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Abstract
Given a vector bundle V of rank n on a variety X, together with two com-
plete flags of subbundles, there is a degeneracy locus Xw C X for each w in
the symmetric group Sn. With suitable genericity hypotheses, the class of
Xw in the Chow group of X is given by a double Schubert polynomial in the
first Chern classes of the quotient line bundles of the flags [9]. In this note
we give similar formulas for corresponding loci when V has an orthogonal
or symplectic structure and the flags are isotropic; there is one such locus
Xw for each w in the corresponding Weyl group.

Introduction

For any partition λ = (λi > λ2 > ... > A* > 0), and a formal sum
Co + Ci + c2 +... of commuting elements c* in a ring, with c{ — 0 if i < 0,
denote by Δλ(c) the "Schur determinant"

Δλ(c) = det(cλ.+i_ ί)i<<ιi< fc.

The partition (A;, k — 1,... ,1) whose ith term is k + 1 — i will be denoted
by p(k). In this introduction, for simplicity, we consider degeneracy loci
on a nonsingular ambient variety X, with the assumption that the maps
are generic enough so that all the loci have the expected codimension.
We postpone to the next section the precise description of these loci as
subschemes, and the statements without the assumptions of smoothness
or genericity. In this introduction, formulas for these loci are given in
the Chow rings with rational coefficients, but this can be improved to
the Chow rings with integer coefficients.

Suppose V is a vector bundle of rank n on a nonsingular algebraic
variety X, and E and F are subbundles of ranks e and /.

For k < min(e,/), let Dk be the locus in X where the dimension of
the intersection of the fibers E(x) Π F(x) is at least k. One form of the
Giambelli-Thom-Porteous formula states that if Dk has the expected
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codimension d = k(n — e — f + k), then the class [Dk] of Dk in the Chow
group AdX is given by the formula

(1) [Dk] = Δ λ (c),

where λ consists of the integer n — e — f + k repeated k times, and
c = c{V)/c(E)c{F).

Several years ago Joe Harris asked for an analogous formula for the
case when V is a bundle of rank 2n, equipped with a nondegenerate
quadratic form, i.e., a symmetric bilinear map from V ® V to a line
bundle L that is nondegenerate on each fiber. We call a bundle equipped
with such a quadratic form an orthogonal bundle. Let E and F be
subbundles of V of rank n that are (totally) isotropic, i.e., the quadratic
form vanishes when restricted to each of them. Assume that E and F
are in the same family, by which we mean that the dimension of the
intersection E(x) Π F(x) is everywhere congruent to n modulo 2. For
k < n and k = n (mod 2), one has a locus Dk where the dimension of

E(x) Π F(x) is at least k. If Dk has the expected codimension ( 9 ),

Harris asked for a formula for [Dk]. Our answer is the formula

(2) [Dk] = Δpμ-Dίc), c = \{c{E^ ®VZ) + C ( F V ® y/Z)).

Here Ey and F v denote the dual bundles, and y/L denotes a formal
square root of the line bundle L; this square root enters the formula
only through its first Chern class, which is ^Cχ(L). The same formula
is valid if E and F are in the opposite family, i.e., the dimension of
E(x) Π F(x) is always congruent to n — 1 modulo 2, and k is congruent
to n — 1 modulo 2.

Similarly, if V is an orthogonal bundle of rank 2n + 1, and i£ and F
are isotropic subbundles of rank n, then for any k < n, the locus Z)̂
where the dimension of intersection is at least k is given by the formula

(3) [Dk] = Δ,(ik)(c), c=i(c(E v®Λ/L)+c(F v(g.Λ/I)).

We also prove a symplectic analogue. For this, V is a symplectic
vector bundle of rank 2n, i.e., V is equipped with an everywhere nonde-
generate skew-symmetric form V®V —> L, and E and F are subbundles
of rank n that are Lagrangian, i.e., the restrictions of the skew form to
E and F are identically zero. For k < n, one has the locus D^ where
the dimension of intersection is at least k, and in this case we have

(4) [Dk] = Δp ( t )(c), c - c(£ v
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The usual Giambelli-Thom-Porteous formula states that for a map
ψ : E —> F of vector bundles, the locus Dr(φ) where the rank of φ is at
most r is given by the formula

(5) [Dr(φ)\ = Δλ(c), c = c(F)/c(E)

with λ consisting of e — r copies of / — r, where e and / are the ranks
of E and F. Formula (5) is equivalent to formula (1). Indeed, to
deduce (1) from (5), consider the map from E to V/F. Conversely, to
deduce (5) from (1), given such a map φ, let V = E Θ -F, and consider
the intersection of the graph Eφ = {e 0 φ(e)} of φ with the bundle
Eo = E φ 0.

Formulas (2) and (4) similarly imply known formulas for maps of
vector bundles. If E is a vector bundle of rank n on I , L a line bundle,
and φ : E —> Ev ® L is a skew-symmetric map of vector bundles, i.e.,
φy ® idL : (Ew ® L) v® L = £ -> £ v ® L is -<p, then the locus Z?r(<p)
where the rank of φ is at most r is given by the formula

(6) [Dr (φ)} = A i ( B_ r.,) (c), c = c(E v ® Λ/I)

This is a result of Harris and Tu [14], with values in integral cohomology,
and Jόzefiak, Lascoux, and Pragacz [15], when L is trivial, and Pragacz
[20] in general. To deduce this from (2), set V = E®{Ey®L), with the
symmetric pairing given by the formula < ex 0 fu e2 Θ h >= Λfe) +
/2(ei); in this formula we identify Ev ® L with Hom(E,L). The graph
Eφ of ψ and Eo = E © 0 are isotropic subbundles, and Dr(φ) is the
locus jDn_r given in (2). Note that here Fy = Ey, so

c,(F v ® Λ/I) = c,(£ v ® Λ/I).

Similarly, if y? : £7 -> ί£ v ® L is a symmetric map, i.e., </?v ® id^ = φ,
then the locus Dr(φ) where the rank of φ is at most r is given by the
formula

(7) [Dr(φ)] = 2n~r Δ, ( n_ r )(c), c = c(E v ® Λ/I)

To deduce this from (4), set V = E ® (Ev ® Λ/I), with the skew-
symmetric pairing given by the formula < βi Θ /i, e2 Θ / 2 > = /i(e2) —
/2(^i). This time the graph £7̂  of </? and £?0 are Lagrangian subbundles,
and DΓ(φ) is the locus Dn_r given in (4). Note that these arguments
are not reversible: formulas (2) and (4) do not follow from formulas (6)
and (7).

In [9] a general formula for degeneracy loci was given that contains
the Giambelli-Thom-Porteous formula as a special case. For a bundle V
of rank n with two complete flags of subbundles, there is a degeneracy
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locus for each permutation in the symmetric group 5 n , which is the
Weyl group W for type (An_ι). Our goal in this article is to produce
analogous formulas for corresponding degeneracy loci for elements in the
Weyl groups of the other classical types (Bn), (Cn), and (Dn). We want
the formulas to be determinantal whenever possible, and the formulas
should have similar shapes for all the classical groups.

Another motivation for this work is that, for type (An_i), the answers
to the general problem are the double Schubert polynomials invented
by Lascoux and Schύtzenberger, whose combinatorial properties have
been of considerable interest (cf. [17], [4]). There is interest and recent
progress in finding such polynomials for the other groups Sp2n and SOm

(see [3] for the case of single Schubert polynomials).

We turn now to the general statements of our results. In each case
one is given a vector bundle V of rank m o n a variety X, together with
flags of subbundles

E.:0 = EocE1cE2C...CEn = EcV

F. : 0 = Fo C Fx C F2 C . . . C Fn = F C V.

The situations considered are:

(An_ι) m = n, no conditions on V or the flags;
(Bn) m = 2n + 1, V is orthogonal, E and F are isotropic;
(Cn) m = 2n, V is symplectic, E and F are Lagrangian;
(Dn) m = 2n, V is orthogonal, E and F are isotropic,

and dim(E(x) Π F(x) = n (mod 2)
for all x in X.

In each case the flags can be extended to complete flags. In case (Bn),
set En+i = £#+!_< and Fn+i = i 7 ^ . . for i > 1; in cases (Cn) and (JDn),
set En+i = E^_{ and F n + i = F^_ for i > 1. We will use the following
realizations of the Weyl groups W:

(Bn) W = {w e S2n+i •• w(i) + w(2n + 2 - i) = 2n + 2 for all i};

(Cn) W = {w e Sn : w(i) + w(2n + 1 - ί) = 2n + 1 for all t};

(Dn) W = {w e S2n : w(i) + w{2n + 1 - t) = 2n + 1 for all i, and
the number of i < n such that w(i) > n is even}.

Each Weyl group W is generated by a standard set of involutions. In
each case one has transpositions S; that interchange i and i + 1: in case
(An_i), 5̂  = (i, i + 1) interchanges only i and i + 1; in case (Bn) s^ also
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interchanges 2n + l - i and 2n + 2 - i, while in cases (Cn) and (Dn) s{

must also interchange 2n — i and 2n + l — i. The generators are

(JBn) Si,...,sn_ l 5 and s n = (n,n + 2);

(Cn) Si,...,sn_!, and s n = (n,n + l);

(D n ) 5i,...,5n_ 1 ? and sn = (n - l , n + l)(n,n + 2).

The length £(w) of tt; in W is the minimal number £ such that w can
be written as a product of ί of these generators. With this notation,
the lengths have simple descriptions; in each of the following sets, the
integers i and j are taken from the set {1, ...,n}:

i < j : w(ί) + w(j) > 2n + 2};

j : w{i) + w(j) > 2n + 1};

j : w(ί) + w(j) > 2n + 1}.

If the inequality in each of these conditions is reversed, one gets a
number we call the codimension ofw and denote by cod(w); for example,
in case (i?n),

cod(w) = #{i < j : w(i) < w{j)} + #{i < j : w(i) + w(j) <2n + 2}.

(Bn)

(Cn)

(Dn)

e(w) = #{i

iM = #{<

<(w) = #{i

<j:»(t)

< j : w(i)

< j : v)(i)

The sum of ί(w) and coά(w) is the maximal length of an element of
VF, which is the dimension of the corresponding flag manifold. These
dimensions are: n(n — l)/2 for (An_i), n 2 for (J5n) or (Cn), and n2 — n
foτ(Dn).

There are operators dι defined on polynomials in variables α:χ, ...,xn,
with coefficients in any commutative ring, coming from [1] and [6]. For
1 < i < n — 1, these operators are defined by

di(P) = (P(zi,...,zn) -P(xu...Xi-i,Xi+uXi,Xi+2,—Xn))/(xi -s»-i)

For our use, the other operators dn involve another variable z. These

are defined by:

(Bn) dn(P) = 2(P(xu ..., xn) - P(xu ..., xn-u-Xn - z))/(2xn + z);

(Cn) dn(P) = (P(Xu...,Xn)-P{Xl,...,Xn-l,-Xn-z))/{2xn+z)]

(Dn) dn(P) = (P(xu...,xn)

- P(xu ..., Xn_2, -Xn ~ Z, -Xn-1 ~ z))/(xn^ + Xn + z).

For any w in W, define an operator dw by the formula

dw = dh o ... o dit if w = sh ... sin έ = £(w).
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The operators dι satisfy relations corresponding to the Coxeter relations
defined by the generators su which implies that the definition of dw is
independent of the choice.

With these conventions, we can give a uniform description of a de-
generacy locus Xw C X for each w E W. As a first approximation, Xw

can be described as the locus of x E X such that

dim(Ep(x) Π Fq{x)) >#{i<p\w{ϊ) < q} for all 1 <p,q<m;

equivalently, the rank of Ep -> V/Fq is at most # {i < p : w(i) > q}.
In all cases, if the flags are sufficiently generic, the precise definition of
Xw is as the closure of the set X^ on which the dimension of Ep Π Fq

is equal to # {i < p : w(i) < q} for all p and q, with its reduced struc-
ture. With these assumptions, Xw has pure codimension cod(w). The
precise definition of Xw as a subscheme of X, without any assumptions
of smoothness or genericity, will be given in the next section.

Our formulas for these loci involve certain Chern classes. Set

Xi = -diEi/Ei-i), yi = -CiίFn+i^/Fn.!), 1 < i < n,

which are classes in the Chow group AιX. Let z = Ci(L), and let
v — \z = Ci(\/L). Define classes Q in AιX by the formulas

(Bn) C{ = ~(ei(xι +V,...,I n + v) + β^ί/i + V, ...,2/n -f u)), 0 < I < fί\

(Cn) Ci = ei(xi +υ,...,xn +v) + ei(yi +υ,...,yn +υ), 0 < i < n;

(Dn) Ci = -(ei(x! +υ,...,xn +v) + ei(y1 + υ, ...,yn + υ)), 0 < i < n - 1.

In each of these formulas, e^^i, ...,zn) denotes the iί/ι elementary sym-
metric polynomial in variables zl5..., zn.

Define a polynomial Δ in these variables by the formulas: Δ = 1 in
case (An^x); Δ = Δp(n)(c) in case (Bn) or (Cn); and Δ = Δp(n_i)(c) in
case (Dn). In each case the variables c* are as prescribed above, with C;
defined to be zero for i not specified. Define polynomials Pw, for w in
W', by the following rule: write tϋ = 5^ ... • 5<£ with ^ = ^(tί;), and set

Pw = dilo...odiί(

Equivalently, Pw = dw-i (Hi+j<n{xi - Vj) Δ). With the above interpre-
tation of the variables, Pw defines a class in Acoά^w>)(X).

Theorem. The class of Xw in Acoά{w)(X) is given by the formula
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Formulas (l)-(4) can be regarded as special cases of this theorem,
although at present they are proved together with the theorem. The
theorem can be applied in the same way to obtain formulas for the
degrees of varieties in projective space defined by symmetric or skew-
symmetric matrices of general forms satisfying various rank conditions,
as begun by Giambelli [13]. The pattern for this is similar to that worked
out for general matrices in [9]. To carry this out, each E{ is a direct sum
of line bundles on projective space, and one is intersecting E with the
graph of the map from E to Ew ® L determined by the matrix of forms.
In this case, however, it only happens that certain of the degeneracy
loci are irreducible, or even of the right dimension.

There are analogous formulas for the case where V is orthogonal of
rank 2n, and E and F are isotropic with dim(E(x) Π F(x)) = n — 1
(mod 2), a situation we denote by (Dn). In the presense of suitable
positivity assumptions on the bundles, one can deduce from our formulas
that some degeneracy loci must be nonempty.

The theorem, both for its precise statement and its proof, is obtained
by pulling back the corresponding formula for Schubert varieties in flag
bundles, which is proved in [10]. This reduction is carried out in the
next section. This includes a description of the loci Xw in general,
and how the theorem extends to arbitrary varieties, and with values in
the Chow rings with integer coefficients. A last section describes some
applications.

Both the discovery of the formula and the proof of the theorem depend
on the work of D. Edidin and W. Graham [7], whom we thank for this
work and for many useful discussions. We also thank J. Harris for
stimulating this work, and A. Bertram, R. Kottwitz, R. MacPherson
and R. Narasimhan for useful suggestions. This research was supported
in part by NSF Grants DMS 9007575 and 9307922.

Flag bundles

The definition of the locus Xw and the proof of the theorem will be
obtained by pulling them back from the "universal" case, which takes
place on a flag bundle. For this, we modify our assumptions. Now X
is an arbitrary irreducible variety, V is a vector bundle on X, with a
nondegenerate bilinear skew-symmetric or symmetric form V ® V —> L
in cases (Cn), {Bn), or (Dn), and we have a flag Fm of subbundles of V
onX:

0 = Fo C Fλ C F2 C ... C Fn = F C V.

We assume that V and this flag satisfy the conditions of the introduc-



DETERMINANTAL FORMULAS FOR DEGENERACY LOCI 283

tion, depending on the type (An_i), (J5n), (Cn), or (Dn)
1 Let T = Fl(y)

be the corresponding flag bundle of such flags. This comes equipped with
a projection p : T -> X, and a universal flag U. of subbundles

0 = Uo C Uλ C U2 C ... C Un = U C p*(V),

with U Lagrangian in case (Cn) and isotropic in cases (Bn) and (Dn). In
case (Dn), in addition, we require that the dimension of U(y) Γ\F(p(y))
be congruent to n modulo 2 for all y in ^" this added condition makes
the flag bundle connected. The fiber of T over a point in X is the usual
flag manifold for the corresponding classical group.

We next describe the Schubert varieties Xw C T for each w £ W. In
each case, Xw is the closure of the set X°w of points y in T on which
the dimension of Up(y) Π Fq(p(y)) is equal to the cardinality of the set
{i < p : w(i) < q] for all p and g, with its reduced structure. Each
Xw is an irreducible variety, of codimension cod(w), in T. Note that T
is a locally trivial bundle over X, and X^ is locally the product of an
open set in X with a classical Schubert variety. For equations for these
Schubert varieties, see [16] and its references.

Let m = -c^Ui/Ui-x) ΐoτ I < i < n,yi = -Ci(Fn+1-i/Fn^i),υ =
|c i (L) . The universal case of the theorem of the introduction is the
following:

Theorem 1. The class of Xw in A000^^) is given by the formula

[Xw] =Pw{u>i +v,...,un + υ,y1 +υ,...,yn + υ)

To apply the theorem in the general context, suppose we are given,
in addition to V with its flag F # on I , another flag Eφ of subbun-
dles satisfying the same conditions as F # , with the added condition in
case (Dn) that En and Fn are in the same family. The flag E9 cor-
responds to a section s \ X -ϊ T oΐ T —> X such that s*(U.) = Em.
The degeneracy locus Xw in X can then be given a precise definition
and scheme-theoretic structure by defining Xw to be the inverse image
s~λ(Xw) of the universal Schubert variety Xw C T.

We can define the class X^ of this locus to be the intersection class
s![3£ti/]> which is a class in the Chow group Am(Xw), where m = dim(X) —
cod(w); this class is the refined intersection class constructed by the pro-
cedure of [8, §6.2], which is defined because s is a regular embedding.

ιlΐ the ground field has characteristic 2, the definitions must be modified
as usual in cases (Bn) and (Dn). We are given a quadratic map N : V -* L,
with N(Xv) = X2N(v) for sections v and functions λ, such that the map
Q(u,v) = N(u + v) - N(u) - N(υ) is bilinear. The restriction of N to the
bundle F = Fn must vanish identically.
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Corollary 1. The image o/X^ in Am(X) is Pw Π [X], where Pw is
the polynomial

If codim(Xw,X) = cod(w), and X is Cohen-Macaulay, then Xω is the
class of the subscheme XWJ i.e., Ίίw = [Xω].

It follows, for example, that Xw is nonempty whenever the class
Pw Π [X] is nonzero.

There are similar formulas for an orthogonal bundle of rank 2n when
E = En and F = Fn are in the opposite family, a case that may be
denoted by {Dn) For this, set

W = {w G S2n: w(i) + w(2n + 1 - t) = 2n + 1 for all i,
and the number of i < n such that w(i) > n is odd}.

For each w in W there is a locus X~ defined by the same conditions
as in the other cases: the dimension of Ep(x) Π Fq(x) is at least the
cardinality of {i < p : w(i) < q} for all 1 < p, q < 2n. Although W is
not a subgroup of S2n, the same formula as for (Dn) defines cod(w) for
w in W. There iŝ a one-to-one correspondence between the Weyl group
W for (Dn) and W: given w £ W, define w by the formula w(i) = w(i)
for i 0 {n,n + 1}, and w(i) = 2n + 1 — w(i) for i £ {n,n + 1}. This
correspondence preserves codimension.

Given an isotropic flag £?., there is a unique isotropic flag Em defined
by setting E{ = E{ for i < n — 1, defining En so that E^_x/En_i is the
direct sum of En/En-ι and EnjEn-\. If En and F are in the opposite
family, then En and F are in the same family, and Em is in X~ exactly
when E% is in Xw. We can therefore give X~ its precise definition and
scheme-theoretic structure by letting s : X —> T be the section of the
flag bundle T for (β n ) such that s*(Uφ) = Em, and defining X~ to be
5~1(JEU;). Similarly, we have the class X~ = S^JCJ. For w in W, define
P~ by the formula

P~{xu...,xn,y1,...,yn) = Pw(xu...,-xn- z,yu...,yn).

With the same definition of xi5 y^ and z as before, we obtain the fol-
lowing variation of Corollary 1.

Corollary 2. The image ofX~ in Am(X) is P~Π[X]. If cod(X^X)
= cod(ίi ), and X is Cohen-Macaulay, then X~ = [X~]>

Similarly, the loci Dk are the inverse images by the section 5 of uni-
versal loci Vk = {y e T : dim(U(y)jΓ^F(p(y)) > k}] in case (Dn) we
assume k = n (mod 2), and in case (Dn) we assume k = n — 1 (mod 2).
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Each Vk is one of the Schubert varieties in T. As such, its class is given
determined by Theorem 1, but we have the following explicit formulas:

Theorem 2. The class ofVk is given by the formula

(Bn) [Vk] = Ap{k)(c), c= |(c(C/ v

(Cn) [Dk] = Ap{k)(c), c = c(CΛ ®VL)+ C ( F V β y/L)
(Dn) [2JJk] = Δ p ( 4 _ 1 ) (c), c=1-(c(lΓ/

As before, the schemes Dk C X can be defined to be s" 1 (£>*.), and
we can define cycle classes Ώ>k in A*(Dk) to be s![£>*].

Corollary. The image ofΌk in A*(X) is:

(Bn) Ap{k)(c) Π [XI c = \{c{E
(Cn) _ Ap(k)(c) Π [X], c = c ( £ v

(£>n) or (D n) Δp ( f c.D(c) Π [X], c = \{c{E" ® yfl) + c ( F v

//" ίΛe codimension of Dk in X is i^1) in cases (Bn) or (Cn), or ( £ )

m case ( i? n ) or {Dn), and X is Cohen-Macaulay, thenΏk = [Dk]

As in [9], the proof of Theorem 1 has two main steps. One step is
to show that [Xw,] = di([Xw]) if w' = w s{ and £(w') = £{w) + 1.
The proof of this is almost the same as that in [9]. The other step is
to prove the formula for the case where w is the identity element in
W, so £w is the locus where U9 = ρ*(Fm). To prove this, it suffices
to prove that the locus on T where U is equal to p*(F) is given by
the polynomial Δ, for then, on this locus, by the (An_χ) case and the
projection formula, the locus where U. = ρ*{Fm) is given by the product
of Δ with Y[i+j<n{ui — yj). In the case (An_ι) there is a vector bundle
of rank equal to the relative dimension of F over X, together with a
section of this bundle whose zero locus is exactly 3£id, and whose top
Chern class is Πi+j<n(ui"" Vj)- We know of no such bundle and section
in the other cases, ϊn these cases the formula can be proved by finding
another expression for this locus, and doing some algebra to prove that
this expression agrees with Δ. (Note, however, that these equations are
not equations of polynomials; they are valid only in the Chow rings of
the flag bundles.) The same ideas are used to prove Theorem 2. By
describing the Chow rings of the flag bundles with integer coefficients,
one sees also that the polynomials Pw have canonical expressions in the
Chow rings with integer coefficients. For details, see [10].

When we informed P. Pragacz of the determinantal formula of the
theorem, he reported that he and J. Ratajski [24] have another formula
for the locus Vn where U = ρ*F. They deduce this from a formula
for the class of the diagonal in Q xx Q as a sum of products of Schur
Q-polynomials (P-polynomials in cases (Bn) and {Dn)), where Q is the
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corresponding Grassmann bundle. Again, some algebra will be required
to show that this class is equal to the class Δ in the Chow rings, and
to deduce our formulas for the other loci Vk. In neither their work nor
ours, however, do the determinants arise naturally, nor is it clear without
some algebra why the answer should be expressed as any polynomial in
the sums of Chern classes of the bundles.

For the case (An_i), the algebra of double Schubert polynomials has
been sufficiently developed so that one has simple determinantal for-
mulas for a large number of the loci Xw or Xw (cf. [17] and [9]). This
algebra has not yet been done for the cases (i?n), (Cn), and (Dn).

The theory of single Schubert polynomials for the other classical
groups is currently being developed, particularly by Billey and Haiman
[3]. As in the case (An_χ), there are well defined polynomials in certain
variables, with a stability as n increases. We hope that this will extend
to double polynomials; it would be interesting to compare the resulting
polynomials with the classes Pw defined here.2

Applications

The theorem of [12] can be used to show that, in some cases, some of
these polynomials are positive, so the corresponding loci are nonempty.
For example, if E and F have equal Chern classes, then c =
2c(Ev <g> Λ/L) in case (Cn), and c = 2c(Ev <g) \[ΐ) in cases (Bn) or
(-Dn), so the determinants are, up to multiplying by a power of 2, the
Schur determinants of the bundle Ey ® \[L Hence we have:

Proposition. Suppose c(Ey ® y/Z) — c{Fy ® y/Z) = c(G), where G

is an ample vector bundle on X, and (k%λ) < dim(X) in case (Bn) or

(Cn) or (ί;) < dim(X) in case (Dn) or (Dn). Then Dk is nonempty.
For example, Ίfφ:E—ϊ Ev is a symmetric or skew-symmetric map of

vector bundles, with Ew ample, one recovers the fact that the degeneracy
loci Dr(φ) must be nonempty whenever their expected dimensions are
nonnegative. In applying this one need not take values in the Chow
rings; they are stronger if values are taken in cohomology with rational
coefficients, or in cycles modulo numerical equivalence.

Following a suggestion of A. Bertram, our formula can also be used
to give another proof of his result on the nonemptiness of the loci Vr of
special divisors on a Prym variety [2], This has also been carried out by

2Note that even in the (An_i) case, the Pw are not the usual double Schubert
polynomials, due to the change of variables xι for -x n + i_i; and yι for — yn+ι-i,
as well as the change from w to w wo. These changes were made to obtain
unified formulas for all the classical groups.
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De Concini and Pragacz [5], based on the results of [24]. We conclude
this article by showing how to recover the formula of [5] for the class of
Vr from our determinantal formula.

We recall Mumford's realization of Vr as a degeneracy locus, cf. [5].
One is given a two-sheeted etale covering C -> C of a curve C of genus
g. The Prym variety P C Ja,c2g~2(C) is the locus of line bundles whose
norm is ωc\ P is a disjoint union of varieties P + and P~ of dimension
g — 1, and Vr is the subvariety of line bundles L (in P+ if r is odd and in
P~ if r is even) on which h°(C, L) is at least r + 1 . Let £ be a Poincare
bundle on P x C) , and let D b e a divisor on C". Set

V =p*(C ® q*(O(D))/C ®

E =p*(C ® q*(O(D))), F = pm(C/C ® q*{O{-D)).

For a suitable normalization of £, and suitable choice of D, one has a
symmetric non-degenerate pairing V ®V —» 1, F is a vector bundle of
rank 2n, and E and F are isotropic subbundles of rank n, where n is
the degree of D. The locus Vr of special divisors is the locus where E
and F meet in dimension at least r + 1. By the theorem, the (virtual)
formula for this locus is 2~rΔp(r)(c), where c = c(Ey) + c(Fv).

Now Ci(Fv) = 0 for i > 0, and £ v is ample [11]. The polynomial
Δp(r)(c) need no^ be a positive polynomial in the Chern classes of Ev,
however, so the theorem of [12] does not apply 3. One can calculate the
polynomial Δp(r) (c) in terms of the restriction Θ of the class of the theta
divisor on Pic2p~2(C") to J, since one knows that Q ( £ V ) = (l/i!)θ\ The
result of De Concini and Pragacz is:

Proposition. The virtual class of Vr is d- ΘN, where N = i^1),
and

Since θ is an ample divisor, and d φ 0, this implies that Vr is
nonempty whenever (rγ) < g — 1.

Proof. By the preceding remarks, it suffices to prove that Δp(r)(c) =
Π[=i(« - l ) 7 ( 2 ί ~ !)'> w h e r e ci i s defined to be 1/i! if i > 0, CQ = 2,
and Ci = 0 for i < 0. Start with the r x r matrix whose determinant is
defined to be Δp(r)(c). Reverse the numberings in the rows and columns,
and then multiply the ith row by (2i — 1)! and divide the j t h column by

3For example, Δp(2)(c) = P(2,i)(c(Ev)) -P ( 3 )(c(S v)), where Px denotes the
(positive) Schur polynomial corresponding to the partition λ.
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(j — 1)!. The resulting matrix C has entries ĉ - defined by the formula

[l\Zj) if J < 2i
2 if j = 2i
0 if j > 2z.

To prove the proposition it suffices to show that det(C) = 1. In fact,
C is the product A B of two triangular matrices with l's along their
diagonals, with A = (α^) lower triangular, and B = (6^) upper trian-
gular:

The proof that A B = C follows from the following identity among
binomial coefficients, whose proof was showed to me by R. Narasimhan.

Lemma. For positive integers m and n,

Σ l (m + n — fc\ / n \ _ _ 1 ίm + ή\

k m + n-k \ n ) \2k - n) "" m + n \ n ) '

The sum is over all integers A;, but there are nonzero contributions
only for ra/2 < k < min(m, (m + n)/2).

Proof. Let /(*) = 1(1 - x2)~n = Σk ^ ( " ί * ) ^ 2 * . and g(χ) =
|[(1 + a?)n + (1 - x)n] = Σk ( "k ) * 2 k K rn is even, the coefficient of xm

in / g is the left side of the equation in the lemma. Since

the coefficient of xm in / g is £ ("^) = ̂ ^ (m^"n), as required.
If m is odd, the argument is similar, replacing g(x) by

k

and calculating the coefficient of xm~ι in / g.
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