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STABILITY OF COMPLEX VECTOR BUNDLES

PAOLO DE BARTOLOMEIS & GANG TIAN

0. Introduction

The notion of stability plays a central role in complex and algebraic
geometry.

It was introduced by D. Mumford [5] and F. Takemoto [10] for the
study of the moduli space of holomorphic vector bundles; S. Kobayshi
and M. Lύbke found that for irreducible bundles the existence of a
Hermitian-Einstein metric is a sufficient condition for stability, and
a major achievement of the theory has consisted in the work of M.
Narashimhan and C. Seshadri for algebraic curves, S. Donaldson in the
case of algebraic manifolds, K. Uhlenbeck and S.T. Yau for general
Kahler manifolds (easily extended to regularized Hermitian n-manifolds,
i.e., whose Kahler form η satisfies ddηn~ι = 0) proving the existence of
a Hermitian-Einstein connection on stable holomorphic vector bundles
([6], [1], [12]). Further generalization to Higgs bundles can be found in
[2] and [9].

These results have made the tools of differential geometry available
to complex and algebraic geometry, leading to several important ap-
plications, e.g., a much more extensive comprehension of Bogomolov-
Gieseker type inequalities and the characterization of flat vector bun-
dles. On the other hand, a general theory of the existence of holomor-
phic structures on complex bundles is far from being understood, and
therefore it is very natural to try to extend the differential geometric
characterization of stability to complex bundles with an unnecessarily
integrable almost complex structure.

The first main result of the present paper is the following.
Theorem 0.1. Assume a complex vector bundle over a compact

almost Hermitian regularized manifold is equipped with a stable almost
complex structure. Then it admits a Hermitian-Einstein connection.

The notion of stability which we consider is the following: we require
that μ(F) < μ(E) holds for any J-holomorfic subbundle F C E which
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is regular outside a set of Hausdorff codimension at least four and can
be extended across the singular set along any local J-holomorphic curve
not contained in the singular set. We conjecture that this notion of sta-
bility which is equivalent to the one obtained by considering F ranging
on J-holomorphic subbundles of p~ι{E) where p : M —> M is a mod-
ification. In the case where the base manifold is complex and E is a
holomorphic bundle, this follows from the results of [12]. We expect to
prove that this is also the case where the base manifold is two complex
dimensional. The plan of th paper is the following: in sections 1 and 2
we extensively investigate the notion of bundle almost complex struc-
ture (bacs); in section 3, looking for the best bacs, we decompose the
Yang-Mills functional 7M, obtaining that critical points are character-
ized by the condition 2d*ωΩ%2 + 2A*Ω2j° — idωHω = 0 and, moreover,
YM(ω) > e(E) (a topological constant) with equality if and only if
Ω°'2 = 0 and Hω = 0; therefore the Hermite-Einstein condition Hω = 0
arises naturally in the search of minima for YM. In section 4 we define
stable bacs and we start the proof of our main theorem: by utilizing an
improved version of Uhlenbeck-Yau and Simpson's techniques, we fix a
Hermitian structure ft, consider the evolution equation h^x^ht — —Htj

and show that the solution converges to a Hermite-Einstein structure,
unless a flag of weakly J-holomorphic subbundles is produced, one of
which contradicts the stability assumption. The proof here follows from
the arguments in [9], but several modifications are needed, due to the
nonintegrability of the base manifold. The end of the proof depends on
the regularity results for weakly J-holomorphic subbundles. We obtain
this as a consequence of a regularity theory for weakly J-holomorphic
map developped in section 5. In particular we prove the following.

Theorem 0.2. Let (M, JM,</), (iV, J^,ft) be two almost Hermitian
manifolds with diπiR M = 2n, and assume there exists a bounded closed
2-form a on N such that α1 '1 > 0 uniformly. Let σ : M —> N be a
L\-weakly (JM, JJV)-holomorphic map. Then there exists a closed subset
S C M with Ή2n-4(S) < +oo, such that σ is smooth on M/S; moreover,
for any xeS, any local J-holomorphic curve K through x not contained
in S, σ|κ_{x} extends smoothly to K.

The proof of Theorem 0.2 uses some ideas from [8]. Note that
(TV, JΛΓ,^, α) is a tamed symplectic manifold in the terminology of
[3]. We also prove that, if the target manifold has no rational curves,
then a Lj-weakly J-holomorphic map is regular. In case dim#R M = 4,
we expect to prove in a forthcoming paper that there exists a modifica-
tion M of M, obtained by blowing up M succesively at isolated points,
such that σ can be extended to M to be a smooth J-holomorphic map.
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The difficultes with higher dimensional cases are:
1. how to prove that the singular set is a J-invariant subvariety in a

suitable sense;
2. how to prove Hironaka's theorem for resolution of singularities in

the nonintegrable case.
The first author is partially supported by Italian murst, and the sec-

ond author by a grant from NSF and an Alfred Sloan fellowship.

1. Bundle almost complex structures

In this paragraph we gather some basic definitions and facts about
bundle almost complex structures. Let (M,JM) be a n-dimensional
almost complex manifold.

Definition 1.1. A complex vector bundle (E, J) of (complex) rank
r over M is a real vector bundle E of rank 2r over M equipped with a
section J of Έτιd(E) such that J 2 = — id#.

Given a complex vector bundle E of rank r, we can consider the
principal GL(r,C)-bundle C(E) of complex linear frames on E\

thus

E = C{E) xG L ( Γ ) Q M2r, where GL(r,C) acts on M2r via
the standard real representation p : GL(r,C) —> GL(2r,M);

Definition 1.2. A bundle almost complex structure (bacs) on C(E)
is an almost complex structure J on C(E) such that:

(1) the bundle protection π : C(E) —>• M is (J, J^-holomorphic;
(2) J induces the standard integrable almost complex structure

Js on the fibres;
(3) GL(r,C) acts J-holomorphically on C(E).

B{C{E)) will denote the set of bacs on C{E).
We can define

T™{C{E)) ~ L-\/\™{E)),

where L : T*(C(E)) —>> Λ*(E) is the standard isomorphism between
tensorial R2r -valued forms on C(E) and E-valued forms on M (cf.
[4]), therefore we have

(1.2.1) Tr{C{E)) = φ T™(C(£)).
p+q=r

It is easy to check that, if a bacs is assigned on C(E), then (1.2.1)
corresponds precisely to the induced decomposition.
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Let %(C(E)) be the set of all linear differential operators dc{E) '•
Tp>q(C(E)) -> T™+ι(C{E)) satisfying the following d-Leibnitz rule:
for every/ ε C°°(M),a ε Tp>q(C(E))

dC(E)7r*(f)a = π*(8Mf) Λα + π'(f)dclE)<*

We have the following.
Proposition 1.3. Given a J ε B(C(E)) the induced operator dj

maps Tp'q{C(E)) into Tp>q+ι{C{E)) and so, in particular, it belongs to
Ή,{C(E)); vice versa, given dc(E) ε Ή-{C(E)), there exists a unigue
J ε B(C(E)) such that dj = dc{E) Then the map J H> dj is a
bisection between B(C(E)) and H(C{E)).

Proof. Assume J ε B(C(E)) is given; since TPA(C{E)) is locally
generated by elements of the form π* (a) ® / for a ε Λp>q (M) and
/ ε T°(C(E)), it is enough to show that

which follows immediately from the fact that / ε T°(C(E)) is holomor-
phic when restricted to the fibres. Vice versa, assume d = dc(E) ε H{E)
is given. Then an almost complex structure J on C(E) is uniquely de-
fined by means of the relations

for every/ ε T°{C{E)) df(J(X))=i(2df-df){X).

It is easy to check that J ε B(C(E)) and, by construction dj — dc{E)>
Now we have the following.
Lemma 1.4. Let J ε B(C(E)) and ω ε C{C{E)), where C(C(E))

denotes the space of connection 1-forms on C(E). Then

and consequently
a/1-0* ε C(C(E)).

Proof. Letu ε C(E),X ε TuC(E),a ε GL(r,C). Then we have

)

iJ(Ra).(X))

=lad(a-1){ω[u](X)+iω[u]{JX))
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Moreover, if Y ε gl(r,C), then

ωW[u](Y*) = \ω[u](Y* + U(Y*)) = \ω[u](Y* - Y') = 0.

Consequently, we have
Proposition 1.5. Given ω ε C(C(E)), there exists unique J ε

B(C{E)) for which ω is of type (1,0).
Proof Let u ε C(E) and X ε TUC(E), and write X =

according to ω. Then define J as follows:

J[u](X) = ((TΓ-1). O JM O π»)M

It is clear that J ε B(C(E)) and ω is of type (1,0) with respect to it;
the uniqueness is obvious.

Therefore, we have just constructed a map χ : C(C(E)) —> B{C(E))\
this is not injective but is surjective because of Lemma 1.4.

Definition 1.6. Given J ε B{C(E)), we set

i.e., Cj'°(C(E)) is the set of all connection 1-forms in C(E) that are of
type (1,0) with respect to J.

By means of the previous result, we can easily prove the following
statement, which has nothing to do with connections:

Proposition 1.7. Let J ε B(C(E)). Then its Nijenhuis tensor
N(J) is horizontal Moreover, if JM is integrable, then N(J) is vertical-
valued.

Proof Let ω ε Clj\C{E))>
a. If both X and Y are vertical, then

because Js is integrable.
b. If X is vertical and Y is horizontal, then we can assume X = A*

for A ε gl(r,C) and Y = Z (horizontal lifting) for Z ε H(M). Since
clearly JY = (JMZy, we have

N(J) {X, Y) = [JX, JY] - [X, Y] - J[JX, Y] - J[X, JY)
= [{iA)\ {JMZ)\ - [A\ Z] - J[(iA)\Z] - J[A\ {JMZ)\
= 0,
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this proves that N(J) is horizontal. Moreover, if X = Z and Y = W
for Z, W ε H(M), then, since [Z, W] = [Z, W]+ [Z, W](υ\

N(J)(X,Y)

= [(jMzι (JMWJ\ - [z, w] - j[(jMzy, w] - j[z, {jMw)\

We have now
Proposition 1.8. Let J ε B(C(E)) and let ω ε C}l0(C(E)). Then

(1-8.1) {Dω)^ = dj,

and consequently

Dω:T°(C(E))—^T1(C(E))

splits as

(1.8.2) Dω = dω + dj,

where dω := (I^) 1 - 0 . More generally, we have that

Dω : V'9(C(E)) —> V+9+1(C(E))

decomposes as
Dω = dω+dι+ A>

where A : TP'9(C(E)) —> T p + 2 »-1(C(^)) Φ r p - l l ? + 2 (C(E)) is a zero
order operator, depending only on N{JM), and vanishing identically
when JM is integrable. In particular, if a ε T^C^-E)), then A(a)(X, Y)
a(N(J)(X,Y)) = a(Z), where π,(Z) = N(JM)(πt(X),irt(Y)).

Proof. Given a ε TP'"(C(E)), we have:

D^a = (Dωa)p'q+1 = (da)p'q+1 + (ω A α) p 9 + 1 = (da)p'9+1 = dja.

Moreover, if a = τr*(7) <g> /, with 7 ε Ap " (M) and / ε ^ ( C ^ ) ) ,
then

Dua = π*(dj) ®f + (-l)p + ίπ*(7) Λ Dωf.

Since dη = OMJ + QMΊ + ^M(7)> taking into account the fact that π is
(J, JΛί)-holomorphic we have

Dωa = π*{dMΊ + dMΊ + AM(j)) <8> / + (-l)p +«π*(7) Λ (dωf + djf)

7 ) Λ (dωβ
1(7) Λ (djf)

+π*(AM(l)) ®f = dωa + dja + A(a).

Note also for given ω ε C(C(E)) and a ε

(1.8.3) dx{ω+a)=dxiω)+a
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The following is another important consequence of the previous results:
Proposition 1.9. Let J ε CX/{C{E)). Then

(1.9.1)

(1.9.2)

Proof. We have:

and

Ω°'2 = (Dω)°<2 = (dω)0'2.

If X and Y are horizontal, then

= (dω)°'2(X,Y) = j

( M , Y) - dω{JX, JY) + idω(JX, Y) + idω(X, JY))

= ~(ω([X, Y]) - ω([JX, JY]) + iω([JX, Y]) + iω([X, JY])

= \(ω([JX, JY]) - ω([X, Y]) - ω(J[JX, Y]) - ω{J[X, JY])

= 1

ι(ω(N(J)(X,Y)).

Combining Propositions 1.8 and 1.9 gives immediately
Corollary 1.10. Let J ε B(C(E)). Then

(a) // JM is integrable, then Ω '̂2 is independent of the choice of
ω ε C)'\C{E)).

(b) // JM is integrable, then Ω° 2 = 0 for every ω ε C)fi{C{E)).
(c) If JM is integrable, then J is integrable if and only if ίί°'2 = 0

forω ε CY{C{E)).
We have seen in Proposition 1.3 that bacs on C(E) are in one-to-one

correspondence with elements of iϊ(C(E))','U(C(E)) is also in one-to-
one correspondence with the set T-L{E) of linear differential operators
dE : Λp>q(E) —> Λ™+ι{E), satisfying the following 5-Leibnitz rule:
for every/ ε C°°(M),a ε Λ™ (£?),

dEfa = dMf Λa + fdEa.



238 P. DE BARTOLOMEIS & G. TIAN

This correspondence is obviously given by dE = L o dc(E)) ° L~λ

and, given an (1,0)-connection form ω, we have the splitting V = <9v +
dE of the induced exterior covariant differential operator, exactly as in
Proposition 1.7.

The discription of bacs's through the elements of H(E) makes espe-
cially easy to perform some functorial constructions; in fact we have:

Proposition 1.11.

(a) Assume a bacs is given on C(E). Then a bacs is induced on
C(E*).

(b) Assume bacs's are given on C(Eχ) and C{E2). Then bacs's are
induced in C(E1 Θ E2) and C(E1 ® E2).

Proof.

(a) Let dE : Λp>q(E) —> Λp>q+1{E) be the linear operator associated
with the given bacs. Then define dE* : Λp>q(E*) —> Λp>q+1(E*)
by means of the relation

dM < τ*,σ >=< dE*τ\σ > + < τ*,dEσ > .

(b) Just set
dβ1φE2 '= dEl Θ dE2

and

where, of course, (dEl ® dE2)(σ ® r) = dElσ ® r -f σ ® dE2τ.

We need the following four definitions.
Definition 1.12. Let J ε B(C(E)). Then a section σ of E is said

to be J-holomorphic if it satisfies dEσ = 0; this of course, is equivalent
to say that, if / := £~ V ) ε ^ ( C ^ ) ) , t h e n djf = °

Definition 1.13. Assume bacs's assigned on C(Eχ) and C(E2); a
bundle morphism φ : Eλ —> E2 is said to be J-holomorphic \ίdE*®E2φ =
0.

Definition 1.14. Assume r = p + q and let F C E be a real
vector bundle of rank 2p. We say that F is a complex subbundle of
(complex) rank p of the complex bundle (E, J) if J\F is a section of
End(F); it is clear that, in this case, the quotient bundle E/F has an
induced structure of complex vector bundle.

Definition 1.15. Let J ε B(C(E)). Then a complex subbundle
F C E is said to be a J-holomorphic subbundle if dE maps Λp'q(F) into

Remark 1.16. If we consider the complex Grassmann manifold of
complex p-planes in C ,

Grp(σ):=GL(r,C)/Lq,p(C),
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then a complex subbundle F C E of rank p corresponds to a section of
the complex Grassmann bundle

Grp(E) := C(E)/LqJC) = C(E) xG L ( r, q Grp(Cr).

Moreover, if J ε B(C(E)) is given, then an acs is induced on G^(E);
it is easy to check that J-holomorphic subbundles correspond to J-
holomorphic sections of G^(E).

Note also that, if F is a J-holomorphic subbundle, then

(a) J induces bacs's both on C(F) and C(E/F)\
(b) dE^q{F) = dF.

We have now the following two results (the proof of which is essen-
tially strightforward)

Proposition 1.17. Let J ε B(C{E)), and let F C E be a
J-holomorphic subbundle; then the inclusion map i : F —> E is J-
holomorphic.

Proposition 1.18. Assume bacs's are assigned on C(Eι) and C(E2),
and let φ : Eλ —> E2 be a J-holomorphic bundle morphism with con-
stant rank. Then keτφ and Im φ are J-holomorphic subbundle and, con-
sequently, C(cokeτφ) is equipped with a bacs.

Definition 1.21. Let J ε B{C(E))-, then E is said to be J-simple if
any J-holomorphic endomorphism is the form \idE, with λ ε C°°(M)
(and therefore satisfying ΘM^ — 0).

An important fact is inclosed in
Proposition 1.21. Let J ε B(C(E)); then, generically

(a) there are no local J-holomorphic sections of E;
(b) E is simple;
(c) there are no local J-holomorphic subbundles of E.

2. Hermitian structures

Let now (2£, J) be a complex bundle of rank r over M.
Let J ε B(C(E)), assume a Hermitian structure h is assigned on E

and let Uh(E) be the principal C/(r)-bundle of /ι-unitary frames on E\
we have the following fundamental result:

Proposition 2.1. There exists a unique connection on Uh(E) such
that its connection 1-form, when extended to a connection form on C(E)
is of type (1,0) (in other words C)m0(C(E))nC(Uh(E)) consists of a single
element); this connection is called the canonical Hermitian connection.

Proof. Let h : C(E) —> GL(r, C) be defined as
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(i.e., if u = {σu , σ r , Jσ1,> , J σ r } , then h(u) = {h(σά,σk)

-ih(σό, Jσfc))i<7,*<r). Then

(1) Uh(E) = {u ε C(E) I h(u) = /},

(2) for every u ε C(E),a ε GL(r,C) we have h(ua) =ι ah(u)a,
and consequently:

(a) (hoR^^ul^άh^u]^ _

(b) if X ε gl{r,C) then k[u](X*) =ι Xh(u) + h{u)X.

Set

(2.1.1) ωh := h~ιdjh.

It is easy to check that ωh ε Cj'°(C(E)); clearly ωh reduces to an
element of C(Uh(E)): in fact, ifu ε Uh(E), then

(2.1.2) keτωh[u] = T ^ E ) Π JTuUh(E);

the uniqueness follows from the fact that

(2.1.3) T1(Uh(E),u(r))nr^(C(E)1gl(rX)) = {0},

which is an easy consequence of the relation u(r) Π iu(r) = {0}.
Therefore we have:
Corollory 2.2. There is a one-to-one correspondence between the set

B(C(E)) o/bacs on C(E) and the affine space C(Uh{E)) of connection
on Uh{E).

In order to simplify our notation, from now on we will identify h and
h.

The following proposition describes the behaviour of the canonical
Hermitian connection when the Hermitian structure changes.

Proposition 2.3. Let k be another Hermitian structure on E and
let g := h~ιk; then

(1)

(2.3.1) ωk = ωh + g~ιdωhg.

Therefore, if JM is integrable, then

(2)

(2-3.2) Ω°f = Ω°f

and the (0,2) -component of the curvature form is independent of the

Hermitian structure, i.e.,

(3)

(2-3.3) ί£f = g-Wj°hg.
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Proof.

(1) We have

ωk = k^djk = {hg)-χdj{hg) = g-^Kdjfήg + h(djg)}

^ g~ι (dωhg - [ωh, g]) =ωh + g^d^g.,

(2) which follows directly from (1.9.2.) or the (0,2)-component of
the relation

(2.3.4) Qωk = Qωh + Dωh{g-ιdωhg) + ^g^d^g-^g].

(3) Taking the (2,0)-component of (2.3.4) yields

+ dUh {g-λdωhg) + g-ιdωhg A g-ιdωhg

- g-ιdUhg A g^d^g + g-ιd2

ωhg + g-χdωhg A g^d^g

Let (E, J, h) be a complex vector bundle of rank r = p + q equipped
with a Hermitiann structure, and let F C E be a complex subbundle of
rank p. Then S := FL is a complex subbundle of E with rank S = q
and E = F® S, and ET^F) + Uh(S) is a J7(p) x [/(ςr)-reduction of Uh(E)
with embedding

i:Uh(F) + Uh(S)—>Uh(E).

Let / F : Uh(F) + C7Λ(5) - > ^ ( F ) and fs : Uh(F) + Uh(S) —> ϋ"Λ(5)
be the natural maps, and let ω ε C(Uh(E)). Then i*{ω) splits as

where

with

ώ ε

i*(ω)=ώ

C(Uh(F) -

+ α,

\-Uh(S)),

0

for ώF ε C(Uh(F)) and ώs ε C{Uh(S)), and

a [σ 0

for

σ ε TMtW + tM^M^Q.p),
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where p : U(p) x U(q) —> Aut(Mg>p(C)) is given by p(A,B)(X) :=
BXA-\ Therefore, on Uh(F) + Uh(S),

(2.3.5) ίlω =
Dώσ / * ( Ω ώ 5 ) _ I [ σ /

(2.3.5) is called the Hermitian Codazzi-Mainardi equation, and σ the
second fundumental form of F in E. Therefore — ισ is the second fun-
dumental form of S in E.

It is immediate to check that, if s ε Λ° (F), then Vωs decomposes
according to the splitting ΛX(E) = ΛX(F) Θ Λ 1 ^) as

(2.3.6) Vωs = VώFs + L{σ)s.

Now we have
Proposition 2.4. Let (£7, J, h) be a Hermitian bundle, let F C E be

a complex subbundle, and let J ε B(C(E)). Then the following facts
are equivalent:

(a) F is a J-holomorphic subbundle,
(b) the orthogonal projection ΘF : E —> F satisfies

(2.4.1) (I - ΘF) odE.®EθF = 0,

(c) the second fundumental form σ od F in E with respect to the
canonical Hermitian connection is of type (1,0) (in the sense
thatL(σ) ε Λ ^ ^ F o m ^ F ^ ) ) .

Proof, (a) & (b) : Let t ε A°{E). Therefore ΘF o t ε Λ°(F). Since

dE(θF o t) = (dE.0EθF)(t) + θF(dEt),

we obtain

( j - ΘF) o dE(θF o ί) = (/ - ΘF) o dE.®EθF(t),

and therefore

dE maps Λ° (F) into Λ0'1 (F) <£> (/ - ΘF) o dE.®EθF = 0.

(a) & (c) : Let s ε A°(F). Prom (2.3.6), in particular, it follows

so that

(L(σ)(s))° 1 = 0 «• dEs ε k°

Remark 2.5. If pF := L~ι(θF), then (2.4.1) is equivalent to

(2.5.1) dωPF(I - pF) = 0.
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Let (E, J, h) be a Hermitian vector bundle of rank r over M, let
M ε T°(C{E)Xr), and set

(2.5.2) Ks.t—

Then

< 5,t > (ua) =ι s(ua)h(ua)t(ua)
=ι a~ιs(u) ah(u)aa~~λt(u)
=<s,t> (u),

< s,ί > (u) is a well defineded function on M, and from the very

definition of h it follows that

(2.5.3) <s,t>=h(L(s),L{t)).

More generally, we obtain
Definition 2.6. Assume M is equipped with a Riemannian struc-

ture #; then extend <, > to Tp(C(J5),Cr) in the following way:

Ifφ,ψ ε TP(C{E),C) are of the form 0 = π*(μ) ® s , ^ = π*(i/) ®ί,
forμ,i/ ε Λp(M),5,ί ε T°(C(£),C r), then set

and extend to the general case by the Hermitian bilinearity.
Again <,> is a well defined function on M, and for every

φ,ψ ε Tp(C{E),Cr) we have

(2.6.1) <φ,φ>=(g®h)(L(φ),L(φ)).

Let now s ε 7~°(C(E),gl(r,C),ad), and define s # by the relation

ίc\ n r\\ t̂ /' \ . jL—1 / - . \ t c(n \h(η \

It is easy to check that s* ε TΌ(C(E),gl(r,C),ad). If t ε
T°(C(E),gl(r,C),ad), then set

(2.6.3) < 5,t > = t r

Again the following hold:

(a) <, > is well defined function on M.
(b) Whenever M is equipped with a Riemannian structure, <, > can

be extended to

Tp{C{E),gl{r,C),ad)

(c) A relation analogous to (2.6.1) holds.
(d) If a ε Tp(C(E),gl(r,C),ad), then α # is obviously defined by

the relation
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(2.6.4) a*(Xu- ,Xp);=(a(Xu ,XP))*.

Note that a ε T"'q O a* ε T 9 l P; in particular,

(2.6.5) Ω2 ° = -(Ω° 2)#

for a Hermitian structure h on E.

3. Yang-Mills functional, Donaldson's Lagrangian
and the Hermite-Einstein condition

Prom now on, let (M, JM,9) be a compact n-dimensional almost Her-
mitian manifold whose Kahler form η satisfies dηn~ι = 0.

Let (£7, J, h) be a Hermitian vector bundle of rank r over M. Given
α; ε C(Uh(E)), we set:

ϋΓi'1 := ΛΩ '̂1 (contraction with r/),

σωι=trKl;\

deg(E) := / C l(E) A//-1 = J -

:= 1 deg(E),

Hω := if^ 1 - ik(E)I; Hω is called the Hermite-Yang-Mills curvature.
We have the following decomposition result for the Yang-Mills func-

tional (cf. also [11]).
Proposition 3.1. Let YM : C(Uh(E)) —> R+ be the Yang-Mills

functional, i.e.,

YM(ω) := \ ! I Ωω | 2 dμ(g);
* JM

then

(3.1.1) YM(ω) = e(E) +2 ί \ ίl°f | 2 dμ{g) + \ ί \HU\2 dμ(g),
JM * JM

where

e(E) := 2τr2n(n - 1) / (2c2(E) - c\{E)) A η"'2 + \ ί k2(E)dμ(g).
JM 2 JM

Proof. Given ω ε C(Uh(E)), we have

Ωω = Ωi 1 + (Ω2 ° + n°f) and | Ωω | 2 = | Ω^ 1 |2 +2 | Ω° 2 |2 .
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Let px and p2 be the first two Chern's polinomials. Then

(2p2(Ωω) - P l ( Ω ω ) Λ P l (Ω ω )) Λr/""2

(2p2(Ωω) - Λ ( Ω ω ) ΛPl(nω))2'2 Ληn~2

+ 2(2p2(Ω2 ° Λ Ω° 2) -M&J0) ΛPl(Ω° 2)) Λ

now

2P2(Ω2 ° Λ Ω°j2) - P l ( Ω 2 °) ΛPl(Ω°j2) = ^ Σ ^ ^ Λ (Ω°'2)^
j,k=l

and

(Ω2 °)ifc = Ωg j J kββ Λ θβ and(Ω° % = ί l ^ ^ f e Λ %,

where {βi, ,θ n} is an orthonormal coframe in M such that

η = i Σn

a=ι θ<* Λ θ« W e h a v e a l s o

Qθ,2 _ O2,0

Therefore

n(n - 1) Σ > ° 2 );* Λ (Ω° 2 ) f c j Λ ηn~2

= n(n - 1) Σ n2fyjkΩ°^kjθa Λ 07 Λ % Λ A? Λ

o 0 ' 2 o 2 ' 0 o 0 ' 2 <̂M
n

°>2 ^ Λ o n o i o ° > 2 i 2 «^n

) Λ r/^

(2c2(E)-cl(E))Λη»-2

= (4π2n(n - l ) ) " ^ Ω^1 | 2 - | K1^ | 2 - 2 | Ω^'2 \2)ηn,

or

I n i 1 1 2

 η

n

= 4τr2n(n - l)(2c 2(E) - c\{E)) Λ r,""2 + (2 | Ω° 2 | 2 + | K1/ \2)ηn.

Moreover
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and therefore

/ I Jft 1 I2 dμ(g) = ί \Hω\2 dμ(g)+r ί k2(E)dμ(g).
JM JM JM

Hence the proof of (3.1.1) is complete.
The following two propositions are immediate consequences of Propo-

sition 3.1.
Corollary 3.2. For every ω ε C(Uh(E)) we have

YM(ω) > e(E),

which the equality holds if and only if

Ω°'2 = 0 and Hω = 0.

Corollary 3.3. // Hω = 0, then

- (r - l)c^)) Λ „ -

- I tτ(iy \3)dμ(g) > 0,

with equality iff

We have also
Proposition 3.4. ω ε C(Uh(E)) is a critical point for the

Yang-Mills functional if and only if it satisfies

(3.4.1) 2d*ωn0/ - 2A*Ω2f - dωHω = 0.

In particular, this is the case if ω is a critical point both for

ω *-> / I Ω ;̂2 I2 dμ(g)
JM

and

ω^ ί \Hω\2dμ(g).
JM

Proof. Consider in C(Uh(E)) a curve t \-ϊ ωt = ω + at with a0 = 0

and υ = £tat\t=0'
 τ h e n

0^ + Av1*) + o(t)

and

Hωt =
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Consequently, from Proposition 3.1 it follows directly that

d.
-YM{ωt)|ί=0= / <D*ωΩω,v
at JM

JM

dμ(g)

= / 2Re(<
M

dμ(g),

and so ω is a critical point if and only if it satisfies (3.4.1).
Proposition 3.5. Let ω ε C(Uh{E)) and let J ε B{C(E)) be the

corresponding bacs. If E is J-simple, then DωHω — 0 is equivalent to
Hω = 0.

Proof. Prom DωHω = 0 it follows that the eigenvalues of Hω are
constant, so that E decomposes J-holomorphically into eigenbundles; by
J-simplicity, this decomposition is trivial implying that Hω = 0 since

M

One of the main purposes of this paper is to characterize those ele-
ments of B(C(E)) for which there exists a Hermite-Einstein structure
/ι, i.e., a Hermitian structure satisfying the Hermite-Einstein condition
Hωh = 0. Assume from now on that ^M^M^ωh

= 0.
We need to introduce some further machineries (cf. [9]).
Let J ε B(C(E)), Herm{E) := {Hermitian structure on E},, and

fix h ε Uerm{E).

(1) Let

Sh(E):={p ε r>(C(E),gl(r,C),ad) \p = p*}.

If s Sh{E), then for every x ε
> GL(r,C) such that

M we can choose C

with

Λ = , λr ε

C(ua) = C(u)a and C(u)C#{u) = h{u).

Moreover

I s{u)2 \= trΛ2;

in general, if p ε T(C(E),gl(r,C),ad), then pc{v)
C(u)p(u)C~ι (u) depends only on x and < p,q >=
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(2) a. Given φ ε C°°(R,IR) and 5 ε Sh(E),x,C as before, we set

φ(s) := C'lip{A)C

where, of course,

V(λi)

φ(A):=

b. Given Φ ε C°°(Rxi,R),s ε Sh(E) as before and
p ε T°(C{E), g/(r,C),αcf), we set

Φ[s](p) := C~^(A,p c)C,

where

Φ(Λ,pσ) := (Φίλ^OίPσ)*)-

The following are clear:
i) </?(s) and Φ[s](p) are independent of the choice of C,
ii) < ΦW(p),p >= ΣJtei Φ(λi, λft) I feU I2

c. Finally, if ψ ε C7°°(M,R), then we set

if λ φ μ,

if λ = μ.

A straightforward computation gives:

δφ[s](ds) = dφ(s).

(3) Let SQ

h{E) := {s ε Sh{E) | /Mtrsr;n = 0} and define Donald-
son's Lagrangian

Vh : S°h(E) —> R as follows:

Vh(a):= I <is,H>ηn+[ < s,Ad(Φ[s](dωhs)) > ηn,
JM JM

where

Φ(λ,μ) :=φ(\- μ) with e~x + Λ - 1

λ2 and H = Hωh.

The basic property of Donaldson's Lagrangian is contained in
Lemma 3.6. Given r ε S%(E) and s ε S%er(E), we have

(3.6.1) \
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equivalently, ifh,k,j ε Ή,erm{E) and M(h,k) := Vh(log h^k), then

(3.6.2) M(hJ)=M(h,k)+M(k,J).

Proof. First of all we have the following two relations:

d2 d2

(3-6.4) V(( + ))

in fact

»-(y5)|(o,o)= / i(tτsAddωhr)ηn,
JMdxdy

and

= f i(trsAddωhr)ηn;
JM

tτsAddωhr)ηn

(the last equality follows from the assumption BM^M^Γ1 = 0) I* ^s

clear that by rescalling it is enough to prove (3.6.4) for the case x = 1.
Of course,

Since

JM

IM

where

if r = C-χhC,

and consequently
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Thus

^
Vh{xr)ll= I i(tτrAddωherr)ηn =

JMdx2

From (3.6.4) it follows that ^(Vh((x + y)r)-Vhe*r({x + y)r))\y=0 = 0.

(a) Passing from x to x + y0 gives

— (Vh((x + y0 + y)r) - Vhe^yo)r {(x + y)r))ly=0 = 0.
dy

(b) Passing from h to hexr yields

Vhe*r((y0 + y)r) - Vheim+V0)r((x + y)r))\y=0 = 0.

Therefore

which implies that

(3.6.5) Vh((x + y)r) = Vh(xr) + Vher(yr).

Let f(x,y) := Vh(xr) + Vhe*r(ys) - Vh(\ogexreys). Then clearly

/(0,0)=0, /(0,y)=0, /(*,0)=0.

Moreover, (3.6.3) implies that ^^(0,0) = 0 so that

(3.6.6) f(x,y) = o(\x\2 + \y\2).

Consider the triangle T : = { [ * ] ε E2 | 0 < y < x < 1} and
let H : T —> Herm(E) be defined as H[x

y] := ΛeίBreyβ; finally set
LiTxT —^ R as L(p, g) := M(H(p), H(q)). Then the following hold:

(a) (3.6.5) is equivalent to saying that, for given Pi,P2?ί>3 ε T on
the same line,

s) - L(pup3) = 0,

and consequently, given any Pι-,P2 >P^ £ 2\ if we choose ς^, on
the line pϊpj and g2 on the line

h
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then

L(p2,p3) — L(pι,p3)

q2) - L(puq2)

L(P2>p3) -L(qup3)

+ L(qι,p3) - L(quq2) - L(g2,p3),

i.e., we can reduce the problem to smaller triangles,
(b) Prom (3.6.6) it follows that there exist two positive constants C

and K, depending on r and s, such that, for any e > 0, there
exists δ > 0 such that, if P\,p2,p3 ε T satisfy

(a): d(pj,pk) < e, 1 < j,k < 3,
(β): C~1d(pup2) < d(p2,p3) < Cd(pup2),
(7): d(pι,p2) - d(p2,p3) < Carea(pi,p25^3)5

then

L(pι,p2) -+• L(p2,p3) — L(pι,p3) < eKarea(pi,p2?P3)

Taking arbitrary small triangular nondegenerate subdivision, we can
easily conclude that /(1,1) = 0 .

As a consequence of Lemma 3.6, we obtain immediately
Corollary 3.7. 5 ε S%(E) is a critical point for V~h if and only if

k \— hes corresponds to a Hermite-Einstein structure.
We also have
Corollary 3.8. // E is J-simple, then there exists at most one (up

to homotheties) Hermite-Einstein structure on E.
Proof. Let /ι, k be two Hermitian structures on E and let k := hes]

clearly, we can assume s ε S%(E). Then set ht := hets, 0 < t < 1. A
direct computation gives

^Vh(ts) = \\ds\\lt;

in particular, it follows that if both h and k satisfy the Hermite- Einstein
condition, then ds = 0. q.e.d.

As a general result, let us mention also the following:
Proposition 3.9. Any J-holomorphic line bundle F admits a

Hermite-Einstein structure.
Proof. Let h be any Hermitian structure on F\ then K^ = iλl for

λ ε C°°(M), and if k = e"/ι,_then Ktf = Ktf + i(Ώμ)I = i(X + D/i)/,
where, of course D := il
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Now,

ίκ^ηn = k(F) Volg(M) and consequently I\k(F) - λ)ηn = 0.
M M

It is possible to find μ such that Ώμ = fc(F) — λ and clearly K]£ =
ίifc(F)/. q.e.d.

Finally, we have:
Proposition 3.10. Assume E is equipped with a Hermite-Einstein

structure. Then the following hold:

(1) If deg(E) < 0, then E admits nonon zero J-holomorphic sec-
tions.

(2) Ifdeg(E) = 0, then every J-holomorphic section ofE is parallel.

Proof. Assume dσ = 0. Then

dMdMlσfAη-1 = (\dσ\2 - k(E)\σ\2)ηn,

and so

M

Hence the result follows immediately.

4. Stability and existence of Hermite-Einstein structures

Let (M,JM,g) be a compact n-dimensional almost Hermitian man-
ifold whose Kahler form η satisfies ^M^M^/7 1"1 = 0, let Hs denote the
s-dimensional Hausdorff measure let (22, J) be a complex vector bundle
of rank r over M, and let J ε B(C(E)). Consider the following class of
objects: F ε T(J) if

[1] there exists a closed subset S C M with H2n-4(S) < +oo,
such that F\M\S

 ιs a J-holomorphic subbundle of E\M\S\

[2] for any x ε S, and any local J-holomorphic curve K through
x not contained in S^F\κ-{x} extends to K as subbundle.

Note that, by a result of Nijenhuis and Woolfs [7], given any complex
tangent vector to M, there exists a local J-holomorphic curve tangent
to it .

In the case n = 2, we can assume T{J) to be the class of J-holomorphic
bundles F on M for which there exists a J-holomorphic generically im-
mersive map i : F —> E .

If F ε ^ ( J ) , it is easy to see, by slicing and then using Fubini's
theorem, that the corresponding section π of E* ® E is in Lj, and so it
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is possible to define deg(F), according to the Chern-Weil formula, as

deg(F) :=

M

where h is any Hermitian structure on E. Clearly if F is regular, by
Codazzi-Mainardi equations, this definition coincides with the one given
at the beginning of Section 3.

We set the following definition.
Definition 4.1. We say that E is J-stable (resp. J-semistable) if,

for any F ε F{J), with 0 < rankF < r, we have:

μ(F)<μ(E) (resp. μ(F) < μ(E)).

We first have
Proposition 4.2. Assume E is J-simple and admits a Hermite-

Einstein structure h. Then E is J-stable.
Proof. Let F ε T(J) with 0 < rankF = p < r, and let π be the

corresponding section of E* ® E. In general, we have

J ,Kιfh > ηn = j < iπ,Hωh > ηn + j < π,k(E)I > ηn

M M M

= j < ϊπ, Hωh >ηn + 2πpnμ(E),

M

and so

μ(F) = μ(E)
M

Consequently, if Hωh = 0, it follows that μ(F) < μ(E) where the equal-
ity implies that F corresponds to π satisfying Dωhπ = 0 so that π is
globally regular and E = F Θ F1- J-holomorphically, contradicting J-
simplicity.

We are now in position to state our main theorem.
Theorem 4.3. Let (M, JM->9) be a compact n-dimensional almost

Hermitian manifold whose Kahler form η satisfies dj^duVΓ'1 = 0; ^
(E, J) be a complex vector bundle o/rank r over M, and let J ε B(C(E))
such that E is J-stable. Then there exists a unique (up to homotheties)
Hermitian structure h on E satisfying the Hermite-Einstetn condition
Hωh = 0 .

Proof. The general lines of the proof are the following. Investigate
the existence of a Hermite-Einstein structure via the heat equation, show
that the only possible obstruction to the solution is the existence of a
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weak J-holomorphic subbundle, and then obtain the result by proving
the regularity of weakly J-holomorphic maps.

Fix a Hermitian structure h such that tr H = 0 where H = Hωh.
We consider the evolution equation

(4.3.1) h-χjht = -Hu

which is a parabolic equation. By the standard theory of parabolic
equations, there exists a T > 0 such that (4.3.1) can be solved for
ίε[0,Γ[;
let {ht}te[o,τ[ be a solution with h0 = h. Set gt := h0

 ιht we have
Lemma 4.4.

(1) For every t ε [0,Γ[ , we have tτ\oggt = 0.
(2) || Ht Hoc is a monotone decreasing function of t and thus, in

particular, there exists Cλ > 0 such that for every t ε [0, T[ , we
have

(4.4.1) || Ht | |o o< d.

(3) Vh(loggt) is a monotone decreasing function of t and thus, in
particular, there exists C2 > 0 such that for every t ε [0, T[, we
have

(4.4.2) Vh(loggt) < C2.

Proof. (1) and (2): From Kιftht = -Ht it follows ±Ht = -ΏtHt

and so

Therefore (2) follows directly from the maximum principle;
this gives also tr Ht — 0.

Finally,

0 = -tτHt = tτh^—ht = — tτ\oggu trlogg0 = 0.
at at

(3) Consider -^Vh(gt). Because of Lemma 3.6, we only need to
compute

it for t = 0 and so we easily obtain

d ^T / X

M
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Therefore Donaldson's functional is decreasing along the given path.
Corollary 4.5. There exist constants Kλ > 0, K2 > 0 such that, for

every t ε [0, T[, we have:

(4.5.1) | | log<fc| |oo<tfi+#2||logίfc| |i.

Proof. The desired estimate follows from the following three facts:

(a) If / ε C°°(M) satisfies Δ/ < k, then || / H ^ c(k) || / | |i.
(b) If g = h~ιk, then we have Δlogtrg < 2( | i ϊ ω J 2 + | # ω J 2 ) .
(c) If g ε Sh{E) satisfies tr logg = 0, then

Only (b) deserves some further comments. We start from

iλddωhg = iAdigg-'d^g) = ig{Hωk - Hωh) + iλ(5g Λ g-ι

Therefore

<{\Hωk\ + \Hωh\) txg + iAti(dg Λ g~ιdωhg)

i. e.,

Δtr f f + \dgg-^2\2 < (\HUh\ + \HUh\)trg.

Since

2 (tr g)'1= Atτg + \d tr g\2 (tr g)

we obtain (b).
Now, there are two possibilities:

(1) There exists K > 0 such that , for every t ε [0,T[,

\\loggt\UKK.

It follows that gt —> g and g corresponds to a Hermite-Einstein
structure.

(2) limsup || log^ | | i= +oc.

Assume we are in case (1). Then gt —> gτ If T < +oo , by the
theory of parabolic equations we can extend {gt} to [0,T + ε[ for some
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ε and so T = +00; g^ corresponds to a Hermite-Einstein structure; in
fact, for any s ε Sh{E), we have

Vfc(s) > - J\a\\H\ηn + J < s,Ad(Φ[s](dωhs) > ηn

M M

= - ί\s\\H\ηn + ί < s,Φ[s](dωhs) > Λdη*1-1

M M

+ ί <Φ[s]{ds),ds>ηn.
M

Since

|y"<5,Φ[s](5ωhs)>Λa7?

n-1 <σ\\s lun a* \\\
M

from II \oggt ||oo< K for every t ε [0, +oo[, it follows that Φ > C > 0 on
the range of the logo's, so that

, dloggt >ηn>C\\ dloggt \\2

2 .

M

Therefore, there exists A > 0 such that , for every t ε [0, +oo[,

> -A.

Consequently,

(a) from ft \Ht\
2dt = -VhQσggp), it follows /0°° \Ht\

2dt < +00
and, in particular, lim || Ht \\2= 0

t—>+oo

(b) / < Φ[loggt](dloggt),dloggt > ηn < K' uniformly on t and

so II dloggt ||2 and || dgt ||2 are uniformly bounded.

Thus it follows that , up to subsequences, gt —> g^ in L\ and H^ = 0;
the standard elliptic regularity implies that g^ is smooth.

Assume, from now on, we are in case (2).
In particular, we can choose (Cm), Cm —> +00 and (£m),ίm —> +00

such that

i) \\loggtm Hi—

ii) H l o g ^ l ^

Let um := | | log^ίm ||χ and sm := u~x loggtm. Then

and II β m ||oo< ϋf.
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Now

logg
t m | | i>

=ϊivmj <sm,H>ηn

M

ηn

M

sm,Φ[vmsm](dωhsm)
M

(4.5.2)

Prom

Vm < Φ[vmSm](βsm)J)sm > > < Φ[5m](δ5 r o),35,

and the fact that

M

Adηn λ
' || ds

uniformly, it follows that

f < Φ[sm](dSm),dsm >ηn<K0+K' || dsm || .
M

Since Φ > C > 0 on the range of the sm 's, we obtain

II dsm \\\< Kx + K" II dsm ||, i.e., || dsm | | 2 < K.

Finally, passing to a subsequence, sm converges weakly to u in L\\
clearly, u is nontrivial.

A close examination of the convergence leads to
Proposition 4.6.

Q

k=l

where:

(a) q > 2, λk ε E, 1 < k < q and Xλ < ... < λg;
(b) pk = pf = p\, l<k<q, p^ = δjkpj, 1 < j , k < q and

Σ
k=l

3 __

(c) TTj := Σpk satisfies (I — πj)dπj = 0 , 1 < j < q;
k lk=l

(d) for at least one j , 1 < j < q — 1, we have μ{nj) > μ(E).
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Proof. Set d0 :— dωh. Recall that, given a positive definite
g ε Sh(E), iίg = C~1eAC, then:

(4.6.1) d0log<7 = C~ι{d0A + [A,P))C,

(4.6.2) dlogg = C~ι{dk + [Λ, Q])C,

(4.6.3) g-'dog = C'^doA + P- e~APeA)C,

(4.6.4) g-'dg = C~1(dA + Q- e~κQeκ)C

with P := doCC'1 and Q := dCC'1. Consequently

(4.6.5)

(4.6.6) Ig-'dogl2 = \d0λ\2 + \P- e~KPeK\2.

moreover

(4.6.7) |[Λ,P]|2 = Σ{\Q- \0)
2{\Pa0\

2 + \Pβa

oc<β

(4.6.8)

| P - e- Λ Pe Λ | 2 = ^ ( 1 - eλ"-λ«)|Pα / 3 |
2 + (1 - ex"

a<β

< d0 logs, g-'dog > = Σ ( λ « " λ/,)(l - e λ "- λ °) |P^ | 2 + |doΛ|2

a,β

(4.6.9) > |50Λ|2,

and similar equation for d. Therefore, we obtain that, for any k ε Z+,
we have:

d0(logg)k = C-'idoA" + [Ak,P])C,

|trc>o(log<7)*| < llogsl^iaoΛI < (log^l*"1

It follows immediately that along the heat flow,

| | t r d 0 ( l o g 5 t ) V
M

(4.6.10)

<d0loggt,gΓ1d0gt>ηn) .
M
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On the other hand, along the heat flow, we have

(4.6.11) I < d0loggt,g-ιdogt > ηn < κj\\oggt\ηn.
M M

In fact,

j < dologgug^dogt > ηn = J < \oggudl{g-ιdQgt) > ηn

M M

= J < loggt.iAdig^dogt) > ηn

M

= J<\ogguH-Ht>ηn

M

<κj\loggt\ηn.
M

Substituting (4.6.11) in (4.6.10) yields

J\tτd0(loggt)
k\ηn < C" \\ \oggt \\k~' (J\loggt\ηή

M M

in particular

M

which implies that

dotτuk = 0 ,

q

and u has constant eigenvalues. Hence we can write u = Σ ^kPk , which

gives directly (a) and (b). Moreover, if we write u = J5~1ΛJD, then dou =
LT^Λ, doDD-^D and so < u, Φ[u]{dou) >= 0 because 1

is zero on the diagonal. Consequently,

lim [ <sm,Φ[srn}{dosm)>Λdηn-1

= lim f <sm,umΦ[umsm}(dosm)>Adηn-1=0.
m—too J
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Moreover,

Vh(u) = lim ( ί < ism,H> ηn+ ί < Φ[sm](dsm),dsm > ηn

M M

+ J < 8m,i/mΦ[vm8m](dωh8m) > Adηn-Λ
M

< lim ( / < ism,H> ηn + ί < Vm®[vmSm]{dsm),~dsm > ηn

m—ϊoo \J J
M M

+ J < 3m,vmΦ[vm8m](dωh8m) > Λdη"-1^ < 0.

M

In the same manner, if A ε C°°(IRxE, E) satisfyes A(λ, μ) < (A-//)"1,
whenever λ > μ, then

(4.6.12) [ <iu,H>ηn+ f < A[u](8u),du >ηn<0.

M M

In fact, for m sufficiently large, on the range of the sm's we have:

iym<Φ[umsm](dsm),dsm> > <A[sm](dsm),dsm>,

and so

[ <iu,H >ηn+ f < A[u](du),du > ηn

M

i8m,H> ηn + J < vmΦW

M M

M M

3

Now let πj '.= Σpk and, for a suitable δ > 0, let
k=l

f
= <

f 0 if x < Xj + ί,
1 if x > λ J + i — δ.

Then, of course, φjψj = 0 and φj(sm) —> πj,Ψj{sm) —> I — Πj in L\.
We want to show that

(4.6.13) / \doφj(srn)ψj(sm)\ηn —> 0.
M
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At first we see that if \oggm = C ( " m

1

) Λ ( m ) C ( m ) and P ( m ) : = doC(m)C^
then

3 r

(4.6.14) \doφj(sm)ψj(sm)\2 = Y^ V^ l-^i^l2-
α=l/?=j+l

Fom (4.6.11) taking (4.6.9.) into account, we obtain, in particular,

M

Ua<β, then clearly (λ£"> - λj,m))(l - eλ^m)-λ«m)) > (X™ - λ ^ ) 2 and
so

/
..-2V^/ Λ(m) _ \(m)>,2|p(m)|2 n < ΛJ-lτζ

a<0
Since ^~ x (^L m ) - A^ro)) — • λ β - λβ, we have immediately (4.6.13.).

9 - 1

(d) Write ti = V - Σ(λi+i ~ λj)πi
3=1

If T := λqdeg(E) - "Σ (λi+i - λ^δegπ,-, then
3=1

T= <iu,H>ηn +
M MJ=ί

\j+ι - Xj) I ( | ^ | 2 - < iπjjH >)ηn

M

r q~ι - -
iu,H > ηn + I < ̂ ( λ j + i — λj)(δφj)2[u](du),du > ηn.

M M j = 1

9 - 1

Let A(X,μ) := J2 (λ j + 1 - Aj-jii^j)2^,^). ThenΛ(λ,μ) < ( λ - μ ) x for

λ > μ, and T < 0, as a consequence of (4.6.12). Thus

J(\dπj\2- Kiπ^H >)ηn <
~M

for at least one j , 1 < j < q — 1. Since

(2πn rankπ,)"1 /(< iπ^H > -\dπό\
2)ηn > μ(E),

M
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we can achieve the proof of Theorem 4.3, if we can show that π, ε T(J),
contradicting J-stability; this will follow from some general results con-
cerning the regularity of weakly J-holomorphic maps, that will be proved
in the next paragraph.

5. Regularity of weakly J-holomorphic maps

In this section we prove Theorem 0.2. Let (M, J M , ^ ) , (N,JN,h) be
two almost Hermitian manifolds with dimR M = 2n and assume there
exists a closed 2-form αonJV such that

(a) α 1 ' 1 > 0
(b) there exists K > 1, such that , for every x ε N and every

X,Y εTxN, we have

(5.0.1) K~l\X\h\Y\h < \a(X,Y)\ < K\X\h\Y\h.

Given σ : M —> JV, we can define djMσ as the section of
^ ι λ ^ given by

\[dσ(X + iJMX) - UNdσ{X + iJMX)]>

Similarly, we can define djMσ. Clearly dσ = djMσ+djMσ+djMσ+djMσ,

and σ is (JM? JN)-holomorphic O djM

σ — 0
We can embed N into RN isometrically. We recall that a L^-weakly

(J M , J^)-holomorphic map / : M —> TV is a map for which there exists
a sequence {fm}mez+ of smooth maps fm : M —> RN such that the
following hold:

(a) both {fm}mez+ and {dfm}meZ+ converge in L2(M,RN)
(b) lim fm = f and f(x) ε N for a.e. x ε M

m—too

(c) if we define df := lim d/m, then, for a.e. x ε M,df sends T^M
m—±oo

into TJf^N.
For reader's convenience we restate Theorem 0.2.
Theorem 5.1. Let σ be a L\-weakly (JM,JN)-holomorphic map.

Then, there exists a closed subset S C M with H2n-4{S) < +oo, such
that σ is smooth on M\S; moreover, for any x ε S and any local J-
holomorphic curve K through x not contained in S 7 σ\K_{x} extends
smoothly to K.

The proof of Theorem 5.1 is broken into a sequel of steps.
First of all, since the result is of local nature, we can assume M =

B\(0) ~ {x ε R2n||α;| = 1} equipped with the flat metric and an almost
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complex structure J such that J(0) is the standard structure Jo and, as
N C RN isometrically, consider σ = (σ1? ...,σN) as an M^-valued map.

We start with the following lemma.
Lemma 5.2. In the sense of distributions, we have

(5.2.1) Δσ = 0(|Vσ|2),

where Δ and V are the ordinary Laplacian and gradient acting on com-
ponent functions.

Proof. At any x ε i?i(0), consider an orthonormal frame
{ei,...,en,en+i,...,e2n} with e n + j = J M (0)^,1 < j < n. Since σ is
L2-weakly (JM 5 Jτv)-holomorphic, for any j , 1 < j < n, we have

(5.2.2) (/ - t J j v ) ( e » + ien + i(σ)) = 0.

Taking the covariant derivative in the sense of distributions in Λ0>1M<8>

σ-ί(TlfiN), we easily obtain

(/ - iJN)(ej - ien+j)(ej(σ) + ien+j(σ)) + O(|Vσ|2) = 0

= (/ - iJN)(ejej(σ) + en+jen+j{σ)) + (ejen+:j{σ)

= (/ - iJN)(ejej(σ) + en+jen+j{σ)) + O(|Vσ|2)

= (ejejiσ) + en+jen+j{σ)) + O(|Vσ|2).

On the other hand

e^σ) + e n + j e n + » ) + O(|Vσ|2).

Thus Lemma 5.2. is proved.
Let, as usual, Br(x) be the ball of center x and radius r in M2n, and

set

E<Ήσ):= I |Vσ|V, Er(σ) = E™(σ),
Br(x)

η being the standard Kahler form in Cn. We have
Lemma 5.3. (Energy Weakly Monotonicity Formula) There

exist r0 > 0, C > 0 and a smooth function ε(r) —> 0 with r such that,
for every x ε #i(0) and every r, p, 0 < r < p < min{r0,1 — \x\}, we have

in particular, lim r 2 " 2 n / |Vσ|277n exists.
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Proof. If Jo is the standard structure in C 1 and we set

~fσ(X) := ̂ [dσ(X + U0X) - UNdσ(X + U0X)],

then

where, clearly, πa(X) := a((J - Jo){X)) and so π(z) = 0(|z|). For
simplicity, we assume x = 0. Then, from (5.3.1) it follows that there
exists Co > 0 such that in Bλ (0) we have

/c o o\ l"^ \1 ^ /^i I oO |2

First of all, we have that if r is sufficiently small, then there exists B
such that, if 0 < r < p < r, then for a. e. z ε 5p(0)\JBr(0),

(5.3.4)

σ*(α) Λ ((ddlogl*!2)71-1 + C0((ddlog|z|2)n-2 Λ dd\z\2)) > 0.

In fact, without loss of generality, we can assume that z = (^i,0, ...,0)
so that

— 1
ddlog \z\2 = γ-ΰΣdzj A dzά.

Consequently, a direct computation shows that :

(a) σ'

Λ\d°Zlσ\2 - K\WZλσ\2

•|^σ|2 + c

=(n - l ) ! ^ ! ^ 1 - ^ ^ - 1 - 2(K -

(6) σ*(α)Λ(adlog|z|2)n-2 Λ dd\z\2

+ (n -
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If r is sufficiently small, from (5.3.3) it follows that

σ*(α) Λ (daiog|z|2)"-2 AdB\z\2 > CiM 2 ( 1 - n )

so that if C> 2K(K - K~λ) and B > (n - l)\C{\K + 2(K - K~x),
then we get (5.3.4). Using (5.3.4) we obtain:

< J σ*(a) Λdddloglzl2)"-1 + C(ddlog\z\2)n-2 Λdd\z\2)
BP(O)\BT(O)

= ί σ*(a) Λ((8log\~ . z

bBp(O)

+ C((dlog \z\2 A ddΊog |z | 2 )"- 2 Λ dd\z\2)

- J σ*{ct) A{(8\og\z\2 AdU\og\z\2)n-1

+ C((dlog \z\2 A ddlog |z | 2 )"- 2 Λ dd\z\2)

σ*(a)Ad\z\2A{dd\z\2)n-2

σ*{a)Ad\z\2A{dd\z\2)n-2

6Br(0)

BP(0)

Bτ(0)

p2n-2 J r2n-2 J
Bp(O) B τ(0)

laσi2

Let δ(x) := }|̂ L(a;)Then

!+££ I (i^!)|Vσ|V>i±g^ / (^)lVσlV
BP(0) J5r(0)

Finally, in order to obtain the required inequality we choose e(r) in such
a way that 1 — e(r) < inf ̂ -s .

The next step is given by
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Proposition 5.4. There exists e0 > 0, independent of σ, such
that, for any x ε Bλ{ϋ) and any r < 1 - \x\, if r2-2nE^{σ) < e0,
then σ is Holder continuous in Br/2{x), and moreover there exist posi-
tive constants a and C, independent of σyx and r, such that for every
z,w ε Br/2(x), we have

\σ(z)-σ(w)\ <C\z-w\a.

Proof. The proof will follow closely Schoen-Uhlenbeck argument for
weakly harmonic maps [8]. Fix e0 > 0.

(1) Let φ ε Co°°(^(O)) such that / φηn = 1 and, for h ε ]0, J],
()

let

x) '= I Φ(y)σ(x-hy)ηn{y).
Bi(O)

Then from the basic estimates of Lemma 5.3, it follows directly
that, if h0 = <Λ ,̂ then:

(a) for any h ε ]0, h0]

£1/2(0)

(b) sup \σ(ho)(x) - σ ( / l o ) (0) | < ch2

0.
xeB1/2(0)

(2) Let r = tfε^ and assume θ ε ]τ, \[. Let Λ = h(r) be a smooth
nonincreasing function satisfying:

h(r) = h0 if r < θ,

h{r) =0 Ίfr>θ + τ, \h'{r)\ < 2r,

and set:

σ(h(x))(x) := I

finally,

where φW(x) := h~2nφ(x/h) and p : Γ(JV) —• iV is the smooth
nearest point projection map from a tubular neighborhood.
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Then we have the following:

(c) σhεL2(Bι/2(0),N);

(d) σh = σ on B1/2(0)\Bθ+τ(0)i

(e) I \Vσh\
2ηn<c' J |Vσ|V

Bθ+T (0)\Bθ (0) Bθ+2r ( 0 ) \ £ β _ τ (0)

(3) Let υ : Bx(0) —> RN be such that

f Δυ = 0 inJ51 / 2(0),

I (V - σikθ))\bB1/2(O) = 0 .

Then by the previous estimates we obtain immediately:

sup | τ ; - σ
Bi/2(0)

sup |Vτ;|2 <
()

Now, for any ^ ε ]0, | [ , we have:

- v)

Bθ(0)

η"

<θ2~2n ί V(σ{hQ)-v) ηn + θ2-2n ί \Vv\2ηn,
Bθ(0) Bθ(0)

which together with (g) iimplies that θ2~2nEθ(v) < c2θ
2E1(σ) and

/
B«(0)

V(σ ( h o ) - v)

1

 f

ηn < / V(σ(fto) - υ)
Bi/2(0)

= - / (σ ( h o ) - ϋ)Δσ ( / ι° )ηn

Δ σ ( M

B 1 / 2 (0)

Now,

Δσ(/.o)(x) = -JφC»)(x-y)Δσ{y)ηn(y).
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Prom (5.2.1) it follows directly that

Δσ ( f t o )

ηn <

so that for any θ ε ]0, | [ ,

θ2-2nEθ(σho) <

since £<,(σho) < CEβ(σ(*°>). Let 7 = 7 ( n ) ε ]0,2~4[, 0O = εj, and
p = [θoiSτ)-1], write

p

[0o, 0o + 3pτ] = (Jj,-, with Ij = [θ0 + 3(j - l)τ, θ0 + 3jτ],

and note that p > 3-1̂ = — 1. Since

Bθ+3pr(0)\Bθ(0) ί^rεlj

there exists at least one j Q , 1 < jo ̂  P? for which

f |Vσ|2r/n < p-'E^σ) < c6

Let θ = θo + (3(jo - 1 ) + l ) r and so / i o = [6> - r, β + 2r], and let
as in (2). Then

= h{r)

σh(x) = σ(x) for \x\ > θ + r,

|Vσft|V < c / |Vσ|V,
] r ε IJQ

and consequently

r ε [θ,θ+τ]

Since σ and σΛ axe homotopically equivalent, it follows that
Eθ+T(σ) < C0Eθ+τ(σh), and therefore

Eθ(σ) < Eθ+T(σ) < c8Eθ+τ(σh) < c8Eθ(σho) + cΊ

Thus for θ ε [ΘO,2ΘO],

θ2

0-
2nEθ(σ) <



STABILITY OF COMPLEX VECTOR BUNDLES 269

in particular,

θl2nEθ(σ) < clo( ^oε^2-2n) +εV)E1{σ).

If 7 = min{(32(2n-2))-1,64-1}, then θ2-2nEθ(σ) < c^E^σ). Con-
sequently, by choosing e0 such that C106Q7 < | we obtain the following:

(h) There exist constants e0 > 0, and θ0 ε ]0,1[, independent of
σ, such that, if Eχ(σ) < ε0, then

θ2

0-
2nEθ(σ) < i ^ ( σ ) .

(4) Set σθo(x) := σ(θox). Then by (h) we have

•EiK) = θt2nEβ0{σ) < ^(σ) < e0.

Iterating the procedureyields for any nonnegative integer k.

Now, given any r ε ]O,0O]? there exists k > 0 such that r ε [ΘQ^.ΘQ]. If
a = (log 2)(-2 log flo)"1, then

and therefore

r 2 - 2 n E r ( σ ) < θ 0 - V ^ i W

Hence Morrey's lemma completes the proof of Proposition 5.4.
Corollary 5.5. Let S := Sing(σ); then H2n-2{S Π B1/2(0)) = 0.
Proof. Let x ε S\ then, simply by rescaling, we obtain, for any

λ < 1 - |x|,

2"2n I |Vσ|V(5.5.1) A2"2" / |Vσ |V>εo
•Bλ(x)

Let {^(xi),..., Bfi(xp)},p = p(δ), be a maximal family of disjoint balls
with xu ..., xp ε Bι/2(0) Π 5, then by the maximality we have

p

5nB1 / 2(0)c Uβ2*(z;)

and, in consequence of (5.5.1),

(5.5.2) Pδ
2n~2 < e0J\Vσ\2ηn < €^E1 (σ),
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v
where Aδ := \J B$(XJ). Therefore

ii

n2n-2(SΠB1/2(0)) <
As

From (5.5.2) it follows that H2n{Aδ) < Cδ2Eι(σ), and thus, by the
dominated convergence,

lim /|Vσ|V - 0.

As

Hence U2n-2{S Π Si/2(0)) = 0. q.e.d.
Note that σ is C°°-smooth in Bι(0)\S since σ satisfies (5.2.1).
For further developments, we need
Lemma 5.6. (Energy Comparison) Let σ be a Lj-weakly (JM, JN)

holomorphic map and assume dim^M — n > 1. Then there exists
Co > 0 such that, for x ε Bι(0), any r < 1 — \x\ and any L\-map
σ0 : Bi(0) —> N with σo\hBr(x) = σ\hBr(x), we have:

Elx\σ)<C0Elx)(σ).

Proof. Glue together two copies of Br(x) in order to obtain a
2n-dimensional sphere S. Then interpretate σ and σ0 as
φ = (σ, σ0) ε Ll(S,RN), and let φm —> φ be a smooth approxima-
tion. Clearly, for every m ε Z+,

and, consequently,

J σ*{a)^ηn-ι- J σ*(α) Λ η*'1 = 0,
βr(l) Br(l)

which implies that

Eix)(σ) < Co"1 I σ*(α) Λ ^ 1 - ^o"1 / * o » AfT1

BrW Bτ(x)

q.e.d.
Now we can quote the following general result [8].
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Lemma 5.7. For any x ε Bλ(ϋ), any r < 1 — \x\, and any
τεL*(Br(x),N) set

τ*r(x) :=
Br(x)

and

BT(X)

Let K C N be a compact subset. Then there exist δ and q such that, for
any e ε ]0,1[ and any r ε L\(bBr{x),K) such that

there exists f ε L\(Br(x),N) such that:

i) T\bBr{x) — T,

it) Elx)(r) < C(erElx){τ) + e^r^W^ir)),

in) Wlx\τ)<CeqrWlx){τ).

Remark 5.8. As a consequence of Lemma 5.7, we can improve
Proposition 5.5 as follows (cf. again [8]): there exists e0 > 0, indepen-
dent of σ, such that, for any x ε i?i(0) and any r < 1 — |x|, if

(5.8.1) r-2nW^(σ)<e'o,

then σ is Holder continuous in Br/2(x), and moreover there exist posi-
tive constants a and C, independent of σ, x and r, such that for every
z,w ε J5r/2(x), we have

\σ(z)-σ(w)\ <C\z-w\a.

In fact from Lemmas 5.6 and 5.7, we obtain immediately

Elx)(σ) < C0Elx\σ) < C^erE^ + e-qr~ιWJ:x)(σ))

and so (5.8.1) leads easily to r2~2nElx\σ) < e0. Finally we use Propo-
sition 5.4.

We are now in a position to prove
Proposition 5.9.

n2n-4{s) < +oo.

Proof. Let s ε R, 5 < 2n - 2, and φ'(S) = inf{X>J|S C \JBrj (XJ)}.
3 3
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Assume φs (S) > 0. Then a basic density lemma in geometric measure
theory ensures that for a.e. x ε 5, we have

limsup X~sφs{S Π Bλ(x)) > C > 0.
λ

Therefore it is possible to choose x0 = 0 ε 5, λn —> 0 in such a way
that:

(1) Mm λ n - y ( S Π β W 2 ( 0 ) ) > 0 ,

(2) σλn -> σoo weakly in L?(Bi(0)) .

Clearly σ^ is weakly J-holomorphic with respect to the standard inte-
grable structure of C 1, and moreoverby Remark 5.8, if SΌo := Sing(σoo),
then σλoo —> σ^ uniformly on compact subsets of J51(0)\5oo. Let
Sn:=Sing(σXn). Then

(5.9.1) φ'iSoo Π fli/2(0)) > limsup φs(Sn Π S1/2(0)).
n—>oo

In fact, for any δ > 0, let {5ri(xi),..., J5Γq(xg)} be a covering of
5oo Π #1/2(0) by balls satisfying

Consider A := βχ/2(0)\ Q Brj(xj). Then for n sufficiently large, σXn is

smooth on A. Consequently Sn Π JBI/2(0) C U Brj(xj) and
i=i

^•(5n n 51 / 2(0)) < φ'iSoo ΓΊ Bi/2(0)) + ί,

which implies (5.9.1). Clearly, Sn Π Bι/2(0) = {x/K\x ε S Π Bλn/2(0)}
and so

Φ*(Sn n B1/2(o)) = λ; s0 s(5 n B W

Therefore, from (1) it follows that lim ^ s (5 n Π5i / 2 (0)) > 0 so that, by
n—>oo

(5.9.1)
φs(SooΠB1/2(0))>0.

Now we have

(5-9.2) I σ^(α) Λ (ctflog μi2)""1 = 0.
Bi(0)
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In fact,

r2"2" I \Vσoo\
2ηn =\imr2-2n j |VσλjV

Br(0) J3r(0)

=nlim(rλn)2-2n ί |Vσ|V = const.,
BXnΛO)

and

ί σ^(α) Λ (03 log \z\2)n-λ =Hm / σ^(α) Λ (95log H 2 ) " " 1

Bi(O)\Br(O)

Bi(O) Bi(O)

=0.

It follows that σ^ is complex homogeneous. In particular, —Ĵ 2- = 0 a.
e. and thus XS^ C SΌo for every λ.

Now, there are two possibilities:

(1) 5 < 0 : then, there is nothing to prove
(2) there exists xλ ε 653/4(0) such that

limsup X~^s{Soo Πβ λ (x i ) )> 0.
λ->Ό

we can choose complex coordinates centered at xu in such a way that
Re^i is radial. By repeating the previous argument, we obtain σ ^
satisfying on Bι/2(x\)

Θ7 ~ ^'

dzi ~ dz! ~ U

By iterating the procedure, eventually we get m, s < 2m < s + 2 < n
and σ™, weakly J-holomorphic, satisfying on Bι/2{xm)

dr

If 2m = 2n - 2, then S£~2) D {zn = 0} Π B1/2(xn_2) and this is a
contradiction because U2n-2S^~2) = 0. Consequently 2m < 2 n - 4 and
finally U2n-A{S) < +oo .

Since Proposition 5.5 gives, in particular, that σ is smooth along
J-holomorphic curves, the proof of Theorem 0.2 is complete.
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We can easily deduce from the proof of Theorem 0.2 a special regu-
larity result; consider first the following.

Definition 5.10. A rational curve in an almost complex mani-
fold (JV, JN) is the image of a noncostant (Jpi(q, J/v)-holomorphic map
φ : P(C) —> N.

Then we have
Corollary 5.11. Let (M,JM,g),(N,JN,h) as in Theorem 0.2. If N

has no rational curves, then any L\-weakly (JM * JN)-holomorphic map
σ : M —> N is regular.

Proof. Let x ε M. As in the proof of Theorem 0.2, we can construct
σ"oo : Cn —> N Lj-weakly (Jo, Jjv)-holomorphic, factor σ^ as σ^ =
φ o π, where π : C7"1 — {0} —> Pn~1(C) is the standard projection and

Now,

JN o -0* o π* = JN o (σ o o)* = (σoo)* o Jo

= V>* ° 7Γ* ° Jθ = Ψ* ° «/p»-i(C) ° π*

Since π* is surjective, JN ° Ψ* = Ψ* ° «/p»-i(c)j i e

 5 Φ ιs L\ -weakly
(Jpn-i ( c ), JΛΓ)-holomorphic. Let P^C) C P ^ ^ Q y S i n g ^ Then
φ(Έ>1(C)) is a rational curve in N unless φ is constant, i. e., σ is regular
at x .

As far as Theorem 0.1 is concerned, we simply note that the
L\ -weakly J-holomorphic subbundles, which we constructed in Sec-
tion 4, correspond to Z^-weakly J-holomorphic maps from (M,JM,g)
to some Grassmann bundle Gτp(E). Certainly, if U C M is a sufficiently
small domain, then TΓQ* C GTP(E) can be equipped with a tamed Sym-
plectic structure just by approximating the standard Kahler structure
on U x Grp(C r). Therefore Theorem 0.2 applies and the proof of The-
orem 0.1 is complete.
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