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LORENTZIAN GEODESIC FLOWS

JENS CHR. LARSEN

1. Introduction

In this paper we consider time oriented Lorentzian manifolds (M, g)
satisfying condition CQ, i.e., (M,#) is
(1) future 1-connected, nonspacelike complete

(2) the sectional curvatures K(π) > Q2 for every timelike two plane
π

for some Q > 0. Recall that (M, g) is future 1 connected if any two
smooth timelike curves from p to q are homotopic through smooth
timelike curves from p to q. Also a Lorentzian manifold is a smooth,
connected Hausdorff manifold with a countable base and a metric g
of signature (—, +,.., +). The Riemannian inclined reader may benefit
from the remark that the curvature assumption (2) corresponds in some
respects to negative Riemannian curvature.

The main results of this paper are the following:
(1) A density theorem for the timelike geodesic flow, cf. Theorem 8.4.

Here it is proven that the closed timelike geodesies are dense in the
quotient of the future timelike unit tangent bundle with a vicious group
of isometries.

(2) A rigidity theorem for CQ surfaces, cf. Theorem 10.3. More
precisely we prove that an orientable CQ surface with a vicious isometry
group and Q positive must have constant curvature.

These results will follow from structure theorems for geometrically
defined subsets of (M,#), notably Theorem 7.4 and Theorem 7.7. In
fact the future null cone K+(p) of any point p € M is a smooth hyper-
surface of constant signature (0,+,...,+). The implication is that the
boundary Nω(Na) of the past ( future ) of a complete timelike geodesic
7 is a C1 hypersurface in M of constant signature (0,+,...,+). In other
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words Nω is a singular semi-Riemannian manifold. Some theory is
available for the geometry of singular semi-Riemannian manifolds, cf.
[20], [22], [23], [24]. Nω is the union of null colines to 7. These null co-
lines are null axes of a hyperbolic isometry if the induced isometry on
the Riemannian manifold NaΠNω has a fixed point, where a and ω are
endpoints of a timelike axis for the hyperbolic isometry. These results
are derived in chapter 7. The main tool is the null theory from section
6. This in turn follows from section 2, deriving a triangle comparison
lemma for CQ manifolds. Theorem 5.3 proves the crucial fact that a
hyperbolic isometry has a timelike axis.

On the constantly curved CQ manifolds there are properly discon-
tinuous groups of isometries acting on the future timelike unit tangent
bundle, cf. section 9. If this group is proper, the geodesic flow induced
on the quotient is mixing, hence ergodic. It has a transitive geodesic
and dense periodic orbits. In dimension two a horocycle flow is in-
duced on the quotient. It is mixing of all degrees. These results are
derived from the Riemannian theory, cf. also [17], [25] and [30]. The
Riemannian theory started in the 1920's, cf. [19] and [29].

Chapter nine sets the context for the neighbouring sections. A den-
sity theorem for CQ manifolds with vicious Deck transformation group
is presented in section 8. It relies on the definition of the timelike future
and the timelike past of a CQ manifold, developed in sections 3 and 4.

The same assumption for the isometry group of a CQ surface forces
the curvature to be constant.

To avoid confusion it is emphasized that throughout we shall use
the convention that a mapping F from a subset A of a manifold M is
C r, 1 < r < +00 if for every q £ A there is a Cr map G, defined on an
open neighbourhood U of g, whose restriction to A Π U coincides with
the restriction of F to this set. Also the curvature tensor is

RχγZ = V[χ,γ]Z - VXVyZ + VyVXZ.

The domain of definition of a mapping / is denoted by D(/) Maximal
geodesies with initial velocity υ are denoted by j v .

2. Timelike geodesic triangles

This section is fundamental. It provides the main tool in this paper,
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namely a triangle comparison lemma for timelike geodesic triangles in
a CQ manifold (M, g), i.e., a Lorentz manifold satisfying condition CQ.

Recall that two points p and q in M are causally related, i. e., p < q,
sometimes written q > p, provided there exists a nonspacelike future
directed curve from p to q. Also p « q, sometimes written q » p,
provided there is a timelike future directed curve from p to q. As usual

I+ip) = {qeM\p«q}, Γ(p) = {qeM\q«p},
{q^M \p<qoτ p = q}, J (p) = {q E M j q < p or p = q}.

Lemma 2.1. For any point p in M, the map

= {w e TPM I w timelike and future directed }

is a C°° diffeomorphism.
Proof. In view of [13] we need only show that expp(Λ+(p)) = I+{p)>

Take any q E /+(p) and a timelike future directed curve c from c(0) = p
to c(a) = q. If q $. expp(Λ+(p)) define

θ, =infS r >0.

Let 7 denote a timelike geodesic from some c(t) = 7(0), t E [0,s*[ to
φ » ) = 7(6), 6 E 0(7) Π Rf. Define

U = inf{< E ]0,6[ I 7 (t) ̂  expp(Λ+(p))}.

By 0(ί), ί E ]0,ί*[ we denote the unique vector in Λ+(p) such that
expp(φ(t)) = j(t). 11-> φ(t), t E ]0, t*[ is then a timelike future directed
curve in A+(p). The function

g(t) = (-(φ(t),φ(t)))i t € ] O , f . [

is smooth and concave according to [9]. g is then bounded above. Since
φ(t) » φ(0) E Λ+(p) we deduce that φ(t) is contained in a compact
set in TPM, hence φ{tn) -> w for a suitable sequence t n —>> ί* and some
w E Λ+(p). Thus expp(tι;) = 7(2*) in contradiction.

To prove the triangle comparison lemma, let p, q and r be three
causally related points in a CQ manifold {M,g = ( , )). This means
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that p « q, q « r . Throughout the paper a TF (respectively TP)
geodesic is a timelike, complete, unit speed geodesic, which is future
(respectively past) directed. According to Lemma 2.1 there are unique
TF geodesies 71,72 and 73 from p to q = 71 (α), q to r = 72(6) and p to
r = 73(c), α, δ,c e IR+. Define

(2.1) _ Λ

When Q = 0, MQ denotes Minkowski space KJ1, whereas

MQ = {x = (xu..,xn+1) e Kn+1 I (xtx) = -xl + xl + ..+x2

n+ί = 1/Q2}

with metric induced by the Minkowski metric ( , ) when Q > 0. Ac-
cording to Lemma 2.1, c > α + 6. This means there axe causally related
points PQ,qQ,rQ G MQ such that

(2.2) a = dQ(pQ,qQ), b = dQ(qQ,rQ), c = dQ(pQ,rQ).

Here rfg is the Lorentzian distance function in MQ, and d will always
denote the Lorentzian distance function in (M,g), cf. [5, Chapter 3].

Lemma 2.2. Let p,g,r be causally related points in a CQ manifold
(M,g), where Q > 0. When PQ,qQ and rQ are causally related points
in MQ, satisfying (2.2), then

A < A A < A A < A

Proo/. We shall use Karcher's method, see [16]. Define

r{x) = d(p,x), x€l+(p),

and let yQ denote the solution to

V'Q = Q2yQ, VQ(0) = o, i^(0) = l.

We claim that

H(r)(υ,v) < -{υ,υ)y'Q(r(x))/yQ(r(x))
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for all v J_ grad rXJ where H(r) denotes the hessian of r. To this end
let 7 : / —> /+(p) denote a geodesic with j'(0) = v and let

α(t, s) = expp(fa(s)), ί > 0, s G /.

iV" = Im α is a Lorentz surface with KN > Q2. A straightforward
differentiation yields

F(r)( V ? V ) = (ro 7)"(0) = -(υ,a8t(l,0))/r(x).

Let E denote a parallel vector field in N orthogonal to ί ι-> α(ί,0).
Then α s(ί?0) = v(t)E(t) for some smooth function v satisfying

v" = υKNr(x)\

By standard Liouville theory we have

= -(•",v)y'Q{r{x))lyQ{r{x)).

Notice that H(r)(υ,v) = 0 when v || grad rx. Now define

\ Q>o,

and rs = Sor. Then

^ s(a;) + 1), υ± grad r s ,
.)(ι>,t;) = S"(r(x)) υ[rf = - ( ^ ^ ( Q V ^ x ) + 1), v \\ grad rx.

Now let f(t) = rsoy2(t), t G [0,6]. Then

/"(ί) < Q2f(t) + I-

Let PQ « qQ « ΓQ denote a timelike geodesic triangle in MQ with
side lengths α, b and c and sides 7?, 7? and 7^. Also let r g(a ) =
d(pQ,as) and fQ{t) = SorQoΊf(t), te [0,6]. Then

W) = QVQW + I-
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Since /(O) = /Q(O) and /(&) = /g(6), we deduce that

and hence
r o 7 2 ( ί ) > r Q o 7 ?(t), t€[O,6].

Finally
Q

(r o 72)'(6) = - A - < -AΓ 0 = (rQ o 7«)'(fc).

Time reversal produces APQ < Ap.
We shall present a different argument of competitive simplicity. If

Aq = 1, then Ap = APQ, so to prove APQ < Ap we can assume that
Aq φ 1. Define future directed vectors v(s) in TPM with

72(5) = expp(v(s)), 5 G [0,6],
α(ί, 5) = expp(ίt;(5)), ί > 0.

Choose PQ E MQ and an isometry

I:TPM-+TP.QMQ.

Define

α Q ( ί , 5) = exp p ί ? ( ί/ o υ(s)), ί > 0, s G [ 0 , 6 ] ,
Q

Then

(2.3) (

where Y,(t) denotes the induced covariant derivative of Ys in N =
Im α. Take a unit parallel vector field EQ orthogonal to t »-> αQ(ί, s)

such that

* Λ ) = yQ(t)EQ(t).
Let JE denote a unit parallel vector field orthogonal to t ι-> α(ί, s) in
N. Define

y = (Ys,E).

Then
y£ - α2Q2yQ = 0, -a2 = {at,at)(s),
y" - o?KNy = 0.



LORENTZIAN GEODESIC FLOWS 125

Because of (2.3) we can assume y'(0) = y'Q{0) > 0 and y(0) = VQ(0) —
0. Standard Liouville theory yields

VQ <V,

hence

Thus

b = L(Ί2) < f | |α?( l , β ) | |ώ < dQ(q*Q,r*Q) = bQ,
Jo

where <?£ = αQ(l,0), r*Q = αQ(l,6). When PQ,qQ,rQ are vertices in a
timelike geodesic triangle in MQ with side lenghts α, b and c we find

( cosh(Qb)-cosh(Qα) c

sinh(Qα) sinh(

( 6 2_ α 2^ c 2 ) / 2(
cosh(Qb)-cosh(Qα) cosh(Qc) Γ) >> ft

sinh(Qα) sinh(Qc) ' V > U

( 6 2 2 2 ) /

Time reversal produces ATQ < Ar. The same method can be used to
prove AqQ < Aq for small 6. This angle inequality follows for arbitrary
6 by a subdivision of η2 and an induction argument.

Remark 2.3. We shall now briefly indicate how to combine Lem-
ma 2.2 and Lemma 6.1 to show that a Co manifold (M,g) is globally
hyperbolic; see also [13]. To verify that (M,g) is strongly causal at
some p € M take some TF geodesic 7 through 7(0) = p. Given an open
neighbourhood Uofp use Lemma 2.2 to find a positive e such that the
causally convex neighbourhood /(7(—e),7(e)) of p is contained in U.

If p, q £ M are causally related, then J{p,q) = J+{p) Π J~{q) C
J+(p*) Π I~(q*) for any p* << p and q « q*. Now we use Lemma 2.2
and a Q = 0 version of Lemma 6.1 to show that the counterimage
of J(p, g) by the restriction of expp+ to the future cone is closed and
bounded. J(p, q) is then compact.

3. The timelike coray condition

In this section we consider a TF geodesic 7 in a Co manifold (M,g).
Recall from [4, p. 33] that a future coray from

x G Γ(j) = {qeM\3teR : q «



126 JENS CHR. LARSEN

to 7 is a future directed, inextendible, nonspacelike limit curve β : I ->
M through x of a sequence of TF geodesies from xn to j(rn) where
{#n}n€N and {rn}nGN are sequences in M and R respectively such that
xn —>> x, xn « j(rn) and rn —>• H-oo. Here / is an open interval. We
can and will require that 0 G J and β(0) = x. A smooth curve β* is a
past coray from

y G J + ( 7 * ) = {qeM \ 3 t e R : q » 7 , ( * ) }

to a TP geodesic 7* provided /?* is a future coray from y G /+(7*) to
7* in (M,g) with time orientation reversed. There is a future coray
to 7 through every x G /~(7) according to [5, Proposition 2.18]. This
coray definition coincides with the definition in [4]; see also [7]. There
are other definitions in [11], [12], [28] and [3]. By definition (M,g)
satisfies the timelike coray condition if all future and past corays are
timelike; cf. [4, Definition 3.1]. Corays are pregeodesics according to
[5, Proposition 2.21, Remark 2.22, Lemma 3.5 and Theorem 3.13].

Lemma 3.1. The timelike coray condition holds for any TF geodesic
7 in a Co manifold (M,g).

Proof Assume that x G ̂ "(7) has a future coray β to 7, which
is null. Then there are sequences {xn} in /~(7), {rn} in R and TF
geodesies βn from xn to 7(rn) such that β is a future directed, inex-
tendible, nonspacelike limit curve through x for {/3n} We can suppose
that x and the xn G I~(j(r0)) for some r0 < rn. According to Lemma
2.1 there is a TF geodesic σn and σ from xn and x respectively to
7(r0) = q. Put

an = d(xn,q), a = d(x,q), bn = d(xn,j(rn)), cn = rn-r0.

Looking at the timelike geodesic triangle xn,q = gn,7(rn) we obtain

1 < (bn/cn)
2 < 1 + (an/cn)

2 + 2 (an/cn) AQn -> 1

for n -» +00. Hence bn/cn -> 1 for n -» +00. We have used that Aqn is
bounded and that an -> a. Adding two of the cosine laws give us that

- 1 > AXn > AXQ = -an/bn-cn/bnAqQ > -an/bn-cn/bnAqn, Q = 0,

contradicting the fact that AXn is unbounded.
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We can now define the Buseman function

6+ : J~(7) -> E , x t-> lim {r - d(x,j(r))}.

The Buseman function is continuous, because (M, g) satisfies the time-
like coray condition, cf. [5].

Let β denote a unit speed future coray from p E I~{j) to some
TF geodesic 7. Proposition 3.2 below shows that it is unique. A dual
statement applies to assert the uniqueness of unit speed past corays
through y E /+(7*) to some TP geodesic 7*.

There exists by definition an s0 such that p « 7(5) for all s > so In
view of Lemma 2.1 this means that for all s > s0 there exists a unique
future directed timelike unit vector υs such that 7(5) = expp(tvs) for
some t > 0.

Proposition 3.2. v8 -> /?'(0) as s ^ +00.
Proof. We shall consider two timelike geodesic triangles p,rγ(s0),

7(51) and p, 7(51), 7(52) where s0 < sx < s2. Let us for notational
convenience rename them p,Po5Pi a nd 9>9i>92 respectively. The side
lengths are

a3 = d(7(5i),7(s2)), b2 = d(p, 7(50)), 63 = S\ —

Lemma 2.2 gives us

a\ = al + a\ + 2a2a3AqQ,

which combine to — Aqo < AqQ. Notice that Aqi = —APl, hence — AqQ <
—ApQ. Applying Lemma 2.2 once again provides

Given e > 0 we can make 63/61 > 1 — e for all sλ sufficiently large. Use

to conclude that AqQ > ApQ > —1 — δ for all sx sufficiently large.

The proposition now follows from the fact that we can take a sequence

{sn}n€N °f r e a l numbers sn —> +00 such that
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Lemma 3.3. Let η^i = 1,2, be two TF geodesies and

Ω = {t€R|7i(*)«72(t)},

Then f is C°° and concave, i.e., f" < 0.
Proof. See [9].

4. The timelike future

We shall now define the timelike future and the timelike past from
the sets ΩTF and Ω T P of TF and TP geodesies respectively in a Co

manifold (M,g). We need a preliminary lemma to assert that the coray
definition is translation invariant in the geodesic affine parameter.

Lemma 4.1. If ji G ΩTi?, i = 1,2, are future corays to 73 G Ω T F

through 71 (0) << 72 (0), then

for all t G IR+, αnc? there exists a K > 0 sucΛ £Λα£ /or £Λese values of t

d(Ίl(t),Ί2(t))<K.

Proof. Let cs,ds denote TF geodesies from cs(0) = 7i(0),ds(0) =

7 2 (0) to
c8(t8) = ds(us) =73(5)

for all s exceeding some s0 > 0. For t G A = {t > 0\cs(t) « ds(t)}
define

fs(t)=d(cs(t),ds(t)).

For these values of t let βl denote the TF geodesic from /3t

s(0) = cs(t)
to βt(as

t) = ds(t), and let

Define
hs(u) = d(βa

t(u),Ί3(s)), ue[0,a°t].
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We have seen that h" < 0, hence

Bs(t) = h'M>h's(al) = Cs(t),

and thus

fa(t) = Bs(t)-Cs(t)>0.

It follows that [0, ιts] C A. For

t e B = {ί € [0, +oo[ I 7 l ( ί ) « 7 2(ί)}

let ηt denote the TF geodesic from ?7t(0) = 71 (ί) to ηt(bt) = 72(t) and

Then

f's(t) -> <72(*),r?ί(ί>t)> - <τί(<W(0)> = f'(tj> 0

as 5 -> +00 and then B = [0, +00[.

The Buseman function 6+ for 73 is differentiate; see [12], with

(grad6+,grad6+) = — 1,

hence
), se[0,bt],

and then

K = 6+( 7 2(0))-6+( 7 l(0)) = b+oηt(bt)-b+oηt(0) > bt =

The lemma follows.
Proposition 4.2. 7/71 G Ωτ\p is α future corαy to 72 G Ω T F through

7i(0) in α Co manifold (M, g), £Λen 71 2*5 α future coray to 72 through
7i(t) /or every ί 6 R

Proof. Let a t G IR be given. Since 71 G Ω^^ is a future coray to
72 through 7i(0) we can find a n s E R such that 7χ(t) < < 72(5). This
follows from definitions, when t < 0 and from Lemma 4.1 for t > 0.
Define

c = c(α) = d(7i(t + α ) , 7 2 ( s + α)) > 0 , 6 = d(7i(*),72(* + «)) ,
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where a G K+. The function c has an upper bound by Lemma 4.1.
Looking at the timelike geodesic triangle 7i(ί), 72(5), 72(5 + a) we find

(4.4) b2 < a2 + c2 + 2acAq

with q = 72(5). It follows from (4.4) that b/a > 1 is close to 1, when
a is sufficiently big. Let a positive e be given. Looking at the timelike
geodesic triangle p = 71 (t), 71 (t + a), 72 (s + a) we see that

Ap > APQ = (c2 -a2- b2)/2ab > ~(1 + (b/a)2) >-l-e

taking a sufficiently large. This means that 71 is a future coray to 72
through 7i(t).

We can now adopt

Definition 4.3. 71 G ΩTF is a future coray to 72 G ΩTF provided
71 is a future coray to 72 through some and hence any 71 (t), ί G t

Two future corays have the same past. In fact we have
Lemma 4.4. If ji E Ω T F is a future coray to η2 € Ωτi? in a Co

manifold , then /~(7i) = /~(72)
Proof Since 71 G Ω T F is a future coray to 72 G ΩTF> there exists

an s G M such that

We denote by β the TP geodesic through 72(5) and 71 (0) = /3(α), a G

K+. Assume for contradiction there is no u G Rf. such that ηλ (u) G

). The nonempty subset

A = {t G [0,α] I There exists no positive s such that 7/3(̂ (5) G / +

of [0,α] has an infimum z > 0. We are using the notation 7^) G
ΩTFJ * £ [0,α] for the future coray to 72 through β(t) G / " ( T O Z G
A because the relation < < is open, see [27, Proposition 14.3]. This
proposition also implies that we can take υ G [0, z[ and u > 0 such that

β(υ)

Since v ^ A, there exists r > 0 such that
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We can now apply Lemma 4.1 to get

q « Ίβ(v){r) « ηβ(z){u + r),

which contradicts the fact that z G A, thus asserting the existence of a
71(5) E / + ( ? ) , s G t f . Hence /~(7i) C I~(j2)- A second application of
Lemma 4.1 yields the reverse inclusion, thereby proving the lemma.

We now define a relation -» ~(-» ~) in ΩTF(ΩTP) by requiring that

71 -» ^72(71 —• ^72) provided 71 is a future ( past ) coray to 72. This
is an equivalence relation. It is reflexive by Proposition 3.2. Symmetry
and transitivity follows from Lemma 4.4, Lemma 4.1, Proposition 3.2
and an application of Lemma 2.2. We can then define the timelike
future M + (00) and the timelike past M~ (00) to be the quotient spaces
of ΩTF and ΩTP under the coray equivalence relations —>- ~ and —• ~

respectively

Af+(oo) = ΩTF/ -» ~, M"(oo) = ΩTpl -» ~.

Equivalence classes in M+(oo) and M~(oo) will be denoted [7]+ and
pγ]_ respectively. Given ω = [7]+ E M+(oo), a = [/?]_ G M~(oo) we
adopt the convention

Γ(ω) = Γ(Ί),

which is well defined by Lemma 4.4. It will be convenient to have the
following.

Proposition 4.5. Given ω = [7]+ G M+(oo) andp G /"(ω) in a Co

manifold, then there exists a TF geodesic β through β(0) = p such that
[β]+ = ω. If σ is a TF geodesic through σ(0) = p such that [σ]+ = ω,
then σ = β.

Proof The existence of β follows from the fact that (M, g) satisfies
the timelike coray condition. Suppose σ is a TF geodesic with σ(0) =
β(0) and [σ]+ = ω. Then β(0) « σ(s) for a fixed positive 5. Now
apply Lemma 4.1 to assert the existence of a positive K such that

β(t) « σ(s + ί ) r = r{t) = d{β(t), σ{s + t))<K

for all t > 0. In the timelike geodesic triangle p = β(0),β(t),σ(t + 5),
using Lemma 2.2 we have the following estimates
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The right-hand side converges to — 1 as t -> +00, hence Ap = — 1.
Consequently σ = β.

Given p £ M we shall say that p « ω G M+(oo) provided there
exists 7 G ΩT F such that 7(0) = p, [7]+ = ω. Similarly p » a G
M~(oo) if there exists 7 G Ωxp such that 7(0) = p, [7]- = a. We can
then define subsets

{<*> e M+(oo) I p « ω}, /" (p) = {«^ M-(oo) | p

of M+(oo) and M~(oo) respectively. Also α << ω, αG M"(oo), α; G
M+(oo) provided there exists p G M such that p >> α, p << α;. In
this case α and ω are causally related.

A sequence {ωn}n€N in M+(oo) converges to ω G /^(p) with
respect to p G M if there exists an n0 G N such that ωn G /*, (p) for
all n > n0 and

<(<>)-• V(o)

as n -> +00. Here cn is the unique TF geodesic from p to ωn and 7
is the unique TF geodesic from p to ω = [7]+ . As usual time reversal
produces a definition of convergence for a sequence {αn}nGN in M~(oo).

We will adopt the notation

ωn -+p ω, an ->p α,

when {α;n}n6N and {an}ne^ converge with respect to p to ω and a
respectively.

Also a sequence {pn}n€N in M converges to ω G /<£>(p) with respect
to p provided there exists an n0 G N such that pn G /+(p) and

as n -> +00. Here cn and 7 are the TF geodesies from cn(0) = p = 7(0)
to p n and [7]+ — ω respectively. We write

Pn ->P ω, pn ->p α,

whenever p n converges with respect to p to ω and α G M~(oo) respec-
tively.

In the rest of this section (M,ρ) is a CQ manifold with Q > 0.
Proposition 4.6. If ωn —>p ω, then ωn —>q ω for every q G M such

thatωel+(q).
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Proof. Take TF geodesies 7^ i = 1,2, with 71(0) = p, 73 (0) = ςr

and [7i]+ =ω = [72]+- Given an e > 0, take r > 0 such that

cosh2(Qr)/sinh2(Qr) < 1 + e.

Now 71 is a future coray to j 2 through p. We can therefore find a ί > r
such that p « 72 (ί). But 72 is also a coray to 71 through 72 (t). There
is then a n s G l such that 72 (t) < < 71 (s). Recall from [27, p.403] that
J+(72(£)) is an open neighbourhood of 71(5). Since ωn ->p ω, there exist
an n 0 E N and TF geodesies cn for n > π 0 having cn(0) = p, [cn]+ = ωn.
Their initial tangent vectors converge to 7J (0). We can therefore assume
n 0 is chosen to render cn(s) E J + (7 2 (ί)) for all n > n 0 . It implies that
ωn E /^(g) for these values of n. Looking at the timelike geodesic
triangles #,72(ί),cn(s) with side lengths α n ,6 n and en we can estimate

A > A _ cosh(Q6n) - cosh(Qen) cosh(Qαn)
q~ qQ~ sinh(Qen)sinh(Qαn)

cosh(Qen) cosh(Qt)

" " sinh(Qen) sinh(Qt) > "" " C '

showing that ωn -*q ω.
The proof of the next proposition is quite similar to that of the

previous one and is omitted.

Proposition 4.7. If pn -+p ω, then pn -»g ω for every q E M such

thatωel+{q).

Time reversal of a TF geodesic produces a TP geodesic 7_, that is,

7_(t) = 7(—ί) for all ί E K. Translations on the real line are denoted

rα(ί) = t + α, o , t e t

Proposition 4.8. Lei a E M~(oo) and ω E M+(oo) 6e causally re-

lated in a CQ manifold (M, g) where Q > 0. TΛere ea:i5ί5 a TF geodesic

7 wi£/ι [7-]- = ex and [7]+ = ω. If σ is a TF geodesic with [σ_]_ = a

and [σ]+ = ω, ίΛen σ = 7 o ro /or some a E R

Proof. According to the definitions there exists a p E M such that

α < < p < < c j . In other words there exist a TF geodesic 71 and a TP

geodesic 72 such that

[71]+=ω, [72]- = α , 7i(0)=P

For all s larger than some positive s0 the TF geodesic 7 s from js(0) =

72(5) to 7s(as) = 7i(s) , α , G t f gives rise to the definition

t, = sup{ t > 0 I 75W E J(72(*),P) }•
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Due to [27, 14.1 and 14.5] there exists an NP geodesic β8 from βs(0) = p
to βs(l) = 7s(£s). Lemma 6.1 implies that

c o s h ( φ ° )

which means we can take a sequence of real numbers sn -> +oo, indexed
by n G N, such that the sequence {β'Sn(0)} is convergent with limit v.
But then ηSn (t8n) -» q = expp(v) as n —> +oo. Define βn = dSn oτSn. The

sequences {/3n}n€N and {/3n_}n€N have unit speed, future directed limit
curves £i and £2 They are by definition corays to 71 and 72 respectively.
For an appropriate sequence {n*} in N we have convergence of

to Cί(0) and — ̂ 2(0)5 which means that £1 = 7 is a future coray to 71,
and 7_ is a past coray to 72. This proves the existence.

In the uniqueness proof we may assume σ(0) << 7(0). Due to
Lemma 4.1 σ(t) « j(t) for all t G K and for these values of t we
may then define

/(t)=d(σ(t) > 7 (ί)).

Since / is concave, f'(t) > 0 for all t e R Let at denote the TF geodesic
from σ(t) to 7(<) and define

_ r / x da, Λ X .da da. dat Λ XN(s) = Έ(s,0) + (-,-)-(, , 0).

Using [5, p.374] we can estimate

r/(0)

/ (N,N)(s)ds,

where (N,N)(0) = - 1 + (σ'(0), | j(0)) 2 > 0. If this scalar product is
nonzero, then /"(0) < 0, leading to the existence of a tλ G K with
/'(ίi) > 0, in contradiction. We conclude that σ'(0) = | j(0) and hence

for all t G R Hence the Proposition follows.
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5. Hyperbolic isometries

Recall that the time orientation of our Co manifold (M, g) is a time-
like continuous vector field X on M.

Definition 5.1. An isometry μ of (M,p) is time orientation pre-
serving provided

(Tμ(X),X)(μ(p))<0

for all p in M.

Associated with a time orientation preserving isometry μ on (M, g)
is a natural map on M+(oo) and M~(oo) defined by

μ+ :M+(oo)->M+(oo), [7]+ -> [μ o 7 ] + ,
μ_ : M~(oo) —» M~(oo), [7]. -» [μ 07] . .

μ+ and μ_ have inverses μ~x+ and μ - 1_.
Definition 5.2. A time orientation preserving isometry μ on

(M, 5) is hyperbolic, provided there exists a p in M such that

(5.1) μ(p)«P or p«μ{p).

A timelike axis 7 of an isometry μ is a timelike TF geodesic or TP

geodesic such that

for all < G M and some dμ 6 K+.
A null axis /? of an isometry μ is an NF geodesic or NP geodesic such

that
μoβ(t)=β(Xt + dμ)

for all t E E and some λ,d μ 6K.
Theorem 5.3. -4 hyperbolic isometry μ on a CQ manifold, Q > 0,

Λαs α timelike axis.

Proof. Since μ is hyperbolic, there exists a p G M such that (5.1)

holds. By considering μ"1 instead if necessary we can suppose that

p « μ(p), hence

p « μ(p) « .... « μn(p) « ...

By cn,n > 1, we denote the TF geodesic through cn(0) = p and μn(p),
and dn denotes the TF geodesic through dn(0) = μ(p) and μn(p), n > 2.
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We claim that {c (̂O)}n>χ and {d'n(0)}n>2 are convergent sequences. To
this end notice that

r = d{μn{p),μn+ι{p)) = d(p,μ(p)), n > 1,

and define sn = d(p,μn(p)),n > 1. The timelike geodesic triangle
pμn(p)μn+1(p) gives us

cosh θi = —Ap < —APQ
_ — cosh(Qr) + cosh(Qsn) cosh(Qsn+i)

sinh(Qsn) sinh(Qsn+1)
< (1 + 2exp(-2Q5 n))2(l + 2exp(-2Q5 f l + 1))2

< 1 + aexp(-2Qnr) = 1 + xn

for all n greater than or equal to some n0 G N, because sn > nr. Here
θi is a nonnegative real number and x n ,α € K+. But then

Σn>n o θn < L > n o lθg(l + Xn + ((1 + Xn? " 1)*)
/r 9i < Σn>n0

 l o ^ + β exp(-nQr))
1 ' <Σn~>noβeM-nQr)

= βexp(-n0Qr)/(l - exp(-Qr))

for some sufficiently laxge positive β. Let Λ+ denote the future time
cone in TPM, and T~1M+ the set of unit length future directed vectors
in TPM. According to [27, pp. 144 and 156],

d+ : T;XM+ x T^M+ -> R, (x, y) ^ cosh ji\R_(-{x, y»

is well defined and a metric on T~ιM+. Due to (5.2) the sequence
ίcή(0)}n€N is contained in the compact set

when i? G K+ is large enough. d+ induces a complete metric space
structure on this set. According to (5.2), {c^(0)}nGN is a Cauchy se-
quence in this metric space and hence convergent as claimed. It follows
that also {d'n(0)}n>2 is convergent.

By c and d we denote the TF geodesies with initial velocities

lim c' (0) and lim d' (0)
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respectively. To show that c and d are future corays argue as in Lem-
ma 4.1 to verify that c(t) « d(t) for alH > 0 and that there exists a
positive real number K such that

d(c(t),d(t)) <K

for all t > 0. Hence [c]+ = [d]+. Notice that d(p,μn(p)) > nr by the
reverse triangle inequality. By the definition of convergence in Chapter
four we have

μn(p) - + p [c}+.

Proposition 4.7 yields

μn+1(p)

Since we also have

we deduce that [c]+ is a fixed point for μ+. Time orientation reversal
produces a fixed point [e]_, e 6 ΩTP, for μ_. Proposition 4.8 asserts
the existence of a TF geodesic 7 with [7]+ = [c]+ and py_]_ = [e]_.
This 7 is an axis for μ due to the uniqueness part in Proposition 4.8,
i.e., μ o 7 = 7 o τdμ. To see that dμ > 0 let 5* denote the smallest real
number such that 7(5*) G */+(p), hence 7(5*) ^ I+(p) Since p <<
we conclude that

But μ o 7(5*) = 7(5* + dμ) e J+(μ(p)). Using [27, Corollary 14.1] we
deduce that dμ > 0, and the Theorem follows.

Example 5.4- The linear map with matrix representation

^cosh φ sinh φ θ\
sinh φ cosh 0 0 , 0 € R+,

0 0 1/

in the standard basis in Ef is an isometry of Rf. The restriction of this
isometry to MQ,Q > 0 is a hyperbolic isometry μ. For appropriately
chosen causally related points p and q a suitable conformal change of
the metric on J(p, q) and its translates by μ result in a nonconstantly
curved CQ manifold with a hyperbolic isometry and Q > 0.
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6. Null colines

The concept null coline is crucial to the structure theorems in chap-
ter 7. Their definition relies on Lemmas 6.1 and 6.2 to be derived. To
this end let 71 and 73 be TF geodesies, and 72 an NF geodesic in a
CQ manifold, Q > 0. So j 2 is a future directed complete null geodesic.
The three geodesies 71,72 and 73 form a nonspacelike geodesic triangle
with vertices

7i(0) = P , 7i(α) = 9>
72(0) = 9 , 72(1) = r ,
7s(0) = p, 73 (c) = r .

Let us introduce the following notation:

Then we have the following inequalities.
Lemma 6.1.

cosh(Qc) < cosh(Qα) + Qesinh(Qα),
(6.1,2,3) 1 < cosh(Qα) cosh(Qc) + sinh(Qα) sinh(Qc)Ap,

cosh(Qα) < cosh(Qc) - sinh(Qc)Qrf.

Proof. According to [15, Corollary 2.5]. there are open neighbour-
hoods U of 72(0) and V of 73 (c) such that

F = exP g | ί / U^V

is a diffeomorphism. Define nonnegative reals cs and d8 by

c\ = - (c\

for s > c. Looking at the timelike geodesic triangle p,q = qs^j3(s) we
find that

sinh(Qds)Aqs -» Qe

for s -» c. Then Lemma 2.2 yields

cosh(Qcs) < cosh(Qds)cosh(Qα) + sinh(Qds)sinh(Qa)Aqa.

Convergence to s = c leads to (6.1). (6.2) and (6.3) are similar.
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Suppose we are given an NF geodesic and a point p 6 M such that
p « /?(«*), s * G i We can then define vs by

(6.4) β(s) = expp(υs d{p,β(s)))

for s > s*.
i 6.2. 77

d(p,β(s)) -> +oo, v8 -» v,

Lemma 6.2. There exists a v e T~XM+ such that

as s —>- + o o .
Proo/. Letting a = d(p,/3(s*)), 5 S = {υSψ,υs) and cs = rf(p,

for 5 > 5* we find, in consequence of Lemma 6.1,

Bs > -cosh(Qα)cosh(Qcβ)/[sinh(Qα)sinh(Qcs)]
> -cosh2(Qα)/sinh2(Qα) = K.

This follows from the fact that s H-» C3 is smooth for s > s* with

We can then take a sequence {SAJ^N, S*. > 5* such that υSk converges
to some υ € TPM as k —> +oo. If the Lorentzian distance from p to
β(s) were bounded by some d we would have

β(sk) e expp(C),
C = {sw\w e T~ιM+, K < (w,vs.) < -1,0 < s < d}

for all fc larger than some kQ G N. This however contradicts [27, 14.13]
because β is future inextendible and (M, g) is strongly causal by Re-
mark 2.3.

To show the second statement in this lemma use Lemma 6.1 in the
estimate

(vtl,vt2) > -coshίQctJcoshίQctJ/ίsinhίQctJsinhίQctJ).

Given K < — 1, the right-hand side is greater than or equal to K for
all ίi,ί2 larger than some ί*. This means that {v8}s>Sm is a Cauchy net
in the metric space

{we TPM I (w,w) = - 1 , (υMw) < 0}
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with metric

d(v,w) = cosh^]_R_((v,w)), υ,w e T~ιM+ :

cf. [27, p. 156]. From this the second statement in the lemma follows.

Definition 6.3. The NF geodesic β is a future null coline to the

TF geodesic 7 through 7(0) = p, provided

lim vβ = τ/(0).
s—> + o o

Fortunately, we have
Proposition 6.4. If β is a future null coline to 7, then β is a future

null coline to any TF geodesic σ, which is a future coray to 7.
Proof. According to Lemma 6.2 and the definitions,

asn-> +00, where p = 7(0). Proposition 4.7 tells us that

β{n) ^qω = [σ]+

as n -> +00 where now q = σ(0). Thus the proposition follows.

7. Structure theorems

The future null cone in a CQ manifold M of a point p G M is by

definition

(7.1) K+(p) = {qeM\p<q,

Also define

(7.2) D +

We shall show that (7.1) and (7.2) are C°° submanifolds of M and M x
M respectively. K+(p) is degenerate of constant signature (0,+,...,+).
This will imply that the square of the Lorentzian distance function is
smooth on

(7.3) C+ = {(p,q) eMxM\p<q}.
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We start with

Lemma 7.1. Suppose q = expp(v) for some future directed null
vector v G TPM in a CQ manifold (M,#), Q>0. Then q £ /+ (p).

Proof Assume for contradiction that p « q. According to Lemma
2.1 there exists a TF geodesic 7 from p to q = 7(α), a G R+. Take open
neighbourhoods U around v in D(expp) and V around q such that the
restriction of expp to U is a diίfeomorphism onto V. An open interval
/ around a is mapped by 7 into V. Define

σ : I^TPM, t H> exp^ 1 o 7 ( t ) ,

ί 6 J .

Notice that α7'(0) ^ Z7, since this would imply that the timelike
vector aj'(0) is equal to the null vector υ. Since the scalar product

( 7>),Tσ ( α )expp(σ(α))) = ^/'(α)

of two future directed nonspacelike vectors is negative, there exists a
positive t G / such that σ(t) φ ^7r(0) is a timelike future directed
vector. But this means that

expp(σ(t)) = 7 (ί) = expp(ίV (0)),

contradicting Lemma 2.1.
We continue with a lemma, involving

(7.4) Λ°+ = {w G TM I (w,w) < 0, (w,X) < 0}.

Dually Λ°~ consists of the set of w in TM such that — w G Λo+.

Lemma 7.2. Let v be a future directed null vector in a CQ manifold,

Q > 0. Then there exists an open neighbourhood W around v in Ώ)(E)

such that

(7.5) E(w)<£Ct ={(p,q)eMxM\p<q}

for any w G W\A0+.
Proof. Take a timelike future directed vector

Jz),
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where p = π(υ). Let Y denote a smooth vector field on an open neigh-
bourhood D(y) of z in TM with Y(υ) = z. We can assume that
Tπ(Y) = 0. Since

Λ° = {x G TM I x is a future directed null vector }

is a hypersurface in TM, we can take a local flow

Φ : ] - € , € [ x U->Ό(Y)

for Y around υ and adapted to Λ°. Since Y(υ) = z, we can assume that

exp o φ ω : ] — 6, e [ —> M

is a smooth timelike future directed curve for all w G £/, by taking
a smaller J7 and e > 0 if necessary. We can now define F to be the
restriction of Φ to ] — e, e [ x Λ^, where Λ^ = Λ° Π £Λ By adjusting
the domain of definition we can assume that F is a diffeomorphism,
because T^tV)F is an isomorphism. In fact Y(v) £ TVA° due to the fact
that Y(v) = z\ cf. [13, Proposition 2.2]. If the domain of definition of
F is sufficiently small, the restriction of

E : Ό(E) -> M x M, v H> (τr(υ),exp(ί;))

to W = I m F will be a diffeomorphism onto its open image; cf.
[13, Proposition 2.1].

Suppose w E W\A°+, that is w = F(t,u), (t,u) G D(F). By con-
struction Fu is a smooth timelike future directed curve in TqM, q =
π(w). If t was nonnegative, using the causality relations in TqM we
would have

i), ί = 0,
g •C

Consequently z/; is in the causal future J*(0q) of the zero vector 0q

in T9M. This contradicts the fact that w E W\A°+. Thus t < 0. If
(#, y) = E(w) was in CJ, we would have

x <y = exp(F(t,u)) « exp(F(0,u)) = exp(u),

contradicting Lemma 7.1. Consequently E(w) £ C£ and the lemma
follows.
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Prom Lemmas 7.1 and 7.2 we deduce

Proposition 7.3. The square of the Lorentzian distance function
(P : M x M -+ R is smooth on C + .

Proof Let us first consider (p,g) = (p,expp(v)) G D* C C + , where
v G Λ°. Take an open neighbourhood W around v in TM such that the
restriction of E to W is a diffeomorphism onto its open image and such
that (7.5) holds. A careful choice of W ensures that E(W) has empty
intersection with the diagonal in M x M. Define a smooth function
F on E(W) by

(7.6) F(x,y) =-(w,w) , w = £^(z,y).

If (z,y) G C+ Π £(W0, then by [5, Theorem 10.16] we have

(7.7) d(z,y) 2 =F(z,y),

whenever x « y. We can obtain (7.7) by (7.5) when x < y, y £ I+(x)
The remaining cases p « q and p = q follow from the openness of <<,
the strong causality of (M,g) and [5, Theorem 10.16].

Given a point p in a CQ manifold (M, #), Q > 0, we can now prove
Theorem 7.4. D^ and K+(p) are C°° hypersurfaces of M x M and

M respectively. The metric induced on K+(p) has constant signature

(0,+,. ;+)
Proof If (p,q) € D+ , then according to [27, p. 404], there exists

a future directed null vector v G TPM such that q = expp(ι;). By
Lemma 7.2 there exists an open neighbourhood W around υ such that
the restriction of E to W is a diffeomorphism onto its open image and

(7.8) E{w)id,

whenever w G W\Λ0+. We claim that

(7.9) E(W Π Λ°) = E(W) Π D + .

The left-hand side is a subset of the right-hand side according to
Lemma 7.1. The reverse inclusion follows from (7.8). Combining (7.9)
with the fact that Λ° is a hypersurface in TM we conclude that Dr1" is
a hypersurface in M x M.

To show that the smooth submanifold M(p) = {p} x M of M x M
is transversal to 0*" take (p,q) = E(v), υ G Λ° and observe that

T{p,q)M(p) = Γ ^ ^ Λ 0 + Tvi(TvM)),
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where i : TPM -> TM denotes the inclusion. If we define a(t) — υ+tw
for some timelike w G Tπ(v)M, then Tvi(a'(0)) £ TVA°. Thus D+ is
transversal to M(p). It follows that

D+ΠM(p) = {p} x K+(p)

is a smooth submanifold of M x M. A codimension count shows that
K+(p) is a C°° hypersurface of M.

The squared Lorentzian distance function / is smooth on C + by
Proposition 7.3 and

TqK+(p) = grad fp(q)\

Since grad fp(q) is null, the last statement of the lemma follows.
Lemma 7.5. C + is closed.
Proof. Let (p, q) G M x M denote the limit point of some

sequence {(pn,Qn)}neτi fr°m C+> converging in M x M. To show that
(PIQ) belongs to C + take r G M such that p,q £ I~(τ). According to
Proposition 7.3 there exist an n0 G N and K > 0 such that pn « r and
cn = d(pn, r) > K for all n>n0. Let ̂ n and ηn denote nonspacelike or
constant geodesies from pn to qn = /?n(l) and r = 7n(cn) respectively.
It follows from Lemmas 2.1 and 6.1 that

(7-1) -<&(0),Vn(0)>

is bounded above by some C > 0 for all n>n0. We can assume that the
sequence {pn}n>n0 belongs to the domain of some orthonormal frame
Eι,...,En with Eι timelike, future directed, and write

iEi wn=Ί'n(0) = ΣμtEi.
i

We have an upper bound D on μx since wn is a convergent sequence.
We can now use (7.10) and the Schwartz inequality to get

and hence
\2

1-2C\1(D2-l)i -C 2 <0.

This shows that there is an upper bound to the absloute value of the A*.
A subsequence {vnk} of {vn} will then converge to some nonspacelike
or zero vector υ showing that (p, q) — (p,expp(v)) G C + .
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Lemma 7.6. F : Λo+ -+ C+v •-> (π(v),exp(v)) is a homeomor-
phism.

Proof. To prove injectivity suppose that F(vι) = F(v2), so that
p = π(vχ) = π(t>2). If ^i and v2 are timelike, then υλ = υ2 by Lem-
ma 2.1. Vι = 0 and v2 nonspacelike contradicts the strong causality of
(M, #). Vι timelike and v2 null is impossible by Lemma 7.1. It remains
to consider the case, where vλ and v2 are both null vectors. To this end
define βi(s) = expp(svi), i = 1,2 and observe that

βί(i)eτβιll)κ+(p).

It follows from Theorem 7.4 that $(1) = /?2(l)λ for some λ φ 0. The
strong causality of (M,^) implies that λ = 1, so that vλ —v2.

Since F is onto by [27, p. 402] we conclude that F is a bijection with
inverse G. Due to Lemma 2.1, G is smooth on some open neighbourhood
of the image by F of any timelike future directed vector.

1) We now insist that G is smooth in the image by F of some zero
vector v G Λo+ by taking an open neighbourhood V around 0 in TM.
We shall require that 0π(v) £ V whenever υ G V and also that the
restriction of E to V is a diffeomorphism onto its open image. Take a
causally convex open neighbourhood U of π{v) such that U x U C
E{V) and define W = E^(U x U).

Suppose exp(ϊi ) G J+(π(w)) for some w G W. By definition this
means that either w = 0 or there exists some smooth nonspacelike
curve a : [0,a] -> M from α(0) = π(w) = q to expg(w) = α(α) φ q.
Since J7 is causally convex we can define

β{t) = E^{q,a{t)), t € [ 0 , α ] ,

which is a smooth curve in the future causal cone of TqM by
[27, Lemma 5.33], hence β(a) = wE Λo+. We have shown

(7.11) E(w) $ C+,

when w G W\Λ0+.
2) Around any null vector υ there is an open neighbourhood W in

Ώ(E) such that (7.11) holds and such that the restriction of E to W is
a diffeomorphism onto its open image. This follows from Lemma 7.2.

In both cases the restriction of G to E(W) Π C + coincides with the
restriction of E7^ to E(W) ΠC+. G is hence smooth in the image by
F of any null or zero vector. The lemma follows.
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Theorem 7.7. Let ω = [7]+ and a = [7-]_ belong to the timelike
future M+(oo) and the timelike past M~(oo) of a CQ manifold (M,g)
with Q > 0. Then the following hold:

1) dl~{ω) (3/+(α)) is a Cι hypersurface in M of constant signature
(0,+,...,+). Through every point in dl~{ω) there is a future null coline
βtoΊ.

2) The intersection dl~(ω) Π9/+(α) is a Cι Riemannian manifold
of dimension dim M — 2.

Proof. To prove 1) for any ω = [7]+ € M+(oo), suppose x E dl~(ω).
We claim that there exists a future null coline β to 7 through /?(0) =

x. To this end let ζ denote some TF geodesic through ζ(0) = x. ζ(t) is
in /~(7) for t < 0 because then J+(£(£)) is an open neighbourhood of x.
For a suitable increasing sequence {un} converging to 0, the sequence
v(un) with

v(u)±-Voζ(u)/(V,ζ'), u<0

will converge to some υ G TXM. Here V denotes the vector field, that
assigns to each x E I~(j) the tangent vector to the future coray from
x to 7. We need to know that for every t > 0 such that x $. J+(7(t)),
the set

Kt = Γ(ω)n(K+(Ί(t))U{Ί(t)})

is contained in a compact set, Ct say. But to any q G Kt there exists an
NF geodesic β from j(t) to q. Since q G /~(ω) there is a TF geodesic
σ from q to some j(t + c) = σ(α) with cosh(Qc)/sinh(Qc) < 2. The
existence of a compact set C* containing Kt now follows from Lemma
6.1 showing that

< (cosh(Qc) - cosh(Qα))/Qsinh(Qc) < 2/Q.

For every w < 0 there exists an su > 0 such that

and hence also a ί u G [0, su[ such that

qu =

If JD is a compact neighbourhood of x, then for all u < 0 sufficiently
close to 0, we have

tu v(u) = F-ι(ζ(u),qu) e F
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This set is compact by Lemma 7.5 and Lemma 7.6. This means that
the convergence of {tUnv(un)}ne^ to some w can be assumed by taking
a subsequence of {un} if necessary. The nonspacelike geodesic β(s) =
expx(sw) is then in I+(^(t)) for all 5 > 1. Looking at the timelike
geodesic triangle j{0)j(t)β(s) with side lengths £, c and b we find

(c;(0),7'(0)) = (cosh(Qc) - cosh{Qb)cosh(Qt))/[smh{Qb)sinh(Qt)}
> -cosh2(Qt)/smh2(Qt).

Here cs is the TF geodesic from cs(0) = 7(0) to cs(b) = β{s). Since
x £ I~(ω) we infer that β is a future null coline to 7 through x, thereby
proving the claim. Notice that σ(s) G dl~(ω) for all s G K, due to the
convergence of {tUnυ(un)} to w.

Define p = β(s),q = β{-s) and /, : J'(β(s)) -> R by

fs(y)=d(y,β(s))

for s > 0. Take some z 6 /+(p). Since z » x, there exists some past
directed timelike vector v in TZM such that 7V(£*) = x for some £* > 0.
We shall now prove a sequence of four claims, leading to a proof of the
first statement.

First claim. We claim the existence of an open neighbourhood U of
v in the set T~λM~ of past directed timelike unit vectors in TZM and
a C°° function ts on U such that ts(v) = ί* and for all w in C/ we have

Ίw(t.(w)) e J~{β{s)) , Λ(7u,(ί.H)) = 0.

To see this take an open neighbourhood V of —sβ'(s) in TM\Λ0+ such
that the restriction of expp to V is a diffeomorphism onto its open image
and such that expp(w) ^ J~{p) for any w 6 V\Λ°~; cf. Lemma 7.2.
Define

for y E expp(y). For some open neighbourhood Ω of (υ, tu) in T~ιM~ x
E, expz(tϋί) € expp(V) for all (tw,t) G Ω. The claim now follows from
an application of the inverse function theorem to the function

Gs : Ω->R, (t,u;)i^

Second claim. For all it; G C/ and all u > 5 there exists a unique
tu(w) e [0,ta(w]\ such that

(7.12) 7«(*uM) € J"(/3(ti)), /tt(7«(*«M)) = 0.
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Notice that jw(ta(w)) E J'(β(s)) C J'(β{u)); cf. [27, 14.1 and 14.6].
This means that

tu(w) = inf{ί E [0,f.H] I Ίw{t) E J-(β(u))} > 0

satisfies (7.12). If some t E ]0, tu(w)[ also satisfies the claim, then

Consequently jw{tu(w)) E I~(β(u)). Since this is untrue, the unique-
ness of tu(w) follows.

Third claim. The function u H* tu(w) = tw(u) > 0,u > s is decreas-
ing, hence convergent.

This follows from the above definition of tu(w) and the fact that
J~(β(ux)) C J~(β(u2)), whenever s < ux <u2.

We can now define a function t on U by declaring

t(w) = inf iw(w), w eU.
u>s

Clearly r = *yw(t(w)) € closure J~(ω); cf. [27, 14.6 (2)]. Assume for
contradiction that r E /"(ω); i.e., r < < j(a) for some α G i Since β
is a null coline to 7, /3(6) E /+(7(α)) for some b > s. Define

A = {t 6 [ 0 , ί H ] I e x p , ( H e J(r,/?(6))},

which is closed by global hyperbolicity of (M,g). Hence t* G A, where
t* = inf A E [0,ί(u;)[. Since << is open,

exp(t^) E J-(β(b)), fh(exp(Uw)) = 0,

contradicting the definition of t(w). Thus r = 7w(t(w;)) E dl~(ω).
Fourth claim, t is C1.
To see that £ is differentiate in w E 17 define y = expz(wί(w)) E

dl~(ω). We know that there exists a future null coline βy to 7 through
)9y(0) = y. Take some 5 > 0 and some z E I+(βy(s)). According to
the first claim and its past dual around any w E U there exist an
open neighbourhood Uw of w and C°° functions t+ and t~~ such that
t+(w) = t~(w) = ί(tί ) and
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for all ueUw. Since ju(t^(u)) G J~(βy(s)) C closure J"(ω), t+(u) >
t(u).

Lemma 14.1 in [27] tells us that there is no t > 0 such that βy(t) G
I~(ω). This will not happen for a negative t either according to Lem-
ma 7.1. Using [27, 14.1] once more we deduce that yu(t~(u)) £ /~(ω)
and hence t~(u) < t(u). Prom the fact that t~(w) = t(w) = t+(w) it
follows that t is differentiate.

To see that t is C1 in w G U let s denote a C°° function on an open
neighbourhood Ω of (w, βy{l)) in T~ιM~ x M such that s(w, y) = t(w)
and

-yυ(s{υ,x))eK-{x)

for every (v,x) G Ω. Give some open neighbourhood W of y in dl~(ω)

a Riemannian metric /ι. The tangent vectors to differentiate curves

through q in W span a subspace

in TgWf. It has signature (0,+,..,+) according to Theorem 7.4. We can

then define a vector field X on W. The value of X at q is the unique

future directed null vector of unit Riemannian length in Aq. Notice that

βx{q) is a future null coline to 7 for all q £W.

If X is not continuous at some q G Wf, there exists a sequence {qn}

in W such that {gn} and {X(qn)} converge to q and Yq φ X{q) respec-

tively. For some 5 < 0, βγ(q)(s) G /~(ω), because Y{q) and X{q) are

linearly independant null vectors and βχ(q)(l) G dl~(ω). Continuity of

the geodesic flow implies that

βx{qn)(s)eΓ(ω)

for some sufficiently large n. This contradicts Lemma 7.1. Thus

υ *-> dtv = d5(Vj/3x(expz(i( t ;)v))(1))

is continuous.

The map it; »-> exp^wί^)) from J7 to cλf~(α;) gives rise to a chart in

a C1 submanifold structure on dl~(ω). The tangent space to dl~(ω)

at x G dl~(ω) coincides with the tangent space to K~(βx(s)), where

βx is a future null coline to 7 through x and s > 0. Theorem 7.3. now

tells us that dl~(ω) has constant signature (0,+,...,+).
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2) To verify that dl~(ω) Π dl+(a) is nonempty let σ denote some
TF geodesic with σ(0) = 7(0) and

Choose t > 0 subject to the requirement

A2 - cosh2(Qt)/sinh2(Qt) > 0.

The reverse triangle inequality shows that we can find some s* such
that σ(s*) E J~(7(ί))\/~(7(ί)). Using Lemma 6.1 we derive

(7.13) (cosh2(Qs) - l)sinh2(Qi)A2 < (cosh(Qί)cosh(Qs) - I) 2 .

We conclude that cosh(Qs) < K for some positive K regardless of
the value of t. It follows that y = σ(s*) £ dl~(ω) for some 5* > 0.
We have seen that there exists a future null coline βy to 7 through
A/(0) = V a n d that the counter image by the restriction of expy to
Λ°~(y) = Λ°~ Π TyM of K~(y) Π /+(α) is contained in some compact
set in TyM. We can then find a U < 0 such that

x = βy(U) e dl+(a) ΠdΓ(ω).

Combining Proposition 4.8. and Lemma 7.1 we see that βy(U) cannot
belong to the tangent space to dl~*~(a) at x, because the signature of
this vector space is (0,+,..,+). We conclude that dl~(ω) and dl+(a)
have nonempty transversal intersection in a C1 submanifold N of M.
There is also a past null coline βx through x to 7_. N is Riemannian
because

β'y(Q-β'X(0)

is a timelike vector orthogonal to TXN. Hence the Theorem follows.
Example 7.8. There are CQ Robertson Walker spacetimes of non-

constant sectional curvature Q > 0. In fact let gQ denote the metric on
MQ C Mn+1, and /Q the restriction to MQ of a smooth function / on
Mn+1, depending only on the first coordinate. With a suitable choice
of / the timelike sectional curvatures of (MQ,fqgQ) will be bounded
below from zero by some Q+ G ]0, Q[. Nonspacelike completeness of

follows from [26, Lemma 14.13]. It is future 1-connected,
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because this is invariant under conformal changes of the metric. Dy-
namic properties of the geodesic flow on Lorentzian manifolds have
been considered in [1], [10] and [32].

8. Density of timelike periodic geodesies

In this section we shall show that the timelike periodic geodesies are
dense in the future timelike unit tangent bundle

T-λM+ = {ve TM\(υ,υ) = - 1 , υ future directed

of a CQ manifold (M, g) with Q positive and with vicious Deck trans-
formation group. We shall proceed to define this concept.

Let π denote the tangent bundle projection, and D : TTM -> TM
the connection map; see [18]. The tangent bundle to M at υ G TM
decomposes into

TVTM= ROR TυTM® VER TVTM,

where HOR TVTM is the kernel of Dυ, and VER TVTM is the kernel
of Tvπ. Any w £ TVTM decomposes uniquely as

w = wh + w\ wh e HOR TVTM, wυ e VER TVTM.

The tangent bundle to M carries a canonical metric G, defined by

G(wuw2) =g(wlw%)+g(wυ

ι,w
v

2) w1,w2eTvTM

and this induces a Lorentzian metric on the future timelike unit tangent
bundle T~XM+.

Definition 8.1. A group Γ of isometries on (M,#) acting properly
discontinuous on T~~ιM+ is vicious provided Γ~1M+/Γ = N is time
orientable and totally vicious, that is,

I+(p)nΓ(p)=N

for all p e N.
Remark 8.2. Suppose Γ is a group of isometries on (M, g) acting

properly discontinuous on T~ιM+. According to [27, p. 191] there is
a unique differentiate structure and metric on T""1M+/Γ making the
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natural map πp : T~ιM+ —> T~ιM+ /Γ = N a semi Riemannian
covering map. N will always be given this differentiable structure.
The reader may consult remark 9.6 for examples of vicious groups of
isometries.

Suppose ω G M+(oo) and a G M~(oo) are causally related, i.e.,
there exists a p G M such that p « ω and p » a respectively.
According to Proposition 4.5 there exist a unique TF geodesic 71 and a
unique TP geodesic j 2 from p to [7]+ = ω and [7-]- = OL respectively.
It will be convenient to define

B((ω,p) = {[Ίw]+ e M+(oo) I w e T~1M+ (w,Ί[(0)) > -1 - e},
BΛ<*,p) = {[7«]- e M-(oo) I w e r - W - K7^(o)) > -1 - e}.

Proposition 8.3. // Γ is a totally vicious group of isometries on
(M,g) and p » α, p « ω for some p G M, then for every e > 0
there exists a TF axis 7̂  of a hyperbolic isometry ξ G Γ such that

G B€(ω,p) te_]_ G B€(α,p).

Proof To prove this we first apply Proposition 4.5 to give us a TF
geodesic 71 and a TP geodesic 72 with 71 (0) = 72(0) = p, [71]+ = ω and
[72]- = a. We will first show that there exist isometries μ+ and μ_ in
Γ such that

(8.1) μ+(p) G J+(7i(t)), μ-(p) e /-(72W).

We have chosen t > 0 to satisfy

cosh2(Q*)/sinh2(Qt) < 1 + e.

It will suffice to find a /i+ G Γ satisfying (8.1). To introduce notation let
X,Y and Z denote the time orientations of Γ " 1 M + , Γ - 1 M + / Γ = N
and M respectively. These time orientations may be compatible or
incompatible at some υ G T~1M+,π(τ;) = 71 (ί). That is,

{Tπ(X(v)),Z(π(v)))(Y(τrΓ(v)),TυπΓ(X))

may be either (i) positive or (ii) negative. Since N is totally vicious,
there exists a smooth timelike curve β : [0,1] —>- T~1M+/Γ from
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πτ(v) = β(0) to some πΓ{w) = β{l), w G T~ιM+ with π(w) = p.
We can assume it is future directed in case (i), and past directed in
case (ii). The projection π o η to M of the lift η : I -> T~λM+ of β
through 77(0) = υ is then a future directed smooth timelike curve in
T~ιM+ by definition of the metric on T~XM*'. But this means that
there exists a μ+ G Γ such that Tμ+(w) = 77(1) hence Ίι(t) « μ+(p)
as claimed.

Having found μ_EΓ satisfying (8.1) by logically equivalent reason-
ing we define ξ = μ+ o μZ1 and combine

p « μ + ( p ) , p«μz1ip)

to assert that p « £(p). Let the TF geodesic 7̂  denote a timelike axis
for ξ with ^ ° 7ξ = 7ξ ° τrf€ its existence is guaranteed by Theorem
5.3. Recall that we can assume that [7̂ ]+ G I^ip) and [7^.]- G I^ip)-
Combining

{Tξ(iξ(0)),X) = (%(rd((0)),X) <0

with the fact that T~ιM+ is path connected we conclude that Tξ
preserves time orientation. Let σ denote some TF geodesic through
σ(0) = p. Then

Looking at the timelike geodesic triangle p ηλ (t) μ+ o σ(s) with side-
lengths £, v = d(p, μ+ o σ(s)) and u = d(jι(t), μ+ o σ(s)) we find

Ap > APQ = (cosh(Qu) - cosh(Q?;)cosh(Qί))/[sinh(Qϊ;)sinh(Qt)]
> -cosh2(Qt)/sinh2(Qt) > - 1 - e.

We deduce that μ+(/+ (p)) C Be{ω,p). Similarly μ_(/~ (p)) C Be{a,p).
Hence also

[7ί]+ € ξ+(ii(p)) C β€(α;,p), [7ξ_]- € C ' ^ W ) C Bt(a,p),

and the proposition follows.
We can now prove the density of timelike periodic geodesies in the

future timelike unit tangent bundle of a CQ manifold.
Theorem 8.4. Let (M,g) denote a CQ manifold ,Q > 0, with a

vicious group of isometries acting on the future timelike unit tangent
bundle. Given an open set U in T~ιM+, there exists aυ eU such that
the geodesic with initial velocity πr(t>) is periodic.
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Proof. We shall prove more, namely: On any CQ manifold with
Q > 0, the tangent vectors to TF geodesies joining any pair [7V_]- =
a G M~(oo) and [*yυ]+ = ω G M+(oo) depend continuously on the
endpoints. By this we mean that to any neighbourhood U around υ
in T~ιM+ there exists an e > 0 such that any TF geodesic 7 joining
[7]+ = ω* G Be(a,p) and [7_]_ = a* E Be(ω,p) has a tangent vector
ϊaU.

Choose some t2 > 0 and open neighbourhoods W, U\ and U2 around
t2v in Λ+ and pi = 7v(0) = jv(ti), p2 = Ίv{h) in M such that

E\W : W -> t/i x ί/2 ^ H-̂  (π(tϋ),exp(ti;))

is a C°° diffeomorphism. We can assume that x « y for all x G C/Ί
and y G U2 cf. [27] p.404 and also that tx/||tx|| G 17 for all u in W:
Let Eι = 7^,..., En denote a parallel orthonormal basis along j v . There
exists bj > 0 such that any zp. G TPjM, j = 1,2 satisfying

for alH = 1,.., n is mapped into Uj by expP i.
We claim that there exists an A{ > 1 such that for any TF geodesic

β with

[/?]+ = [ci]+ [i3_]_ = [*]_, c, G ΩT F, di G ΩT P,

there exists a past directed null or zero vector zt 6 TPiM with
and

To prove this claim choose A\ > 1 such that

whenever x G [l,^i[. This A{ will work. To see this we denote by ds

the TF geodesic from di(s) = cίs(0) to Ci(s) = d s(u s), s > 0, and define

ίβ = sup{ί > 0 I d#(t) G J ( φ ) , p ) } .

Then ds(ts) G J~(p)\I~(p) by global hyperbolicity of (M,g). Accord-
ing to [27, 14.5] there exists a past directed null or zero vector Zi(s)
satisfying the requirement

exppi (*<(«)) =ds{t8).
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If Zi = 0, the claim follows. Otherwise define η(t) = expp(ίzj). Lem-
ma 6.1 gives us the following inequalities involving

Λ = « . - < „ l = ta, d=«(0,»7 / ( l)) = e) dt = -(η'(0

namely

cosh(φ) < cosh(Qfc) - sinh(Qh)Qd,
(8.3,4,5) cosh(φ) < cosh(QZ) + sinh(Q/)Qe,

cosh(QZ) < cosh(Qs) - smh{Qs)Qd,

Combine (8.3) and (8.4) to get

(8.6) cosh(Qs)(sinh(QZ) + sinh(Q/ι)) < sinh(Q(ί + h)).

We will also need to combine

cosh(Q(/ι + 0) < cosh2(Qs)(l + Ap) - Ap

with (8.6) to yield

(cosh(Q(h +1)) + Ap) (sinh(Q0 + sinh(QΛ))2

< (1 + Ap)sinh2(Q(l + h)).

Squaring the brackets and rearranging the terms we obtain

cosh(Q(/ι + Z))(sinh2(QZ) + sinh2(Q/ι)) + 2 sinh2(QZ)sinh2(Q/ι)
< cosh2(QZ)sinh2(Q/ι) +sinh2(QZ)cosh2(Q/ι)

+2Apsinh(QZ)sinh(Q/ι)(cosh(Q(/ι + I)) - 1),

and then finally

sinh2(Qh) - 2Apsmh{Ql)smh(Qh) + sinh2 (Ql) < 0.

We deduce immediately that

sinh(QΛ)/sinh(QZ) < Ap + (A2

p - 1)* 4 α.

The reverse triangle inequality tells us that h > s. For s greater than
or equal to some s0, we may then compute from (8.5)

sinh(QZ)cosh {Qh) - cosh(Qs)sinh(QZ)

(a7, * ~ <2sinh(<2/ι)sinh(<2s)
^ ' ; < cosh(φ)(l - l/α)/(Qsinh(Qs))

= cosh(φ)/(Λp)/sinh(ς>s) < 6/2
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when s0 is sufficiently large. Prom (8.7) it follows that the {zi(s)}8>So lie

in a compact subset of TPi M. We can then take a sequence of real num-

bers sn > s0 converging to +00 and such that Zi(sn) —> z{ as n -» +00.

Now expp.(zi) E β(R) because dSn o τtan = βn and β™ have nonspace-

like limit curves ξ and ζ through dSn (tSn), which are TF geodesies with

ξ'(0) = -C(0) and ξ(0) = ζ(0) = expp.(^). This is due to the fact that

exp p.(^(sn)) = dSn(tSn) ->> expp.{zi)

for n —>• +00. Thus ξ is a future coray to c, and £_ a past coray to d.
By the uniqueness in Proposition 4.8 we conclude that β = ξ o rα for
some α EM and hence expp. (zi) = ξ(0) = β{—α). This establishes the
claim.

Due to the claim there are A{ = cosh αu α{ > 0, such that the
conclusion following (8.2) is true. We can also assume that biAi +
[A] — l)s&i < 26j, i = 1,2. Now take Si < ί l5 s2 > t2 subject to the
requirement that any Cj E ΩTF and dj E Ω,TP with

[cά]+ E I+(ηv(s2)), [dj]- E J-(7 v (si)), Cj(O) = dj(O) = pά

satisfy the inequalities

(8.8) -(^(0),7^,(1,)) < co8h(aj/2), (4(0),7^(^)) < cosh(α i/2).

There exists a TF geodesic β with

( 8 9 ) ,^, _ . 9 _._ 6

where Cj(0) = Pj. Now (8.8) implies that {d^d1-) < Aj. According to
the claim (8.2) there are past directed null or zero vectors Zj E TPjM
and Sj E R such that

exp p . (^ ) = β{8j), I (zjid'jiO)) I < bj, j = 1,2.

It follows that

I <*i,7ί(<i)> I < A J6 j + (A) - l)hj < 2bj.

Hence β{sj) G Uj. Since β{sι) « β(s2) we conclude that

(s2-Sl)β'(Sl) = E,^-1^!),/?^)) e w,
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so that β'{sι) £ U. Due to Proposition 8.3, we can assume that β is an
axis of an isometry μ G Γ. This finishes the proof.

9. Constant curvature

In this section we will show that there are discrete groups of isome-
tries acting on the future timelike unit tangent bundle of the complete
CQ manifolds of constant sectional curvature Q > 0. To do this consider

X = {(x,υ) € R?+1 x R?+1 I (x,x) = 1/Q2, (x,v) = 0,
(v,v) = - l / Q 2 , υ i > 0 } ,

Y = {(y,w) e R?+1 x R?+1 I (y,y) = -l/Q\ (y,w) = 0,

Riemannian hyperbolic space is denoted by

n+l

MH = {x € K+11 (x, x) = -4 +
i=2

We have the natural maps Gx and Gγ from the future timelike unit
tangent bundle

T~ιM+ = {υe TMQ I (v,υ) = - 1 , (υ,X) < 0}

of MQ and unit tangent bundle TιMH of MH to Rn + 1 x E n + 1 , defined
by the sequences

% > ΓRn + 1 -^ Mn+1 x Kn+1,
TιMH -> ΓE n + 1 -> Rn + 1 x Mn+1.

In each row the first map is the inclusion, the second map the natural
identification. The map that takes (x,v) G Mn+1 x E n + 1 to (x,v 1/Q)
is denoted by hQ. Notice that hQ o G x and HQ O G Y map onto X and Y.
This means that

FY I

are diffeomorphisms to X and Y with their submanifold structures from
the ambient Rn+ ι x Rn + 1. Also

G :X->Y (x,υ)^{v,x)
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is a diffeomorphism, showing that T"1MQ and TXMH are diffeomorphic
via the composition

φ = Fγλ oGoFχ

of diffeomorphisms. We have geodesic flows

ΦQ : R
Φ H : R H H

on MQ and MH respectively. The diffeomorphism Φ conjugates these
two flows. In fact, we have

Proposition 9.1. Φ o ΦQ(t,v) = ΦH(t,V(υ)) for all v e T~ιM%
and allteK

Proof. Given teR and Fx(v) = (x, y) € X define

η(t) = x cosh(Qί) + y sinh(Qt),
β(t) = x sinh(Qί) + y cosh(Qt).

They are geodesies in MQ and MH with initial velocities 7;(0) = v
and Φ(υ) = β'(Q). The proposition follows from a direct computation,
showing that Fγ o Φ(7'(t)) = Fγ(β'(t)).

The tangent maps of a properly discontinuous group Γ of isometries
on MJJ induce a properly discontinuous group Γ# of diffeomorphisms
of T1MH- The properly discontinuous groups of diffeomorphisms

give rise to the following commutative diagram:

T~ιM% -> X -> Y *- TιMH

(9.1) I i l l
T-^M+fΓQ -> X/Γx -4 Y/Γy <- T'MH/TH

where the vertical maps are the natural maps, and the maps in the
bottom row are induced by the maps F x , G and Fγ in the top row. The
restriction maps

RQ :
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from the isometry group /(M""1"1) of R^1 to the isometry groups I(MQ)
and I(MH) of MQ and MH are isomorphisms, according to [27, 9.8].
Hence

(9 2Ϊ Γ Q = {Tξ : T " 1 M « ^ T~1MQ I μ G Γ C

Thus ΓQ is a properly discontinuous group of tangent maps of isome-
tries of MQ. It follows that the commutative diagram in (9-1) pro-
vides a link between the geometries of Riemannian and Lorentzian hy-
perbolic manifolds, making available Riemannian theory applicable to
Lorentzian hyperbolic manifolds.

Remark 9.2. It is also clear that the composition φ of diffeomor-
phisms from left to right in the bottom row of diagram (9.1) conjugate
the geodesic flows ΦQ and φπ of T~1MQ/ΓQ and TxMHjYH respec-
tively.

Propositions 9.3 and 9.4 below will enable us to deduce results about
the dynamic properties of the geodesic (horocycle) flow on T~1MQ/YQ.

These results set the context for Theorem 8.4; see Remark 9.6.
We shall now show that Φ and hence φ preserve Liouville measures

τQ and τH on T^M^/ΓQ and T1MH/TH when MH/Y is orientable.
Proposition 9.3. φ*τH = ATQ, for some X G R\{0}.
Proof. It is clear that for some υ G T~1MQ we have

for some λ G K\{0}. We have used (Q and ζπ to denote Liouville
measures on T~1MQ and TλMH. Given w G T~1MQ — NQ we can
take an orientation preserving isometry μ on M# such that

Tμ(Φ(v)) = Φ(tt ) = Φ o Tξ(v),

where ξ = Rq(R]ί

ι(μ)). Suppressing evaluation in v, compute

hence Φ*G/ = ^CQ This property descends to the quotients.
We can define a horocycle flow on MQ when the dimension of MQ

is two. We proceed to define it. First of all we need MQ and M# to
have compatible orientations. The restrictions of the position vector
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field on Mi\{0} to MQ and MH provide normal vector fields UQ and
UH on MQ and MH. The orientation ω = —dxx A dx2 Λ dx3 in Rf gives
us orientations

ωQ{x) = ω(UQ(x), , •), z G M Q ,

= ω{UH(y), , •)> y^MH

of T X M Q = rr^ and TyMH = y±. Given v E T~XM^ let 6+ denote the

Buseman function for 7υ, defined on I~~(ω),ω = [yv]+- The horosphere

is a smooth, spacelike hypersurface of MQ, since (grad 6+,grad 6+) =

—1. There is a unit speed geodesic βv : R -> Bv through π(υ) such that

βr

v(0) and v are positively oriented. The horocycle flow

hQ : Rx T-

is then

* , v ) = grad &+(&(*)),

Similarly the horocycle flow on MH is denoted

hH : R X ^ ^

We need to know
Proposition 9.4. ΦoΛg(ί,v) = Λ^(ί,Φ(v)), (ί,v) G
Proo/. Let us find the horocyclic orbits of v0 G T~1MQ and ti;0 £

where Fx(^0) = 1/Q(e3,ei) and F γ (^ 0 ) = 1/Q(ei,e3). Here
denotes the canonical basis in K3. We find that

Fχ(hi(t)) = ((-f ί2, t, 1/Q - f ί2), (1/Q + f ί2, -t, f ί2))

showing

(9.3) Φ

Since I(MH) acts transitively on the orthonormal bases of MH (cf.
[27, 4.30]), there exists an orientation preserving isometry μ G I(MH)
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taking some w = Φ(v), υ € T~ιM% to Tμ(w) = w0. Define ξ =
RQ(R]I

1(μ)) and observe that

Combining this with (9.3) we conclude

Φ o T£(Λ?(t)) = /£ ( β o ) (t) = Tμ o Φ(Λ?(ί)) = Γ/i o Λ»(t).

Thus the proposition follows.
Definition 9.5. The group ΓQ in (9.2) is proper when Γ acts prop-

erly discontinuously on MH such that MH/Y is a connected, orientable
Riemann surface of finite volume.

The horocycle flow descends to the quotient of the future unit time-
like tangent bundle T~1MQ with a proper group ΓQ.

Remark 9.6. In view of Propositions 9.3. and 9.4. a number of
available results are now applicable to the quotient X — T~1MQ/TQ

of the future timelike unit tangent bundle with a proper group ΓQ. We
mention a few as follows.

1) The geodesic flow is mixing and ergodic; cf. [18].
2) The horocycle flow is mixing of all degrees; cf. [26].
3) The timelike periodic geodesies are dense in X; cf. [18].
4) There exists a transitive timelike geodesic in X; cf. [18].
Notice that ΓQ is a vicious group of isometries.
Remark 9.7. A referee pointed out that there is another way of see-

ing the existence of properly discontinuous groups of isometries acting
on T" 1 M^. The isometry group of MQ is Oi(n+1); see [27, p. 239]. The
group Oi(n +1) also acts transitively on MQ. According to [27, p. 307]

Take
^o = e l e n + 1 G T-'M^

where βi, ..,en +i is the canonical basis in R n + 1 . The isotropy group at
υ0 is

/1OO\
O ( n - l ) = { L e O i ( n + l) \L= OcO , c 6 θ ( n - l ) }

l o o u
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under the transitive action of

O+(n + 1) = O++(n + 1) U O+-{n + 1)

on T~1MQ. Prom this group we obtain the coset manifolds

p : Ot(n + 1)/O(n - 1) -> T~ιM% L 0{n -
p' : Ot(n + 1)/O(n - 1) -» I^M* L O(n - 1

where
X o %Q = ZQ O μ,

Then

P
P1

Thus

we find

(L 0(n -
(L 0{n -

ψ = p'o

1)) =

p'1-

O(n - 1))).

^ O+(n + 1)/O(n - 1) -> ^ M ^ .

Taking a properly discontinuous group Γ of isometries of MH we obtain
a properly discontinuous group of isometries YQ of T~1MQ via p.

10. CQ surfaces

The existence of null axes for a hyperbolic isometry μ on a CQ man-
ifold (M, g) with Q > 0 is related to the existence of fixed points for a
Riemannian isometry in the following way.

Proposition 10.1. Let a = [7-]- E M~(oo) and ω = [7]+ G
M+(oo), where 7 denotes an axis for μ. If x G dl~(ω) Π 9/+(α) = iV,
and vx denotes a null vector in Txdl~(ω), then the following hold:

1) N,dl~(ω) and dl+(a) are μ invariant
2) If x is a fixed point for μ, then j V χ is a null axis for μ.
Proof. 1) /~(ω) is μ invariant and so is 3/~(α;), hence also dl+{ά).

The intersection N is then μ invariant. 2) Simply observe that Tμ(vx) =
Xvx for some λ > 0.

This fixed point problem can be solved completely on CQ surfaces
with Q > 0 and a volume form ω. If 7 denotes a timelike axis for the
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orientation preserving hyperbolic isometry μ and ω = [7]+, a = [7].
we have indeed

Proposition 10.2. Every future null coline βx through x G dl"(j)
to 7 is a null axis for μ. Furthermore there exists a tx G E. such that
βχ(tx) € dΓ(ω) Π 07+(α) is a fixed point for μ.

Proof. Due to the definition of a null coline there exists a positive
s such that βx(s) = y G 7+(p), p = 7(0). Let βy denote a future null
coline to 7 through y. We need only prove μ invariance of βy.

To this end let E denote a timelike parallel vector field along 7 with
expp(sE(0)) = y for some s > 0. Define a geodesic variation

a : {(s,ί) € E2 I t > 0} -> M, (β,ί) ι-> exp(θE(ί)).

We claim that for every £ > 0 there exists an s(t) > 0 such that

a(s(t),t)eβy(R).

This is true for positive t values in a neighbourhood of 0 by the implicit
function theorem. If the claim is untrue we can define

U = inf { t > 0 I α(*,t) $ A/W for all 5 > 0 } > 0.

Notice that s(t) < K for some K > 0 and all t G [0,ί*[; cf. (7.13).
We can assume convergence of {s(tn)} to 5* for a suitable increasing
sequence {tn} of positive real numbers, converging to ί*. There exists
real numbers zn such that

*(8(tn),tn) = βy{Zn).

Taking subsequences if necessary we can assume the convergence of
{zn} to z* too, because {zn} is a bounded sequence. This follows from
global hyperbolicity and [27, 14.13]. Since

are linearly independant, we can apply the inverse function theorem to
assert the existence of s(t) for t values in a neighbourhood of £*. This
contradiction verifies the claim. The uniqueness of s(t) > 0 follows
from Lemma 7.1 and the strong causality of



164 JENS CHR. LARSEN

Suppose μ translates 7 with a > 0, i.e., μ o 7 = 7 o τα. Then

Tμ(E(0)) = ^ ( α ) , because μ is orientation preserving, hence

(10.1) μoa(s,0) =a(sJa).

Now /3y(K) C dl~(ω). In view of Proposition 10.1 this implies that

5(0) = s(α), so that

μ(βy(ui)) = μ o α(s(0), 0) = α(s(α), α) = βy(u2)

for some ιtχ, ιz2 G R Since dl~ (ω) is one dimensional, we conclude that
βy is a null axis for μ.

According to the proof of Theorem 7.7 2), there exists a t < 0 such
that u = βx(t) e dl~(ω) Π 57+(α). A past null coline βu to 7 through
u is also μ invariant. Assume for contradiction that some s < t makes
βx(s) = /3«(v), v E R For υ < 0 this contradicts Lemma 7.6. For
v = 0 it contradicts strong causality of (M,g). For υ > 0 reach a
contradiction by applying Lemma 7.2 to find a w G ]0,v[ such that
βu(w) £ J~*~(βu(v)). The uniqueness of t just proven combined with μ
invariance of βu and βx implies that βx(t) is a fixed point for μ.

Definition 10.3. If the NF ( NP ) geodesic β is a future coray to
the TF ( TP ) geodesic 7, then β has future ( past ) endpoint

ω(β) = [ 7 ] + l (a(0) = [7]-)

We can now introduce relations -» ~ n and -»• ~ n in the sets ΩNF

and Ω vp of NF geodesies and NP geodesies respectively. For βι,β2 £

Ω/VF (Ωwp) we define

βl -*

if

Since -> ~ n and —> ~ n are equivalence relations, we can finally intro-

duce the null future and the null past as

)) = ΩNF/ -^ ~m
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Finally, we have

Theorem 10.3. An orientable CQ surface with Q > 0 and vicious
isometry group Γ has constant curvature.

Proof. We shall first verify that a future null coline βx to some TF
geodesic 7 through βx(0) = x e M maps into dl~(η). To see this take
s > 0 such that

/ ? X ( 5 ) E 7 + ( 7 ( 0 ) ) .

Let j s denote the TF geodesic from 7s(0) = 7(0) to js(as) = βx(s), a8 >
0. If x was not in 57" (7), then it would neither be in I~{j) according
to Lemma 7.1. For some U E ]0,αβ[, js(U) E dl~(y). Let σu denote
the TF geodesic from js(t*) to βx(u), u> s and v be the limit of σ'u(0)
as u —» +00; see Lemma 6.2. 7V is not a future coray to 7 because
7*(**) € 9/-(7). For any t < £>, 7,(t) E /~(7) Π /"(7V). By τυ we
denote the TF geodesic from js(t) to βx(v),v > s. r^(0) converges as
t; —>• +00 again by Lemma 6.2. This is incompatible with the fact that

hv]+ Φ W+J h e n c e x € 57" (7).
Now take some p E M and a future directed respectively past di-

rected null vector w+,tί;_ E TPM. We need them to be linearly inde-
pendant. There exists a TF geodesic σ with

[σ]+=ω(βw+), [σ_]_ = <*(&,_).

We aim to assert that

(10.2) dΓ(σ)=βx(R)Uβy(R), βx(R) Πβy(R) = 0,

where /3X and ^ are future null colines to σ through x, y E dl~(σ). Let
Xx = σ'(0), X2 denote an orthonormal basis in Tσ(0)M, and define

v = cosh 1 Xi + sinh 1 X2, ^ = cosh H i - sinh 1 X2.

We have already seen that there exists s,t > 0 such that jυ(s) =
#? 7w(t) = y E dl~(σ). Theorem 7.7 asserts the existence of future
null colines βx and βy to 7 through x and y. For positive s we let
σ\ and σ̂  denote the TF geodesies from σ(0) to βx(s) » σ(0) and
βy(s) » σ(0) respectively.

The two bases σ'(0),σl'(0) and σ'(0),σf (0) have opposite orienta-
tions which do not depend on 5. We have already seen that βx and βy
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map into dl~(σ), which is a C1 degenerate hypersurface. It follows
that βx(R) and βy(R) are disjoint.

We can assume σ is an axis of a hyperbolic isometry μ E Γ ; cf. Propo-
sition 8.3. μ has fixed points p+ = βx(tx) and p_ = βy(ty), tx,ty GK
according to Proposition 10.2. We know from Proposition 10.2 that
the future null colines βp+ and βp_ to σ through βp+(0) = p+ and
βp_ (0) = p_ respectively are null axes for μ G Γ. That is,

μoβp+(s)=βp+(\+s + r+),
μoβp_(s)=βp_(\s + r_)

for real constants λ+, λ_, r+, r_. Here r+ = r_ = 0 since jp+ and p_ are
fixed points for μ. βp+ being a future null coray to σ, there exists s > 0
such that βp+(s) » r = σ(0) and hence also s* > 0 such that

βp+(s.)EJ+(r)\I+(r).

If λ + < 1, then we would have

μ{r) <μo βp+(s*) < βp+(s*),

a contradiction, hence λ+ > 1. Similarly λ_ > 1.
Consider now an arbitrary q £ M. Take an arbitrarily small open

neighbourhood U around q G M on which we have defined two linearly
independant smooth, future and past directed null vector fields X+ and
X_ respectively. Notice that the integral curves of X_ and X+ are null
pregeodesics. There exists a TF geodesic r with

[r]+=ω(β+), [τ_]_=α(/3_),

β+ = βχ+(q), β-=βx.M-

We can assume that U is chosen to render

i ϊ + ( r ) 4 ω ( ^ + ( r ) ) G

H.(r) ± ω(βx_{r)) €

for all r e U.
For some orthonormal basis Fx = τ'(0),Y2 we can define invertible

maps
s ^ [ 7 c o s h s y i + s i n h , Yi],

s H-> [ 7 _ c o s h s y 1 + 8 i n h ί y 2].
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Lemma 2.2 tells us that /+(ί) = /+ 1 oi/+ oβ__(ί) and /_(*) = J l 1 o # _ o
/3+(ί),i E /, are both continuous functions. Here / is an open interval
around 0 such that β+(I),/?_(!) C U.

Assume for contradiction that iϊ+ o β-(tλ) = H+ o /?_(ί2) = [£]+
for some TF geodesic ξ and ίi < ί2 such that /3_(ίi),/3_(ί2) E f/.
Then j9.(ί2) € d/~(ξ) hence /M*i) E /""(£)• τ h i s however contradicts
Lemma 7.1. Consequently H+oβ_ and also H-oβ+ are both injective
on /.

It follows from the Implicit Function Theorem that there exists a
smooth mapping

G : J_ x J+ -> C/

such that /?_(ί_), /5+(ί+) € f/, and Cr(i_,ί+) is a point of intersection

of /?X+(/M*-))
 a n d Ar-tf+(«+)) for e v e r Y (<-^+) 6 /- x /+. Here /_ and

J+ are open intervals around 0. There are €_, e+ > 0 such that

]-€+,€+[ C Im/+, ] - € . , € . [ C Im/-.,

whenever 5 E ] — e_, e_[, and s 6 ] - e + , c + [ . According to the proof of
Proposition 8.3 there exists a ξ E Γ such that

where s+ E ] — e+,e+[. Define 5_ E ] — e_,e_[ by

α, = [τ_]_ =/_(*_),

and also t_ = /^(β+J, t+ = /Γ1(5_). Then using our first assertion

t+) E βr(ω.) =fo/9

We conclude that G(£_,£+) is equal to ξ o βp+(υ+) or ξ o βp_(υJ) for
some t/+,t/_ E R Notice that

as n —̂  +oo, hence

p + («+)) = AΓ(e o ̂ p

/3P_ (V_)) = A (p_).
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It follows that we can take a sequence {£n}neN in Γ and {v+} or {v~}
in K such that {ξn o /?p+ « ) } n e N or {ξn o βp_ (y-)}n€N is a sequence in
M converging to q. The sectional curvatures at the arbitrary point q is
then either K(p_) or K(p+), and the Theorem follows.
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