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COMPACT RIEMANNIAN 7-MANIFOLDS
WITH HOLONOMY G2. II

DOMINIC D. JOYCE

1. Introduction

This is the second of two papers about metrics of holonomy G2

on compact 7-manifolds. In our first paper [15] we established the
existence of a family of metrics of holonomy G2 on a single, compact,
simply-connected 7-manifold M, using three general results, Theorems
A, B and C. Our purpose in this paper is to explore the theory of
compact riemannian 7-manifolds with holonomy G2 in greater detail.
By relying on Theorems A-C we will be able to avoid the emphasis on
analysis that characterized [15], so that this sequel will have a more
topological flavour.

The paper has four chapters. The first chapter consists of introduc-
tory material. Section 1.1 gives some elementary geometric and topo-
logical material on compact 7-manifolds with torsion-free G2- struc-
tures. Then §1.2 describes the holonomy groups SU(2) and 5C/(3),
and §1.3 explains the concept of asymptotically locally Euclidean rie-
mannian manifolds (shortened to ALE spaces) with special holonomy.

Recall that in [15], a compact 7-manifold M was defined by desingu-
larizing a quotient T7/Γ of the 7-torus by a finite group of isometries
Γ = ΊJ\. The subject of Chapters 2 and 3 is a generalization of this idea.
Chapter 2 defines a general construction for compact 7-manifolds with
torsion-free G2- structures, which works by desingularizing quotients
T7/Γ for finite groups Γ. The ALE spaces with holonomy SU(2) and
SU(3) discussed in §1.3 are an essential ingredient in performing this
desingularization.

The central result of Chapter 2 is Theorem 2.2.3, which states that

given a suitable finite group Γ and certain other data, one may con-
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struct a compact 7-manifold M from T7/Γ that admits torsion-free G2-
structures. This result is proved using Theorems A-C of [15]. Chapter
3 is devoted entirely to examples of this construction. We give many
examples of compact 7-manifolds with holonomy G2, and determine
their basic topological invariants — the betti numbers and fundamen-
tal group. Finally, in Chapter 4 we discuss some areas of interest, and
give a number of open problems.

This paper is not written to be read independently of [15]. The
language and results of [15] will be used freely, in particular the in-
troductory material in [15, §1.1]. For reference we reproduce here the
model 3- and 4- forms φ, *φ defining the flat G2- structure on R7, as
given in [15, §1.1]:

ψ = 2/i Λ 2/2 Λ y7 + 2/i Λ y3 Λ y6 + yx Λ y 4 Λ y5 + y2 Λ y3 Λ yb

(1) -2/2 Λ 2/4 Λ 2/6 + 2/3 Λ 2/4 Λ 2/7 + 2/5 Λ 2/6 Λ y7,

*φ= 2/i Λ 2/2 Λ 2/3 Λ 2/4 + 2/i Λ 2/2 Λ 2/5 Λ y 6 - 2/i Λ 2/3 Λ 2/5 Λ y7

(2) +2/i Λ 2/4 Λ 2/6 Λ 2/7 + 2/2 Λ 2/3 Λ ye Λ 2/7 + 2/2 Λ 2/4 Λ 2/5 Λ 2/7

+2/3 Λ 2/4 Λ 2/5 Λ 2/6-

Here y l 9 . . ., y7 is an oriented orthonormal basis of (R7)*.
1.1. Topological properties of manifolds with holonomy G2-
Here are a number of elementary general facts about compact 7-

manifolds with torsion-free G2- structures. Some will be used later,
and some are just for interest. Most of the results can be found in [5],
or are otherwise already known.

Proposition 1.1.1. Let M be a compact 7-manifold, let ψ be a
torsion-free G2- structure on M, and let g be the metric associated to
φ. Then the holonomy group of g is G2 if and only if the fundamental
group τri (M) is finite. The holonomy group of g is FK SU(3) for some
finite group F if and only if M admits a finite cover N x S1 for some
compact, simply-connected 6-manifold N. The holonomy group of g is
F K SU(2) for some finite group F if and only if M admits a finite
cover N x T 3 for some compact, simply-connected 4-τnanifold N.

Proof. The Cheeger-Gromoll splitting Theorem [3, p. 168] deals with
the global topology of riemannian manifolds of nonnegative Ricci curva-
ture, and one of its conclusions is that if (M, g) is a compact, Ricci-flat
riemannian manifold, then M has a finite cover isometric to a product
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N x T*, where JV is a compact, simply-connected, Ricci-flat rieman-
nian manifold, and Tk is a flat riemannian torus. Suppose that g has
holonomy contained in G2. Then g is Ricci-flat from above, so that M
has a finite cover isometric to JV x T fc, where JV is simply-connected.
Let g1 be the lift of g to JV x Tk. As N xTk is a, riemannian product,
the holonomy group H' of g' is the product of the holonomy group of JV
and the trivial group. But JV x Tk is a finite cover of M, and therefore
the holonomy group H of g is a semidirect product H = F tx H1 for
some finite group F.

Now JV is a compact, simply-connected riemannian manifold of di-
mension 7 — A;, with holonomy group H'. Since JV is simply-connected,
ί/7 is connected. Suppose for a contradiction that the holonomy repre-
sentation of H' on R7~* has a summand Rf on which H' acts trivially.
Then g1 is locally a riemannian product of Rz, and some metric in di-
mension 7 — k — Z, so that the universal cover of JV contains a factor Rf.
But this contradicts the fact that JV is compact and simply-connected.
Therefore the holonomy representation of H' on R7~fc has no trivial
summand.

By examining Berger's classification of riemannian holonomy groups,
it can be shown that the only connected subgroups of G2 that can be
riemannian holonomy groups in the standard representation of G2 are
{1}, SΊ7(2), 517(3) and G2. Therefore there are four possible cases, the
case H' = {1} and k = 7, the case H' = SU(2) and k = 3, the case
H1 = SU{3) and jfc = 1, and the case H' = G2 and k = 0. Suppose that
H = G2. Then k — 0 as if' = G 2, so M has a finite, simply-connected
cover JV, and τri(M) is finite, as we have to prove. Conversely, if τri(M)
is finite, then k = 0 as JV x Tk covers M, so H' = G2, and thus H = G2,
as we have to prove.

Suppose that H = F K 517(3) for some finite group F. Then i/' =
517(3), so k = 1, and M has a finite cover N x Sι. Conversely, if M
admits a finite cover JV6 x Sι with JV6 simply-connected, then k = 1
and if' = 5£/(3), so that H = F x SU(3) for some finite group F, as
we have to prove. Similarly, H = F x SU(2) for some finite group F if
and only if M admits a finite cover JV4 x T 3 for JV4 simply-connected.
This completes the Proposition, q.e.d.

The Weitzenbock formula for k- forms [24, Proposition 4.10] states
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that if ξ is a k- form on a riemannian manifold M with metric #, then

(3) (d*d + dd*)ξ = V*Vξ - 2Rξ.

Here V is the Levi-Civita connection of g, and R : AkT*M -> AhT*M

is a linear map defined using the Riemann curvature i ϊ of g, as follows.

Let p G M, and let G(p) C End(TpM) be the holonomy group of g at p,

and g its Lie algebra. Then R(p) G Θ20. Now G(p) has a natural repre-

sentation on AkT*M, which gives a natural map p : 0 —» End(Λ feTpM).

So p acts on i?(p) to give an element of Θ2 End(Λ*Tp*M), and then

composition in End(Λ*Tp*M) yields an element of End(Λ*TpM). De-

fine R(p) to be this element, and let R have value R(p) at each p E M.

Then Λ is a smooth endomorphism of AkT*M, as we require.

Now let M be compact. Then by Hodge theory, we have

Hk(M,R) = {ξe C°°(AkT*M) : dξ = d*ξ = 0}
(4) = {ξ e C°°{AkT*M) : (d*d + dd*)ξ = 0}.

Suppose that AkT*M splits into the direct sum of subbundles Λ* under

the action of the holonomy group G. Then both V* V and R preserve

these subbundles, so by (3) the operator d*d + dd* preserves these

subbundles too. Thus Keτ(d*d + dd*) splits into the direct sum over I

ofKeτ{d*d + dd*)\Ak, and (4) gives Hk(M,R) = ®tH
k, where

(5) Hk = {ξeC~(Ak):dξ = d*ξ = 0}.

Define bk = dimHk. Then bk — Σtb
k. There is also another important

conclusion. Since the operator V*V — 2R acting on Λf depends only
on the representation of G, if two subbundles Λj and Λf come from
isomorphic representations of G, then H] = Hk, and 6* = bk.

The discussion above holds for any riemannian holonomy group; for
instance, in the case of holonomy U(n) this is the familiar splitting of
the cohomology into the Dolbeault cohomology groups Hp>q of a Kahler
manifold. We are interested in the case that M is 7-dimensional and
G is a subgroup of G2. In this case, using the G- invariant splittings of
[15, Proposition 1.1.1], we write 6° - 6?, b1 = b\, b2 = ft2 + 62

4 and b3 =
61+67 + &27. Isomorphisms of representations give the equalities bk =
tf,~k, b\ — &i and b\ = 62 = 67. For a compact, connected 7-manifold
M with holonomy G2, we have 6° = 1 and 61 = 0 by Proposition 1.1.1.
Thus M has only two nontrivial betti-type invariants, 62

4 and 637.
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L e m m a 1.1.2. Let (M,#) be a compact riemannian 7-manifold
with holonomy G2. Then the pontryagin class Pι(M) G H4(M,Z) is
nonzero. Let φ be the G2- structure of g and [ψ] be its cohomology class
in H3(M,R). Then [φ] satisfies pi(Af) U [φ] < 0, and σ U σ U φ < 0
whenever σ is a nonzero class in H2(M,R).

Proof. The pontryagin classpλ(M) is represented by a 4-form RΛR
made from the Riemann curvature Ri

jkι of g. Because the Levi-Civita
connection of g preserves the G2- structure <p, the 2-form part of R lies
in the subbundle of A2T*M associated to the Lie algebra of G2. This
subbundle is ΛJ4. Now if ξ G AJ4, then ξ A ξ A φ = —\ξ\2 vol. It follows
that R A R Λ φ — — | i ϊ | 2 vol (up to some positive constant). Therefore
Pι{M) U[φ] = JMRARAφ = —\\R\\l (up to some positive constant).
But R must be nonzero because the holonomy group of g is nontrivial.
Thus Pι{M) U [φ] < 0, as we have to prove, and Pi(M) is nonzero.

Since M has holonomy G2, τri(M) is finite by Proposition 1.1.1, and
thus b\M) = 0. But b1 = b\ = b2

7, so H2 = {0}, and H2{M,R) = H2

4.
It follows that if σ G H2(M,M) is nonzero, then σ is represented by
some nonzero ξ e C°°{A2

14). ΎhnsσUσ\j[φ] = JMξAξAψ= -\\ξ\\l < 0,
as ξ is nonzero. So σ U σ U [φ] < 0, as we have to prove, q.e.d.

Bryant and Harvey [5] also show that if M is a compact riemannian
7-manifold with holonomy G2, then M cannot be diffeomorphic to a
product of lower-dimensional manifolds.

L e m m a 1.1.3. Let M be a compact riemannian 7-manifold admit-
ting torsion-free G2- structures, and let L be the subset of JΪ 3 (M, M) x
H4(M,R) defined by

(6) L = \ ([<£>], [Θ(<p)]) : φ is a torsion-free G2- structure on M\.

Then L is locally a Lagrangian submanifold of H3(M,R) x
with its natural symplectic structure.

Proof. By [15, Theorem C], the set of diffeomorphism classes of
torsion-free G2- structures is a manifold locally isomorphic to H3(M, R)
(considering only diffeomorphisms isotopic to the identity). Therefore
L is locally a manifold of dimension 63(M), with nonsingular projection
to H3(M,R). Regarding # 4 ( M , R ) as # 3 ( M , R ) * , we will show that
L may be written locally in the form (x,df(x)), where / is a smooth
real function on H3(M,R) defined by f([φ]) = \[φ] U [Θ(φ)]. It then
follows immediately that L is a Lagrangian submanifold of H3 (M, R) x
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Let {φt : t G (—e,e)} be a smooth family of torsion-free G2- struc-
tures on M. Then

using the fact that πx (Θ(φ + χ)) = *φ + § * πi(χ) + O(|χ|2). Since (7)
holds for all smooth families φt with φ0 — φ, we deduce that df([φ]) =
[Θ(</?)], interpreting # 4 (M, R) as # 3 (M, R)*. Therefore L is the locally
the graph of an exact 1-form on H3(M, R), so that L is a Lagrangian
submanifold. q.e.d.

The author does not know whether L has any special properties
other than being a Lagrangian submanifold, but this does appear to be
a question worth researching. In the case M = K3 xT 3, it is possible to
define L entirely explicitly, using the very strong results known about
the moduli space of metrics of holonomy SU(2) on the K3 case by
Todorov and others, which can be found in the survey paper [2].

1.2. The holonomy groups SU{2) and SU(3).
Let Z be a compact, complex n-manifold, let g be a Kahler metric on

Z, and let ω be the Kahler form of g. Then g has holonomy contained
in U(n). The Ricci curvature of g is equivalent to the curvature of the
Levi-Civita connection on the complex line bundle of complex volume
forms. Therefore g is Ricci-flat if and only if this connection is flat, i.e. if
and only if the line bundle of complex volume forms admits a local
constant section Ω. But when the Levi-Civita connection preserves
some geometric structure, the holonomy group of the metric preserves
the same structure. In this case, we see that g is Ricci-flat if and only if
the holonomy group of g lies locally in SU(n). Globally, the holonomy
group of g is contained i n f i x SU(n) for some finite group F (as Z
is compact), and if Ω exists globally then the holonomy group of g is
contained in SU(n).

There is a celebrated conjecture by Calabi ([7], [3, Chapter 11])
about the Ricci forms realized by Kahler metrics on a compact complex
manifold. It has been proved by Yau [28]. One consequence of Yau's
proof of the Calabi conjecture is the following theorem:

Theorem 1.2.1 [28]. Suppose Z is α compact, simply-connected,
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Kάhler, complex n-fold with vanishing real first Chern class Cι(Z).

Then Z admits a Ricci-flat Kάhler metric g with holonomy group con-

tained in SU(n).

As the hypotheses of the Theorem are simple and algebraic, one

can find many examples of compact complex manifolds with metrics

of holonomy SU(n). We shall be interested only in the cases n — 2,3.

For the case n — 2, the Kahler form ω is a real 2-form and the complex

volume form Ω is a complex 2-form. Let us write ω = ωι and Ω =

ω2 + iω3 for real 2-forms ωι,ω2,ω3. Then ωi,ω2,α;3 may be written

ωi = yi Λ y4 + y2 Λ y3, ω2 = yi Λ y3 - y2 Λ y4,

(8) ω3 = yλ Λy2+y3Λy4,

with respect to an oriented orthonormal basis (y 1 ? . . . , y4) for (R4)*. If

ωι,ω2,ω3 are 2-forms on a 4-manifold M that may be written in the

form (8) at each point, then they define an SU(2)- structure on M, and

this SU(2)- structure is torsion-free if and only if dωj = 0 for j = 1,2,3.

The forms ψ and *φ of (1) and (2) may be written in terms of

ωi j ̂ 2, ̂ 3 as follows:

(9) ψ = ωι Λ δι + ω2 Λ δ2 + ω3 Λ δ3 + δι Λ δ2 Λ J 3 ,

(10) *φ = ϋύi Λ δ2 Λ δ3 + ω2 Λ δ3 Λ 5χ + ω3 Λ 5i Λ δ2 + ^c î Λ ωi.

Here 5χ = y5, 52 = yβ and J 3 = y7. As u{ A ω{ — ωj Λ tt>j, these

equations are preserved by the cyclic permutation of the indices 1,2,3.

Since SU(2) preserves ω1,ω2,α;3, it preserves φ and *φ by (9) and (10),

and this defines an inclusion SU(2) C G2.

The Kahler form ω and complex 3-form Ω making up an £[7(3)-

structure may be written

ω =yi Λy2+y3Λy4 + y5Λ y6,

(11) Ω =(y1 + iy2) Λ (y3 + iy4) Λ (y5 + iy6),

where ( j/ 1 } . . . ,y6) is an oriented orthonormal basis of (R6)*. The sub-

group of GL(6,R) preserving ω and Ω is 5^(3). In terms of ω and Ω,

the 3- and 4-forms φ, *φ of (1) and (2) are

(12) φ = ω Λ y7 + Im(Ω), *<p = |α; Λ ω - Re(Ω) Λ y7.
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The subgroup of GL(7, R) preserving φ and *φ is G2, and it can be seen
from (12) that the subgroup of GL(7, R) preserving φ, *φ and y7 is the
subgroup of GL(6,R) preserving ω and Ω, which is SU(3). This gives
an inclusion SU(3) C G2. In fact 5(7(3) is the maximal connected
subgroup of G2- Let Z be a compact, Kahler, complex 3-manifold
with holonomy S?7(3). Then using (12) we may define a torsion-free
G2-structure φ on Z x R, putting y7 = dx, where x is the coordinate
i n R

1.3. Asymptotically locally Euclidean metrics with special
holonomy.

In §2.1 we will define the idea of a generalized Kummer construction,
which is a desingularization of the quotient Tn/Γ of a torus Tn by a
finite group Γ. Under favourable conditions the singular set of Tn/Γ is
a disjoint union of tori Tι modelled on the singular set of Tι x (Rn~ι /G),
for some finite subgroup G of SO(n — I). To desingularize Tn/Γ one
then replaces Rn~ι jG by a complete riemannian manifold X that has
only one end, which is asymptotic to Rn - / jG in some sense. To achieve
some particular holonomy group H on the desingularized manifold, it
is natural to require the holonomy group of X to be the subgroup of
H acting trivially on Rι C Rn.

Such spaces X are called asymptotically locally Euclidean manifolds,
which will be shortened to ALE spaces. An ALE space X is a complete
riemannian manifold with one end modelled on the end of Rn/G, such
that the metric g of X is asymptotic to the Euclidean metric h on Rn /G
in a sense to be given below. Here G is a nontrivial finite subgroup of
SO(n) that acts freely on Rn \ {0}. We may observe at once that n
must be even, since if n is odd then every nontrivial element of SO(n)
has fixed points on Rn \ {0}, so that there can be no candidates for the
finite group G. Also, since we are only interested in Ricci-flat g we may
exclude the case n = 2, since a Ricci-flat 2-manifold is flat, and thus
X would be isometric to R2. So we shall consider X of even dimension
4 and above.

We require the metric g on X to be asymptotic to the Euclidean
metric h on Rn/G in the following sense. There should exist a contin-
uous, surjective map φ : X —)• Rn/G that is smooth in the appropriate
sense, such that ^"^(O) is a connected, simply-connected, finite union
of compact submanifolds of X, and φ induces a diffeomorphism from



COMPACT RIEMANNIAN 7-MANIFOLDS. II 337

X \ φ-^O) to {Rn \ {0})/G. Under this diffeomorphism, φ.(g) should
satisfy

(13) φM -h = O(r-4), dφ*(g) = O{τ~% d2φ*(g) = O(r~6)

for large r, where r is the distance from the origin in W1 /G, and d is
the flat connection on Rn/G. The powers of r in this definition are
chosen to match the power t4 in condition (i) of [15, Theorem B].

In this paper we shall only be interested in the cases n — 4 when
g has holonomy SU(2), and n = 6 when g has holonomy SU(3). In
these cases we shall impose the following extra condition. The SU(2)-
and 5Ϊ7(3)- structures are defined by closed 2- and 3-forms, and we
require that if ω is one of the closed Λ -forms defining the SU(n/2)-
structure and ώ is the corresponding constant fc-form on Kn/G, then
φ*{ω) -ώ = dp on (Rn \{0})/G, where p is a fc-1-form on (Rn \{0})/G,
and

(14) p = O(r~s), dp = 0{r-*), d2p = 0{r~5), d3p = O(r~6)

for large r. This condition will be used later to prove condition (i) of
[15, Theorem B].

The Eguchi-Hanson space of [15, §1.3] is an ALE space with SU(2)
holonomy in the above sense, and the properties above were essential to
the construction in [15]. Now ALE spaces with holonomy SU(2) have
been well studied, and it is known that there are families of ALE spaces
with holonomy SU(2) for all finite subgroups G C SU(2). A complete
construction and classification of these has been given by Kronheimer
[16], [17]. For cyclic groups, the metrics are given explicitly in [11].

For ALE spaces with holonomy SU(3) there also exists a good theory,
which is less explicit than the SU(2) case. The theory splits into two
parts. The first part is to show that if Γ is a finite subgroup of SU(3)
acting freely on C3 \ {0}, then the singularity of C3 /Γ admits a complex
resolution X with Cχ(X) = 0. This part has been proved for several
different types of group Γ by Markushevich et al. [19, Appendix], by
Roan [23, p. 527-8] and by Ito [14]. In particular, if Γ is abelian then
such resolutions always exist, and their topology can be found using
toric geometry.

The second part of the theory is to show that these candidate non-
compact complex manifolds possess ALE metrics with holonomy S'?7(3).
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To prove this we draw on the results of Tian and Yau [26]. Let X be
a resolution of the singularities of C3/Γ with Cχ(X) = 0. Then we may-
write X = M \ D, where M is a compact complex orbifold, and D is a
divisor associated to the line bundle K]f for some β. (In fact, D is an
orbifold of QP2.) Tian and Yau show that X = M \ D has a Ricci-flat
Kahler metric satisfying certain asymptotic conditions near D. This is
the ALE metric with holonomy SU(3) that we want.

The only problem that remains is to show that this metric has the
asymptotic behaviour (13) and (14). Tian and Yau prove only that the
riemann curvature satisfies \R\ = O(r~3). But by a refinement of their
arguments for this particular case, it does not appear difficult to show
that (13) and (14) both hold.

There is one ALE space with holonomy SU(3) for which the metric is
known explicitly. Let (zι,z2iz3) be complex coordinates on C3. Define
an action of Z3 on C3, generated by the map Zj H-> e2πί/3Zj. Let X be
the blow-up of C3/Z3 at the origin. Then Calabi [8, p. 285] gives an
explicit Kahler potential for a metric of holonomy SU(3) on X. It is
easy to verify from the Kahler potential that (13) and (14) hold in this
case.

2. A construction for compact 7-manifolds
with holonomy G2

This chapter generalized the idea used in [15] to make a compact 7-
manifold M admitting metrics with holonomy G2. Since [15] was based
on the Kummer construction for the K3 surface, we have chosen to call
our method the generalized Kummer construction. This is defined in
§2.1, and is a means of constructing smooth, compact n-manifolds by
desingularizing a quotient Tn/Γ of the n-torus by a finite group Γ of
automorphisms of T n .

In §2.2 we prove that given a finite group Γ acting on T 7 and sat-
isfying some (rather restrictive) conditions, there exists a generalized
Kummer construction that desingularizes Γ7/Γ to give a compact 7-
manifold M, and that M has a family of torsion-free G2- structures.
The proof of this result uses Theorems A-C of [15], and is a simple
generalization of the material of [15, §2]. The chapter finishes in §2.3
with an explanation of how to calculate the fundamental group and
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betti numbers of the 7-manifolds M produced in this way.
2.1. The generalized Kummer construction.
Here is the definition.
Definition 2.1.1. Let Tn be an n-torus with a fiat riemannian

metric. Let Γ be a finite group of isometries of Tn. Then Tn/T is a
manifold with singularities. Let S be the singular set of Tn/Γ. Let
M be a compact, smooth n-manifold, and let Φ : M —> Γn/Γ be a
continuous, surjective map that is smooth except at S. We say that
the quadruple (Tn, Γ, M, Φ) is a generalized Kummer construction if it
has the following three properties:

(i) Φ is injective on Φ"1 (M \ S),

(ii) Φ~X(S) is a finite union of compact submanifolds of M, and

(iii) for each s E S, Φ~λ(s) is a connected, simply-connected, finite
union of compact submanifolds of M.

Now let us consider how to choose a group Γ and define a compact
manifold M. There are good and bad types of singular point in the
singular set S of Tn/Γ. The 'bad5 types of singular point are where
two or more (singular) submanifolds of S intersect, and they are bad
because it is not very clear how to resolve them. For simplicity we shall
usually choose groups Γ that have no bad singular points in this sense.
Here is a condition that ensures this.

Condition 2.1.2. Let Tn be an n-torus with a flat riemannian
metric, and let Γ be a finite group of orientation-preserving isometries
of Tn. Suppose that whenever 71,72 are nonidentity elements of Γ that
have fixed points in T n, then either 7172 has no fixed points on T n , or
71 = 72 for some integer k.

Lemma 2.1.3. Suppose that Tn is an n-torus with a flat rieman-
nian metric, and that Γ is a finite group of isometries of Tn satisfying
Condition 2.1.2. Let S be the singular set of Tn/Γ. Then S is a dis-
joint union of connected components, and each connected component
has a neighbourhood isometric to a neighbourhood of the singular set in
jTn-2z χ (ψι/zp)}/F. Here I is a positive integer with 21 < n, R 27ZP

is the quotient of R21 by some nontriυial, prime, cyclic subgroup Z p of
SO(2l) acting freely on E2/ \ {0}; and F is a finite group of isometries
of Tn~21 x {R2l/Zp) that acts freely on Tn~21.

Proof. Let S' be the subset of Tn of points that are fixed points of
some nonidentity element of Γ. Then the singular set S is S = S"/Γ. It
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is easy to see that the fixed point set S"(7) of any nonidentity element
7 G Γ is a disjoint union of tori T m in Tn. Let 71,72 be nonidentity
elements with fixed points on Tn. If Sr (71) Π 5" (72) φ 0 then 7^2 has
fixed points, so by Condition 2.1.2, 71 is a power of 72. Exchanging 71
and 72 shows that 72 is also a power of 71, and therefore S' (71) = £"(72).

We deduce that S" is a disjoint union of tori T m . It follows that
S is a disjoint union of components, each of which is isometric to the
quotient of a torus Tm by a finite group F; moreover, F acts freely
on T m , as a fixed point of F on Γ m would lead to a contradiction of
Condition 2.1.2. Consider a single component Tm/F of S. Its preimage
in S' is a finite union of isometric tori T m , of which we select one. The
nonidentity elements of Γ fixing the points of this torus Tm are powers
of each other by Condition 2.1.2, so the subgroup of Γ fixing the points
of Tm is a nontrivial, cyclic group Z p of prime order.

Because the torus Tm is isolated in 5", Z p must act freely on the
normal bundle Rn~m of T m in T n , and Z p preserves the orientation of
En~m since Γ preserves the orientation of Tn. Thus Zp is a subgroup of
SO(n — ra) acting freely on Mn~m \ {0}, as we have to prove. If n — m is
odd, then all elements of SO(n — m) have fixed points, so there are no
nontrivial groups Z p C SO(n - m) acting freely on En~m \ {0}. Thus
n — m is even, and we may write n — m = 21 for some positive integer
/ with 2/ < n, and m = n — 21. The remainder of the Lemma is now
clear, q.e.d.

2.2. Torsion-free Gf

2-structures on compact 7-manifolds.
The general plan for constructing compact manifolds with interesting

metrics via the generalized Kummer construction, runs as follows. One
chooses a group Γ acting on a flat riemannian torus T n , such that
the singularities of Tn/Γ are not too severe, for instance if Γ satisfies
Condition 2.1.2. In particularly good cases the singular set of Tn/Γ
is composed of disjoint components modelled on Tn~21 x (R2ί /Zp). To
construct M in this case one chooses an ALE space X for the group
Z p C 5O(2Z), for each component of S.

A compact n-manifold M can then be constructed in a natural way
by using Tn~21 x X to desingularize the singular component modelled
on Γn~2/ x (R2//Zp). In this paper we consider only the case n = 7
and I = 2 or 3, and we aim to write down G2- structures on M that
have small torsion. This is done in the next Theorem, which covers
only the case of very well-behaved singularities. The conclusions of the
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Theorem are the same as the hypotheses of [15, Theorem B], which is
the reason for the Theorem.

Theorem 2.2.1. Let φ be a flat G2- structure on T7', and let Γ be
a finite group of diffeomorphisms of T7 preserving φ. Let S i , . . . , S*
be the connected components of the singular set S of T 7 /Γ. Suppose
that each Sj either has a neighbourhood isometric to a neighbourhood
of the singular set of T 3 x C2 /Gj, where T 3 is a flat riemannian torus
and Gj a finite subgroup of SU(2), or has a neighbourhood isometric
to a neighbourhood of the singular set of S1 x C3 /Gj, where Gj is a
finite subgroup of SΪ7(3) acting freely except at 0. For each j , let Xj
be an ALE space with holonomy SU(2) or SU(3) asymptotic to C2 /Gj
or C3/Gj as appropriate, in the sense of §ί.5.

Then there exists a compact Ί-manifold M constructed from T 7 /Γ
and Xι,... ,Xk, a positive constant θ, and a family {φt : t G (0,0]}
of smooth, closed sections of Λ+M. Let gt be the metric on M asso-
ciated to φt. There exists a family {ψt : t G (0,0]} of smooth 3-forms
on M with d*ψt = d*φt, where d* is defined using gt. There exist
positive constants D\,... , D 5 independent of t, such that the following
five conditions hold for each t E (0,0], where all norms are calculated
using gt.

(i) WΦth < D.t4 and \\φt\\C2 < D1t
i,

(ii) the injectivity radius δ(gt) satisfies δ(gt) > D2t,

(Hi) the Riemann curvature R(gt) of gt satisfies ||i2(</t)||co ^ D3t~
2,

(iv) the volume vol(M) satisfies vol(M) > D 4 ? and the diameter

diam(M) satisfies diam(M) < JD5.

Proof. The proof follows [15, §2.2]. Let ζ be a positive constant
sufficiently small that if T is the open set of all points a distance less
than ζ from S, then each connected component of T contains exactly
one component of S, the closures of these components of T do not
intersect, and the component containing Sj is isometric to T 3 x (B*/Gj)
or S1 x (Bς/Gj) as appropriate, where B* and B^ are the open balls of
radius ζ about 0 in C2 and C3 respectively. Let Tj be the component
of T containing Sj.

The compact 7-manifold M will be defined by modifying T 7 /Γ in
each neighbourhood Tj, following the procedure below, and on M a
family of 3-forms {ψt : ί 6 (0,9]} and a family of 4-forms {υt : t G
(0,0]} will be defined. On (Γ7/Γ) \ T we define ψt and υt by ψt = ψ
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and υt = *φ. Thus it suffices to work on a single component 7}, and
explain how to define the corresponding part of M, and the forms φu υt

upon it. There are two cases, the case Tj = T 3 x (B*/Gj) and the case
Tj = S 1 x (B%/Gj), and we will deal with them in this order.

For the first case, suppose that Tj is isometric to T 3 x (B*/Gj), where
Gj is a finite subgroup of SU(2). By the hypotheses of the Theorem
we are given an ALE space Xj with holonomy £77(2), asymptotic to
C2/Gj. By the definition of ALE space in §1.3, Xj comes with a map
φj : Xj —ϊ C2 /Gj satisfying certain conditions. For t > 0, define Ujj to
be the open subset φ~1(B^JGj) of Xj, and define a map φjtt : Ujtt —>
B*/Gj by φj,t(u) = tφj(u). Then φ^t is surjective, as (/>j is surjective.
So <£iίt induces a map Φ^ : Γ 3 x Ujit -> T3 x B\jGj = Tj, which is a
resolution of the singularities Sj of Tj. Define the part of the compact
7-manifold M coming from Tj in the obvious way, using this map Φj
to resolve the singularities S,, and define the map Φ : M —> Γ 7 /Γ on
this part of M by Φ = Φ^. The 7-manifold M is independent of t, as a
smooth 7-manifold.

Now we must define the forms φu υt on Γ 3 x Ujjt- Following equations
(9), (10) of §1.2, we may write ψ and *φ on Tά ^ T 3 x Bζ by

(15) φ — ώi Λ <Sχ + ώ2 Λ δ2 + ώ3 Λ 53 + 5i Λ ί2

 Λ 3̂?

(16) *(̂ > = ώi Λ δ2 Λ #3 + ώ2 Λ 53 Λ 5χ + ώ3 Λ ̂  Λ δ2 + \ώ\ Λ ώi,

where <Si,tf2
 a n d ^ are constant orthonormal 1-forms on Sj = T 3 ,

and ώχ,ώ2,ώ3 are constant 2-forms on B*/{±1} that can be written
in the form (8) of §1.2. Now the SU(2)- structure on Xj defines 2-
forms ω1,α;2,cι;3 on Xj, which are closed because the SU(2)- structure
is torsion-free. The 2-forms t2ωι define a torsion-free SU(2)- structure
on U^u a n d the definition of ALE space in §1.3 implies that there is
a 1-form p{ on (2?£ \ {0})/Gj that satisfies (Φj,t)*(t2ωt) — ώ< = dpi.
The powers of r in (14) have been chosen such that scaling by the
appropriate powers of t in (14) gives dιpι = O(tA) outside B*,4/Gj,
for/ = 0,1,2,3 .

Let r be the lift to Ujit by φjit of the radius function on B*/Gj.
Let r : [0, ζ] —> [0,1] be a fixed, smooth, nondecreasing function with
τ(x) = 0 for x < C/4 and r(x) = 1 for x > ζ/2. Then r(r) is a
smooth real function on Ujit- Define closed 2-forms ώi,ώ 2 ,ώ 3 on Ujj
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by ώi = t2ωi — d(τ(r)φ*t(pi)). Then ώi is a smooth, closed interpolation

between the 2-form t2ωi on the interior of Uj}t, and the 2-form ώ; near

the boundary of Ujft. Define 3-form φt and a 4-form υt on T 3 x Ujit by

(17) φt — ώi Λ δx + ώ2 Λ δ2 + ώ 3 Λ δ3 + δι Λ δ2 Λ <53,

(18) υ t = ώi Λ δ2 Λ J3 + ώ2 Λ 53 Λ $i + ώ3 Λ 5χ Λ δ2 4- | ώ i Λ ώi,

following (15) and (16). Since by definition the 2-forms £)» and ώ{ agree
near the boundary of Ujit, <pt and υ t extend smoothly over the boundary
of [7^, and as ώ^ δι are closed, φt and ^ are closed.

What is happening here is this. Define Aj to be the open subset of
T 3 x Ujit for which r E (C/4, ζ/2). We think of Aj as an annulus, a
transition zone between two regions of M. On one side of A,, φuvt

are equal to φ and *<£ respectively, and so they are the 3- and 4-forms
of a flat, torsion-free G2- structure. On the other side of Aj, φt and
υt are also the 3- and 4- forms of a torsion-free G2- structure, which is
the product of a flat 3-torus and a torsion-free SU(2)- structure on Xj.
The metric of Xj has been scaled by a homothety multiplying distances
by t. On Aj itself, φt and υt interpolate smoothly between the two.

Now the derivative of r(r) is nonzero on A$, and the terms in ώi
introduced by this derivative mean that the 2-forms ώi need not be
in the form (8). Because of this, φt and υt need not be the the 3-
and 4-forms of the same G2- structure on Aj. However, the estimates
above on p{ and dpi show that φt — φ = O(t4) on Aj. Therefore for
small ί, φt is a section of K\M on Aj. The estimates dlp{ = O(t*) on
Aj for / = 0,1,2,3 given above show that Θ(φt) — vt and its first two
derivatives are O(t4) on Aj for small t. This completes our treatment
of the first case, for which Tά = T 3 x B^/Gj.

The second case is handled in a very similar way. The main dif-
ferences are that the analogues of (15), (16) and (17), (18) should be
modelled on (12) instead of on (9) and (10). One can define the 7-
manifold M and 3- and 4-forms φt,vt just as in the first case; the
details will be left for the reader. Thus we conclude that we may define
a compact 7-manifold M, a family of smooth, closed 3-forms φt on M,
and a family of smooth, closed 4-forms υt on M. On the complement
of some annular regions Aλ,..., Ak, φt and υt are the 3- and 4-forms
of a torsion-free G2- structure. For small t, φt is also a G2- structure
on the annuli Aj, and Θ ( ^ ) — υt and each of its derivatives are O(t4).
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For small £, let gt be the metric associated to the G2- structure φt,
and define a 3-form φt on M by φt = ψt — *υ*, where * is the Hodge
star of gt. Then d*ψt = d*φt, as dυt = 0. Also, φt is zero outside
Ai,..., -A* as ΐ^ = Θ(</?*) there, and on each A,, φt = O(t4). Therefore
there exists some positive θ such that for each t G (0,0], y>t is a smooth,
closed C?2- structure on M, φt is a smooth 3-form on M, and ^ satisfies
WΦtWϊ < £>it4 and | | ^ | | c 2 < Z?it4 for some positive constant D\. This
gives part (i) of the Theorem, as we have to prove.

The remaining parts (ii)-(v) of the Theorem are elementary, if we
allow ourselves to make θ smaller if necessary. Since the metric gt is
made by scaling the metric on the ALE spaces Xj by a homothety
multiplying distances by ί, it follows that for small £, the injectivity
radius of gt on the regions of M coming from Xj must be proportional
to t. Thus it is easy to see that part (it) holds for some positive constant
Z?2 To estimate the Riemann curvature R(gt) ofgtl we have to consider
two sources of curvature: firstly, the curvature of the metrics of the
ALE spaces Xj, and secondly, the extra curvature on the regions Aj
introduced by the derivatives of τ(r).

Equation (13) ensures that the Riemann curvature is bounded on
Xj even though Xj is a noncompact manifold. It can be shown that
scaling distances on Xj by t has the effect of scaling \R\ by t~2. Thus
the first source of curvature has C°- norm proportional to ί~2, as we
want. It can also be shown that the second source of curvature only
contributes terms that are O(ί4). Therefore part (Hi) of the Theorem
holds for some positive constant D3. When t is small, the volume and
diameter of M with the metric gt are close to the volume and diameter
of T7/Γ. Thus positive constants D4,D5 must exist such that parts
(iv) and (υ) hold as well. This completes the Theorem, q.e.d.

Recall how Lemma 2.1.3 described the singular set of Tn/Γ for Γ
satisfying Condition 2.1.2. For simplicity, Theorem 2.2.1 covered only
the case where the groups F arising in Lemma 2.1.3 are trivial. Here
is the extension of the result to nontrivial groups F.

Theorem 2.2.2. Let φ be a flat G2- structure on T7, and let Γ be
a finite group of diffeomorphisms of T7 preserving φ. Let SΊ, . . . , £*
be the connected components of the singular set S of T7/Γ. Suppose
that for each j = 1,..., k, either
(i) Sj has a neighbourhood isometric to a neighbourhood of the singu-
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lar set of {T3 x C 2 /Gj}/Fj9 where T3 is a flat riemannian torus,
Gj a finite subgroup of SU{2), and Fj is a group of isometries of
T 3 x <C?/Gj acting freely on T 3 . There is an ALE space Xj with
holonomy SU(2) asymptotic to C2/Gj in the sense of §ί.3, and
an action of Fj on Xj such that {T3 x Xj}/Fj is asymptotic to
{T3 x C2/Gj}/Fj in the obvious way, or

(ii) Sj has a neighbourhood isometric to a neighbourhood of the sin-
gular set of {S1 x C3 /Gj}/Fj, where Gj is a finite subgroup of
S77(3) acting freely except at 0, and Fj is a group of isometries
of S1 x C3 /Gj acting freely on S1. There is an ALE space Xj
with holonomy SU(3) asymptotic to C3 /Gj in the sense of §1.3,
and an action of Fj on Xj such that {S1 x Xj}/Fj is asymptotic
to {S1 x C3 /Gj}/Fj in the obvious way.

Then the conclusions of Theorem 2.2.1 hold.

Proof. The proof of this Theorem is obtained from the proof of
Theorem 2.2.1 by making everything Fj- invariant or Fj- equivariant,
which just increases the amount of confusing notation. The forms Pj
must have a suitable form of Fj- invariance or Fj- equivariance. Forms
Pj with this property can be obtained from forms p'j without it by
taking the average of the images of the p'j under the elements of Fj.
The details will be left to the reader, q.e.d.

Now we can give the main result of this section.
Theorem 2.2.3. Let M be the compact 7-manifold constructed in

Theorem 2.2.1 or in Theorem 2.2.2. Then M admits a smooth family
of torsion-free G2- structures of dimension 6 3(M).

Proof. The Theorem follows from [15, Theorems A-C]. The con-
clusions of Theorem 2.2.1 are the hypotheses of Theorem B, and the
conclusions of Theorem B are the hypotheses of Theorem A. Therefore
Theorem A of [15] shows that for sufficiently small £, the G2- structure
ψt on M may be deformed to a torsion-free G2- structure ψt on M. Thus
there exist torsion-free G2- structures on the compact 7-manifolds M
of Theorem 2.2.1 and 2.2.2. By [15, Theorem C], the family of torsion-
free G2- structures on M is a smooth manifold of dimension 63(M).
q.e.d.

2.3. How to calculate topological invariants of M.
Section 2.2 showed that a class of 7-manifolds generated by the gen-

eralized Kummer construction admit torsion-free G2- structures. The
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next chapter will be dedicated to giving explicit examples of this. For
such a 7-manifold M we will want to know the most basic topologi-
cal invariants— the fundamental group τri(M), and the betti numbers
61(M), b2(M) and bs(M). The fundamental group is useful because it
determines the holonomy group of the metrics, by Proposition 1.1.1,
and also bs(M) determines the dimension of the family of torsion-free
G2- structures. And all of the invariants are useful to distinguish dif-
ferent manifolds, so that we can show that there are many distinct
compact 7-manifolds with metrics of holonomy G2, for instance.

Determining the topological invariants of a 7-manifold presented as
a generalized Kummer construction is an elementary though sometimes
slightly tricky calculation. We will in general omit these calculations,
or make only brief remarks, and state the results. This section will
explain how the calculations are performed, so that the reader may
verify them for herself, and will be able to make similar calculations
for finite groups Γ not given as examples in this paper.

We begin with the fundamental group. Suppose that (T7,Γ,M, Φ)
is a generalized Kummer construction in the sense of §2.1. Prom part
(in) of Definition 2.1.1 we deduce that πi(M) = τri(T7/Γ). It is easy
to show that the mapping T 7 —> T7/Γ induces a surjective group ho-
momorphism

(19) p:Γ^Z7^πι(T7/Γ).

The kernel Ker p of this homomorphism is a normal subgroup of Γ tx Z7,
so that πλ(M) = (Γ tx Z7)/Kerp. Thus the problem is to deter-
mine Ker p.

There is a normal subgroup ρ(Z7) of πχ(T7/Γ), and dividing out by
it gives a group homomorphism

(20) p':r->^(T7/r)/p(Z7).

Define Γ' to be the kernel of p'. Now if 7 E Γ has fixed points, then
a path p : [0,1] -» T 7 with p(0) = j(p(l)) may be deformed through
paths with the same property to get a loop with p(0) = p(l), so that
p defines an element of Z7. The definition of p' therefore shows that
p'(η) = 1, so 7 G Kerp'. Therefore Γ' contains the subgroup of Γ
generated by the elements 7 with fixed points on T 7 .

It can be shown that Γ' is in fact equal to this subgroup, and more-
over that M admits a finite cover M' and Φ a finite cover Φ' such that
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(T7,Γ',M',Φ') is a generalized Kummer construction, and M is the
quotient of M' by Γ/Γ', which acts freely. Therefore τri(M) = (Γ/Γ) K
πι(M'), and it is sufficient to calculate πi(M'), which reduces the calcu-
lation to the case Γ' = Γ. So suppose that Γ" = Γ. Then Imp' = {1},
and since p' is surjective, this shows that τri(T7/Γ) = p(Z7). Thus
τri(T7/Γ) is abelian.

It follows that the image of any commutator in Γ tx Z 7 is zero. Regard
Z7 as πχ(T7) with its natural action of Γ. Let Ί) be the subspace of Z 7

that is invariant under Γ, and let Z 7 - / be the subspace of Z 7 orthogonal
to 1} using the flat metric on T7. Then Γ acts on Z7~/, and Ί} Θ Z 7 " z is
a sublattice of finite index in Z7. Since the action of Γ on Z7~z fixes only
zero, the commutators of elements of Γ with elements of Z7~* generate
a sublattice (Z7~')' of finite index in Z7"*, and (Z7~*)' is contained in
Ker p. On the other hand, it is easy to see that the intersection of Ί)
with Ker p is zero.

We deduce that Kerp|^7 is a sublattice of Z 7 of dimension 7 — /
over Z. Therefore ττι(T7/Γ) = Z/ x A, where A is some finite, abelian
group. This group A does not always vanish. It can be determined
from a careful study of the singular set of T7/Γ, but the author knows
of no easy way to do this calculation. This concludes our study of the
fundamental group.

Next we shall explain how to calculate the betti numbers bl(M). In
the case of Theorem 2.2.2 this may be done using the formula

(21)

for i = 1,2,3. Here Yj = {Γ3 x Xj}/Fj in case (i) and Yά = {Sι x
Xj}/Fj in case (ii) of Theorem 2.2.2, and δ (Y ) = dimiϊ^Y^R),
where Hι

c is de Rham cohomology with compact supports. For the case
of Theorem 2.2.1, one omits the groups Fj in the definition of Yj. The
cohomology group ίP(T7/Γ,R) is isomorphic to the vector space of
constant i-forms on T 7 that are invariant under Γ. Regarding the
vector space of constant ϊ-forms on T 7 as a representation of Γ, it is
easy to calculate ^(Γ7/Γ).

Since X, is simply-connected by assumption, b\{Yj) = 0 for each j ,
and so bι(M) = bι(TΊ'/Γ) by (21). To calculate b^Yj) for i = 2,3 in
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the case Fj•, = {1}, one may use the equations

bl(T3 x Xj) = bl(Xj), b3

c(T3 x Xj) = 3bl(Xj),

(22)

lξ(Sι x Xj) = bKXj), bKS1 x Xj) = bl(Xj).

Here we have used the fact that bι

c(Xj) is zero for odd i, because the ho-
mology of Xj is usually generated by compact, complex submanifolds,
which are even-dimensional. The case F3 φ {1} is more complicated,
since one must calculate the Fj- invariant part of Hι

c(T3 x Xj, R) or
Hί(Sι x Xj, R) as appropriate. Finally, since the noncompact end of Xj
is trivial in real cohomology, we can show that Hΐ(Xj, R) = H^Xj^R)
unless i = 0 or i = dimX, — 1. Using the material above, and a good
understanding of the topology of the ALE spaces Xj, one may calculate
the betti numbers b%(M).

3. Examples of compact 7-manifolds with holonomy G2

This chapter is devoted to examples of the construction of Chap-
ter 2. We shall construct compact 7-manifolds admitting families of
metrics of holonomy G2, and determine their betti numbers and fun-
damental group. In this way we will prove that there are a number of
topologically distinct compact 7-manifolds with metrics of holonomy
G2. Section 3.1 begins with the finite group Γ = Z% used in [15], and
considers small modifications of its action on Γ7. The resulting quo-
tients T7/Γ are still desingularized using the Eguchi-Hanson space as
in [15], but there are several different cases giving different manifolds.
The result is also used to prove the existence of metrics of holonomy
SU(2) and SU(3) on compact 4- and 6-manifolds.

In §3.2 we consider a different class of finite groups Γ based on the
splitting M7 = C3 0 R , and produce more examples of compact 7-
manifolds with holonomy G2, which can have quite small betti num-
bers. The examples of this section are still desingularized using only
the Eguchi-Hanson space. Section 3.3 finishes the chapter with some
examples of quotients T7/Γ that require other ALE spaces for their
desingularization.

3.1. Variations on a theme.
Chapter 2 of [15] defined a compact 7-manifold M by a generalized
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Kummer construction using a group Γ = ΊJ\ of automorphisms of Γ 7

preserving the standard G2- structure φ on T 7 . In this section we
will consider simple modifications of this group Γ. Let (xu . . . ,x7) be
coordinates on T 7 = M7/Z7, where xt G K/Z. Define a section φ of
Λ+T7 by equation (1), where y{ is replaced by dxi. Let α,/9 and 7 be
the involutions of T 7 defined by

(23) a({xu...,x7)) = (-x1,-X2,-xz,-xι,x*>,xs,x7),

(24) /?((zi,..., x7)) = (&i - #i A ~ ^2, £3, z 4 , - ^ 5 , - α β ,

(25)

where &i,&2?ci?c3 and c5 are constants equal to 0 or | . By inspection,
α, 9̂ and 7 preserve φ, because of the careful choice of exactly which
signs to change.

As in [15], we have a2 = β2 = j2 = 1, and α,/3 and 7 commute.
Define Γ to be the finite group (α,/?,7) of isometries of T 7 . Then Γ =
Z2. Calculation shows that the betti numbers fr7(T7/Γ) are independent
of bi and cu and are given by bι{TΊ/T) = 62(T7/Γ) = 0 and 63(T7/Γ) =
7. In this section, let X be the Eguchi-Hanson space of [15, §1.3], an
ALE space with holonomy SU(2) asymptotic to C2/{±1}.

Example 1. Here is a simple application of our results, to prove
known facts about the K3 surface. Let us ignore /?, 7 and consider the
quotient T7/(a). Clearly T7/(a) is a product T 4 /Z 2 x T 3, and since
T 4 /Z 2 has 16 singular points, T7/(α) has 16 singular 3-tori. Desingu-
larizing each of these using the Eguchi-Hanson space gives a compact
7-manifold M ^ K3 x T 3 . It can be shown that 63(M) = 67, so that
K3 x T 3 admits a 67-parameter family of torsion-free G2- structures,
by Theorems 2.2.1 and 2.2.3. The fundamental group is πx{M) = Z3,
so Proposition 1.1.1 shows that the holonomy group of the underlying
metrics is SU(2).

Now the torsion-free G2- structures on M do not all yield distinct
metrics. The reason for this is that to define a compatible G2- structure
on E 4 φ E 3 , where K4 and M3 are oriented Euclidean vector spaces, we
require an identification of R3 with Λ^M4. The family of such iden-
tifications is 50(3), and has dimension 3. Therefore every metric on
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K3 x Γ 3 with holonomy SU(2) x {1} gives rise to a 3-dimensional fam-
ily of torsion-free G2- structures on M. So by subtraction, the family
of metrics on K3 x Γ 3 with holonomy SU(2) x {1} is of dimension 64.

As the family of flat metrics on T 3 is of dimension 6, it follows that
the family of metrics of holonomy SU(2) on K3 is of dimension 58.
We have shown that the Kummer construction for the K3 surface [22]
does give metrics of holonomy SU(2) on K3. Proofs of this have been
given by Topiwala [27], and LeBrun and Singer [18]. Their proofs use
the deformation theory of singular complex manifolds, and are rather
different to our analytic approach.

Example 2. We can also construct metrics with holonomy SU(3)
on a 6-manifold N. Set (bub2) = (|,0) and let β be defined by (24).
Then the nonidentity elements of (α, β) with fixed points on T 7 are a
and β. The singular set of T7/(a,β) consists of 16 copies of T3, each
with a neighbourhood isometric to T 3 x (£?*/{±l}). Desingularizing
these using the Eguchi-Hanson space yields a compact 7-manifold M,
which carries torsion-free G2- structures by Theorem 2.2.3. Since both
a and β fix the coordinate x7 on T7, M = N x S1, where N is a compact
6-manifold and Sι has coordinate x7. It can be shown that N is simply-
connected. Therefore ττ1(M) — 7L, so that the holonomy group of the
metrics underlying the torsion-free G2- structures is SU(3) x {1}, by
Proposition 1.1.1.

Thus TV is a compact, simply-connected 6-manifold with a family of
metrics of holnomy SU(3). Let us calculate the betti numbers of TV. We
start with the betti numbers bι{T7 /(a,β)) = 1, b2(T7/(a,β)) = 3 and
b3(T7/(a,β)) = 11. Each of the 16 components of the desingularization
adds 1 to b2 and 3 to 63, so that bι(M) = 1, 62(M) - 19 and 63(M) =
59. From these we deduce that b^N) = 0, b2{N) = 19 and b3{N) = 40.
Note that the Euler characteristic χ(N) is zero. The family of torsion-
free G2- structures on M has dimension 59.

In a similar way to Example 1, each metric gives rise to a 1-parameter
family of torsion-free G2- structures, so that the family of metrics on M
of holonomy SU(3) x {1} has dimension 59 — 1 = 58. As the family of
metrics on S1 has dimension 1, the family of metrics on N of holonomy
SU(3) has dimension 57. This can also be proved using Yau's solution
of the Calabi conjecture [28].

Example 3. Here is the case considered in [15]. Set (&i, &25 Cχ5 c3, c5)
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= (0, §, §, §, 0). Then the singular set S of T7/Γ has 12 T 3 components
modelled on the singular set of Γ 3 x (J5^/{±1}). By Theorem 2.2.1
we may desingularize T7/Γ to get a compact 7-manifold M, using the
ALE space X for each component Sj. The topological invariants are
πx(M) = {1}, bι(M) = 0, b2(M) = 12 and 63(M) = 43. By Theorem
2.2.3, M admits a 43-dimensional family of torsion-free G2- structures.
By Proposition 1.1.1, the holonomy group of the associated metrics is
G2, because π1(M) is finite.

Example 4. Here is a more complex example. Set (61? 62, Ci, c3, c5) =
(0, | , | ,0 ,0) . An elementary calculation following [15, Lemma 2.1.1]
shows that the only nonidentity elements of Γ with fixed points on
T7 are a,β and 7. Therefore Γ = Γ, Γ satisfies Condition 2.1.2, and
Lemma 2.1.3 gives the general form of the singular set S of T7/Γ. The
subset S" of T 7 of points that are fixed points of some nonidentity el-
ement of Γ, is therefore the disjoint union of 48 copies of T3, 16 from
each of α, β and 7.

It can be shown, following the proof of [15, Lemma 2.1.1], that the
group (/?, 7) acts freely on the set of 16 3-tori fixed by α, and the group
(α, 7) acts freely on the set of 16 3-tori fixed by β. Therefore the fixed
points of α and β each contribute 4 copies of T 3 to 5, each of which
has a neighbourhood isometric to T 3 x (B*/{±1}). This is just as in
Example 3. However, the element aβ acts trivially on the set of 16
3-tori fixed by 7.

Because of this, it can be seen that the fixed points of 7 contribute
8 copies of T 3/Z 2 to 5, where Z2 = (aβ), and each copy has a neigh-
bourhood isometric to {T3 x J3*/{dil}}/Z2, where aβ E Z2 acts on
T 3 x 5C7{±1} by

(26) (yuy2,y3,zuz2) π-> (§ + yu -y2, -y3,zu -z2).

Here j/i,y2,y3 are coordinates on T 3 with yι G R/Z, and zx,z2 are
complex coordinates on £?£/{±l}, so that (zι,z2) and {—Zι,—z2) are
equivalent. Notice that Z2 acts freely on T3, as it should. To apply
Theorems 2.2.2 and 2.2.3, we must assign a suitable ALE space Xj to
each component Sj of 5. For the 8 copies of Γ 3 from the fixed points of
α and β, we put Xj = X, the Eguchi-Hanson space, as in Example 3.

For the 8 copies of T 3/Z 2 from the fixed points of 7 we shall also put
Xj = X, but we also require a suitable action of Z 2 on X,, asymptotic
to the action (zuz2) •-• (zu-z2) of Z2 on <C?/{±1}, taken from (26).
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It turns out that there are two topologically distinct ways of doing this.
The Eguchi-Hanson space X is equivalent, as a complex manifold, to
the cotangent bundle T*CP1. Let [^1,^2] be projective coordinates
on GP1, and consider the two involutions [^1,^2] •-> [tui,—W2] a n d
[wuw2] »-> [wi,uJ2] of QP1. These induce involutions of T*QP1 that are
clearly topologically distinct, because one preserves the homology class
of the zero section (which generates H2(X,R)), and the other changes
its sign.

Corresponding to these involutions there are two distinct, isometric
actions of Z2 on X, asymptotic to the action (zι,z2) *-> {zι,—z2) as
we require. Therefore for each of the 8 T 3/Z 2 components of S there
is a choice of two alternatives for Xj. This gives 256 possible choices,
which do not all lead to distinct 7-manifolds M. Let I be an integer
with 0 < / < 8, and consider the 7-manifold M made with I of the
Xj with Z2- action modelled on the first involution, and 8 — I of the
Xj with Z2- action modelled on the second involution. Calculation
shows that this 7-manifold is simply-connected. By Theorems 2.2.2
and 2.2.3, M admits torsion-free G2- structures, and by Proposition
1.1.1, the underlying metrics have holonomy G2, as π1(M) is finite.

Let us find the betti numbers of M. We begin with 62(T7/Γ) = 0
and 63(T7/Γ) = 7. Each of the 8 singular T 3 from α and β adds 1 to
b2 and 3 to b3 as in Example 3. It can be shown that each of the I Xj
with Z2- action modelled on the first involution contributes 1 to b2 and
1 to b3, and that each of the 8 — I Xj with Z2- action modelled on the
second involution contributes 0 to b2 and 2 to b3. Therefore the betti
numbers of M are

(27) 62(M) = 8 + /, 63(M) = 47 - /, I = 0,1,. . . , 8.

Thus this example gives at least 9 topologically distinct, simply-con-
nected, compact 7-manifolds with metrics of holonomy G2.

It is natural to wonder whether for other choices of &i,Q, we can
generate any more simply-connected manifolds with holonomy G2. In
fact, a careful analysis shows that Examples 3 and 4 are essentially the
only interesting cases. It can be shown that if the only nonidentity
elements of Γ with fixed points are α, β and 7, then Γ is similar to
either Example 3 or to Example 4, but perhaps singling out a or β
rather than 7. If fewer nonidentity elements have fixed points then
the holonomy group is not G2, and if more nonidentity elements of Γ
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have fixed points then the singular set seems always to contain 'bad'
singular points. For different choices of b^Ci and involutions on X,
there are many ways of generating 7-manifolds M with the same betti
numbers. The author does not know whether these 7-manifolds are
always diffeomorphic.

Example 5. We shall modify Example 4 by adding a finite group
of translations. Let Γ be the group of Example 4, and define isometries
tfi,02,σ3 of Γ7 by

(28) σλ ({xu . . . , x7)) = {x

(29) σ2((xu...,x7)) =

(30) σ3({xu . . . , x7)) = (x1, \ + x2, \ + x x* x x \\ + x2, \ + x3, x*> x5, xβ, \

Then <Ji,σ2 and σ3 commute with Γ. We claim that (σ1,σ2,σ3) acts
freely on T7/Γ. To prove this claim, it is enough to show that the only
nonidentity elements of Γ x (σi, σ2, σ3) that have fixed points in T 7 are
α, β and 7. For instance, aσ\ has no fixed points on T 7 because it acts
on x5 as £5 H-> | + a;5. Reasoning in this way, the claim is easily proved.

Let A be a subgroup of (σi,σ2,σ3), and define f = Γ x A. Then
T7/Γ is a singular 7-manifold with fundamental group A. It can be
shown that the singular set of T7/Γ breaks up into disjoint compo-
nents of the form Γ 3 and Γ 3/Z 2, as in Example 4. Therefore we may
desingularize T 7/f as in Example 4, to get a compact 7-manifold M
admitting metrics with holonomy G2, with τri(M) = A. Each of the
T 3 /Z 2 components in the singular set may be resolved in two distinct
ways, giving a number of different topological types for M.

We present in the following table the form of the singular set for six
choices of the group A, and the fundamental group and betti numbers
62, b3 of the resulting 7-manifold M. As in Example 4, these betti num-
bers depend on an integer /, which is the number of T 3 /Z 2 components
of S that are resolved using the first Z2- action on the Eguchi-Hanson
space. The range of I is also given in the table. The calculations to
determine the singular set of T 7/f are elementary but long.
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Group A

{1}

to)
(σ1σ2,σ3)

{σι,σ2,σ$)

Singular set

8 T 3 + 8 T 3 / Z 2

4T3 + 8T3/Z2

2 T 3 + sT3/Z2

T3 + 6T3/Z2

6T3/Z2

4T3/Z2

7Π(M)

{1}
Z2

IL2

ψ2
&2
yZ
lit*}

b2(M)
8 + 1

4 + /

2 + 1

l + l
I

I

b3(M)

47-/
35-/
29-/
22-/
19-/
15-/

Range /
0.....8
0.....8
0.....8
0.....6
0.....6
0.....4

Table 1.

When A — {1} we retrieve the case of Example 4. The other cases
yield at least 37 distinct non-simply-connected 7-manifolds admitting
metrics with holonomy G2.

Example 6. Here is another example in which we supplement the
group Γ by some translations on T7. Set (61,62? Ci, c3, c5) = (|, 0, | , 0, | ) ,
and let α, /? and 7 be defined by (23), (24) and (25). Define δ on T7

by

(31) ,. . . , x7)) = ( |

and define f = (α,/3,7,£). Then f ^ Z^, and T7/T is a singular 7-
manifold. Calculation shows that the only nonidentity elements of Γ
with fixed points on T 7 are α, /?, 7 and aβδ. Thus f satisfies Condition
2.1.2, and Lemma 2.1.3 gives the form of the singular set S of T7/Γ.

It can be shown that T7/f is simply-connected, that the fixed points
of a and β each contribute 4 copies of T 3/Z 2 to 5, and that the fixed
points of 7 and aβδ each contribute 2 copies of T 3 to 5. As in Examples
4 and 5, we may desingularize Γ7/f in a number of different ways to
get a simply-connected, compact 7-manifold M. Working out the betti
numbers of these 7-manifolds M as in Examples 4 and 5 gives b2(M) =
4 + / and 63(M) = 35 - I for / = 0,1,. . . , 8. Thus we have at least 9
simply-connected, compact 7-manifolds with metrics of holonomy G2

They are distinct from the manifolds of Example 4, as the betti numbers
are different.

3.2. Another class of finite groups.
We shall now give further examples of compact 7-manifolds with

metrics of holonomy G2, using Theorem 2.2.3. Let zu ^2, z3 be complex
coordinates on C3 with its Euclidean, hermitian metric. Let ω be the
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Kahler form associated to this metric, and define Ω = dzλ Λ dz2 Λ dz3.
Let x be the coordinate on R Prom §1.2, ω and Ω may be written in
the form (11), and we may define a flat G2- structure φ and its dual
*φ on C3 x R by the formula (12), where y7 is replaced by dx. Let
Λ C C3 be a lattice in C3 that is isomorphic to Z6, and consider the
7-torus T 7 = C3 x R/A x Z, where Z C R in the obvious way. Then T 7

is equipped with a flat G2- structure φ and its dual *φ.

Let u,υ be unit complex numbers, and suppose that ua = υa = 1,
where α is a positive integer, and the least positive integer for which
this holds. Define isometries α, β of C3 x R by

(32)

(33)

Suppose the lattice Λ is preserved by α and β. Then α and β push

down to isometries a,β of T 7, and on T 7 they satisfy αα = β2 = 1

and α/3 = /far1. Therefore α,/3 generate a finite group Γ = (α,/3) of

isometries of T 7, which is isomorphic to the dihedral group with 2a

elements. By inspection, a and β preserve the flat G2- structure φ

o n T 7 .

Now let us consider the singular set S of T7/Γ. We may write

(34) T = {l,a,a2,...,aa-\β,βa,...,βaa-1}.

It is clear that α , . . . , aa~ι have no fixed points, because they translate
the rr-coordinate. On the other hand, it can easily be shown that all
of /?, /3α,..., βθLa~x have fixed points. Thus Γ satisfies Condition 2.1.2.
The fixed point sets of βaj and βaι are disjoint if a? Φ a1, since aj~ι

has no fixed points. Let S'(βaj) be the fixed point set of βaj in Γ7,
and let 5' be the union of all the S'{βaj). Then S = S'/T. We shall
divide into two cases, the case a odd and the case a even.

Suppose first that a is odd. Then for each j = 0 ,1, . . . , a — 1, there
exists an integer / such that j + 21 = 0 mod a. We have a~ι(βaj)aι =
(a~ιβ)θίj+ι = βaj+21 — β. Therefore every βa? is conjugate to β in Γ.
It follows that the singularities of T7/Γ are in one-to-one correspon-
dence with the fixed points of β on Γ 7. As the fixed points of β on
T 7 consist of some finite number k of copies of T 3, it follows that the
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singular set S of T7/Γ consists of k copies of T3, each with a neigh-
bourhood of the form T 3 x (B*/{±1}). These can be desingularized
using the Eguchi-Hanson space X, as in the examples of §3.1.

Now suppose that a is even, so that a = 26. In this case, there are
two conjugacy classes of elements βa?, as for j even βa? is conjugate to
/?, and for j odd βaj is conjugate to βa. This means that S is a disjoint
union of a contribution from the fixed points of β and a contribution
from the fixed points of βa. Now ab commutes with β. It follows that
S is isomorphic to the disjoint union of S'(β)/(ab) and S'{βa)/(ab).
The set S'(β) splits into two disjoint, isomorphic parts, the part with
x = 0 and the part with x = | , and ab interchanges the two. Similarly,
S'(βa) splits into two disjoint, isomorphic parts which are exchanged
byα 6 .

Therefore S is the disjoint union of half of the fixed point set of β,
and half of the fixed point set of βa. As in the previous case, S is a
disjoint union of k copies of T3, each with a neighbourhood of the form
T 3 x (B*/{±1}). We have shown that in both cases, the singular set of
T7/Γ consists of k copies of T3, with neighbourhoods of the standard
form. So by Theorems 2.2.1 and 2.2.3, there is a compact 7-manifold M
admitting torsion-free G2- structures. This manifold M has TΓI (M) =
TΓXCΓVΓ), 62(M) = 62(T7/Γ) + ft, and b\M) = 63(Γ7/Γ) + 3k.

Here are some examples of this construction.
Example 7. Set u = v = e2πi/3, so that a = 3, and let Λ =

Z3 Θ e2 π i/3Z3 C C3. Then Λ is preserved by a and β. The fixed point
set of β is 2 copies of T3, given by Imzχ = Imz2 = Imz3 = 0, x G {0, \}.
Therefore k = 2, as a is odd. Calculation shows that πi(Γ7/Γ) = {1},
62(T7/Γ) = 3 and 63(T7/Γ) = 7. Thus M is simply-connected, and
b2(M) = 5, δ3(M) = 13. The metrics on M have holonomy G2 by
Proposition 1.1.1, as πχ(M) is finite.

Example 8. Set u = υ = eπl//3, so that a = 6, and let Λ be as in
Example 7. Then Λ is preserved by a and β. Calculation shows that
πχ(T7/Γ) = {1}, 62(T7/Γ) = 1, and 63(T7/Γ) = 5. The fixed point set
of β is 2 copies of T3, given by Imzi = lmz2 = Imz3 — 0, x G {0, | } , so
that β contributes 1 copy of T 3 to S. Similarly, βa contributes 1 copy of
T 3 to S. Therefore k = 2, and M is simply-connected with 62(M) = 3
and 63(M) = 11. Again, the metrics on M have holonomy G2

Example 9. Set u = υ = i, so that a = 4, and let Λ = Z 3 0iZ 3 C C3.
Then Λ is preserved by a and β. The fixed point set of β is 16 copies
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of Γ3, as lmzι,Imz2,Imz3 and x must lie in {0, | } . Because of the
action of α2, β contributes 8 copies of T 3 to S. The action of βa on
T 7 i s

(35) βa: (zuz2,z3,x) -+ {-izu-iz2,-zz,\ -x),

and so the fixed point set of βa is given by the equations Re zλ +Im zλ =
0, Rez2 + Imz2 = 0, Re*3 e {0, \} and x e {§, | } This breaks up
into only 4 copies of T3, which are identified in pairs by a2. Thus βa
contributes 2 copies of T 3 to 5, and A; = 10.

Calculation shows that πχ(T7/Γ) = {1}, 62(T7/Γ) = 1 and 63(T7/Γ) =
6. Thus M is simply-connected and has b2(M) = 11 and 63(M) = 36.
The metrics on M have holonomy G2.

Example 10. The involution (zι,z2,z3,x) ι-> {zι,z2,z3 + ̂ y1,^)
acts freely on the singular manifold T7/Γ of Example 9. Dividing by
this involution gives k = 5, so that we construct a 7-manifold M with
πi(Af) = Z2, 6

2(M) = 6 and 63(M) = 21, that carries metrics of
holonomy G2.

Example 11. Set u — eπΐ/3 and υ = e2πi/3, so that a = 6, and define

A by

(36) Λ = (Z + e2 π i / 3Z) Θ (Z + e2 π i / 3Z) Θ (Z + iZ).

Then Λ = Z3 and α,/? preserve Λ. Calculation shows that πi(T7/Γ) =
{1}, 62(T7/Γ) = 0 and 63(T7/Γ) = 5. The fixed points of β are given
by Imzi = Imz2 — 0, Im^3 E {0, | } and x G {0, | } , which divides into
4 copies of T3. Therefore the fixed points of β contribute 2 copies of T 3

to S. Similarly, the fixed points of βa contribute 2 copies of T 3 to S.
So k — 4, and M is simply-connected with b2(M) — 4 and &3(M) = 17.
The metrics on M have holonomy G2.

Example 12. As in Example 10, we may add the involution
(zι,Z2,Z3,x) ι-ϊ (zι,Z2,z3 + ̂ 1,x) to the situation of Example 11. We
find that k = 2, so that we produce a 7-manifold M with πi(M) = Z2,
62(M) = 2 and 63(M) = 11, which has metrics of holonomy G2.

Example 13. Let p = e2™/7. Set ΪX = p and v = p2, so that a — Ί.
Define Λ C C3 by

(37) A = ( ( ^ y i j P 4 ί ) e c ? : i = 1,2,3,4,5,6).

Then Λ = Z6, and Λ is preserved by α and 9̂. Calculation shows that
πχ(T7/Γ) = {1}, b2(T7/Γ) = 0 and 63(T7/Γ) = 4. The fixed point set
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of β is 2 copies of T3, so that k = 2. Thus M is simply-connected and
&2(M) = 2, &3(M) = 10. The metrics on M have holonomy G2.

Here is an example of a modified version of the construction.
Example 14. Following Example 7, set Λ = Z 3 θ e 2 π i / 3 Z 3 C C3, let

T 7 = (C3 x K)/(A x Z). Define isometries α,/3,7 of T 7 by

(38) α((*i,*2,*3,*)) = (e2 ' i^i,e2-/3z2,e2 '</3Z3,a: + I),

(39)

(40) ^

It can be shown that α, 7 commute, that α3 = 73 = 1, that α/? = /3a"1,
and that 7/? = /fy""1. Thus Γ = (α,/?,7) is a finite group of order 18,
similar to a dihedral group. Since a changes the rr-coordinate and 7
changes the z3-coordinate, the only elements of Γ with fixed points are
the 9 elements βa?ηι:, which are all conjugate.

The fixed points of β are 2 copies of T3, as in Example 7. It follows
that T7/Γ has just 2 copies of T 3 in its singular set, each with a neigh-
bourhood of the usual form. Calculation shows that πi(T7/Γ) = {1},
&2(T7/Γ) = 0 and 63(T7/Γ) = 4. Therefore M is simply-connected,
and has b2(M) = 2 and bs(M) = 10, as in Example 13. The metrics
on M have holonomy G2.

3.3. More examples.
The singular spaces T7/Γ described in the previous two sections were

all desingularized in exactly the same way — up to a finite cover, each
component of the singular set was modelled on T 3 x (IR4/{±1}), and is
desingularized using the Eguchi-Hanson space. Now §1.3 suggests that
there are a number of ALE spaces that might be used to desingularize
quotients T7/Γ to get a riemannian 7-manifold M with holonomy G2

Thus it is clearly of interest to show that one can find examples of
the construction of Chapter 2 involving other, more complicated ALE
spaces, and it is the purpose of this section to give such examples. For
some reason, they were quite difficult to find.

Example 15. Let T 7 be R7/Z7 with the metric, G2- structure φ and
coordinates (#i, . . . , x7) used in §3.1. Let α, β and σ\ be the isometries
of Γ 7 defined by

(41) a((xu...,x7)) = {x3,x4,xb,x6,xux2,x7),
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(42)

β{(xu..., x7)) = (-xu \ + χ2, -X3, \ + a;4, -x 5 ϊ \ + xe, -X7),

(43) σ1((xu...,x7)) = (xι,\+x2,-x3,\ - x4, -x5, -x6,x7).

Define σ2 = a2σλa and σ3 = aσλa
2. It can be shown that {1, σu σ2, σ3}

is a group isomorphic to Z2. Let Γ be the group (α,/?,σi). From the
definitions we see that β,σx,σ2 and σ3 are of order 2 and commute,
and that σ1σ2σ3 — 1, so that (/?,σ1,σ2,σ3) = Z2. Also α 3 = 1, a
and /3 commute, and conjugation with a induces a cyclic permutation
of σ l 5σ 2,σ 3 . Therefore Γ is a finite group of order 24, with a normal
subgroup Z?> of order 8. All elements of Γ preserve φ.

Let us consider the singular points of T7/Γ. First we shall determine
the elements of Γ with fixed points. It can be shown that the only non-
identity elements of (/?,σi,σ2,σ3) with fixed points are βσγ,βσ2,βσ3,
and these are all conjugate under α,a 2 . Now α,a2 have fixed points,
but aβ, a2β have none because they take x2 + x 4 +x 6 to x2 +x4 +x6 + \.
The 16 elements of Γ \ Z 2 are divided into sets of 4 elements conjugate
to α,α 2 ,aβ and a2β under some element of (σi, σ2, σ3) = Ί?2. Thus the
only elements of Γ with fixed points are βσ\, βσ2, βσ3, the 4 elements
conjugate to α, and the 4 elements conjugate to α 2 .

Although Γ does not satisfy Condition 2.1.2, nevertheless it can be
shown that the singular set S of T7/Γ is of the form given in Lemma
2.1.3. In fact, S is the disjoint union of a contribution from the fixed
points of βσi and a contribution from the fixed points of a. The fixed
points of βσ\ are a disjoint union of 16 copies of T 3 . Since (σ2, σ3) acts
freely on these 16 copies, the fixed points of βσγ contribute 4 copies of
T 3 to 5, each with a neighbourhood isometric to T 3 x (B*/{±1}).

The fixed points of a are one copy of T 3 . However, because β
commutes with a we must take into account the action of β on the
fixed point set of a. The result is that the fixed points of a con-
tribute one copy of T 3 /Z 2 to 5, which has a neighbourhood isometric
to {T3 x JB^/Z 3 }/Z 2 , where β £ Z 2 acts on T 3 x B*/Z3 by

(44) {yuV2,y3,zuz2) >-> ( | +2/i, —2/2, —2/3,̂ i, —^2).

Here y\,y2->Vz are coordinates on T 3 with yι G R/Z, and z\,z2 are
complex coordinates on J5^/Z3, so that (zuz2) and (e2πi/3zue

Aπi/3z2)
are equivalent. Notice that Z 2 acts freely on Γ3, as it should.
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We shall apply Theorems 2.2.2 and 2.2.3 to get a nonsingular 7-
manifold M with metrics of holonomy G2. To do this we require suit-
able ALE spaces Xx,..., X 5 for the 5 components Sγ,..., 5 5 of S. For
the 4 T 3 components, Xi, . . . , X4 should be the Eguchi-Hanson space,
as in §§3.1 and 3.2. For the Γ 3 / Z 2 component, X 5 should be an ALE
space with holonomy SU(2) asymptotic to the Euclidean metric on
C?/Z3. As in §1.3, there exists a family of ALE spaces with holonomy
SU(2) for each cyclic subgroup of S77(2), which are given explicitly in
[11] (see also [16], [17]). Therefore we may choose X5 from the family
for Z 3 C SU(2).

Now to apply Theorem 2.2.2, we also require an isometric action
of Z 2 on X 5 that is asymptotic to the action of Z 2 on C2 / Z 3 given by
(zι ,z2) *-> (zι, — z2), from (44). As in Example 4 of §3.1, there are in fact
two topologically distinct actions of Z 2 on X5 with the right asymptotic
behaviour, and for each of these actions there are metrics of holonomy
SU(2) in the family invariant under the action. The first of these Z 2-
actions acts trivially on H2(Xj, K) = R2, and the second Z2- action
has one eigenvalue 1 and one eigenvalue —1 on H2(Xj, R). Thus we
produce two compact 7-manifolds M. It can be shown that πi(T 7 /Γ) =
{1}, so both 7-manifolds are simply-connected. By Theorem 2.2.3 and
Proposition 1.1.1, both 7-manifolds carry metrics with holonomy G2.

Calculation shows that 62(T7/Γ) = 0 and 63(T7/Γ) = 3. Each of
the 4 Γ 3 components of S adds 1 to b2 and 3 to b3 as usual. Choosing
the first Z2- action on X 5 adds 2 to b2 and 2 to 63, and choosing the
second Z2- action adds 1 to b2 and 3 to b3. Therefore the betti numbers
are b2(M) = 6 and b3(M) = 17 in the first case, and 62(M) = 5 and
b3(M) = 18 in the second.

Example 16. Let E 7 have coordinates (rci,..., x7), let φ be the flat
G2- structure on IR7, and define a lattice Λ = Z 7 in M7 by

A = < (1,0,0,0,0,0,0), (0,1,0,0,0,0,0), (0,0,1,0,0,0,0),
(45) (0,0,0,1,0,0,0), (0,0,0,0,2,0,0), (0,0,0,0,1,1,0),

(0,0,0,0,1,0,1)).

Then Λ is invariant under permutations of x5,x6,x7. Let T 7 =

and define isometries σ\, σ2, σ3 and a of T 7 by

(46) σ1((xu...,x7)) = (x4,x3,-x2,-XiA + x 5 , - | -Xβ,-^),
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(47) σ2((xu...,x7)) = (^3,-^4,-^1,^2,-^5,1+ XQ, ~\

(48) σ3({xu . ..,x 7)) = (z2, -χuz4, - z 3 , - | - χ5,

(49)

Note that because (0,0,0,0,1,1,1) φ Λ, α acts nontrivially on coor-
dinates x5,a;6,a[:7, and thus a has no fixed points. Now it is easy to
show that σ\ = σ\ = σ\ = σxσ2σ^ = α, because of the definition of Λ.
Therefore (σi, σ2, σ3) is a finite, nonabelian group of order 8. Moreover,
no nonidentity element of (σi,σ2,σ3) has fixed points on T 7.

Define an isometry β of Γ 7 by

(50) β((xu...,X7)) = (xuX4,X2,X3,X6,X7,Xs).

Then β3 = 1, and conjugation with β induces a cyclic permutation of
^15^2,^3- Let Γ = (/?,σi,σ2,σ3). Then Γ is a finite group of order 24.
Since /?, σx, σ2 and σ3 preserve (p, Γ preserves φ. It is easy to see that
Γ consists of the group (σi,σ2,σ3), together with 4 elements conjugate
to /5, 4 elements conjugate to /32, 4 elements of order 6 conjugate to
βa, and 4 elements of order 6 conjugate to β2a.

Now βa and β2a have no fixed points, since both take x5 + x6+x7 ι->
#5 + #6 + #7 + 3, whereas all elements of Λ add only even integers
to x5 + x6 + x7. Therefore the only nonidentity elements of Γ with
fixed points are the 4 elements conjugate to β and the 4 elements
conjugate to β2. Although Γ does not satisfy Condition 2.1.2, the form
of the singular set is still given by Lemma 2.1.3. The fixed points of
β are one copy of T3, on which a acts freely, so the singular set S of
T7/Γ is one copy of T3/Z2, and it has a neighbourhood isometric to
{T3 x β^/Z3}/Z2, where the actions of Z2 and Z 3 are as in (44) of
Example 15.

As in Example 15, there are two different ways of desingularizing the
singularity to get a 7-manifold M. Calculation shows that τri(T7/Γ) =
{1}, 62(Γ7/Γ) = 1 and 63(T7/Γ) = 4. Thus the first desingularization
yields a simply-connected 7-manifold M with 62(M) = 3 and bs(M) =
6, and the second desingularization yields a simply-connected M with
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b2(M) = 2 and b3(M) = 7. Both these 7-manifolds carry metrics with

holonomy G2, by Theorems 2.2.2 and 2.2.3 and Proposition 1.1.1.

Example 17. Let R7 have coordinates (xu . . . , x7), let ψ be the flat

G2- structure on M7, and define a lattice Λ = Z 7 in R7 by

Λ - ( (2,0,0,0,0,0,0), (0,2,0,0,0,0,0), (0,0,2,0,0,0,0),
(51) (1,1,1,1,0,0,0), (0,0,0,0,2,0,0), (0,0,0,0,1,1,0),

(0,0,0,0,1,0,1)).

Let T 7 = M7/Λ, and define isometries σχ,cr2,σ3 and a of T 7 by equa-
tions (46)-(49). Then a{ and a preserve Λ, and satisfy σ\ — σ\ = σ\ =
£Ίσ2σ3 = «, so that (σi,σ2,σ3) is a finite, nonabelian group of order 8
as in Example 16, and again, no nonidentity element of (σi,σ2,σ3) has
fixed points on T 7 .

Define an isometry β of T 7 by

Rr p ( -X\-XΊ+X3-X4 ~X\ ~Xi -X3+X4

P\\Xli . ,J<7)) — ̂  2 , 2 ,

(52) - g | + g 8 -x,-X4 >

To understand the action on xu... ,x4, it is helpful to think of xx +
x2i + X3J + x*k as an element of H, and then β is left multiplication by
— ̂ (1+i+j+k). It can be shown that β3 = 1, and that conjugation by β
induces a cyclic permutation of σx, σ2, σ3. Therefore Γ = (/?, σx, σ2, σ3)
is a finite group of order 24, which is isomorphic to the group Γ of
Example 16. Just as in Example 16, it can be shown that Γ preserves
φ, and that the only nonidentity elements of Γ with fixed points are the
conjugates of β and β2. Thus the singular set 5 of T7/Γ is the image
of the fixed set of β in T 7, and must be divided by the action of α.

A delicate calculation shows that the fixed points of β are given
by (*!,.. .,z 4) - M 0 , | , | , | ) + U | , | , | , 0 ) , xb = x6 = x7, for k,l G
{0,1,2}. Thus the fixed points of β are 9 copies of Sι in T 7 . But α
acts on these 9 copies of S1, identifying 8 of them in pairs, and fixing
the copy k = I = 0. Therefore the singular set S of T7/Γ consists of
4 copies of S1 with neighbourhoods isometric to S1 x (i?£/Z3), and 1
copy of S1 with a neighbourhood isometric to {S1 x J3£/Z3}/Z2, where
the action of Z 3 on B% is generated by

(53) (zuz2,z3) H>
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for complex coordinates Zι,z2, z3 on B%, and the action of Z2 on S1 x
B%/Z3 is generated by (y, zuz2, z3) H* (y + I, - ^ -s 2 , 23), where y is
the coordinate on S1 = R/Z.

Now in §1.3 we described an explicit ALE space X with holonomy
SU(3) asymptotic to C3/Z3, due to Calabi. We may use this to desin-
gularize all 5 components of 5, as there is an appropriate Z2- action on
X. A careful computation shows that πi(T7/Γ) = {1}, &2(T7/Γ) = 3
and bs(T7/Γ) = 2. Since H2(X,R) 2* R, it is easy to see that desingu-
larizing each component of S adds 1 to b2 and 1 to 63. Therefore Theo-
rems 2.2.2 and 2.2.3 yield a compact, simply-connected 7-manifold M
with b2(M) = 8 and b3(M) = 7. This 7-manifold admits metrics with
holonomy G2- Note that this is the first example with 62(M) > 63(M).

Example 18. Let T 7 be M7/Z7 with the metric, G2- structure φ
and coordinates (xu . . . , x7) used in §3.1. Let α, β be the isometries of
T 7 defined by

(54) a((xu...,x7)) = (x2,x3ix7,-x6,-x4,x1,xb),

(55)
β((x1,...,x7)) = {\-xu\ - x2,-x3,-xA,\ + x 5 , | + xe,x7).

It can be shown that α, β preserve φ, and they generate a finite group
Γ of order 56, with normal subgroup Z 3 of order 8 consisting of the
conjugates of β and 1. The 48 elements of Γ \ Z3 are all conjugate to
a? for some j = 1,..., 6, and these are the only nonidentity elements
of Γ with fixed points.

The singular set 5 of Γ7/Γ consists of one copy of 5 1 , and it has a
neighbourhood isometric to S1 x (2?£/Z7), where the action of Z 7 on
Bς is generated by

(56) (*i,*2,*3) -> ( e ^ / V e 4 ^ , ^ 7 ^ ) ,

for complex coordinates (zι,z2,z3) on B^. To apply Theorems 2.2.1
and 2.2.3 to T7/Γ, we require a suitable ALE space X with holonomy
5C/(3). Now in [19, Example 3, p. 269-271], Markushevich constructs
an explicit toric variety X that desingularizes C3 /Z 7 with the Z7- action
(56), which has bι(X) = b3(X) = 0 and b2{X) = 3. By the discussion
in §1.3, this X must carry ALE metrics with holonomy SU(3). Cal-
culation shows that π!(T7/Γ) = {1}, 62(T7/Γ) - 0 and 63(T7/Γ) = 1.
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Therefore, Theorems 2.2.1 and 2.2.3 yield a compact, simply-connected
7-manifold M with b2(M) = 3 and 63(M) = 4, that admits metrics of
holonomy G2. This example has the smallest betti numbers we have
found so far.

4. Directions for further research

The purpose of this final chapter is to bring together a number of
ideas and questions which in the opinion of the author may be in-
teresting and worth pursuing. In §4.1 we give a graph of the betti
numbers of the compact 7-manifolds with holonomy G2 presented as
examples in this paper. Prom this we draw some conclusions, and ask
a number of questions about the topology of compact 7-manifolds with
holonomy G2. Section 4.2 discusses submanifolds of 7-manifolds with
holonomy G2 with special properties, drawing on work by Harvey and
Lawson, and McLean.

For a 7-manifold with torsion-free G2- structure there are two special
sorts of submanifold of dimension 3 and 4, christened associative and
coassociatiυe respectively by Harvey and Lawson, which are analogous
to complex submanifolds of complex manifolds. Examples are given of
compact associative and coassociative submanifolds in the 7-manifolds
M of §3.1. Finally, section 4.3 sketches a construction for compact 7-
manifolds with holonomy G2 starting from a 6-manifold with holonomy
SU(3) with an antiholomorphic involution, and describes two classes
of complete, noncompact 7-manifolds with holonomy G2.

4.1. Betti numbers of 7-manifolds with holonomy G2.
We will now give a table of values of betti numbers 62(M), bs(M) of

compact riemannian 7-manifolds M with holonomy G2 from Examples
1-18. In the table, the symbols V, V and ' + ' represent the betti num-
bers of compact 7-manifolds M admitting metrics of holonomy G2, '•'
denoting a simply-connected M, V denoting an M with finite, non-
trivial fundamental group, and ' + ' denoting betti numbers occurring
in both simply-connected and non-simply-connected examples.

For some holonomy groups if, there are topological restrictions upon
the betti numbers bl(M) or the refined betti numbers b' (M) introduced
in §1.1, of a compact riemannian manifold M with holonomy H. These
restrictions can be divided into equations, inequalities, and divisibility
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properties. By an equation we mean a linear equation in the betti
numbers. For instance, Salamon [25] shows that the betti numbers of
a compact, riemannian 4n-manifold with holonomy contained in Sp(n)
satisfy a certain equation. By an inequality we mean a linear inequality
in the betti numbers.

10

15

20

10 15 20 25 30 35 40 45 50 63(M)

• • *
• • • 4* * *
• • * + •

• +
• •

* • *

t *

* i

* •

It

H

+

+ ••
. • •

•
•

Table 2.
By a divisibility property, we mean that some linear combination of

the betti numbers, with integer coefficients having no common factor,
should be divisible by some integer p > 1. A well-known example of a
divisibility property occurs for Kahler manifolds (with holonomy ϊ/(n)),
since the identity hp'q = hqφ on the Hodge numbers forces certain of
the 6j to be even. Also, the odd betti numbers of a manifold with
holonomy Sp(n) are divisible by 4. Prom §1.1, a compact riemannian
7-manifold with holonomy G2 has only two independent refined betti
numbers, which are b\± and b\7, and these are determined by b2 and b3.
Prom Table 2 we may observe that there are no nontrivial equations
and no nontrivial divisibility properties for compact 7-manifolds with
holonomy G2, even for simply-connected manifolds.

In the last few years, some very strange ideas about compact 6-
manifolds with holonomy S77(3) have emerged from the unexpected
direction of String Theory, a branch of theoretical Physics. Central to
these ideas is the phenomenon of 'mirror symmetry'; see for example
[9], [1] and references therein. The author has had many fascinating
discussions with the physicists S. Shatashvili, C. Vafa and M. Rocek,
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and it appears that much of the mirror symmetry story holds in a
modified form for compact 7-manifolds with holonomy G2, and also for
compact 8-manifolds with holonomy Spin(7).

The idea, as I understand it, is that to a 7-manifold with holonomy
G2 one associates a Conformal Field Theory, with an algebra of oper-
ators satisfying some relations determined by the G2 geometry. It can
turn out that for two topologically distinct 7-manifolds with holonomy
G2 the conformal field theories are identical, or related in some way, and
this provides a mysterious relation between the different 7-manifolds.
In particular, some of the examples in this paper appear to have this
property. This field may well soon produce some exciting results and
conjectures about 7-manifolds with holonomy G2> One would like, for
instance, to know the appropriate 'mirror conjecture'.

It seems likely that certain patterns in Table 2 have not arisen merely
by chance, but actually have heuristic explanations in terms of string
theory. For instance, a striking feature of Table 2 is the arrangement
of points into lines with b2 + b3 constant. Also, the great majority of
the points have b2 + b3 = 3 mod 4. These could simply be spurious
regularities introduced by our particular choice of finite groups Γ. How-
ever, some recent work of C. Vafa and S. Shatashvili, communicated
privately to the author, indicates that it is natural from the point of
view of string theory to collect together 7-manifolds with holonomy G2

and constant b2 + b3.
In addition, the line b3 = 3&2 + 7 looks a bit like an 'axis of symmetry'

of the graph. The significance of this is not clear, but Coilin Nunan
(under the guidance of Simon Salamon) has proved an inequality on
the betti numbers of orbifolds of tori Tn/T [21, §3.5], which in the
case n — 7 yields 561 + b3 < 3b2 + 7. For comparison, a graph of
betti numbers of Calabi-Yau 3-folds is given in [9], and shows beautiful
regularities, including an approximate 'axis of symmetry'. We await
further developments in these areas with great interest.

Questions 4.1.1. Are there finitely many or infinitely many com-
pact 7-manifolds admitting metrics with holonomy G2Ί What is the
set of betti numbers 62(M),63(M) realized by such 7-manifolds? Can
one prove nontrivial inequalities on the betti numbers by topological
means? (For instance, the data in Table 2 is consistent with the in-
equalities b2(M) + b3(M) < 55 and b2{M) < 263(M).) Classify all
compact 7-manifolds with holonomy G2 arising as generalized Kummer
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constructions in the sense of Chapter 2. Do all compact 7-manifolds
with holonomy G2 arise this way? Do there exist patterns or symme-
tries in the graph of betti numbers 62(M), 63(M) of such 7-manifolds?

For the first of these questions, the author's conjecture is that there
exist only finitely many compact 7-manifolds admitting metrics with
holonomy G2. It can certainly be shown that the number of 7-manifolds
obtained by the construction of Chapter 2 is finite. In contrast, there
are infinitely many compact, simply-connected 7-manifolds that admit
G2- structures — it can readily be shown that if Mx, M2 admit G2-
structures, then so does the connected sum Mi#M 2 .

As a first step in classifying finite groups Γ acting on T 7 preserv-
ing a G2- structure, one may classify elements a of G2 acting on E7

and preserving some lattice Λ = Z7 in E7. Such an a is conjugate
in GL(7,R) to an element of SX(7, Z), and therefore the character-
istic polynomial det(α — tl) must have integer coefficients. Nunan
[21, §2.3] has classified all such a G G2 explicitly, with the aid of a
computer. He finds that the order of a must be 1, 2, 3, 4, 6, 7, 8 or 12.

4.2. Special submanifolds of manifolds with holonomy G2.
If X is a complex manifold, then the complex submanifolds Y of

X are a special class of submanifolds of X with interesting geometry
attached to them. By analogy, we may ask whether there exist any
special classes of submanifolds N of a 7-manifold M equipped with a
torsion-free G2- structure. In this section we will discuss two classes
of submanifolds, which have been studied by Harvey and Lawson [13]
and McLean [20]. First we will explain the idea of a calibration, which
was defined and studied by Harvey and Lawson in their seminal paper
on calibrated geometries [13].

A calibration is a closed A -form φ on a riemannian n-manifold M,
such that the restriction of φ to each tangent A -plane is less than or
equal to the volume of the fc-plane. A calibrated submanifold TV is a
submanifold N of dimension k such that φ\N is equal to the volume form
of the induced metric on N. Therefore for any compact submanifold
N of dimension k, fNφ < vol(iV), with equality if and only if AT is a
calibrated submanifold. However, since φ is closed, JN φ depends only
on the homology class of N. Thus a (compact) calibrated submanifold
minimizes volume in its homology class.
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Now let M be a 7-manifold with a torsion-free G2- structure φ. We
have two closed forms, ψ and *</?, to use as calibrations. Harvey and
Lawson define an associative submanifold to be a 3-dimensional sub-
manifold N of M that is a calibrated submanifold of M w.r.t. the cali-
bration φ, and define a coassociative submanifold to be a 4-dimensional
submanifold N of M that is a calibrated submanifold of M w.r.t. the
calibration *φ. An alternative definition of a coassociative submanifold
is a 4-dimensional submanifold N of M such that ψ\N — 0. Associative
and coassociative submanifolds are studied in [13, §IV.2.].

McLean [20] considered the problem of deforming a given associa-
tive or coassociative submanifold N within a 7-manifold M with a
fixed, torsion-free G2- structure. For associative submanifolds the de-
formation problem is elliptic, with index zero. Probably this means
that in the generic case, compact associative submanifolds admit no
deformations. Using the sign and orientation conventions of this paper
(McLean's are different), in [20, §4] he proves that the deformations
of a coassociative submanifold N are locally given by closed, self-dual
2-forms on JV, where N is oriented such that *φ\s is a positive 4-form.
Further, he proves that the moduli space of coassociative manifolds is
locally a smooth manifold with dimension b\(N).

Given a 7-manifold M with a torsion-free G2- structure, one natural
way to find associative and coassociative submanifolds of M is to look
at the fixed point sets of isometries of M preserving the G2- structure.
If some component of the fixed point set has dimension 3, then it will
in general be an associative submanifold. Let us also allow orientation-
reversing isometries of M, that take φ to —φ. Such an isometry can
have components of dimension 4 in its fixed point set, and these will in
general be coassociative submanifolds. Here are some examples of this.

Example A. In Example 3 of §3.1, consider the isometry σ of T 7

defined by

(57) σ((Xι,...,X7)) = (\ -XU \ - X2,-X3,-X4,X5,XβiX7)'

Then σ preserves φ and commutes with Γ, and the fixed points of σ on
T 7 are 16 copies of T3, that are disjoint from the fixed points of a,β
and 7. Since Γ acts freely on the set of 16 fixed 3-tori of σ, it follows
that the fixed points of σ on T7/Γ are 2 disjoint copies of T 3.

Now the desingularization of T7/Γ to give a compact 7-manifold M
with a torsion-free G2- structure φ may be done in a σ-invariant way.
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Therefore there exists a family of σ-invariant torsion-free G2- structures
on M. But the fixed points of σ in M are 2 disjoint copies of Γ 3 , and
is is easy to see that these must be associative submanifolds of (M, φ).

Example B. In Example 3 of §3.1, consider the isometry σ of T 7

defined by

(58) σ((zi, . . . ,x 7 ) ) = (-Zi ,-z 2 ,Z3,z 4 , | - £ 5 , | -x%,xτ).

Everything works as in Example A, except that this time the fixed
points of a and σ in T 7 intersect. Therefore the fixed points of σ in
T 7 /Γ are 4 disjoint copies of T 3 / Z 2 , where a E Z 2 acts by (2/1,2/2,2/3) »->
(-2/i? -2/2,2/3), for coordinates 2/1,2/2,2/3 £ K/ z o n T 3 -

Now T 3 / Z 2 is homeomorphic to <S2 x*?1, and performing a σ-invariant
desingularization does not change this topology. Therefore the 7-mani-
fold M of Example 3 admits σ-invariant torsion-free G2- structures φ,
and the fixed points of σ are 4 (smooth) copies of 5 2 x 5 1 , which are
associative submanifolds of (M,φ).

Example C. In Example 4 of §3.1, consider the isometry σ of T7

defined by

(59) σ((xu...,x7)) = (xux2,-x3,-xA,-x5,-x6,x7).

Then σ preserves φ and commutes with Γ. This time, the fixed points
of σ intersect the fixed points of α, β and 7. Thus the fixed points
of σ on T 7 /Γ are 16 copies of T 3 / Z 3 . But since aβ acts on T 3 as a
translation, we may regard each component of the fixed set of σ on
T 7 /Γ as a copy of T3/Z%, where the generators α,7 of Z2 act by

α (2/1,2/2,2/3) ^ (-2/1,-2/2,2/s),

(60) 7 : (2/1,2/2, ys) »-> ( | - 2/1,2/2, -2/3).

Here 2/1,2/2,2/3 € W ^ a r e coordinates on T3.
It can be shown that T 3 / Z | is homeomorphic to <S3. Performing a

σ-invariant desingularization does not change the topology, so that the
7-manifold M of Example 4 admits a family of σ-invariant torsion-free
G2- structures, and the fixed points of σ are 16 (smooth) copies of «S3,
which are associative submanifolds of (M, φ).

Example D. In Example 3 of §3.1, consider the orientation-reversing
isometry σ of T 7 defined by

(61) σ((xU...,Xγ)) = ( | - X i , | - X 2 , ^
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Then σ commutes with Γ, and takes φ to —ψ. The fixed points of σ
in T7 are 8 copies of Γ 4 . These copies of T 4 are disjoint from the fixed
points of α, β and 7, and Γ acts freely on the set of 8 4-tori fixed by σ.
Therefore the fixed points of σ in Γ 7 /Γ are 1 copy of T 4 , which avoids
all the singular points.

Now the desingularization of T 7 /Γ to give a 7-manifold M with
torsion-free G2- structure φ may be done in a σ-equivariant way, so
that <J*{φ) = —φ. Therefore there exists a family of σ-equivariant
torsion-free G2- structures on the manifold M of Example 3. The fixed
point set of σ is one copy of T 4 in M, and it is easy to see that this is
a coassociative submanifold JV of M. Since 6^_(T4) = 3, there is a 3-
parameter family of coassociative 4-tori in M close to JV, by McLean's
result described above.

Example E. In Example 3 of §3.1, consider the orientation-reversing
isometry σ of T 7 defined by

(62) σ((xu...,x7)) = (xux2,x3,x4^ - ^ 5 5 | - # 6 , \ -Xτ)>

Then σ commutes with Γ, and takes φ to —ψ. This time, though, the
fixed points of σ intersect with those of α, and so the fixed points of
σ in T 7 /Γ are 2 copies of T 4 /Z 2 , where a G Z 2 acts by (yu..., y4) h->>
(—j/χ,..., —2/4), for 2/1,..., 2/4 E R/Z coordinates on T 4 . Performing a
σ-equivariant desingularization, the fixed set of σ in M is 2 copies of
the J^3 surface. Thus M admits a family of σ-equivariant G2- struc-
tures, and the fixed points of σ give 2 coassociative if 3's in M. Since
b^(K3) = 3, each of these admits a 3-parameter family of deformations.

Example F. In Example 3 of §3.1, consider the orientation-reversing
isometry σ of T 7 defined by

(63) σ((xi,...,x7)) = (xux2,xs,x4,± - x6,-x6,-x7).

This time, the fixed points of σ intersect the fixed points of α, but in
addition βη acts freely on each of the 8 fixed T 4 of σ. Therefore the
fixed points of σ in T 7 /Γ are 4 copies of T4/Z^ where the generators
α, βj of Z^ act by

(64) a: (yi,. . .,y 4) ^ (-yi, , ~VA)

and £ 7 : (yi,...,i/4) ^ (5 + yi, | - 2/2, | - 2/3,2/4).
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When T7/Γ is desingularized in a σ-equivariant way, these yield 4 coas-
sociative copies of K3/Z2 in M, where Z 2 acts freely on K3. Calcu-
lation shows that ti^(K3/Z2) = 1, so each of the 4 coassociative sub-
manifolds admits a 1-parameter family of deformations.

Now Examples D and E yield coassociative submanifolds with a 3-
parameter family of deformations. Thus the ambient space is locally
fibred by coassociative submanifolds. It seems possible that the whole
manifold is globally fibred by coassociative submanifolds, with some
singular fibres. (This idea was suggested by MacLean [20, p. 25].) If
this is the case, the 7-manifold would be a sort of 7-dimensional ana-
logue of an elliptic surface, i.e. a complex surface fibred by elliptic
curves, with some singular fibres.

Questions 4.2.1. Suppose that M has a coassociative submanifold
N diffeomorphic to T 4 or to the K3 surface. Is M foliated by coasso-
ciative 4-tori or K3 surfaces, allowing for some singular leaves? If so,
what can be said about the topology of M? Study the properties of the
moduli spaces of compact associative and coassociative submanifolds
of a compact 7-manifold M with torsion-free G2- structure ψ. Are the
moduli spaces compact? How do the moduli spaces change under small
and under large deformations of ψΊ

4.3. Connections between SU(3) and G2holonomy.
We begin by describing a possible construction for compact 7-manifolds

with holonomy G2. Suppose that N is a compact riemannian 6-manifold
with holonomy SU(3), with Kahler form ω and holomorphic volume
form Ω, and suppose that σ : N —> N is an antiholomorphic involution
of iV, such that σ is an isometry, σ*(ω) = —CJ, and cr*(Ω) = —Ω. Ex-
amples of such N can be constructed in a similar way to Example 2 of
§3.1. Using (12) we may define a torsion-free G2- structure φ on the
7-manifold M — N x S1. Let x be the coordinate on S1, and define an
involution σ1 of M by

(65) σ'{(n,x)) = {σ{n),-x).

Then σ' preserves the G2- structure φ on M.
Let S be the fixed point set of σ in N. It is easy to show that S is

a (possibly empty) compact submanifold of N of dimension 3. So the
fixed points of σ' in M are S x {0, | } . Therefore the quotient M/(σ') is
a compact, singular 7-manifold with a torsion-free G2- structure, whose
singular set is 2 copies of S. Each singular point is modelled on the
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singular points of M3 x (^/{i l}). As in Chapters 2 and 3, it is natural
to try and desingularize M/(σ') using the Eguchi-Hanson space at each
point, to get a compact 7-manifold M, and then to define metrics with
holonomy G2 on M.

Calculations by the author indicate that the following condition is
important in this problem.

Condition 4.3.1. Suppose there exists a smooth 1-form a on S
that is nonzero at every point of 5, and that a is closed and coclosed
w.r.t. the metric on S induced by the metric on N.

This condition seems to be the necessary and sufficient condition for
a family of metrics of holonomy G2 to exist on M, desingularizing the
singular structure on M/(σf). The proof that it is a sufficient condition
has two parts. The first part is to write down a family of G2- structures
ψt on M using the 1-form a of Condition 4.3.1, roughly following the
method of Chapter 2. The second part is to show that the hypotheses of
[15, Theorem B] apply to (M,φt) for sufficiently small £, and to apply
[15, Theorems A, B]. The author has a sketch of such a proof, but it
will not be given here.

Questions 4.3.2. Develop a rigorous construction for compact 7-
manifolds M with holonomy G2 by desingularizing (i\Γx«51)/(σ/), where
N is a compact 6-manifold with holonomy S77(3), and σ' is an invo-
lution given by (65). Can one produce many new 7-manifolds M this
way? The proof of the Calabi conjecture yields a large supply of can-
didates for N. Do these yield 7-manifolds M that do not also arise by
a generalized Kummer construction?

We finish the paper by making some remarks on two types of com-
plete, noncompact riemannian 7-manifolds with holonomy G2. There
appear to the author to be two interesting types of noncompact ends
for 7-manifolds with holonomy G2, which we shall refer to as 'cone'
ends and 'cylinder' ends respectively. Let TV be a compact riemannian
6-manifold with metric gN. For a 'cone' end, the metric g on the non-
compact 7-manifold M should be asymptotic to the metric t2gN + dt2

on N x (0, oo), as t —> +oo. For a 'cylinder' end, g should be asymptotic
to the metric gN + dt2 on N x (0, oo) as t —> +oo.

In both cases the G2- structure on M induces an SU(3)- structure
on N. For the 'cone' case, the SU(3)- structure on N is required to be
Einstein with scalar curvature +1, and also nearly Kάhler in the sense of
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Gray [12], which means that if J is the almost complex structure and V
the Levi-Civita connection of gN, then (V* J)X = 0 for all vector fields
X on TV. Gray shows that in dimension 6, if the SU(3)- structure is
nearly Kahler and not Kahler, then it is automatically Einstein. Three
examples of complete metrics with holonomy G2 and 'cone' ends are
given by Bryant and Salamon [6].

For the 'cylinder' end case, gN is required to have holonomy con-
tained in SU(3). By considering compact 7-manifolds M with several
boundary components Nι,..., Nk we have the attractive possibility of
developing a cobordism theory for compact 6-manifolds with holonomy
SU(3). Cobordisms with just one end may be constructed by modify-
ing the construction given above. Instead of considering (TV x 51)/(σ'),
we may attempt to desingularize the singular, noncompact 7-manifold
(NxR)/(σ1), which has one infinite end of the form Nx (0, oo). It seems
likely that Condition 4.3.1 is the necessary and sufficient condition for
this construction to work.
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