 7‘2)"+1
(4.16) < Ce‘zt/ r=3dr
et
1
= EC.

Similarly using Lemma 4.1 we obtain
(4.17) d2(t,€) < C.

Moreover, from (4.15),

4.18 / L (e7%t,z,z)|dv = / K¢ (t,z,z)|dv,,
( ) B(e“x/i) | O,q( )I é(\/f) I O,q( )l
which together with Lemma 4.2 gives
(4.19) ds(t,€) < Ct " vol(B(vt)) < C".

Thus by Proposition 2.2, we have

-1

€ r2n—1
< -2 ﬂ+'l.
w20) 54“’6)‘/0 C,Z_%“f e i
and

2n—1

N e !
-2 —24\i r —
ds(t,€) < p(e™*t)C Z(e t) / 1+ Tz)n+idr

2n-—
N
2 CZ/ (1 +,,.2)n+z

since p(e~%t) = 0 when ¢ > 2¢2. Combining (4.16), (4.17), (4.19), (4.20)
and (4.21) hence yields our desired inequality.

(4.21)
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5. Conic degeneration of Kéhler manifolds and
the first eigenvalue of Laplacians

Let {(M,g.)} be the same as in the previous section, and Y be
the exceptional divisor of X; i.e., Y := n~(p). In this section, we
assume that Y is smooth and satisfies H°(Y, Q) =0 for 0 < ¢ < n.
Let A{(¢) > 0 be the nonzero eigenvalue of (J§ ,. Then we have the
following proposition.

Proposition 5.1. There is a constant C, > 0 such that for every
0<g<nande€ A
(5.1) Ai(e) > C,.

Proof. Noting that the Sobolev inequality is scaling-invariant, from
Theorem 3.2 we have

(5.2) lIsll, z2; < C(I0sllz2.e + 105l 22.e + lIsllzz,e)-

We assume A{(e) — 0 as ¢ = 0. Let s;(¢) be the normalized eigenform
for A{(e); i.e.,

(5.3) 05,051(€) = Ai(€)si(e), Isi(€)llzz,e = 1.
Then we show that
(5.4) s1(e) = s Lf(M,g)

for some nonzero s such that 5 is holomorphic and 5 L H°(M,9) in the
inner product of (M, g) where L?(M,g) is the completion of AJ?(M)
by the norm || f||g2+|ldf |2+ 10 f||2. Let {f1,--- , fn} be a fixed basis
of H°(M,Q9). Then 3,(¢) L {f1,---,fn} in the inner product of g;
ie.,

(5.5) / 51(e) A fi AwP™ 1 =0.
M
We set

(5.6) 51(€) == pe - 51(€),
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where

1 r>¢_,
(5.7) pelr) = it 2 (el < 7 < VD,
0 (r<e.

For simplicity, we consider the case a = 1. Then
I131(e)IZ2,0 = lI31(e)IIZ2,c
(5.8) < 5112z, + 1951 (€)1 22,
< 1+|051(e)Zs -
Since 05, (e) = p.05;(€) + Ip. A 51 (€), we have

[EEAGI
< 2(A(e) + [19pe A 51 (€)lI72,0)

<2X(e) + (logslel) / v Islrj)lz
(5.9) < 2X(e) loglel / /| Nk ldr}%
U o)™
< 222(e) +2 (V°l(l I)) ls1 ()12 2ay

By (5.2) we know ”31(5)||L;.2£1 . < C. Therefore from (5.9) it follows
that |3, (€)| L2 o is uniformly bounded by a constant C independent of e.

Then due to the Rellich lemma, there is an element s € L3(M, 9o) such
that 5, (€) converges to s weakly in L?(M, go) and strongly in L?(M, go),
taking a suitable subsequence. Since

I151()lI72 0 > lls1 (), = lsa(llzac,, SR
=1- ||51(€)||iz(co,m(1v))
1
> 1= vol(C, (N F lls1(e)l, 2o, |

ZI—C\/Ev

(5.10)
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we obtain ||s||zz0 = 1. In particular s # 0. From (5.9), we have ds = 0.
Since s is square integrable with respect to g = go, we may regard s as
a meromorphic g-form on M, which may possibly have a pole along Y
and is holomorphic outside of it. This implies that for some m > 0

(5.11) s € H°(M,Q(m[Y)),

where [Y] is the line bundle defined by the divisor Y.
Case 1 (1 < g <n). Thereis a coordinate system {U,} near Y
such that on U,, s can be represented by

SzaaAd<a+ba1

where YNU, = {{, =0}, a, € T(U,—-Y,029!) and b, € T'(U, - Y, Q9).
Since the bundle [Y]|y is defined by the system {gop := (aC5'ly}, we
have on U, N Up

(512) ap = GaJop, bﬂ = aa(ﬁ + b -

Assume that a, has a pole of order k along Y. Then

ao = (o ka; )
where a}, € I'(U,, 297"), and a, does not vanish identically on U,. Thus
we can regard the system {a/ |y} as an element of H°(Y, Q¢ ([Y]¥"!]y).
If k > 1, since [Y]|y is negative on Y, we have

HO(Y, Qo1 ([Y]*]y)) = 0.

This implies a], = 0 identically and is a contradiction. If ¥ = 1, then
{ally} € H°(Y,Q97') = 0, and a/, = 0 identically on U,, a contradic-
tion. Therefore ¥ > 0 and a, is holomorphic on U,. From (5.12), by
the same argument as on {a,}, we know that b, is regular along Y.
Thus

(5.13) s € H(M,Q9),

which implies that s = 0, since s, (e) is perpendicular to H°(M,Q9).
This contradicts the condition ||s||z2p = 1. Hence we obtain a uniform
lower bound

(5.14) X(e) > C > 0.
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Case 2 (q=0,1 or n). We first prove the case ¢ = 0. In this
case, since X — p is connected, we know the uniform lower bound of the
first eigenvalue from [27, Proposition 4.1]. Since \!(e) is greater than
either AJ(e) or A?(e) (cf. [17, Lemma 1.6.5]), we obtain the uniform
lower bound of the first eigenvalue for ¢ = 1. When ¢ = n, since
A7 (€) > A7"!(€) we also have the uniform lower bound.

Proposition 5.2. There is a constant C > 0 independent of € such
that

(5.15) M(e) > Cl=.

Proof. By Theorem 4.1,

oo
Tr exp(—t0g ) = Y e M@ < Cct™

=0

for 0 < t < 1 where C is a constant independent of €. Setting t =
A/ (€)7*C, < 1 where C, is the same constant as in (5.1), we have

1 Cgrd(e)
(5.16) e %l < Ee MO < CA (€)™
i=0
Inequality (5.15) follows immediately from (5.16).

6. Proof of the Main Theorem

In this section, we use the same notation as in sections 4 and 5. Let
Co,4(8,€) be the spectral zeta function of [Jj ,, and

Tr e~t060 ~ (4nt) " {ao (e, q) + art(e, q) + - - }

be the asymptotic expansion of trace of the heat kernel as ¢t — 0. Then,
by the definition, we have the following expression of (o 4(s, €):
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CO,(I('S 6) I-\;- ) /oo ts_l(’I‘r e_tDS.q — h,q)dt

— 1 s—1 —tag . i
~l"(s)/t {Tr e7"00 — (4mt)~ Za,eqt}dt

(4m)™" K~ aile, q) hy
+ I‘(s) Zs—-n+i_sl"()

/ =1 (Tr e Mo — h,)dt,

(6.1)

F(s

where h, = dim HY(M, Q). Since {, 4(0,€) = (47) "a, (e, q), we have
the following formula:

d ! . = ;. dt
d_|s=0<0,q(s7 6) = / {Ti‘ e—tDO'q - (47rt)—n Z ai(67 Q)tl}——

(6.2) +(47r)—"'_l21“—;l(€_—qz) (47) """ (1)a, (¢, q)

T (1)h, + /1 1 (Tr e — hy)dt.

Using the above formula in our conic degenerating case, we obtain the
following formula.

Proposition 6.1. Ase — 0,
(6.3)

d
|s=0C(s,€) = / / (47)™ ™ tr u,(z, q)dv + O(log )
ds'*=° €2 B(II‘\/_) A (=q) ( lel

dt/ _
— — 47) " tr uy(z, q)dv + O(log — ),
/ [ m) (z,q) (g|e|)

where u,(z,q) = un(z,z;0o,4) is the same as (2.4).
Proof. We set the following I, I, I; and compute each of them:

I1:=/1{'IYet°v—47rt Za,(eq
0

I2 = (477') Z a;l(e q) (47!')_"]__"(1)(1,"(5, Q) + Pl(l)hq

=0

Iy: = /1 ™1 (Tr e~ — h,)dt.
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First we compute:
(6.4)
le|?

L= {Tre™a— (4nt)~ Zal €q t’}—
0

+ {Tr e o — (47t)” Eaz € q)t’}—

fel? =0

2 dt
=o</ S
0
1.dt

1 n—1
+ [ {Tr e™Doa — (4mt)™ ) ai(e, q)t — boq(c, t) log }——
e]? i=0

(4m) ™™ tr up(z, q)dv
/|e|2 t /B(|e| Vi)
+/ / tr un(x;Dqu)dve
le|2 /M —~U.
/ / "tru(:z:q)d'v+0()+0(/l dt
le2 t B(||1f) " lef2 t

lel=2
/ dt / " tr un(z, q)dv + O(log — )
B(f) l€]

Since a;(€, q) is bounded for 7 < n and is of logarithmic order by Propo-
sition 2.2, we have

(6.5) I, = O(log lfl)

Finally, we estimate I3. Let {0 = A{(e) < A}(e) < ---} be the eigen-
value of [ /, counted with multiplicities. Then, from Proposition 5.2
it follows that

(o o]
Tr e_th).q — Ze—t/\?(e)
i=1

k
<> e 4ot

i=1
< ke~ 4 ot

(6.6)

By Proposition 5.1,
(6.7) X(e) > C,
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which together with (6.3), (6.6) gives
(6.8) I, = O(1).

Combining (6.4), (6.5) and (6.8) we obtain the desired estimate.

For the proof of Theorem 0.1, we need the following result of Cheeger
(cf. [13, Theorem 2.1] and [30, §5,6,7]).

Proposition 6.2. Let Z = Cy;(N)UY be a Kihler manifold with
a conical singularity, and denote the polar coordinate of C(N) by z =
(r,w). Then, the asymptotic expansion of the diagonal of the heat kernel
of Oo,, the Friedrichs extension of the Laplacian on (0,q)-forms, is
given by

(69) Ko,q(t, z, :L‘) ~ (47rt)_n z Ci(z) Q)ti1

=0
where c;(-,q) € End(A%?), and tr c;(z,q) = ai(w,q)r=2 on Cy(N)
with some smooth function a;(-,q) on N. Therefore a;(w,q)r~2 is the
heat kernel invariant, being a polynomial of derivatives of the curvature
tensor of Cy1(N). Moreover, the asymptotic expansion of the trace of
the heat kernel is given by

Tr e~ = (4mt) ™ Y ([ tr ci(o, o)t
(6.10) L =0 1
+_/ (47r)—nan(w, q)d’l)N log -+ 0(1)?
2 /N t

and

(6.11) Res;—o ((s) = %(4#)'"/Na,,(w, q)dvy.

Combing Propositions 6.1 and 6.2,
Theorem 6.1. The following asymptotic formula holds as € — 0:
1

d _ 2 1
(612) £l8=0C0,q(37 6) h _2Ress=0 CO,G('S’ O)(log Ie—l) + O(IOg |6| )

Proof of Theorem 0.1. Let M be the family of Kahler manifolds
considered in section 1. Then each fiber is biholomorphic to M in a
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natural way. We fix a basis of each cohomology group H?(M,©,;) and
obtain an element of A™**H(M, ©y;), which is denoted by 04. Then
we can define an element of the determinant of the cohomology; i.e.,
@n_o A (HI(M,057))Y" by

(6.13) o= ®qa‘(l'1)q.

Since M = M x A*, o can be regarded as a holomorphic section of
the Knudsen-Mumford determinant AX™ on A*. We also denote this
holomorphic section by o. Since each fiber M x {e} carries a Kihler
metric g, we can define the norm of o(€) by using the L2-norm of each
element of HY(M,O,;), and denote it by ||o(e)||z2. Then |lo(-)||z2 is a
smooth function on A*. Since the zero set of o is an analytic subset of
M, we have the following estimate:

(6.14) 0<C; <|lo(e)|lzz < C; < .
Following Ray-Singer (cf. [26]), we define the analytic torsion of (M, g,)
by

n

(6.15) T(M,g.) = exp(— Y (-1)

q=0

d
"qd—sCo,q(S, €)|s=o0)-

Then the Quillen metric | - || of AXM is given by

(6.16) llo(e)llq := T(M, g.)llo(e)l z-

Using the familly index theorem of Bismut-Gillet-Soulé (cf.
[11, Theorem 1.9]), we obtain on A*

(1,1)
(6.17) ddlog|lollq = 2mi [/ Td(R(TM,G))} :
M/A

From Proposition 1.1, the right-hand side of (6.17) extends smoothly on
A. By Theorem 6.1, log||o|| is an integrable function on A. Therefore
as an equation of distributions on A, we have

(1.1)
88log |ollg = 2ri [ f Td(R(TM,G))}
(6.18)

+Z Z Aabd d—b(50d6d6,

k=0 a+b=k
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where A,; is a constant and d, is the Dirac delta function supported at
the origin. From Theorem 6.1 and (6.14), it follows that A,, = 0 for
a + b > 0. Therefore

(619) 31105 Gau(o: o = Blog -+ O(1),

q=0

where B is a constant. Thus again by Theorem 6.1, we know

(6.20) zn:(-l)qq - Ress=0 Co,4(5,0) = 0.

q=0

Proposition 6.3. Let X be a Stein reduction of a negative line bun-
dle L over a compact Kahler munifold Y. Let gx be a conical Kdahler
metric of X for which (0.6) holds, and g3 be a Kdihler metric on L = X
such that gz = m*gx on X — K, where p : X = X is a desingular-
ization, and K is a compact set containing the exceptional divisor Zy,
the zero section of L. Then we have the following vanishing theorem of
cohomology groups: For 0 < q<mn,

(6.21) H,(X) = 0.

Proof. We divide the proof into the case ¢ <n—1,¢=n—1 and
qg=n. )

Case 1 ( 0<q<n-1). Let f be an element of H,(X). Then
Jorov) r2|p* f|?dvx < oo, where N is the unit circle bundle of L,

and X = C(N)*. Moreover, we have

| ey s Pdux
Co,1(N)

-¢, ) AT A
(6.22) Cost)
-c, [ 2 AT A ()
~1(Co,1(N))

< GysuplfP [ 172w A (7)),

where C, is a constant which depends only on ¢. In the above computa-
tion, we have used the convention that V = p~(Cy ;(N)) and that wy,
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wy are Kahler forms of gx, g3 respectively. If gy is a Kahler metric
on Y, then we have the following relation.

(071)*gx ~ [P D([¢Pgy + |dCI?),
(6.23) gz ~ gy +|d¢|?,
T~ (],

where g; ~ g, implies that g, is quasi-isometric to g,, and r has the
same order as |¢|®. From (6.23) it follows that

[l A en)™r <0 [ 1t A7) en)?
<0 [ I (wr +dg A )™
(6.24) ACI* (¢ Pwy + d¢ A d)?
<0 [ loPedugt Adg ndg
<c /A I¢[PeDd¢ A dE < oo,
where wy is the Kéhler form of gy. Therefore, if f € H,(X), we have
(6.25) /X r=|(p™1)* fPdvx < oo.

Let p. be the cut-off function defined by (5.7), setting a = 1. Let
fe :=p(p~)*f. Then the Hardy inequality gives

(6.26) e~ fellze < CUldflZ2 + 10FellZ2)-

Since df. = dp. A (p71)*f + pd(p~')* f, we estimate each term of the
right-hand side. By the definition of p., we have

(6.27) lldoe A (p7)* flIZ2 < (loge)2[Ir =" (p7")" fIZ2-

Since f satisfies 0f = 0 and || f ||L7‘13T < 00, we can apply integratation
by parts to f and obtain df = df = 0. Therefore

(6.28) lldfellz2 < [log el ™ lIr™ fllL2.

In the same way, we have

(6.29) 6fcllzz < |log €|~ ||r =" fl| -
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From (6.28) and (6.29) it follows that
(6.30) ripT) f = 11_1)1(}7'"1f€ =0,

which implies f = 0 and completes the proof for this case.

Case 2 (q=n). Let f be an element of ,(X). Since Kz|y
= Ky — L from the adjunction formula, (K3 —(a—1)7*L)|y = Ky —aL
where we identify Y and Zy. Since H°(Y, Ky —aL) = 0 by the assump-
tion, H°(Y, Ky —mL) = 0 for m < a. This implies that (("™f)|z, =0
for m < a — 1 where ( is the local defining function of Zy. Therefore
we have the following estimate near Zy:

(6.31) Ifl < Cl¢I™
Hence,
Lo ey o = G AT
Co,1(N) p~1(Co,1(N))
(6.32) <c [ d¢ A dE AW
=1 (Co,1(N))
< 00,

since r has the same order as |(|*. Therefore,

(6.33) /X r=2|(p~Y)* fPdvx < 0.

Thus in the same way as the Case 1, we can show f = 0 and completes

the proof for this case. ~
Case 3 (q=n-1). Let f be an element of #,,_;(X). Since H°(Y, Ky)
= 0, f vanishes along Zy. We can express f A f as follows.

(6.34) FAF=awl '+ bl 2Ad¢ AdC.

Since f vanishes along Zy, we have |a((,-)| < C|(|. Since wx is quasi-
isometric to |¢|2(a~1(d¢ A d¢ + wy),

(6.35) FAFAwx <OV (|al + [b] - [C])dC A dC A wi™
Since r has the same order as |{|?,

(6.36) r2|(7")* fPdvx < CI¢I7d¢ A dC A wy ™,
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which implies that

(6.37) /X r=2|(p™1)" fPdvx < oo.

Therefore, as before, we can show f = 0.

Proof of the Main Theorem. By Theorem 0.1 and Proposition 6.3,
it is sufficient to show that H°(Y,Q%) = 0 for 0 < ¢ < n. From the
condition Ky —aL < 0, we know Ky < 0, which implies H°(Y,Q}) =0
for 0 < g < n by the Kodaira vanishing theorem.

7. Spectral zeta function of 2-dimensional Kédhler manifolds

In the 2-dimensional case, (0.7) holds without the assumptions in
the statement of the Main Theorem.

Theorem 7.1. Let (M, g) be a compact Kahler surface with a conical
singularity p. Then the following equality holds:

(7.1) Z(—I)"q - Resg=0 {o,4(s) = 0.

q=0

Since Z§=0(—1)"Co,q(s) vanishes identically, we have the following
corollary.
Corollary 7.1.

(7.2) Res,—o (o0(s) = % Res,—0 (o,1(5) = Res,—0 {o,2(s)-

Proof. We can express (M, g) by M = C5,(N) UM’ where M’ is a
manifold with boundary N. Let K ,(t,z,y) be the heat kernel of O, q
on C(N). By the conformal homogeneity of C(N), we have

tr K(t,z,z)dv = f(r;w,t)r’» 1dr A duy,

(7:3) frw,t) = 7= f (1w, 72t)

where w is the variable on N. As t — 0, the following asymptotic
expansion holds:

(74)  f(r,w,t) ~ (4mt)™" Zai(r, wt',  ai(r,w) = r %o (l,w).

i>0
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By Cheeger’s computation, we obtain

(7.5) Res,—o Co,4(s) = (47;)_" /Nan(w)va ,

where o;(w) := a;(1,w). Set M, := C.;(N)U M’, and let K (t,z,y)
be the heat kernel of M, with the Dirichlet boundary condition. Then
[24, Lemma 5.3] for z € Cy;(N)

(7.6) Ko, (t,z,2) = K§ ,(t,z,2) + O(e™*).

In the interior of M., we have the following asymptotic expansion:

(e o]

(7.7) Ko (t, 2, ) ~ (4nt)™ Y ai(z, q)t,
1=0

where a; is the usual heat kernel invariant. From (7.7) it follows that

on CZe,l (N)7

(78) (1,,-(.’17, q) = O«’i(raw) = T—2iai(w)'

Note that the relation (7.8) is extended to the whole cone C(NN). There-
fore

1
7.9 /a w)dvy = / as(z)dv,
(7.9 [y = [ (o)
which together with (7.5) gives
(4m) ™ 1

(7.10) Res;=0 Co,4(8) =

a,(z)dv.
2 logr/cl,,uv) 2(2)

For the 2-dimensional Kahler manifolds, we have the following formulas
(cf. [17, Lemma 4.8.17] and [1, pp.82 and 225]):

— _1__ 2 _ 2 2
1
(7.12) ay(z,1) = {—20|7|* + 86|p|*> — 11| R|?},

(47)2360
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(118)  ax(0,2) = gz 2007 — 3200P + 21RP),
110) M) = e — 2,
(115) (M) = g lirf —4loP + RP),

where 7 is the scalar curvature, p is the Ricci curvature, R is the total
Riemannian curvature, and 7'M is the holomorphic tangent bundle of
M. From (7.11), (7.12), (7.13), (7.14) and (7.15), we have

2
(7.16) Z )qas(z,q) = E-cl(T M)? + —l—cz(T’M).
par 15 12
Since ¢;(T"M) = x(TM) and 2¢,(T'M) — ¢,(T'M)?* = p,(T"M) for
2-dimensional Kahler manifolds, where x(T'M) is the Euler form, and
p1(T'M) is the first Pontrjagin form of (M,g), the right-hand side
of (7.16) is expressed by a sum of x(T'M) and p,(T"M). Since both
X(TM) and p;(T'M) vanish on cones, the right-hand side of (7.16) is
equal to 0. Therefore by (7.10) and (7.16), we obtain (7.1).

8. Examples

In this section, we treat some examples of Kiahler manifolds with a
conical singularity which satisfy the conditions in the Main Theorem.

Proposition 8.1. Let F € Clzy,- - ,2,] be a homogeneous polyno-
mial of degree m. Set

X(F) ={(z0,+ ,20) € C"*'; F (20, ,2,) = 0},

(8.1) 9x(F) = ldzof® + - + |dzn|*| x(F),

and denote by px(r) the Ricci curvature and by ox(r) the scalar curva-
ture as before. Then the following inequalities hold:

_IV2FIIZ, V2|3,

: 1 lop <0, -
62 g e S pxem <0 T gER" <
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where

oF

0’F
o5 +1 2. (L . .
,azn)eC" , V2F: (6z,-az,-)°5"’5"eM(nH’C)’

oF
VF = (5—2;;, .

|- || is the standard norm on C**!, and || - ||op is the operator norm on
M(n+1;C).

Proof. ~ We identify the Hermitian metric with the Kahler form,
and the Ricci curvature with the Ricci form. For simplicity, we use the
following conventions:

OF o*F

F, .= — =
3z,~’ 7 aZ,;aZj

By computation, we have

(8.3) pxr = —V-1IVF|™* Y_{IIVF|*6; — F,F;}dF; A dF;|x(r),
%,7=0

from which it follows that

(8.4) px(F) <0, oxwr) <0,

and also that

pxr) = —V-1||VF|? 3" dF; A dF;

i=0
(85) = —VZAVFI? 3 (3 FyFa)dz A dz
§,k=0 i=0

> —||[VF|| 2V F|2 wx(#),

where wxp) 1= V-1 z:j=0 dz; A dz;|x is the induced Kahler form of
(X,g). Moreover, by (8.5) we obtain

(8-6) ox(r) 2 —nlVE[?|V2FI[Z,.
Proposition 8.2. Let F € Clz,-- ,2z,] be a homogeneous poly-

nomial of degree m such that Y(F) := {[20 : 21 : -+ : z,] € P*(C);
F(z, - ,2,) = 0} is a smooth hypersurface in P*(C). Let L be the
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tautological line bundle of P*(C). Then X (F') is the Stein reduction of
Lly, and gx(r) satisfies

(8.7) Tygx(r) = [\ gx(r)-

Proof. Since the Stein reduction of L is C**! | it is clear that X (F)
is the Stein reduction of L|y(r). Since gx(r) is the restriction of the
Euclidean metric, it is also clear that (8.7) holds.

Definition 8.1. Let V be a n-dimensional complex space and p be
an isilated singularity of V. p is said to be a hypersurface homogeneous
singularity if there is a homogeneous polynomial F' € Clzg,-- ,2y]
and a isomorphism from a neighborhood of p to a neighborhood of
0 € X(F). F is said to be the defining equation of p.

Definition 8.2. Let p be a hypersurface homogeneous singularity
defined by F' € Clzp,-- ,2,], and g be a Hermitian metric of V. g is
said to be the induced Euclidean metric near p if

(8.8) 9lu, = i*(|dzo|> + - - - + |dza ),

where U, is a neighborhood of p, and ¢ is the identification map from
U, to X (F).

Theorem 8.1. Let (M, g) be a compact Kihler space of pure dimen-
sion n with at most a hypersurface homogeneous singularity p defined
by F € Clzo, - ,2a). If g is the induced Euclidean metric near p and

ll” - IV F()ll5, _ (n—1)°

8.9 sup < )
®9) s TINF@I n

m:=degF <mn,

then (0.7) holds for (M, g).

Proof. By the assumption of the theorem and Proposition 8.2,
(M, g) is a Kahler manifold with a conical singularity associated to
the line bundle 7 : L|y(r — Y (F), and (X(F),gx(r)) is the Stein
reduction of L|y(r). From Proposition 8.1 and (8.9), (0.6) is satis-
fied for (X(F),gx(r)). Therefore if Kyp) — Lly(r) < 0 is satisfied,
(M, g) satisfies the assumptions of the Main Theorem. Since Ky (r)
= (n+ 1 —m)L|y) by the adjunction formula, inequality (8.9) gives

(8.10) Ky — Llyr) = (n —m)Llyr) <0.
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Corollary 8.1. Let p be the n-dimensional node, i.e., the hypersur-
face homogeneous singularity defined by the following polynomial:
(8.11) F(z)=2+22+---+22.

Let (M, g) be a compact Kdhler space of dimension n > 2 with at most
one node. If g is the induced Fuclidean metric near the singularity,
then (0.7) holds for (M,g).

Proof. By Theorem 8.1, it is sufficient to verify (8.9) for
(X (F2),9x(r3))- From (8.11) it follows that

llzl? - IV*Fy (@), IV F2 ()]~ = 1
for every z € X (F;). Since n > 2, (8.9) holds.

Example 8.1. Let M ={[zp:21:+: 2o1a] EP"(C); X022 =
0} be the compactification of X (F;) = M N U,4; in P**(C) where
Ui:={[20:21: " : 2p41); 2i # 0}. Set Dy, := P"*!(C) — U,.4,. Since,

on U,,;, both the Euclidean metric gz and the Fubini-Study metric
grs have the potential function

(8.12) ¢g = ||2l” = D |z’ ¢rs(z) = log(1 + 12II%),
i=0

we can patch gz and grs to obtain a new Kahler metric g"*') on
P"+1(C) such that g("*V = gz on B(1) and g("*V) = gps on P"*!(C) —
B(2) where B(r) is the Euclidean ball of radius r. Set gy := g("*V|y,
to obtain a Kahler space (M,gy). It is clear from the construction
that (M, g) is an example satisfying the condition of Corollary 8.1.

Example 8.2. Let MM = {[20: 2, : -+ : Zp41] € PM(C); F{M (2)
:= YT ,2™ =0} be a compactification of X (F{") = M NU,,;. Let
g™V be the same Kihler metric of P**!(C) as in Example 8.1. Set
ginth) = g|,, o+n which coincides with the induced Euclidean metric
near the smgulanty and with the restriction of the Fubini-Study metric
near M{**Y N D,,. By computation,

lall? - [IV2EP (@) 2, _

2 1+nt
up DRV (m —1)* sup
sex(rg)  IVER"(2)|l

o<t<1 1 +ntm-1’

(8.13)

Set

B18)  pa(t) = 1‘(-“—1)2{1 2 {n(t - 2)} )
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and
(8.15) C(n) :=sup{m € Z; ¢,(m) < 1}.
From Proposition A.2 (see Appendix), we have

1+nt
8.16 —-1)? _— - 1)%¢, .
(816)  n(m=1)? sup T < (n = 1)gu(m)

If m < C(n), then (M{™,g{™) is an example satisfying the condition
of Theorem 8.1. Since

t—2

Pu(t) ~ (t=1)(t—2)FTn 7T < (t—1)n 7T (n = o),

there is a constant D > 0 independent of m and n such that if n >
D(m — 1)2(m=1 then m < C(n). Therefore, there is an example satis-
fying the condition of Theorem 8.1 whose singularity has any arbitrary
multiplicity.

Appendix

In this appendix, we prove the unequality (8.16) and the Hardy
inequality on cones for p-forms.

Proposition A.1. Let X be a cone C(N) of dimension 2n with
the conical metric gx = dr* + r’gn. Then forp # n—1,n,n+ 1, the
following inequality holds for every f € A5(X):

(4.1) 3llr £lIZ2 < NldfIIZ2 + 161122

where 6 = — x dx is the adjoint of d.
Proof. Let f® = w® + W™V A dr be a p-form with compact
support. By computation, we have

d
awgp)} Adr ,

(A.2) df = dyw? + {dywi ™ — (-1)
5f = {r25nw® — (—1)pr=m+2e-1) L (m2p-1) -1

. dr
—r 2§ NwP YA dr

(A.3)
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where dy and 6y denotes the exterior derivative and its adjoint on NV
respectively, and m = 2n — 1. Again a computation leads to

lldfllzcugg +16£ 112
=/ m—2(p+1)”d w(P)”Nd,,.

d

# ™ (—1)P—w§">nfvdr
dr

+ / Ll

(=1 S DR
(A.4) + / PGy |

= [ sl 1 + ol I
T s R e ]
( 1)Pr (w! (p) de(P—l))
—1)? (de{”),wg” V) }dr
T / - ”’nNdr

‘) ""‘“"’-”n () Rdr.
Since |;i‘-ir—w§p)| > |j—r|w§”)||, we have

(A.5)
/ = 2p” (P)“2 d7‘>/ va/ rme Zp( Iw(p)l)2d7‘
0

2
> (m 2;)-— 1) / Tm—?(p+l)|w§1’)|2dr’
0

where we have used the following equality:

[ raeyar = O [T et ar

(A.6) ol
+ [ e gy year,
where g € C§°((0,00)). Similarly

o _ A, o(p— _

| e el ar

(A7) _ 2 [e 3]
> M2 ED [ ol D3
0
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From (A.4), (A.5) and (A.7) it follows that
© d
I :=/; r 2"||a;w§p)||i,dr

© ato—1 1 G, m—2(p— _
s + [ e e D) dr
° _ —1)\2 00
Z(m 2:’ 1) / ,rm—2(p+1)||w§17)”?vdr
0
_ 2 o)
4 0
Using the Cauchy-Schwarz inequality, (A.4) and (A.8), we obtain

I W) + 167 I
= [ o ar w1 + lovl I
0

+ 72|l dnwi VN + 2l enwd V1%

m —2p —1)?
+ (——4——)—"“)?)“?\/
A9 m — 2p + 3)? _
(49) U A

— w3, — 7wl 3

— llnw® I3 — llrw$ 13}
>C [ rm2e D o + o r
=C|lr=* f|Zw)-

where C = min{(n—p—1)2-1, (n—p+1)®—1}. Sincep # n—1,n,n+1,
C > 3 and we have the desired inequality.
Proposition A.2. For t > 2 we define a function

(A.10) $n(t) == %)2—{1 + %{n(t —2)}),
Then for m > 2,
(A11)  n(m—1)? sup —_ < (n—1)’p,(m).

o<t<1 1 + ntm-1
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Proof. Set Fp,(t) := (1 +nt)/(1+ nt™) for t € [0,1]. Let a € (0,1)
be the number such that F, (o) = max,ep,1) Fin(t). Since F,, (a) = 0,
a satisfies

(A.12) n(m+1)a™ + ma™ ! -1 =0.
Therefore
(A.13) Foe)=1+ MM,

m

Set B := {n(m~1)}~=. Then, 8 is a solution of f(t) := n(m—1)t"—1 =
0. Since f(a) < 0, we have a < 3. Therefore (A.13) yields

(A18)  Fulo) <1+ ~{n(m -1y = 00

¢n(m +1).

nm?

Hence (A.11) follows from (A.14).
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