RESIDUES OF HOLOMORPHIC VECTOR FIELDS RELATIVE TO SINGULAR INVARIANT SUBVARIETIES

DANIEL LEHMANN \& TATSUO SUWA

1. Introduction

Let \mathcal{F} be a holomorphic foliation with singularities on a complex manifold W, and V an analytic subvariety (possibly with singularities) of W invariant by \mathcal{F}. Here "invariant", or equivalently "saturated" means that if a point of V belongs to the regular part of \mathcal{F}, then the whole leaf through this point is included in V. We shall assume furthermore that the normal bundle to the regular part of V in W has a natural extension ν to the whole V, and even a smooth extension $\tilde{\nu}$ to a germ of neighborhood of V in W, making us able to use connections on $\tilde{\nu}$ and to integrate associated differential forms on compact pieces of V. For instance, such a natural extension $\tilde{\nu}$ always exists for complex hypersurfaces, or complete intersections in the projective space, or "strong" local complete intersections (SLCI: see definition below).

Denote the complex dimensions of V, W and the leaves of \mathcal{F} by p, $p+q$ and s respectively. The bundle ν admits a "special" connection away from the singular set $\Sigma=(\operatorname{Sing}(\mathcal{F}) \cap V) \cup \operatorname{Sing}(V)$ so that the associated characterictic forms of degree $>2(p-s)$ vanish. If V is non-singular, we may represent the characteristic classes of ν by characteristic forms on V and see that those classes in dimension $>$ $2(p-s)$ will "localize" near Σ. In the case of singular V, we work on the characteristic forms of $\tilde{\nu}$ on the ambient space instead, and the characteristic classes of ν in these dimensions will still localize near Σ and give rise to residues for each connected component Σ_{α} of Σ. In fact, once we know $\tilde{\nu}$ to exist, the definition and the proof of the existence of these residues work similarly as in the case of non-singular

[^0]V (see Théorème $3, \mathrm{p} .227$, in [8]), and thus we shall omit the theory for $s>1$. We will concentrate ourselves to the computation of the residues for Chern numbers at an isolated point of Σ in the case $s=1$. We get then formulas generalizing the ones in [9] and [12] and also, in the spirit of Baum-Bott [1] and [2], the Grothendieck residues already known when V is non-singular ([8]) (see Theorem 1 below, and its third particular case with Theorem 2). Note that the residues of Baum and Bott are localised characteristic classes of the normal sheaf of the foliation \mathcal{F} (or an equivalent virtual bundle), while ours are those of the (extended) normal bundle of V in W.

This residue has first been defined by C. Camacho and P. Sad in [5] when $p=q=s=1, V$ non-singular and Σ_{α} an isolated point. When the invariant curve V may have singularities, the theory has then been generalized by A. Lins Neto [9] for $W=C P^{2}$, by M. Soares [11] when the surface W is a complete intersection in $C P^{n}$, and in [12] for arbitrary complex surfaces. It has also been studied in higher dimensions when V is non-singular, first in the case $s=p, q=1$ by B. Gmira [6], J.-P. Brasselet (unpublished) and A. Lins Neto [10], and then in [8] for the general case with more precise formulas when $s=1$.

All these results extend by taking, instead of $\tilde{\nu}$, any C^{∞} vector bundle on a germ of neighborhood of V in W, the restriction of which to the regular part of V being holomorphic and equipped with an action of a holomorphic vector field X_{0} tangent to this regular part (see Theorem 1' below). In particular, if we take $T(W)$, with the action $\left[X_{0}\right.$, .] on $\left.T(W)\right|_{V}$, we get a formula for computing the index defined in Theorem 8 of [8]. (We were wrong when claiming that the index defined there was the same as the index of [9] for $p=q=s=1$: there was a mistake in the proof of part (iv) of this theorem, the three first parts remaining correct.)

We would like to thank F. Hidaka, Y. Miyaoka, P. Molino, A. Rayman, R. Silhol and M. Soares for helpful conversations.

2. Background on local complete intersections (LCI and SLCI)

Let W be a complex manifold of complex dimension $n=p+q$, and V an analytic irreducible subvariety of pure complex dimension p. We
shall call "reduced local defining function" for V every holomorphic $\operatorname{map} f: U \rightarrow C^{q}$ defined on an open set U of W, such that:
(i) $V \cap U=f^{-1}(0)$,
(ii) the q components of f generate the ideal $I(V \cap U)$ of holomorphic functions which vanish on $V \cap U$; for instance, if $q=1$, this condition implies that f may not have factors which are powers.
The subvariety V is said to be a "local complete intersection" (briefly: LCI) if the following condition holds: there exists a family $\left\{f_{h}: U_{h} \rightarrow C^{q}\right\}_{h}$ of reduced local defining functions for V, such that $\bigcup_{h} U_{h} \supset V$. Such a family will be called a "system of reduced equations" for V. Recall the following proposition, well known to the specialists:

Proposition 1. (i) Let $f_{1}: U \rightarrow C^{q}$ and $f_{2}: U \rightarrow C^{q}$ be two reduced local defining functions for V defined on the same open set U. Then, there exists an holomorphic map $\tilde{g}: U \rightarrow g l(q, C)$ taking values in the set $g l(q, C)$ of $q \times q$ matrices with complex coefficients, satisfying $f_{1}=<\tilde{g}, f_{2}>$, such that the restriction g of \tilde{g} to $V \cap U$ is uniquely defined and takes values in the group $G L(q, C)$ of invertible matrices.
(ii) If V is an LCI, and if $\left\{f_{h}: U_{h} \rightarrow C^{q}\right\}_{h}$ denotes a system of reduced equations for V, let $\tilde{g}_{h k}: U_{h} \cap U_{k} \rightarrow g l(q, C)$ such that $f_{h}=$ $<\tilde{g}_{h k}, f_{k}>$ on $U_{h} \cap U_{k}$, and denote by $g_{h k}$ the restriction of $\tilde{g}_{h k}$ to $V \cap U_{h} \cap U_{k}$. The family $\left\{g_{h k}\right\}$ is then a system of transition functions for a holomorphic q vector bundle $\nu \rightarrow V$. This vector bundle is well defined (it does not depend on the choice of the given system of reduced equations for V).
(iii) The bundle ν is an extension to V of the (holomorphic) normal bundle to $V-\operatorname{Sing}(V)$ in W; more precisely, there exists a natural bundle map $\pi:\left.T_{C}(W)\right|_{V} \rightarrow \nu$ which, over the regular part of V, has rank q and the complex tangent bundle to this regular part for kernel (we may therefore identify the restriction of ν to this regular part with the usual normal bundle).

Proof. Let f_{1} and f_{2} be such as in (i). Since the components $f_{1, \lambda}$ $(1 \leq \lambda \leq q)$ of f_{1} and $f_{2, \lambda}$ of f_{2} generate the ideal $I(V \cap U)$, there exist $q \times q$ matrices \tilde{g} and \tilde{h} with holomorphic coefficients such that $f_{1}=<\tilde{g}, f_{2}>$ and $f_{2}=<\tilde{h}, f_{1}>$. Furthermore, since f_{1} and f_{2} vanish on $U \cap V$, we get also on $U \cap V, d f_{1}=<g, d f_{2}>$ and $d f_{2}=<h, d f_{1}>$, where g and h denote the restrictions of \tilde{g} and \tilde{h} to $U \cap V$. Since
$d f_{1}=<g \circ h, d f_{1}>$ on $V \cap U, g \circ h=I d$ on the regular part of $V \cap U$. By continuity, since this regular part is everywhere dense in $V \cap U$, one still has $g \circ h=I d$ on the whole $V \cap U ; g$ takes values in $G L(q, C)$. The uniqueness of g is obvious since $g=h^{-1}$. This proves part (i) of the proposition.

From the uniqueness of g in part (i), we deduce immediately that the $\left\{g_{h k}\right\}$ given in part (ii) satisfy the cocycle condition, and form therefore a system of transition functions for a holomorphic vector bundle $\nu \rightarrow$ V. Let $\left\{g_{h k}^{\prime}\right\}$ denotes the system of transition functions arising from another system $\left\{f_{h}^{\prime}\right\}$ of reduced equations for V (with the same open covering $\left\{U_{h}\right\}$ for the moment). From part (i), there exists a family $\left\{\tilde{g}_{h}\right\}$ such that $f_{h}=<\tilde{g}_{h}, f_{h}^{\prime}>$. Denoting by $\left\{g_{h}\right\}$ the induced family on V, the uniqueness in part (i) implies that the two cocycles $\left\{g_{h k}\right\}$ and $\left\{g_{h k}^{\prime}\right\}$ differ by the coboundary of $\left\{g_{h}\right\}$, and therefore define isomorphic bundles. If the coverings are different, we can use a common refinement to both coverings, for coming back to the case of the identical coverings.

Notice that the sections σ of ν may be identified with the families $\left\{\sigma_{h}: U_{h} \rightarrow C^{q}\right\}_{h}$ of maps such that $\sigma_{h}=<g_{h k}, \sigma_{k}>$ on $V \cap U_{h} \cap U_{k}$. On the other hand, there we get also $d f_{h}=<g_{h k}, d f_{k}>$. Therefore the family $\left\{d f_{h}:\left.T_{C}(W)\right|_{V n U_{h}} \rightarrow C^{q}\right\}$ defines a bundle map $\pi:\left.T_{C}(W)\right|_{v} \rightarrow$ ν. Furthermore, the kernel of $d f_{h}$ on the regular part of $V \cap U_{h}$ is exactly the tangent space to this regular part. This achieves the proof of part (iii).

By continuity and reducing the open sets U_{h} to smaller ones if necessary, we may assume that the functions $\tilde{g}_{h k}$ themselves take values in $G L(q, C)$. However it is not clear that the cocycle condition remains true off V. This justifies the following definition: an LCI subvariety V of W will be called a "strong" local complete intersection (shortly SLCI), if there exists a C^{∞} vector bundle $\tilde{\nu} \rightarrow U$, defined over some neighborhood U of V in W, whose restriction to V carries a holomorphic bundle structure compatible with the ambient C^{∞} structure and is equal to ν. The last condition implies that in a neighborhood of every point of $V, \tilde{\nu}$ admits a C^{∞} trivialization whose restriction to V is holomorphic.

If V is an LCI, the holomorphic bundle ν is trivial on $V \cap U_{h}$, and there is a trivialization which, on the regular part of $V \cap U_{h}$, is given by $\pi\left(\frac{\partial}{\partial f_{h, 1}}\right), \ldots, \pi\left(\frac{\partial}{\partial f_{h, q}}\right)$ taking the components $f_{h, \lambda}(1 \leq \lambda \leq q)$ of f_{h} as a part of a local chart on W. We call it the "trivialization associated" to
f_{h}. If, moreover, V is an SLCI with a C^{∞} extension $\tilde{\nu}$ of ν, choosing a smaller U_{h} if necessary, there is a C^{∞} trivialization of $\tilde{\nu}$ on U_{h} extending the trivialization associated to f_{h}.

Remarks. 1) Notice that the singular foliations $d f_{h}=0$ on U_{h} and $d f_{k}=0$ on U_{k} do not coincide in general on $U_{h} \cap U_{k}$.
2) Let \mathcal{O}_{W} denote the sheaf of germs of holomorphic functions on W, and \mathcal{I} the sheaf of ideals defining the subvariety V in W. Thus $\mathcal{O}_{V}=\mathcal{O}_{W} / \mathcal{I}$ is the sheaf of holomorphic functions on V. Denoting by $\Omega_{W}=\mathcal{O}_{W}\left(T_{C}^{*}(W)\right)$ the cotangent sheaf of W, we define, as usual, the cotangent sheaf Ω_{V} of V to be the quotient of $\Omega_{W} \otimes_{\mathcal{O}_{w}} \mathcal{O}_{V}$ by the image of the morphism $\mathcal{I} / \mathcal{I}^{2} \rightarrow \Omega_{W} \otimes_{\mathcal{O}_{W}} \mathcal{O}_{V}$ given by assigning $d f \otimes 1$ to the class of f. Setting $\Theta_{W}=\mathcal{O}_{W}\left(T_{C}(W)\right)$ and $\Theta_{V}=\mathcal{H o m}_{\mathcal{O}_{V}}\left(\Omega_{V}, \mathcal{O}_{V}\right)$, we have the exact sequence

$$
0 \rightarrow \Theta_{V} \rightarrow \Theta_{W} \otimes_{\mathcal{O}_{W}} \mathcal{O}_{V} \rightarrow \mathcal{H o m}_{\mathcal{O}_{V}}\left(\mathcal{I} / \mathcal{I}^{2}, \mathcal{O}_{V}\right)
$$

If V is an LCI, then the sheaf $\mathcal{I} / \mathcal{I}^{2}$ is locally free, and the sheaf of germs of holomorphic sections of the bundle $\nu \rightarrow V$ is identified with $\mathcal{H o m}_{\mathcal{O}_{V}}\left(\mathcal{I} / \mathcal{I}^{2}, \mathcal{O}_{V}\right)$. Furthermore, the bundle map $\pi:\left.T_{C}(W)\right|_{V} \rightarrow \nu$ corresponds to the third morphism in the above sequence. If f is a reduced local defining function for V, the classes of the components f_{1}, \ldots, f_{q} of f in $\mathcal{I} / \mathcal{I}^{2}$ form a basis (over \mathcal{O}_{V}), and the trivialization of ν associated to f corresponds to its dual basis.
3) We do not know if LCI implies automatically SLCI. In fact, taking a regular neighborhood U of V and using the fact that the classification of continuous vector bundles and that of C^{∞} vector bundles coincide on (paracompact) C^{∞} manifolds, we see that there exists a C^{∞} vector bundle $\tilde{\nu}$ on U such that $\left.\tilde{\nu}\right|_{V}$ is isomorphic to ν as a continuous bundle. However, it is not clear if $\left.\tilde{\nu}\right|_{V}$ carries a holomorphic bundle structure which is isomorphic to ν and compatible with the ambient C^{∞} structure. Note that there are many examples of SLCI.
Example 1. If V is a non-singular subvariety (submanifold) of W, then clearly it is an LCI and moreover an SLCI. In fact let U be a tubular neighborhood of V with C^{∞} projection $\rho: U \rightarrow V$. Then $\tilde{\nu}=\rho^{*} \nu$ is an extension of ν with the desired properties.

Example 2. Any hypersurface V of W (subvariety of pure complex codimension 1) is an SLCI. In fact, if we set $\tilde{g}_{h k}=f_{h} / f_{k}$, where $\left\{f_{h}\right\}$ denotes a family of reduced local defining functions, then the system
$\left\{\tilde{g}_{h k}\right\}$ satisfies the cocycle condition and defines a holomorphic exten$\operatorname{sion} \tilde{\nu}$ of ν on the union of the domains U_{h} of f_{h}, which may be assumed to be W. Note that the collection $\left\{f_{h}\right\}$ defines a global section of $\tilde{\nu}$ non-vanishing away from V.

Example 3. Any algebraic set V in $W=C P^{n}$ which is globally a complete intersection is also an SLCI. In fact, denote by [$X_{0}, X_{1}, \ldots, X_{n}$] homogeneous coordinates in $C P^{n}$ and by $F_{1}, F_{2}, \ldots, F_{q}$ homogeneous polynomials in the variables $\left(X_{0}, X_{1}, \ldots, X_{n}\right)$ of respective degrees $d_{1}, d_{2}, \ldots, d_{q}$ such that V has pure complex codimension q, and is defined by the q equations $F_{\lambda}=0(1 \leq \lambda \leq q)$. In the affine open subset U_{i} of $C P^{n}$ defined by $X_{i} \neq 0, V \cap U_{i}$ has for equation with respect to the affine coordinates $\left(\frac{X_{j}}{X_{i}}\right)_{j, j \neq i}: \frac{1}{\left(X_{i}\right)^{d_{\lambda}}} F_{\lambda}=0,(1 \leq \lambda \leq q)$. Therefore, on $U_{i} \cap U_{j}$ the change of equations $\tilde{g}_{i j}$ is equal to the diagonal $q \times q$ matrix $\left(\frac{X_{j}}{X_{i}}\right)^{d_{1}}, \ldots,\left(\frac{x_{j}}{X_{i}}\right)^{d_{q}}$. (In fact, in this case, it is not necessary to assume that the components $\frac{1}{\left(X_{i}\right)^{d_{\lambda}}} F_{\lambda}(1 \leq \lambda \leq q)$ generate the ideal $I\left(V \cap U_{i}\right)!$) Denoting by $\check{L} \rightarrow C P^{n}$ the hyperplane bundle (dual of the tautological bundle), $\tilde{\nu}$ is defined on the whole $C P^{n}$ by the formula

$$
\tilde{\nu}=\oplus_{\lambda=1}^{q}(\check{L})^{\otimes d_{\lambda}} .
$$

Hence: $1+c_{1}(\tilde{\nu})+\cdots+c_{q}(\tilde{\nu})=\Pi_{\lambda=1}^{q}\left(1+d_{\lambda} c\right)$, with $c=c_{1}(\check{L})$.
Example 4. In general, let $\tilde{\nu}$ be a holomorphic vector bundle of rank q over W, and V the subvariety of W defined by a holomorphic section σ of $\tilde{\nu}$. Suppose σ is a regular section, i.e., a section such that, at each point of V, the germs of its components $\left(f_{1}, \ldots, f_{q}\right)$ with respect to a local (holomorphic) trivialization of $\tilde{\nu}$ near the point form a regular sequence; in fact, this is the case if and only if the codimension of V is q. Then V is an LCI, locally defined by $f_{1}=\cdots=f_{q}=0$. Moreover it is an SLCI with $\tilde{\nu}$ itself a holomorphic extension of ν. (We assume that V is reduced and irreducible, to be consistent with the definition in the beginning of this section.)

3. Statement of Theorems 1, 1' and 2

Assume from now on that the subvariety V is invariant by a holomorphic vector field with singularities X_{0} on U, a neighborhood of V in W. Note that, by Proposition 1 (iii), any C^{∞} section σ of ν over
the regular part of V may be written as $\sigma=\pi(Y)$ for some section Y of $\left.T_{C}(W)\right|_{v}$. Let $\theta_{x_{0}}$ be the C-linear operator defined for any section $\pi(Y)$ of ν over the regular part of V by $\theta_{x_{0}}(\pi(Y))=\pi\left(\left.\left[X_{0}, \tilde{Y}\right]\right|_{V}\right), \tilde{Y}$ denoting some local extension of Y near V.

In case V is an LCI, let $f_{h}=0$ be a local reduced equation of V on U_{h}. Since V is invariant by X_{0}, each component $\left(d f_{h}\left(X_{0}\right)\right)_{\lambda}(1 \leq \lambda \leq q)$ of the derivative $d f_{h}\left(X_{0}\right)$ has to vanish on $V \cap U_{h}$, and must be therefore a linear combination with holomorphic coefficients of the components $\left(f_{h}\right)_{\lambda}$ of f_{h}. Thus there exists a $q \times q$ matrix \tilde{C}_{h} with holomorphic entries such that $d f_{h}\left(X_{0}\right)=<\tilde{C}_{h}, f_{h}>$. Denote by $C_{h}=\left(C_{h, \lambda}^{\mu}\right)$ the restriction of \tilde{C}_{h} to $V \cap U_{h}$.

Lemma 1.

(i) $\theta_{x_{0}}(\pi(Y))$ depends only on $\pi(Y)$, neither on Y nor on \tilde{Y}.
(ii) $\theta_{x_{0}}(u \sigma)=u \theta_{x_{0}}(\sigma)+\left(X_{0} . u\right) \sigma$, for any C^{∞} function u on $V-\operatorname{Sing}(V)$.
(iii) If V is an LCI, and $f_{h}=0$ a local reduced equation, denoting by $\left(\sigma_{1}, \ldots, \sigma_{q}\right)$ the trivialization of ν associated to f_{h} we have:

$$
\theta_{x_{0}}\left(\sigma_{\lambda}\right)=-\sum_{\mu} C_{h, \lambda}^{\mu} \sigma_{\mu}
$$

In particular, over the regular part of $V_{h}=V \cap U_{h}, C_{h}$ depends only on f_{h}, not on the choice of \tilde{C}_{h}.
Parts (i) and (ii) of the lemma are proved in [8 (Lemma 2-1, p.220)]. For proving part (iii), take a partition $\left\{i_{1}, \ldots, i_{p}\right\} \cup\left\{j_{1}, \ldots, j_{q}\right\}$ of $\{1, \ldots, n\}$ such that $\frac{D\left(f_{h_{1}, 1}, \ldots, f_{h, q}\right)}{D\left(z_{j_{1}}, \ldots, z_{j_{q}}\right)} \neq 0$ near some point of the regular part of V_{h}. Then, near this point, $\left(z_{i_{1}}, \ldots, z_{i_{p}}, f_{h, 1}, \ldots, f_{h, q}\right)$ is a new system of local coordinates denoted by $\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{q}\right)$, the local trivialization of ν associated to f_{h} becoming $\pi\left(\frac{\partial}{\partial y_{\lambda}}\right),(1 \leq \lambda \leq q)$. Hence if locally $X_{0}=\sum_{i=1}^{p} P_{i} \frac{\partial}{\partial x_{i}}+\sum_{\mu=1}^{q} Q_{\mu} \frac{\partial}{\partial y_{\mu}}$, then $X_{0} \cdot f_{h, \mu}=X_{0} . y_{\mu}=$ $Q_{\mu}=\sum_{\lambda=1}^{q} y_{\lambda} \tilde{C}_{h, \lambda}^{\mu}$, and hence, $C_{h, \lambda}^{\mu}=\left.\frac{\partial Q_{\mu}}{\partial y_{\lambda}}\right|_{y=0}$. On the other hand, $\pi\left(\left.\left[X_{0}, \frac{\partial}{\partial y_{\lambda}}\right]\right|_{V}\right)=-\sum_{\mu=1}^{q}\left(\left.\frac{\partial Q_{\mu}}{\partial y_{\lambda}}\right|_{y=0}\right) \pi\left(\frac{\partial}{\partial y_{\mu}}\right)$, which proves part (iii) of the lemma.

We denote by Σ the set $\left(\operatorname{Sing}\left(X_{0}\right) \cap V\right) \cup \operatorname{Sing}(V)$ and by $\left(\Sigma_{\alpha}\right)_{\alpha}$ its connected components. Recall that a singular point of X_{0} is either a point where X_{0} is not defined, or a point where it vanishes. Now assume Σ_{α} to be compact, and denote by U_{α} an open neighborhood
of Σ_{α} in W. We set $V_{\alpha}=V \cap U_{\alpha}$. We shall assume furthermore that $U_{\alpha} \cap U_{\beta}=\emptyset$, for $\alpha \neq \beta$. Thus, in particular, $V_{\alpha}-\Sigma_{\alpha}$ is in the regular part of V. Denote by $\tilde{\mathcal{T}}_{\alpha}$ a compact real manifold with boundary, of real dimension $2 n$, included in U_{α}, such that Σ_{α} is in the interior of $\tilde{\mathcal{T}}_{\alpha}$ and that its boundary $\partial \tilde{\mathcal{T}}_{\alpha}$ is transverse to $V-\Sigma$. Put $\mathcal{T}_{\alpha}=\tilde{\mathcal{T}}_{\alpha} \cap V, \partial \mathcal{T}_{\alpha}=\partial \tilde{\mathcal{T}}_{\alpha} \cap(V-\Sigma)$.

Assume the following:
(i) U_{α} is included in the domain of a local holomorphic chart $\left(z_{1}, \ldots, z_{n}\right)$ of W,
(ii) U_{α} is one of the U_{h} 's above, the index α being one of the indices h. (Write f_{α} and C_{α} for the corresponding terms).
Let

$$
\left.X_{0}\right|_{U_{\alpha}}=\sum_{i=1}^{n} A_{i}\left(z_{1}, \ldots, z_{n}\right) \frac{\partial}{\partial z_{i}}
$$

Denote by $\mathcal{V}_{i}(1 \leq i \leq n)$ the open set of points m in $\partial \mathcal{T}_{\alpha}$ such that $A_{i}(m) \neq 0$. These open sets \mathcal{V}_{i} constitute an open covering \mathcal{V} of $\partial \mathcal{T}_{\alpha}$. Let \mathcal{U} be any subcovering of \mathcal{V}. (Such a \mathcal{U} always exists: take for instance \mathcal{V} itself; see also the particular cases 2 and 3 below). We will denote by $\left(R_{i}\right),(1 \leq i \leq n)$ any system of "honey-cells" adapted to this covering \mathcal{U} (see the definition in [8 (section 1)], under the name of "système d'alvéoles"). For instance, if the real hypersurfaces $\left|A_{i}\right|=$ $\left|A_{j}\right|(i \neq j)$ in U_{α} are in general position, we may take for R_{i} the cell defined by $\left|A_{i}\right| \geq\left|A_{j}\right|$ for all $j, j \neq i, \mathcal{V}_{j} \in \mathcal{U}$.

Denote by \mathcal{M} the set of multiindices $u=\left(u_{1}, u_{2}, \ldots, u_{p}\right)$ such that $1 \leq u_{1}<u_{2}<\ldots<u_{p} \leq n$, and by $\mathcal{M}(\mathcal{U})$ the subset of those such that $\mathcal{V}_{u_{j}} \in \mathcal{U}$ and $\cap_{j=1}^{p} \mathcal{V}_{u_{j}}$ be not empty (that is the set of p simplices in the "nerve" of \mathcal{U}). For any $u \in \mathcal{M}(\mathcal{U})$, define $R_{u}=R_{u_{1} u_{2} \ldots u_{p}}=\cap_{j=1}^{p} R_{u_{j}}$, oriented as in section 1 of [8].

Let $\varphi \in\left(Z\left[c_{1}, \ldots, c_{q}\right]\right)^{2 p}$ be a Chern polynomial having integral coefficients with respect to the Chern classes, and defining a characteristic class of dimension $2 p$.

Theorem 1. Assume V to be LCI. Define

$$
I_{\alpha}(\mathcal{F}, V, \varphi, \nu)=(-1)^{\left[\frac{p}{2}\right]} \sum_{u \in \mathcal{M}(\mathcal{U})} \int_{R_{u}} \frac{\varphi\left(-C_{\alpha}\right) d z_{u_{1}} \wedge d z_{u_{2}} \wedge \ldots \wedge d z_{u_{p}}}{\prod_{j=1}^{p} A_{u_{j}}} .
$$

(i) $I_{\alpha}(\underset{\sim}{\mathcal{T}}, V, \varphi, \nu)$ does not depend on the various choices of $\left(z_{1}, \ldots, z_{n}\right)$, $\mathcal{U}, \tilde{\mathcal{T}}_{\alpha}, f_{\alpha}, \tilde{C}_{\alpha}, R_{i}$, and depends only on the foliation \mathcal{F} defined by
X_{0}, but not on X_{0} itself.
(ii) Assume furthermore V to be compact. $\sum_{\alpha} I_{\alpha}(\mathcal{F}, V, \varphi, \nu)$ is then an integer.
(iii) This integer depends only on V and φ, but not on \mathcal{F}; it is equal to the evaluation $<\varphi(\nu), V>$ of $\varphi(\nu)$ on the fundamental class [V] of V.
Remark. The index above depends obviously only on \mathcal{F} and not on X_{0}. If we take $u X_{0}$ instead of $X_{0} u$ denoting some holomorphic non vanishing function on U, then each A_{i} is multiplied by $\left.u\right|_{V}$, the matrix C_{α} also, and the term under integration does not change. In fact, we could write the theorem for a foliation \mathcal{F} with singularities, defined only locally by a holomorphic vector field but not necessarily globally.

Particular cases. 1) For $p=q=1, I_{\alpha}\left(\mathcal{F}, V, c_{1}, \nu\right)$ coincides with the index defined in [9] by A. Lins Neto, if V_{α} is a locally irreducible curve. For a possibly (locally) reducible V_{α}, it coincides with the one in [12] (notice that the sum of the indices of Lins Neto over the irreducible components is different from the above index: see [12] (1.3) Remark 1° and (1.4) Proposition). In fact, in this case, the 1 -forms $\frac{d z_{1}}{A_{1}}$ and $\frac{d z_{2}}{A_{2}}$ coincide over $\mathcal{V}_{1} \cap \mathcal{V}_{2}$ and glue therefore together, defining a 1 -form η_{α} on $\partial \mathcal{T}_{\alpha}$, while $X_{0} . f_{\alpha}$ may be written $g_{\alpha} f_{\alpha}$ for some holomorphic function g_{α}. The formula of Theorem 1 becomes now:

$$
I_{\alpha}\left(\mathcal{F}, V, c_{1}, \nu\right)=\frac{-1}{2 i \pi}\left[\int_{R_{1}}\left(-g_{\alpha}\right) \eta_{\alpha}+\int_{R_{2}}\left(-g_{\alpha}\right) \eta_{\alpha}\right]=\frac{1}{2 i \pi} \int_{\partial \tau_{\alpha}} g_{\alpha} \eta_{\alpha}
$$

On the other hand, when f is irreducible, if $k \omega=\bar{h} . d f+f \bar{\alpha}$ according to the notation of $[9$ (p .198)] (up to the bars for avoiding confusions with our notations), his index is then equal to $\frac{-1}{2 i \pi} \int_{\partial \tau_{\alpha}} \frac{\bar{\alpha}}{h}$. But $\frac{-\bar{\alpha}}{\bar{h}}$ and $g_{\alpha} \eta_{\alpha}$ are equal on $\partial \mathcal{T}_{\alpha}$, because they both take the same value g_{α} when applied to the restriction of X_{0}, Q.E.D. See (1.1) Lemma and (1.2) in [12], when f is possibly reducible. This coincidence is also obvious from Theorem 2 and the remark below. Thus the above Theorem 1 may be seen as a generalization of Theorems A and C of [9] and Theorem (2.1) of [12]. In particular, since the sum of our indices is the self-intersection number of the curve V, the integer $3 d g(S)-\chi(S)+\sum_{B} \mu(B)$, lying in Theorem A of [9], is equal to $d g(S)^{2}$, if the curve S is locally irreducible at each of its singular points. In general, the integer is different from $d g(S)^{2}$ (see Theorems (2.1) and (2.5) in
[12], in fact, $d g(S)^{2}$ is equal to $3 d g(S)-\chi(S)+\sum_{p} c_{p}(S)$ by the adjunction formula, where, denoting by B_{1}, \ldots, B_{r} the local branches of S at a singular point $\left.p, c_{p}(S)=\mu_{p}(S)+r-1=\sum_{i=1}^{r} \mu\left(B_{i}\right)+\sum_{i \neq j}\left(B_{i} \cdot B_{j}\right)\right)$.

More generally, for $p=1$ and any q, there exists a 1 -form η_{α} on $\partial \mathcal{T}_{\alpha}$, the restriction of which to each \mathcal{V}_{i} being equal to $\frac{d z_{i}}{A_{i}}$. Then, still defining g_{α} by the same formula $X_{0} \cdot f_{\alpha}=g_{\alpha} f_{\alpha}$, the formula of Theorem 1 becomes:

$$
I_{\alpha}\left(\mathcal{F}, V, c_{1}, \nu\right)=\frac{1}{2 i \pi} \int_{\partial \tau_{\alpha}} g_{\alpha} \eta_{\alpha}
$$

2) When Σ_{α} is in the regular part of V, we may take a local chart $\left(z_{1}, \ldots, z_{n}\right)=\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{q}\right)$ such that $f_{\lambda}=y_{\lambda}$ for any $\lambda=$ $1, \ldots, q$. Then $A_{p+\lambda}$ vanishes on V_{α}, in such a way that all open sets $\mathcal{V}_{p+\lambda}$ are empty, and that we may take $\mathcal{U}=\mathcal{V}_{1}, \ldots, \mathcal{V}_{p}$: Thus, $u=$ $\{1, \ldots, p\}$ is the unique element of $\mathcal{M}(\mathcal{U})$. On the other hand, $C_{\alpha, \lambda}^{\mu}$ and $\frac{\partial A_{p+\mu}}{\partial \psi_{\lambda}}$ are equal on V_{α}. We recover therefore the formula of Theorem 1 in [8], writing $I_{\alpha}(\mathcal{F}, V, \varphi, \nu)$ as a Grothendieck residue. Note that there are some sign errors in [8]. On the third line of p.237, the factor $(-1)^{\left[\frac{p}{2}\right]}$ should be omitted, in Théorème 1 of p.217, the integral giving the residue should be multiplied by $(-1)^{p+\left[\frac{p}{2}\right]}=(-1)^{\left[\frac{p+1}{2}\right]}$ instead of $(-1)^{p}$, and in Théorème 1 ' of $p .233$, the integral should be multiplied by $(-1)^{\left[\frac{p}{2}\right]}$.
3) Assume that Σ_{α} consists of a point m_{α} isolated in V, and that X_{0} is meromorphic near m_{α} (thus X_{0} has a zero, a pole or both at m_{α}). Then, we have the following.

Theorem 2. There exists a local holomorphic chart $\left(z_{1}, \ldots, z_{n}\right)$ near m_{α} in W, such that $\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{p}$ cover $\partial \mathcal{T}_{\alpha}\left(p=\operatorname{dim}_{C} V\right)$.

For this covering $\mathcal{U}, \mathcal{M}(\mathcal{U})$ has a unique element $u_{0}=\{1, \ldots, p\}$. Writing R instead of $R_{u_{0}}$, the formula of Theorem 1 becomes now:

$$
I_{\alpha}(\mathcal{F}, V, \varphi, \nu)=(-1)^{\left[\frac{p}{2}\right]} \int_{R} \frac{\varphi\left(-C_{\alpha}\right) d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{p}}{\prod_{i=1}^{p} A_{i}}
$$

Proof. Let us write $X_{0}=\sum_{i=1}^{n} A_{i} \frac{\partial}{\partial z_{i}}, A_{i}=\frac{P_{i}}{Q_{i}}$ with P_{i} and Q_{i} holomorphic near m_{α}. We think of P_{i} and Q_{i} as being in the ring \mathcal{O}_{n} of germs of holomorphic functions at the origin O in C^{n}, and assume that they are relatively prime for each i. Let Q be the least common multiple of the Q_{i} 's. Then $Q X_{0}$ is a holomorphic vector field leaving V invariant.

Lemma 2. The holomorphic vector field $Q X_{0}$ has an isolated zero at m_{α} on V.

In fact suppose $Q X_{0}$ had a non-isolated zero at m_{α} on V, and let V^{\prime} be a positive dimensional irreducible subvariety of V containing m_{α} and be contained in the zero set of $Q X_{0}$. For each i, we write $Q=Q_{i} Q_{i}^{\prime}$, where $Q_{1}^{\prime}, \ldots, Q_{n}^{\prime}$ have no common factors. Since $Q X_{0}=\sum_{i=1}^{n} P_{i} Q_{i}^{\prime} \frac{\partial}{\partial z_{i}}$, the functions $P_{i} Q_{i}^{\prime}$ are all in the defining ideal $I\left(V^{\prime}\right)$ of V^{\prime}. Hence, since $I\left(V^{\prime}\right)$ is prime and X_{0} is non-zero away from m_{α}, there exists i_{0} such that $Q_{i_{0}}^{\prime} \in I\left(V^{\prime}\right)$. Thus there is a prime factor P of $Q_{i_{0}}^{\prime}$ such that $P \in I\left(V^{\prime}\right)$. Now, since $Q_{i} Q_{i}^{\prime}=Q=Q_{i_{0}} Q_{i_{0}}^{\prime}, P$ is a factor of $Q_{i} Q_{i}^{\prime}$ for any i. On the other hand, since the pole of X_{0} is the union of the zero sets of the Q_{i} 's, we have $Q_{i} \notin I\left(V^{\prime}\right)$, by the assumption that the pole of X_{0} is at most isolated on V. Therefore, P must be a factor of Q_{i}^{\prime} for all i. This contradicts the fact that the Q_{i}^{\prime} 's have no common factors, and the lemma is proved.

In the above situation, since the zero set of $P_{i} Q_{i}^{\prime}$ is not smaller than that of P_{i}, it suffices to prove the proposition for vector fields holomorphic near m_{α}. Note that the index of X_{0} at m_{α} is equal to that of $Q X_{0}$, and also that if X_{0} has an isolated pole on V, then V is in fact 1-dimensional, since the pole of X_{0} has codimension 1 in the ambiant space and in V.

In what follows, for an ideal I in the ring \mathcal{O}_{n}, we denote by ht I its height and by $V(I)$ the (germ of) the analytic set defined by I. Thus ht $I=\operatorname{codim} V(I)$. Also, for germs a_{1}, \ldots, a_{r} in \mathcal{O}_{n}, we denote the ideal generated by them by $\left(a_{1}, \ldots, a_{r}\right)$.

Lemma 3. Let $A_{1}, \ldots, A_{n}, f_{1}, \ldots, f_{q}$ be germs in $\mathcal{O}_{n}, n=p+q$, with ht $\left(f_{1}, \ldots, f_{q}\right)=q$ and ht $\left(A_{1}, \ldots, A_{n}, f_{1}, \ldots, f_{q}\right)=n$. Then there exist germs $A_{1}^{\prime}, \ldots, A_{p}^{\prime}$ in \mathcal{O}_{n} such that:
(i) $A_{1}^{\prime}, \ldots, A_{p}^{\prime}$ are linear combinations of A_{1}, \ldots, A_{n} with C coefficients,
(ii) $\operatorname{ht}\left(A_{1}^{\prime}, \ldots, A_{p}^{\prime}, f_{1}, \ldots, f_{q}\right)=n$.

Since ht $\left(f_{1}, \ldots, f_{q}\right)=q$, it suffices to show the following for $r=$ $1, \ldots, p$:
${ }^{*}$) if $A_{1}^{\prime}, \ldots, A_{r-1}^{\prime}$ are linear combinations of A_{1}, \ldots, A_{n} with C coefficients with ht $\left(A_{1}^{\prime}, \ldots, A_{r-1}^{\prime}, f_{1}, \ldots, f_{q}\right)=r-1+q$, then there exists A_{r}^{\prime} which is a linear combination of A_{1}, \ldots, A_{n} with C coefficients and $\operatorname{ht}\left(A_{1}^{\prime}, \ldots, A_{r}^{\prime}, f_{1}, \ldots, f_{q}\right)=r+q$.

To show this, let $V\left(A_{1}^{\prime}, \ldots, A_{r-1}^{\prime}, f_{1}, \ldots, f_{q}\right)=V_{1} \cup \cdots \cup V_{s}$ be the irreducible decomposition of $V\left(A_{1}^{\prime}, \ldots, A_{r-1}^{\prime}, f_{1}, \ldots, f_{q}\right)$. Since $\left(A_{1}, \ldots, A_{n}, f_{1}, \ldots, f_{q}\right) \quad=\quad n$, for any point x in $V\left(A_{1}^{\prime}, \ldots, A_{r-1}^{\prime}, f_{1}, \ldots, f_{q}\right)$ near O but different from O , $\operatorname{ht}\left(A_{1}, \ldots, A_{n}, f_{1}, \ldots, f_{q}\right)=n$, we see that there exists A_{i} with $A_{i}(x) \neq$ 0 . Hence there exists A_{r}^{\prime} which is a linear combination of A_{1}, \ldots, A_{n} with $V_{k} \not \subset V\left(A_{r}^{\prime}\right)$ for $k=1, \ldots, s$, and thus we have

$$
V\left(A_{1}^{\prime}, \ldots, A_{r}^{\prime}, f_{1}, \ldots, f_{q}\right)=\left(V_{1} \cap V\left(A_{r}^{\prime}\right)\right) \cup \cdots \cup\left(V_{s} \cap V\left(A_{r}^{\prime}\right)\right)
$$

Since each V_{k} is irreducible and $V_{k} \not \subset V\left(A_{r}^{\prime}\right), \operatorname{dim}\left(V_{k} \cap V\left(A_{r}^{\prime}\right)\right)<$ $\operatorname{dim} V_{k}$. Therefore, we get ht $\left(A_{1}^{\prime}, \ldots, A_{r}^{\prime}, f_{1}, \ldots, f_{q}\right)=r+q$, hence the lemma.

Note that the condition $\operatorname{ht}\left(f_{1}, \ldots, f_{q}\right)=q$ means that the variety V defined by $f_{1}=\cdots=f_{q}=0$ is a complete intersection, and the condition ht $\left(A_{1}, \ldots, A_{n}, f_{1}, \ldots, f_{q}\right)=n$ means that the singularity of the holomorphic vector field $X=\sum_{i=1}^{n} A_{i} \frac{\partial}{\partial z_{i}}$ is isolated in V.

In the above situation, if we choose a suitasle coordinate system $\left(z_{1}, \ldots, z_{n}\right)$ in C^{n}, then we may suppose that ht $\left(A_{1}, \ldots, A_{p}, f_{1}, \ldots, f_{q}\right)$ $=n$. Hence Theorem 2 follows.

Remarks. 1) Let V_{α} be defined by $f_{\lambda}=0, \lambda=1, \ldots, q$. Suppose that V_{α} is invariant by a holomorphic vector field X_{0} (defined everywhere on U_{α}) and that Σ_{α} is an isolated point m_{α} in V_{α}. Then as is shown above, there exists a holomorphic chart $\left(z_{1}, \ldots, z_{n}\right)$ near m_{α} such that when we write $X_{0}=\sum_{i=1}^{n} A_{i} \frac{\partial}{\partial z_{i}}, \operatorname{ht}\left(A_{1}, \ldots, A_{p}, f_{1}, \ldots, f_{q}\right)=n$, i.e., $A_{1}, \ldots, A_{p}, f_{1}, \ldots, f_{q}$ form a regular sequence. We may set

$$
\begin{aligned}
\tilde{\mathcal{T}}_{\alpha}=\left\{z=\left(z_{1}, \ldots, z_{n}\right)| | A_{i}(z) \mid \leq \varepsilon,\right. & \left|f_{\lambda}(z)\right| \leq \varepsilon, \\
& i=1, \ldots, p, \quad \lambda=1, \ldots, q\}
\end{aligned}
$$

Thus we have $\mathcal{T}_{\alpha}=\left\{z| | A_{i}(z) \mid \leq \varepsilon, f_{\lambda}(z)=0\right\}$ and we may also set

$$
R_{i}=\left\{z \in \partial \mathcal{T}_{\alpha}| | A_{i}(z)\left|\geq\left|A_{j}(z)\right| \text { for } j \neq i\right\}\right.
$$

Then

$$
R=R_{12 \ldots p}=\left\{z| | A_{i}(z) \mid=\varepsilon, f_{\lambda}(z)=0, i=1, \ldots, p, \lambda=1, \ldots, q\right\}
$$

which is a smooth closed submanifold of real dimensiom p in $\partial \mathcal{T}_{\alpha}$, the link of the singularity V_{α}. If we set $\theta_{i}=\arg A_{i}(z), R$ is oriented so
that the forifl $(-1)^{\left[\frac{p}{2}\right]} d \theta_{1} \wedge \cdots \wedge d \theta_{p}$ is positive. Let $R^{\prime}=(-1)^{\left[\frac{p}{2}\right]} R$ so that $d \theta_{1} \wedge \cdots \wedge d \theta_{p}$ is positive on R^{\prime}. Then

$$
I_{\alpha}^{\prime}(\underset{y}{y}, V, \varphi, \nu)=\int_{R^{\prime}} \frac{\varphi\left(-C_{\alpha}\right) d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{p}}{\prod_{i=1}^{p} A_{i}} .
$$

2) Theorems 1,2 and Theorem 1' below could be extended to the case where we, take the set $\operatorname{Sing}\left(X_{0}\right) \cap V$ as Σ.

Now Theorem 1 is a special case of the following Theorem 1'. In general, let V be a subvariety of W, and $E \rightarrow V$ a continuous complex vector bundle of rank r such that the restriction of E to the regular part of V is holomorphic and that there exists a C^{∞} extension $\tilde{E} \rightarrow U$ of E to somet neighborhood U of V in W. We shall also assume that there exists \dot{A} Rolomorphic action of X_{0} on $\left.E\right|_{V-\Sigma}$ in the sense of Bott [4]; a C-lineff ${ }^{\circ}$ operator $\theta_{x_{0}}$ from the space of C^{∞} sections of $\left.E\right|_{V-\Sigma}$ into itself is 点iven, such that

$$
\left\{\begin{array}{l}
\theta_{x_{0}}(\sigma Y \text { is holomorphic whenever } \sigma \text { is holomorphic, } \\
\theta_{x_{0}}(u, j)=\left(X_{0} . u\right) \sigma+u \theta_{x_{0}}(\sigma) \text { for any } C^{\infty} \text { function } u \\
\text { 4. and any section } \sigma .
\end{array}\right.
$$

In order to state Theorem 1', we further assume that U_{α} is included in the domain ofip local chart and that $\left.\tilde{E}\right|_{U_{\alpha}}$ is trivial with a trivialization $\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ Whose restriction to $V_{\alpha}-\Sigma_{\alpha}$ is holomorphic. We denote by M_{α} the r 冓 2 matrix with holomorphic entries $M_{\alpha, a}^{b}: V_{\alpha}-\Sigma_{\alpha} \rightarrow C$ such that $\left.\left.\theta_{x_{0}} \chi_{f}^{f}\right]\right)=\sum_{b} M_{\alpha, a}^{b} \sigma_{b}$. Let $\varphi \in\left(Z\left[c_{1}, \ldots, c_{r}\right]\right)^{2 p}$ as before.

Theoreme ${ }^{\text {n }}$. Define

$$
I_{\alpha}\left(\theta_{X_{0}}, V, \varphi^{x}, W_{d} \varphi=(-1)^{\left[\frac{p}{2}\right]} \sum_{u \in \mathcal{M}(\mathcal{U})} \int_{R_{u}} \frac{\varphi\left(M_{\alpha}\right) d z_{u_{1}} \wedge d z_{u_{2}} \wedge \ldots \wedge d z_{u_{p}}}{\prod_{j=1}^{p} A_{u_{j}}}\right.
$$

Then the folloawing hold:
(i) $I_{\alpha}\left(\theta_{X_{0}}, V_{2} \varphi, E\right)$ does not depend on the various choices of $\left(z_{1}, \ldots, z_{n}\right), \mathcal{U}, \tilde{\mathcal{T}}_{\alpha},\left(\sigma_{1}, \ldots, \sigma_{r}\right), R_{i}$.
(ii) Assumé V to be compact : $\sum_{\alpha} I_{\alpha}\left(\theta_{X_{0}}, V, \varphi, E\right)$ is then an integer.
(iii) This integer depends only on V, φ and E, but not on X_{0} and $\theta_{X_{0}}$. It is in fact equal to the evaluation $<\varphi(E), V>$ of $\varphi(E)$ on the fundarkeñtal class $[V]$ of V.

Remarks. 1) For Theorem 1', V does not need be SLCI even LCI; this assumption was only useful for being sure that ν and $\tilde{\nu}$ exist in the example 1 below. This is still true, even for Theorem 1, if we have some other reason to know that ν and $\tilde{\nu}$ exist.
2) If V is non-singular, we recover Theorem 1 ' of [8], some particular cases of which being also in Baum-Bott [1] when $E=T_{C}(V)$, and in Bott [4] when X_{0} is nondegenerate along Σ_{α}.
3) Let V_{α} be defined by $f_{\lambda}=0, \lambda=1, \ldots, q$ and invariant by a holomorphic vector field X_{0} (defined everywhere on U_{α}). Suppose that Σ_{α} is an isolated point m_{α} in V_{α}. Then, as in the previous remark 1), there exists a holomorphic chart $\left(z_{1}, \ldots, z_{n}\right)$ near m_{α} such that $A_{1}, \ldots, A_{p}, f_{1}, \ldots, f_{q}$ form a regular sequence. In this case, we have

$$
I_{\alpha}\left(\theta_{X_{0}}, V, \varphi, E\right)=\int_{R^{\prime}} \frac{\varphi\left(M_{\alpha}\right) d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{p}}{\prod_{i=1}^{p} A_{i}}
$$

where

$$
R^{\prime}=\left\{z| | A_{i}(z) \mid=\varepsilon, f_{\lambda}(z)=0, i=1, \ldots, p, \lambda=1, \ldots, q\right\}
$$

which is oriented so that the form $d \theta_{1} \wedge \cdots \wedge d \theta_{p}$ is positive, where $\theta_{i}=\arg A_{i}(z)$.

Example 1. Assume V to be SLCI. Take $E=\nu$, and $\theta_{x_{0}}$ defined as in section 3 above, with $M_{\alpha}=-C_{\alpha}$. Then we get Theorem 1 from Theorem 1'. We shall write in this case $I_{\alpha}(\mathcal{F}, V, \varphi, \nu)$ instead of $I_{\alpha}\left(\theta_{X_{0}}, V, \varphi, \nu\right)$.

Example 2. Take $E=\left.T_{C}(W)\right|_{V}$, and define $\theta_{x_{0}}(Y)=\left.\left[X_{0}, \tilde{Y}\right]\right|_{V}$, depending only on the vector field Y tangent to W along V, and not on its extension \tilde{Y} to some neighbourhood of V. Then we have $M_{\alpha}=-\frac{D\left(A_{1}, \ldots, A_{n}\right)}{D\left(z_{1}, \ldots, z_{n}\right)}$. The index now is the one defined in section 8 of [8], Theorem 1' (and the above remark 3)) giving a formula for computing it. In this case, we shall write $I_{\alpha}\left(X_{0}, V, \varphi, T_{C}(W)\right)$ instead of $I_{\alpha}\left(\theta_{X_{0}}, V, \varphi,\left.T_{C}(W)\right|_{V}\right)$. (Notice that if we replace here X_{0} by $u X_{0}$ as in Theorem 1, the index is now changing!)

4. Proof of Theorem 1^{\prime}

We use the notation Δ_{ω} for the Chern-Weil homomorphism defined by a connection ω, and $\Delta_{\omega_{0} \omega_{1} \cdots \omega_{k}}$ for the Bott's operator for iterated
differences [3] so that $d \circ \Delta_{\omega_{0} \omega_{1} \cdots \omega_{k}}=\sum_{j=0}^{k}(-1)^{j} \Delta_{\omega_{0} \cdots \hat{\omega}_{j} \cdots \omega_{k}}$. In particular, $d \circ \Delta_{\omega \omega^{\prime}}=\Delta_{\omega^{\prime}}-\Delta_{\omega}$. Thus for $\varphi \in\left(Z\left[c_{1}, \ldots, c_{r}\right]\right)^{2 p}, \Delta_{\omega_{0} \omega_{1} \cdots \omega_{k}}(\varphi)$ is a differential form of degree $2 p-k$ on the common domain of definition of the connections $\omega_{0}, \omega_{1}, \ldots, \omega_{k}$.

We shall say that a connection ω on $\left.E\right|_{V-\Sigma}$ is special relative to $\theta_{X_{0}}$ if it is defined by a derivation law ∇ satisfying:

$$
\left\{\begin{array}{cl}
\nabla_{X_{0}} \sigma=\theta_{x_{0}} \sigma \text { for every section } \sigma \text { of }\left.E\right|_{V-\Sigma}, \\
\nabla_{Z} \sigma=0 & \text { for every section } Z \text { of the anti-holomorphic tangent } \\
& \text { bundle } \bar{T}(V-\Sigma) \text { of } V-\Sigma \text { and every holomorphic } \\
& \text { section } \sigma \text { of }\left.E\right|_{V-\Sigma .}
\end{array}\right.
$$

For special connections, we have the "vanishing theorem" (see Lemma 4 below for more general statement): If ω is special relative to $\theta_{x_{0}}$, then $\Delta_{\omega}(\varphi)=0$.

Let U_{0} be a sufficiently small tubular neighborhood of $V-\Sigma$ in W with (C^{∞}) projection $\rho: U_{0} \rightarrow V-\Sigma$. Then the C^{∞} vector bundles $\left.\tilde{E}\right|_{U_{0}}$ and $\rho^{*}\left(\left.E\right|_{V-\Sigma}\right)$ are isomorphic, since their restrictions to $V-\Sigma$ are both equal to $\left.E\right|_{V-\Sigma}$. We denote by ω the connection on $\left.\tilde{E}\right|_{U_{0}}$, which is equivalent to the pull-back of a special connection on $\left.E\right|_{V-\Sigma}$ by ρ. We give also an arbitrary connection ω_{α} on $\left.\tilde{E}\right|_{U_{\alpha}}$.

Proposition 2. Let

$$
J_{\alpha}\left(\theta_{x_{0}}, V, \varphi, E\right)=\int_{\mathcal{T}_{\alpha}} \Delta_{\omega_{\alpha}}(\varphi)+\int_{\partial \tau_{\alpha}} \Delta_{\omega_{\alpha} \omega}(\varphi) .
$$

Then the following hold:
(i) $J_{\alpha}(\mathcal{F}, V, \varphi, E)$ does not depend on the choices of $\tilde{\mathcal{T}}_{\alpha}, \omega, \omega_{\alpha}$.
(ii) Assume V to be compact $\sum_{\alpha} J_{\alpha}\left(\theta_{x_{0}}, V, \varphi, E\right)$ is then an integer.
(iii) This integer depends only on V and φ, but not on \mathcal{F}. It is in fact nothing else but the evaluation $\langle\varphi(E), V\rangle$ of $\varphi(E)$ on the fundamental class $[V]$ of V.
Notice that, in Proposition 2, we do not have to assume either that U_{α} is included in the domain of a local chart, or that $\left.\tilde{E}\right|_{U_{\alpha}}$ is trivial.

The proof is similar to that for the first three parts in Theorem 8 of [8], if we replace $\nabla_{X_{0}} Y=\left[X_{0}, Y\right]$ by $\nabla_{X_{0}} \sigma=\theta_{X_{0}} \sigma$.

Theorem 1' (hence Theorem 1) will follow immediately from Proposition 2 above and

Proposition 3. Suppose that U_{α} is included in the domain of a local chart and that $\left.\tilde{E}\right|_{U_{\alpha}}$ is trivial with a trivialization whose restriction to $V_{\alpha}-\Sigma_{\alpha}$ is holomorphic. Then we have

$$
I_{\alpha}\left(\theta_{x_{0}}, V, \varphi, E\right)=J_{\alpha}\left(\theta_{x_{0}}, V, \varphi, E\right)
$$

In what follows, we fix a trivialization $\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ of $\left.\tilde{E}\right|_{U_{\alpha}}$ as in Proposition 3 and compute the matrix M_{α} in terms of this trivialization. We also choose ω_{α} equal to a trivial connection ω_{0} whose connection form with respect to this trivialization is the matrix 0 . Hence, in the formula of Proposition 2, we have

$$
J_{\alpha}\left(\theta_{x_{0}}, V, \varphi, E\right)=\int_{\partial \tau_{\alpha}} \Delta_{\omega_{0} \omega}(\varphi)
$$

Remarks 1) Notice that the integration of the sadne expression over only one of the connected components of $\partial \mathcal{T}_{\alpha} \cap V$ would give the partial index corresponding to the corresponding "shee ${ }^{i 1}$ or "branch" through Σ_{α}.
2) If V is not LCI, we still can define $I_{\alpha}(\mathcal{F}, V, \varphi, \nu)$ and $J_{\alpha}(\mathcal{F}, V, \varphi, \nu)$ under the condition that the bundle $\left.\nu\right|_{V_{\alpha}-\Sigma_{\alpha}}$ is trivialitable, and conclusion of Proposition 3 will still remain true. But this latdex will now depend on the choice of the homotopy class of the trivithization. Furthermore, even if this is possible at any point of Σ, the sum of these indices has now no reason to be either an integer or independent of \mathcal{F}.

There are three steps in the proof of Proposition 3: 1) We first study the properties of the holomorphic connections $\left.\omega_{i} F_{\text {On }} E\right|_{\mathcal{V}_{i}}$, the connection form of which with respect to the given triviffization being $\frac{d z_{i}}{A_{i}} M_{\alpha}$. 2) Then we prove that $\Delta_{\omega_{0} \omega}(\varphi)$, which is a c $\Theta \in$ eycle on $\partial \mathcal{T}_{\alpha}$, is cohomologous, when imbedded in the total Cech-de Th $^{\mathrm{t}}$. $C D R^{*}(\mathcal{U})$, to the element μ in $C D R^{2 p-1}(\mathcal{U})$ defined by ${ }^{\text {po }}$
$\left\{\begin{array}{l}\mu_{u}=\Delta_{\omega_{0} \omega_{u_{1}} \omega_{u_{2}} \ldots \omega_{u_{p}}}(\varphi) \text { for } u \in \mathcal{M}(\mathcal{U}), \\ \mu_{I}=0 \text { for any simplex } I \text { of dimension } \neq p-1 \text { in tie nerve of } \mathcal{U} .\end{array}\right.$
3) Finally, we prove that

$$
\mu_{u}=\frac{\varphi\left(M_{\alpha}\right) d z_{u_{1}} \wedge d z_{u_{2}} \wedge \ldots \wedge d z_{u_{p}}}{\prod_{j=1}^{p} A_{u_{j}}}
$$

Using integration on $C D R^{*}(\mathcal{U})$ as recalled in Lemma 6 below, this will achieve the proof of Proposition 3.

First step. Let Ω be an open set in $V_{\alpha}-\Sigma_{\alpha}, Y$ a holomorphic non-vanishing vector field tangent to Ω, and Γ a holomorphic map from Ω into the space of $r \times r$ matrices with complex entries. A connection $\bar{\omega}$ on $\left.E\right|_{\Omega}$ will be said to be "adapted" to (Y, Γ) if its connection form relative to the trivialization $\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ of $\left.E\right|_{\Omega}$, still denoted by $\bar{\omega}$, satisfies:

$$
\left\{\begin{array}{l}
\bar{\omega}(Y)=\Gamma, \\
\bar{\omega}(Z)=0 \quad \text { for every section } Z \text { of } \bar{T}\left(V_{\alpha}-\Sigma_{\alpha}\right) .
\end{array}\right.
$$

Hence the restriction to Ω of a "special" connection, such as defined for Proposition 2, is adapted to $\left(X_{0}, M_{\alpha}\right)$, while the restriction to Ω of the trivial connection ω_{0} is adapted to any (Y, matrix 0) for Y holomorphic tangent to Ω. From the usual vanishing theorem (Bott [3], KamberTondeur [7]), we deduce the

Lemma 4. Let $\operatorname{dim} \varphi=2 p$. Then the following hold:
$\left\{\begin{array}{l}\text { If } \bar{\omega} \text { is adapted to some }(Y, \Gamma), \Delta_{\bar{\omega}}(\varphi)=0 . \\ \text { If } \bar{\omega}_{1}, \ldots, \bar{\omega}_{k} \text { are adapted to the same }(Y, \Gamma), \Delta_{\bar{\omega}_{1} \ldots \bar{\omega}_{k}}(\varphi)=0 .\end{array}\right.$

For any q multiindex $I=\left(1 \leq i_{1}, i_{2}, \ldots, i_{q} \leq n\right)$, the i_{j} 's being all distinct, define

$$
D_{I}=\operatorname{det} \frac{D\left(f_{1}, \ldots, f_{q}\right)}{D\left(z_{i_{1}}, \ldots, z_{i_{q}}\right)}
$$

For any $u \in \mathcal{M}$, define the q multiindex $\bar{u}=\left(\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{q}\right)$ so that $1 \leq \bar{u}_{1}<\bar{u}_{2}<\ldots<\bar{u}_{q} \leq n$, and $\{1,2, \ldots, n\}=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\} \cup$ $\left\{\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{q}\right\}$, and by $\Omega_{\bar{u}}$ the open set of points in V_{α} where $D_{\bar{u}} \neq$ $0: \Omega_{\bar{u}}$ is a union of open sets where the restrictions of the functions $z_{u_{1}}, \ldots, z_{u_{p}}$ constitute a system of local coordinates. For any $q+1$ multiindex $I=\left(1 \leq i_{0}, i_{1}, \ldots, i_{q} \leq n\right), Y_{I}$ will denote the holomorphic vector field:

$$
Y_{I}=\sum_{k=0}^{q}(-1)^{k} D_{I-i_{k}} \frac{\partial}{\partial z_{i_{k}}} .
$$

Lemma 5.

(i) Y_{I} is tangent to V.
(ii) For $m \in \mathcal{V}_{i}(1 \leq i \leq n)$, there exists $u \in \mathcal{M}$ containing i such that $D_{\bar{u}} \neq 0$ at the point m.
(iii) For any $i(1 \leq i \leq n)$, the connection $\omega_{i}=\frac{d z_{i}}{A_{i}} M_{\alpha}$ on $\left.E\right|_{\nu_{i}}$ satisfies the following condition: for any $u \in \mathcal{M}$ containing i, the restriction of ω_{i} to $\Omega_{\bar{u}}$ is simultaneously adapted to $\left(X_{0}, M_{\alpha}\right)$ and any $\left(Y_{u_{j}+\bar{u}}\right.$, matrix 0$)$ such that $u_{j} \neq i$.
In fact let I be some $q+1$ multi index such that $D_{I-i_{k}} \neq 0$ at some point m in V for some $i_{k} \in I$, so that the restrictions \tilde{z}_{i} to V of the functions z_{i} constitute, for i belonging to $\{1,2, \ldots, n\}-\left\{I-i_{k}\right\}$ (in particular for $i=i_{k}$), a system of local coordinates on V near m. But then, the restriction of Y_{I} to the domain of such a local chart is equal to $(-1)^{k} D_{I-i_{k}} \frac{\partial}{\partial \tilde{z}_{i_{k}}}$ and is therefore tangent to V, hence part (i) of the lemma.

The condition for X_{0} to be tangent to V may be written:

$$
\sum_{j=1}^{n} A_{j}\left(f_{\lambda}\right)_{z_{j}}^{\prime}=0 \quad \text { on } \quad V_{\alpha} \text { for all } \lambda=1, \ldots, q
$$

Hence, if $m \in \mathcal{V}_{i}$, the q dimensional vector $\left(\left(f_{\lambda}\right)_{z_{i}}^{\prime}\right)_{\lambda=1, \ldots, q}$ is, on V_{α}, a linear combination of the others $\left(\left(f_{\lambda}\right)_{z_{j}}^{\prime}\right)_{\lambda=1, \ldots, q},(j \neq i) ; D_{J}$ must be zero at m for any q multiindex J containing i. But, since \mathcal{V}_{i} is in the regular part of V, one at least of the D_{J} must be $\neq 0$; the only possibility is therefore that $i \notin J$ for such an J, hence part (ii) of the lemma.

On $\Omega_{\bar{u}}, X_{0}=\sum_{j=1}^{p} A_{u_{j}} \frac{\partial}{\partial \bar{z}_{j}}=\frac{1}{D_{\bar{u}}} \sum_{j=1}^{p} A_{u_{j}} Y_{u_{j}+\bar{u}}$ and, on $\mathcal{V}_{i} \cap \Omega_{\bar{u}}$, the p holomorphic vector fields X_{0} and $\left(Y_{u_{j}+\bar{u}}\right)_{u_{j} \neq i}$ are linearly independant. The part (iii) of the lemma becomes now obvious to check, since \mathcal{V}_{i} is covered by the $\Omega_{\bar{u}}$ such that $i \in u$.

Second step. For any k simplex $I=\left(i_{0} \cdots i_{k}\right)$ in the nerve of \mathcal{U}, write $\Delta_{\omega_{0} \omega \omega_{I}}(\varphi)=\Delta_{\omega_{0} \omega \omega_{i_{0}} \cdots \omega_{i_{k}}}(\varphi), \Delta_{\omega \omega_{I}}(\varphi)=\Delta_{\omega \omega_{i_{0}} \cdots \omega_{i_{k}}}(\varphi)$, and $\Delta_{\omega_{0} \omega_{I}}(\varphi)=\Delta_{\omega_{0} \omega_{i_{0}} \cdots \omega_{i_{k}}}(\varphi)$.

Define $\gamma \in C D R^{2 p-1}(\mathcal{U})$ as the family $\left(\gamma_{I}\right)_{I}$ given by $\gamma_{I}=(-1)^{\left[\frac{k+1}{2}\right]} \Delta_{\omega_{0} \omega \omega_{I}}(\varphi)$, where k denotes the dimension $|I|$ of I.

Then, the total differential $D \gamma$ of γ in $C D R^{*}(\mathcal{U})$ is given by:

$$
\begin{aligned}
(D \gamma)_{I}= & (-1)^{\left.\frac{[k+1}{2}\right]+k}\left(\Delta_{\omega \omega_{I}}(\varphi)-\Delta_{\omega_{0} \omega_{I}}(\varphi)\right. \\
& \left.+\sum_{\alpha=0}^{k}(-1)^{\alpha} \Delta_{\omega_{0} \omega \omega_{I-i_{\alpha}}}(\varphi)\right) \\
& +\sum_{\alpha=0}^{k}(-1)^{\left[\frac{k}{2}\right]+\alpha+1} \Delta_{\omega_{0} \omega \omega_{I-i_{\alpha}}}(\varphi) \\
= & (-1)^{\left[\frac{k+1}{2}\right]+k}\left(\Delta_{\omega \omega_{I}}(\varphi)-\Delta_{\omega_{0} \omega_{I}}(\varphi)\right), \text { for }|I|>0 \\
(D \gamma)_{i}= & \Delta_{\omega \omega_{i}}(\varphi)-\Delta_{\omega_{0} \omega_{i}}(\varphi)+\Delta_{\omega_{0} \omega}(\varphi) \text { for }|I|=0
\end{aligned}
$$

But all terms $\Delta_{\omega \omega_{I}}(\varphi)$ vanish because the connections $\omega, \omega_{i_{0}}, \cdots, \omega_{i_{k}}$ are all adapted to the same $\left(X_{0}, M_{\alpha}\right)$, all terms $\Delta_{\omega_{0} \omega_{I}}(\varphi)$ vanish for $|I|<p-1$ because the connections $\omega_{0}, \omega_{i_{0}}, \cdots, \omega_{i_{k}}$ are all adapted to a same (Y, matrix 0), and all terms of $(D \gamma)_{I}$ vanish for $|I| \geq p$ because $\Delta_{\bar{\omega}_{0} \cdots \bar{\omega}_{r}}(\varphi)$ is always 0 for any family of $r+1$ connections when $r>p$. Therefore, it remains only: $(D \gamma)_{i}=\Delta_{\omega_{0} \omega}(\varphi)$ for $I=\{i\}$ of dimension $0,(D \gamma)_{u}=-\mu_{u}$ for $u \in \mathcal{M}(\mathcal{U})$ of dimension $p-1$, all others $(D \gamma)_{I}$'s being 0 . This proves: $D \gamma=\iota\left(\Delta_{\omega_{0} \omega}(\varphi)\right)-\mu$, where ι denotes the natural imbedding of the de Rham complex $\Omega_{D R}^{*}\left(\partial \mathcal{T}_{\alpha}\right)$ into $C D R^{*}(\mathcal{U})$.

Third step. The set \mathcal{V}_{u} equal to $\cap_{j=1}^{p} \mathcal{V}_{u_{j}}$ is included into $\Omega_{\bar{u}}$. In fact, as already seen in Lemma 5, if m belongs to \mathcal{V}_{i}, D_{I} must be zero when $i \in I$. So if $m \in \mathcal{V}_{u}, u$ is the only possible element v in $\mathcal{M}(\mathcal{U})$ such that $D_{v} \neq 0$.

For computing $\Delta_{\omega_{0} \omega_{u_{1}} \ldots \omega_{u_{p}}}$, we introduce (Bott [3]) the connection $\tilde{\omega}$ on $\left(\left.E\right|_{\mathcal{V}_{u}}\right) \times \Delta^{p} \rightarrow \mathcal{V}_{u} \times \Delta^{p},\left(\Delta^{p}\right.$ denoting the p-simplex $0 \leq \sum_{i=1}^{p} t_{i} \leq$ $1,0 \leq t_{i} \leq 1$, in R^{p}), defined by

$$
\left[\tilde{\omega}=\sum_{i=1}^{p} t_{i} \omega_{i}+\left[1-\left(\sum_{i=1}^{p} t_{i}\right)\right] \omega_{0}=\left(\sum_{j=1}^{p} \frac{t_{j}}{A_{u_{j}}} d z_{u_{j}}\right) M_{\alpha}\right]
$$

The curvature $\tilde{\Omega}$ of this connection is then equal to

$$
\left.\tilde{\Omega}=\left(\sum_{j=1}^{p} d t_{j} \wedge \frac{1}{A_{u_{j}}} d z_{u_{j}}\right) M_{\alpha}+\quad \text { (terms without any } \quad d t_{k}\right)
$$

Therefore, for every polynomial φ in Chern $^{2 p}\left[c_{1} \ldots c_{n}\right]$,

$$
\begin{aligned}
\Delta_{\tilde{\omega}}(\varphi)= & p!(-1)^{\left[\frac{p}{2}\right]} d t_{1} \wedge d t_{2} \wedge \cdots \wedge d t_{p} \wedge \frac{\varphi\left(M_{\alpha}\right) d z_{u_{1}} \wedge \cdots \wedge d z_{u_{p}}}{\prod_{j=1}^{p} A_{u_{j}}} \\
& +\left(\text { terms of degree }<p \quad \text { in } \quad d t_{j}\right) .
\end{aligned}
$$

By integration over Δ^{p}, and using the equality $\int_{\Delta^{p}} d t_{1} \wedge \cdots \wedge d t_{p}=\frac{1}{p!}$, we get [3 (p.64)]:

$$
\Delta_{\omega_{0} \omega_{1} \cdots \omega_{p}}(\varphi)=\frac{\varphi\left(M_{\alpha}\right) d z_{u_{1}} \wedge d z_{u_{2}} \wedge \ldots \wedge d z_{u_{p}}}{\prod_{j=1}^{p} A_{u_{j}}}
$$

This achieves the proof of proposition 3, hence of Theorems 1' and 1, once using:

Lemma 6. There exists a linear map $L: C D R^{2 p-1}(\mathcal{U}) \rightarrow C$ with the following properties:
(i) L vanishes on the total coboundaries $D\left(C D R^{2 p-2}(\mathcal{U})\right)$,
(ii) L extends simultaneously the integration $\int_{\partial \tau_{\alpha}}: \Omega_{D R}^{2 p-1}\left(\partial \mathcal{T}_{\alpha}\right) \rightarrow C$, and the map: $(-1)^{\left[\frac{p}{2}\right]} \sum_{u \in \mathcal{M}(\mathcal{U})} \int_{R_{u}}: C^{p-1}\left(\mathcal{U}, \Omega_{D R}^{p}\right) \rightarrow C$.
Proof. See section 6 of [8].
5. Examples. Let W be the 3-dimensional complex projective space $C P^{3}$, with homogeneous coordinates $[X, Y, Z, T]$. Take for V the cone V_{l} of equation

$$
X^{l}+Y^{l}+Z^{l}=0 \quad(l \text { being any integer } \geq 1)
$$

which has a single isolated singular point $O=[0,0,0,1]$. Denote by U_{T}, U_{Z} and U_{Y} the affine spaces $T \neq 0, Z \neq 0$ and $Y \neq 0$ with respective coordinates $\left(x=\frac{X}{T}, y=\frac{Y}{T}, z=\frac{Z}{T}\right),\left(x^{\prime}=\frac{X}{Z}, y^{\prime}=\frac{Y}{Z}, t^{\prime}=\frac{T}{Z}\right)$ and $\left(x^{\prime \prime}=\frac{X^{\prime \prime}}{Y}, z^{\prime \prime}=\frac{Z}{Y}, t^{\prime \prime}=\frac{T}{Y}\right)$. The three open sets U_{T}, U_{Z}, U_{Y} cover V_{l} since the point $[1,0,0,0]$ does not belong to V_{l}. The corresponding equations of V_{l} may be written respectively: $f_{T}=0, f_{Z}=0, f_{Y}=$ 0 , with: $f_{T}(x, y, z)=x^{l}+y^{l}+z^{l}, f_{Z}\left(x^{\prime}, y^{\prime}, t^{\prime}\right)=x^{\prime l}+y^{l}+1$, and $f_{Y}\left(x ", z^{\prime \prime}, t^{\prime \prime}\right)=x^{\prime \prime}+z^{\prime \prime}+1$. The bundle $\tilde{\nu}$ is defined by the cocycle

$$
\left(g_{T Z}=z^{l}=\frac{1}{t^{\prime l}}, \quad g_{T Y}=y^{l}=\frac{1}{t^{\prime \prime}}, \quad g_{Z Y}=y^{l}=\frac{1}{z^{\prime \prime}}\right)
$$

In general, for a hypersurface V_{l} of degree l in $C P^{n}\left(\operatorname{dim}_{C} V_{l}=p=\right.$ $n-1$), we have (see Example 3 in section 2)

$$
<\left(c_{1}\right)^{p}(\nu), V_{l}>=l^{n-1} \int_{V_{l}} c^{n-1}=l^{n}
$$

Also, from $T_{C}\left(C P^{n}\right) \oplus 1=(n+1) \check{L}$, we obtain

$$
1+c_{1}\left(T_{C}\right)+c_{2}\left(T_{C}\right)+\cdots=(1+c)^{n+1}
$$

hence

$$
c_{1}\left(T_{C}\left(C P^{n}\right)\right)=(n+1) c, \quad c_{2}\left(T_{C}\left(C P^{n}\right)\right)=\frac{(n+1) n}{2} c^{2}, \ldots
$$

In particular, for $p=2, q=1$,

$$
\begin{aligned}
& <\left(c_{1}\right)^{2}\left(T_{C}\left(C P^{3}\right)\right), V_{l}>=(3+1)^{2} \int_{V_{l}} c^{2}=16 l \\
& <c_{2}\left(T_{C}\left(C P^{3}\right)\right), V_{l}>=\frac{4 \cdot 3}{2} \int_{V_{l}} c^{2}=6 l
\end{aligned}
$$

Example 1. Take for X_{0} the extension H to the whole $C P^{3}$ of the vector field of infinitesimal homotheties $x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}$ in U_{T}. (In U_{Z} and U_{Y}, H is equal respectively to $-t^{\prime} \frac{\partial}{\partial t^{\prime}}$ and $\left.-t^{\prime \prime} \frac{\partial}{\partial t^{n}}\right)$. This vector field has for singular set the union of $\{O\}$ and of the hyperplane $T=0$, and Σ has 2 connected components: Σ_{1} is the isolated point $\{O\}$, and Σ_{2} the curve ($X^{l}+Y^{l}+Z^{l}=0, T=0$). Notice however that Σ_{2} does not contain any singularity for the foliation \mathcal{F} generated by H, so that we can already assert

$$
I_{2}\left(\mathcal{F}, V_{l},\left(c_{1}\right)^{2}, \nu\right)=0
$$

1) Computation of $I_{1}\left(\mathcal{F}, V_{l},\left(c_{1}\right)^{2}, \nu\right)$ and $I_{1}\left(H, V_{l}, \varphi, T_{C}(W)\right)(\varphi=$ $\left(c_{1}\right)^{2}$ or $\left.c_{2}\right)$:

For $E=\nu, H . f_{T}=l f_{T}$ and $M_{0}=-C_{0}$ is the 1×1 constant matrix $(-l)$. For $E=\left.T_{C}(W)\right|_{V}, M_{0}=-\frac{D(x, y, z)}{D(x, y, z)}$ is equal to the opposite of the 3×3 identity matrix, in such a way that for $E=\nu,\left(c_{1}\right)^{2}\left(M_{0}\right)$ is a constant equal to $\frac{-l^{2}}{4 \pi^{2}}$, while for $E=\left.T_{C}(W)\right|_{V}, \varphi\left(M_{0}\right)$ is also a constant equal to $\frac{-9}{4 \pi^{2}}$ if $\varphi=\left(c_{1}\right)^{2}$, and $\frac{-3}{4 \pi^{2}}$ if $\varphi=c_{2}$. (Recall that, c_{k} applied to some matrix is equal to $\left(\frac{i}{2 \pi}\right)^{k}$ times the k th elementary symmetric function of the eigenvalues).

We compute the indices in two ways; first directly by the definition in Theorem 1 or 1' and then applying Theorem 2.
(i) Take for $\tilde{\mathcal{T}}$ the ball $\operatorname{Sup}(|x|,|y|,|z|) \leq \varepsilon$ for some positive constant ε. Let R_{z} be the region in the boundary $\partial \mathcal{T}$ defined by $|z| \geq|x|,|z| \geq$ $|y|$, and define R_{x} and R_{y} similarly. The index $I_{1}\left(\theta_{H}, V_{l}, \varphi, E\right)$ at the origin O is equal in both cases to

$$
-\varphi\left(M_{0}\right)\left(\int_{R_{x y}} \frac{d x}{x} \wedge \frac{d y}{y}+\int_{R_{y z}} \frac{d y}{y} \wedge \frac{d z}{z}+\int_{R_{x z}} \frac{d x}{x} \wedge \frac{d z}{z}\right)
$$

On $R_{x y}$, we may write $x=\varepsilon e^{i \theta}, y=\varepsilon e^{i \sigma}$, and $\frac{d x}{x} \wedge \frac{d y}{y}=-d \theta \wedge d \sigma$, which is positive on $R_{x y}$. In fact, remember ([8]) the convention about the orientation of $R_{x y}$ by the normal from R_{x} to R_{y}. Let us write $x=r e^{i \theta}$ and $y=s e^{i \sigma}$ on \mathcal{T}; then $d r \wedge d \theta \wedge d s \wedge d \sigma$ is positive on \mathcal{T} with r increasing when approaching $\partial \mathcal{T} \cap R_{x}, r=\varepsilon$ and $d \theta \wedge d s \wedge d \sigma$ is positive on R_{x} with s increasing when approaching the boundary near $R_{x y}$, in such a way that $-d \theta \wedge d \sigma$ is positive on $R_{x y}$. But there, we have $z^{l}=-\left(x^{l}+y^{l}\right)=-2 \varepsilon^{l} \cos \frac{l(\sigma-\theta)}{2} e^{i \frac{l(\sigma+\theta)}{2}}$, so that $R_{x y}$ is an l-fold covering of the set of (θ, σ) such that $2 \varepsilon^{l}|\cos (\sigma-\theta)| \leq \varepsilon^{l}$ (because $|z| \leq \varepsilon$ on $\left.R_{x y}\right)$. It is easy to check that the set of (θ, σ) in the square $[0,2 \pi]^{2}$ where the previous condition holds is made of l strips, the area of each one being $\frac{2 \pi}{3} \times 2 \pi=\frac{4 \pi^{2}}{3}$. Then, because of the l sheets of the covering, we get: $\int_{R_{x y}} \frac{d x}{x} \wedge \frac{d y}{y}=\frac{4 l \pi^{2}}{3}$. The computation is the same for the two others integrals, so that

$$
\int_{R_{x y}} \frac{d x}{x} \wedge \frac{d y}{y}+\int_{R_{y z}} \frac{d y}{y} \wedge \frac{d z}{z}+\int_{R_{x z}} \frac{d x}{x} \wedge \frac{d z}{z}=4 l \pi^{2}
$$

(ii) We observe that, in this case, x, y and f_{T} form a regular sequence (see Remark 1) after Theorem 2 and Remark 3) after Theorem 1'), and we may take for $\tilde{\mathcal{T}}$ the ball $\operatorname{Sup}\left(|x|,|y|,\left|f_{T}\right|\right) \leq \varepsilon$. The index $I_{1}\left(\theta_{H}, V_{l}, \varphi, E\right)$ at the origin O is equal to

$$
\varphi\left(M_{0}\right) \int_{R^{\prime}} \frac{d x}{x} \wedge \frac{d y}{y}
$$

where R^{\prime} is the 2-submanifold in the boundary $\partial \mathcal{T}$ given by

$$
R^{\prime}=\left\{(x, y, z)| | x\left|=|y|=\varepsilon, x^{l}+y^{l}+z^{l}=0\right\}\right.
$$

On R^{\prime}, we may write: $x=\varepsilon e^{i \theta}, y=\varepsilon e^{i \sigma}$, and $\frac{d x}{x} \wedge \frac{d y}{y}=-d \theta \wedge d \sigma$, which is negative on R^{\prime}. But there, we have $z^{l}=-\left(x^{l}+y^{l}\right)$, so that R^{\prime} is an l-fold covering of the set of (θ, σ) in the square $[0,2 \pi]^{2}$. Thus

$$
\int_{R^{\prime}} \frac{d x}{x} \wedge \frac{d y}{y}=-4 l \pi^{2}
$$

In either way we get:

$$
I_{1}\left(\mathcal{F}, V_{l},\left(c_{1}\right)^{2}, \nu\right)=l^{3}, \quad \text { and }
$$

$$
I_{1}\left(H, V, \varphi, T_{C}(W)\right)=\left\{\begin{array}{l}
9 l \text { if } \varphi=\left(c_{1}\right)^{2}, \\
3 l \text { if } \varphi=c_{2}
\end{array}\right.
$$

2) Computation of $I_{2}\left(H, V_{l}, \varphi, T_{C}(W)\right)$.

Since Σ_{2} is a smooth compact holomorphic manifold in the regular part of V_{l}, we may use the Bott's theorem ([4 (p .314)]) for computing the index, under the condition that the infinitesimal action of H on the bundle N normal to Σ_{2} in V_{l} be non degenerate. Since V_{l} is compact, this action will be of constant type along Σ_{2}, and the same thing is true for the action $\left.\theta_{H}\right|_{\Sigma_{2}}$ of H. So, it is enough to calculate them for instance along $\Sigma_{2} \cap U_{Z}$. Since $\frac{\partial f_{Z}}{\partial x^{\prime}}=l x^{l-1}$, and $\frac{\partial f_{Z}}{\partial y^{\prime}}=l y^{l-1}$, and because both coordinates x^{\prime} and y^{\prime} may not vanish simultaneously over $\Sigma_{2} \cap U_{Z}$, we may assume for instance $x^{\prime} \neq 0$. Near such a point in $\Sigma_{2} \cap U_{Z}$, we may replace the coordinates $\left(x^{\prime}, y^{\prime}, t^{\prime}\right)$ by ($\left.u=f_{Z}\left(x^{\prime}, y^{\prime}, t^{\prime}\right), v=y^{\prime}, w=t^{\prime}\right)$, so that V_{l} has now $u=0$ for local equation, while Σ_{2} is now locally defined by $u=0, w=0$. The bundle N is generated by $\frac{\partial}{\partial w}, H=-w \frac{\partial}{\partial w}$, and $\left[H, \frac{\partial}{\partial w}\right]=\frac{\partial}{\partial w}$. Therefore this action, represented by the constant 1×1 matrix $(+1)$, is effectively nondegenerate. On the other hand, ν is generated by $\frac{\partial}{\partial u}$, so that $\left[H, \frac{\partial}{\partial u}\right]=0$, while the third bracket $\left[H, \frac{\partial}{\partial v}\right]$ being also 0 , the action $\left.\theta_{H}\right|_{\Sigma_{2}}$ on $T_{C}(W)$ will be represented by the constant matrix

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Denote a, b, c the formal classes such that the k th Chern class of W is equal to the k th elementary symmetric function of a, b, c. After Bott, we have

$$
I_{2}\left(H, V_{l}, \varphi, T_{C}(W)\right)=<\frac{\hat{\varphi}\left(\begin{array}{llc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c+1
\end{array}\right)}{1+c_{1}(N)}, \Sigma_{2}>
$$

where $\hat{\varphi}$ denotes $(a+b+c+1)^{2}$ for $\varphi=\left(c_{1}\right)^{2}$, and $a b+(a+b)(c+1)$ for $\varphi=c_{2}$. Hence

$$
I_{2}\left(H, V, \varphi, T_{C}(W)\right)=\left\{\begin{array}{l}
<2 c_{1}\left(T_{C}(W)\right)-c_{1}(N), \Sigma_{2}>, \text { for }\left(c_{1}\right)^{2} \\
\text { and }<a+b, \Sigma_{2}>\text { for } c_{2}
\end{array}\right.
$$

Notice that N coincides with the restriction to Σ_{2} of the hyperplane bundle $\check{L} \rightarrow C P^{2}$ after identification of $C P^{2}$ with the hyperplane $T=0$ in $C P^{3}$, while $T_{C}(W)$ is stably equivalent to $4 \check{L}$, and $\left.(a+b)\right|_{C P^{2}}=$ $c_{1}\left(C P^{2}\right)=3 c_{1}(\check{L})$. We get therefore $\left.7<c_{1}(\check{L}), \Sigma_{2}\right\rangle=7 l$ for $\left(c_{1}\right)^{2}$, and $3<c_{1}(\check{L}), \Sigma_{2}>=3 l$ for c_{2}.

Finally, we recover

$$
\begin{gathered}
<\left(c_{1}\right)^{2}(\nu), V_{l}>=l^{3}+0=l^{3} \\
<\left(c_{1}\right)^{2}\left(T_{C}(W)\right), V_{l}>=9 l+7 l=16 l \\
<c_{2}\left(T_{C}(W)\right), V_{l}>=3 l+3 l=6 l
\end{gathered}
$$

In particular, for $l=2$,

$$
\begin{gathered}
<\left(c_{1}\right)^{2}(\nu), V_{2}>=8, \quad \text { and } \\
<\left(c_{1}\right)^{2}\left(T_{C}(W)\right), V_{2}>=32,<c_{2}\left(T_{C}(W)\right), V_{2}>=12
\end{gathered}
$$

Example 2. Take $l=2$, with now for X_{0} the extension \mathcal{R} to the whole $C P^{3}$ of the vector field of infinetisimal "complex rotations" $y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}$ in U_{T}.

In U_{Z} (resp. in U_{Y}), \mathcal{R} may be written as $y^{\prime} \frac{\partial}{\partial x^{\prime}}-x^{\prime} \frac{\partial}{\partial y^{\prime}}$ (resp. $\left(x^{"^{2}}+\right.$ 1) $\frac{\partial}{\partial x^{\prime \prime}}+x " z^{\prime \prime} \frac{\partial}{\partial z^{\prime \prime}}+x " t " \frac{\partial}{\partial t^{n}}$. Now Σ is made of 3 isolated points: $m_{1}=$ [$0,0,0,1$],
$m_{2}=[i, 1,0,0]$ and $m_{3}=[-i, 1,0,0]$. Notice that V_{2} is regular at m_{2} and m_{3}. We have $\mathcal{R} . f_{T}=0, \mathcal{R} . f_{Z}=0$, and $\mathcal{R} . f_{Y}=2 x " f_{Y}$, which prove that \mathcal{R} still preserves V, and that $I_{1}\left(\mathcal{R}, V,\left(c_{1}\right)^{2}, \nu\right)=0$ since $m_{1} \in U_{T}$.

1) Computation of $I_{1}\left(\mathcal{R}, V_{2}, \varphi, T_{C}(W)\right)$

In this case, $y,-x$ and f_{T} form a regular sequence and we may take for $\tilde{\mathcal{T}}$ the ball Sup $\left(|x|,|y|,\left|f_{T}\right|\right) \leq \varepsilon$ for some positive constant ε. The index $I_{1}\left(\theta_{X_{0}}, V, \varphi, E\right)$ at the origin O is then equal to

$$
\int_{R^{\prime}} \varphi\left(M_{1}\right) \frac{d x \wedge d y}{-x y}
$$

where R^{\prime} is the 2 -submanifold in the boundary $\partial \mathcal{T}$ given by

$$
R^{\prime}=\left\{(x, y, z)| | y\left|=|-x|=\varepsilon, x^{2}+y^{2}+z^{2}=0\right\}\right.
$$

If we write $\mathscr{E}=\varepsilon e^{i \theta}, y=\varepsilon e^{i \sigma}$ on R^{\prime}, then $d \sigma \wedge d \theta$ is positive on R^{\prime}. Hence we hate $\int_{R^{\prime}} \frac{d x \wedge d y}{-x y}=-8 \pi^{2}$. When $E=\left.T_{C}(W)\right|_{V}, M_{1}$ is now the matrix $\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 \\ 0 & g_{0} \\ 0 & 0 u_{0}\end{array}\right)$, and $\varphi\left(M_{1}\right)$ is still a constant, now equal to 0 for $\varphi=\left(c_{1}\right)^{2}$, and to $\frac{-1}{4 \pi^{2}}$ for $\varphi=c_{2}$. Then we have, $I_{1}\left(\mathcal{F}, V_{2},\left(c_{1}\right)^{2}, \nu\right)=$ $I_{1}\left(X_{0}, V_{2},\left(c_{1}\right)^{2}, T_{C}(W)\right)=0$, and $I_{0}\left(X_{0}, V_{2}, c_{2}, T_{C}(W)\right)=2$.
2) Computation of indices at points m_{2} and m_{3}.

Observe that $\frac{\partial f_{Y}}{\partial x^{\prime \prime}}=2 x " \neq 0$ near these points. Then we may use ($u=f_{Y}, v \stackrel{\mathrm{~ms}}{=} z^{\prime \prime}, w=t "$) instead of ($x ", z^{\prime \prime}, t "$) as local coordinates, with $\mathcal{R}=x\left(2 u \frac{\partial}{\partial u}+v \frac{\partial}{\partial v}+w \frac{\partial}{\partial w}\right)$. The tangent space to V is generated by $\frac{\partial}{\partial v}$ and $\frac{\partial 1}{\partial w}$. Since the restriction $x\left(v \frac{\partial}{\partial v}+w \frac{\partial}{\partial w}\right)$ is nondegenerate at m_{2} and m_{3}, with eigenvalues ($\varepsilon i, \varepsilon i$) with $\varepsilon=1$ (resp. -1) at m_{2} (resp. m_{3}), we may' use the Bott's formula. The normal bundle ν is generated by $\frac{\partial}{\partial u}$, and the action of R on ν at points m_{2} and m_{3} is given by the 1×1 matrix $^{f}(\underline{\underline{1}} 2 \varepsilon i)$, and

$$
I_{2}\left(\mathcal{F}, V,\left(c_{1}\right)^{2}, \nu\right)=I_{3}\left(\mathcal{F}, V,\left(c_{1}\right)^{2}, \nu\right)=4
$$

The action of \mathbb{R} on $T_{C}(W)$ is given by the matrix $-\varepsilon i\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, and

$$
\begin{gathered}
I_{2}\left(\mathcal{R}_{\mathbf{i}} V_{\mathrm{g}},\left(c_{1}\right)^{2}, T_{C}(W)\right)=I_{3}\left(\mathcal{R}, V_{2},\left(c_{1}\right)^{2}, T_{C}(W)\right)=16 \\
I_{2}\left(\mathcal{R}, V_{2}, c_{2}, T_{C}(W)\right)=I_{3}\left(\mathcal{R}, V_{2}, c_{2}, T_{C}(W)\right)=5
\end{gathered}
$$

We may notice that we still have, as in example 1:

$$
\begin{aligned}
& <\left(c_{1}\right)^{2}(\nu), V_{2}>=0+4+4=8 \\
& <\left(c_{1}\right)^{2}\left(T_{C}(W)\right), V_{2}>=0+16+16=32 \\
& <c_{2}\left(T_{C}(W)\right), V_{2}>=2+5+5=12
\end{aligned}
$$

Example 8. Take still $l=2$, with now for X_{0} the linear combination $X_{\omega}={ }^{\mathrm{d}} \mathrm{a}^{2} H+b \mathcal{R}$ of Examples 1 and 2, where $\omega \in\left[0, \frac{\pi}{2}[, \quad a=\right.$ $\cos \omega, b=\sin \omega,(a \neq 0) . \operatorname{In} U_{T}, X_{\omega}=a\left[x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right]+b\left[y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}\right]$ has only for singular point the origin m_{1}. In $U_{Z}, X_{\omega}=b\left(y^{\prime} \frac{\partial}{\partial x^{\prime}}-x^{\prime} \frac{\partial}{\partial y^{\prime}}\right)-$ $a t^{\prime} \frac{\partial}{\partial t^{\prime}}$, has no singular point on V_{2}. In $U_{Y}, X_{\omega}=b\left(x^{\prime \prime 2}+1\right) \frac{\partial}{\partial x^{\prime \prime}}+$
$\left.b x " z " \frac{\partial}{\partial z^{n}}\right)+t "(b x "-a) \frac{\partial}{\partial t^{n}}$ has the same singular points m_{2} and m_{3} as in Example 2.

1) Computation of indexes at point m_{1}.

Since $X_{\omega} \cdot f_{T}=2 a f_{T}$, the 1×1 matrix C_{1} is constant equal to $((-2 a))$, so that $\left(c_{1}\right)^{2}\left(C_{1}\right)=\frac{-a^{2}}{\pi^{2}}$.

Write: $A=a x+b y, B=-b x+a y$ and $C=a z$. We have $\frac{D(A, B, C)}{D(x, y, z)}=$ $\left(\begin{array}{ccc}a & b & 0 \\ -b & a & 0 \\ 0 & 0 & a\end{array}\right)$, and $\varphi\left(-\frac{D(A, B, C)}{D(x, y, z)}\right)$ is still a constant equal to $\frac{-9 a^{2}}{4 \pi^{2}}$ if $\varphi=$ $\left(c_{1}\right)^{2}$, and $\frac{-\left(3 a^{2}+b^{2}\right)}{4 \pi^{2}}$ if $\varphi=c_{2}$.

In this case, A, B and f_{T} form a regular sequence, and we may take for $\tilde{\mathcal{T}}$ the ball $\operatorname{Sup}\left(|A|,|B|,\left|f_{T}\right|\right) \leq \varepsilon$ for some positive constant ε. Then the index $I_{1}\left(\mathcal{F}, V_{2}, \varphi, E\right)$ at the origin O is equal to

$$
\varphi\left(M_{1}\right) \int_{R^{\prime}} \frac{d x \wedge d y}{A B}
$$

where R^{\prime} is the 2 -submanifold in the boundary $\partial \mathcal{T}$ given by

$$
R^{\prime}=\left\{(x, y, z)| | A\left|=|B|=\varepsilon, x^{2}+y^{2}+z^{2}=0\right\}\right.
$$

Since $d x \wedge d y=d A \wedge d B$, the integral is computed as in Example 1 to get: $\int_{R^{\prime}} \frac{d x \wedge d y}{A B}=-8 \pi^{2}$. Thus we have
$I_{1}\left(\mathcal{F}, V_{2}, \varphi, E\right)=\left\{\begin{array}{l}8 a^{2} \text { for } E=\nu \text { and } \varphi=\left(c_{1}\right)^{2}, \\ 18 a^{2} \text { for } E=T_{C} W \text { and } \varphi=\left(c_{1}\right)^{2}, \\ 2\left(3 a^{2}+b^{2}\right) \text { for } E=T_{C} W \text { and } \varphi=c_{2} .\end{array}\right.$
2) Computation of indices at points m_{2} and m_{3}.

We already observed that $\frac{\partial f_{Y}}{\partial x^{n}}=2 x^{\prime \prime} \neq 0$ near these points, so that we may use ($u=f_{Y}, v=z^{\prime \prime}, w=t "$) instead of ($x^{\prime \prime}, z^{\prime \prime}, t$) as local coordinates, with $X_{\omega}=b x "\left(2 u \frac{\partial}{\partial u}+v \frac{\partial}{\partial v}\right)+(b x "-a) w \frac{\partial}{\partial w}$. The tangent space to V_{2} is generated by $\frac{\partial}{\partial v}$ and $\frac{\partial}{\partial w}$. The restriction

$$
b x " v \frac{\partial}{\partial v}+(b x "-a) w \frac{\partial}{\partial w}
$$

of X_{ω} to V_{2} has for eigenvalues ($b \varepsilon i, b \varepsilon i-a$) with $\varepsilon=1$ (resp. -1) at m_{2} (resp. m_{3}). It is therefore nondegenerate at these points, and we may use the Bott's formula.

The normal bundle ν is generated by $\frac{\partial}{\partial u}$, the action of X_{ω} on ν at points m_{2} and m_{3} is given by the 1×1 matrix $((-2 b \varepsilon i))$, and $I_{2}\left(\mathcal{F}, V,\left(c_{1}\right)^{2}, \nu\right)=-\frac{4 b^{2}}{i b(i b-a)}=4 b(b-a i)$, while $I_{3}\left(\mathcal{F}, V,\left(c_{1}\right)^{2}, \nu\right)=$ $4 b(b+a i)$. We recover:

$$
<\left(c_{1}\right)^{2}(\nu), V_{2}>=8 a^{2}+4 b(b-a i)+4 b(b+a i)=8 .
$$

The action of X_{ω} on $T_{C}(W)$ has (-2b $\quad,-b \varepsilon i,-(b \varepsilon i-a)$) for eigenvalues.
$I_{2}\left(X_{\omega}, V_{2},\left(c_{1}\right)^{2}, T_{C}(W)\right)=\frac{(4 i b-a)^{2}}{i b(i b-a)}=\left(16 b^{2}+7 a^{2}\right)-i \frac{a\left(8 b^{2}-a^{2}\right)}{b}$, while $I_{3}\left(X_{\omega}, V_{2},\left(c_{1}\right)^{2}, T_{C}(W)\right)=\left(16 b^{2}+7 a^{2}\right)+i \frac{a\left(8 b^{2}-a^{2}\right)}{b}$. We recover:

$$
<\left(c_{1}\right)^{2}\left(T_{C}(W)\right), V_{2}>=18 a^{2}+2\left(16 b^{2}+7 a^{2}\right)=32
$$

$I_{2}\left(X_{\omega}, V_{2}, c_{2}, T_{C}(W)\right)=\frac{2(b i)^{2}+2 b i(b i-a)+b i(b i-a)}{i b(i b-a)}=5 b^{2}+3 a^{2}-2 i a b$, while $I_{3}\left(X_{\omega}, V_{2}, c_{2}, T_{C}(W)\right)=5 b^{2}+3 a^{2}+2 i a b$. We recover:

$$
<c_{2}\left(T_{C}(W)\right), V_{2}>=2\left(3 a^{2}+b^{2}\right)+2\left(5 b^{2}+3 a^{2}\right)=12
$$

We may notice, in accordance with the theory, that the indices themselves are not necessarily integers and depend on a, b, contrary to their sum, and also that we recover the values of Example $1(l=2)$ for $\omega=0$, and that of Example 2 for $\omega=\frac{\pi}{2}$. However the calculation for this last case had to be done separately, because we assumed explicitely $C \neq 0$ near m_{0} in the calculation of Example 3.

References

[1] P. Baum \& R. Bott, On the zeroes of holomorphic vector fields, Essays on Topology and related topics (Mémoires dédiés à Georges de Rham), Springer, Berlin, 1970, 29-47.
[2] \qquad , Singularities of holomorphic foliations, J. Differential. Geometry 7 (1972) 279-342.
[3] R. Bott, Lectures on characteristic classes and foliations, Lectures on Algebraic and Differential Topology, Lecture Notes in Math. Vol. 279, Springer, Berlin, 1972, 1-94.
[4] \qquad A residue formula for holomorphic vector fields, J. Differential. Geometry 1 (1967) 311-330.
[5] C. Camacho \& P. Sad, Invariant varieties through ${ }_{\text {dingularities }}$ of holomorphic vector fields, Ann. of Math. 115 $\mathrm{s}_{\mathrm{f}} \mathrm{y} 982$) 579-595.
[6] B. Gmira, Une généralisation d'un théorème de C.Camacho et P.Sad relatif aux feuilletages holomorphes singuliers, Thèse de III ${ }^{\text {ème }}$ cycle, Lille, 1984. See also: Sur les feuilletages holomorphes singuliers de codimension 1, Publ. Mat. 36 (1992) 229-240.
[7] F. Kamber \& P. Tondeur, Foliated bundles and characteristic classes, Lecture Notes in Math. Vol. 493, Springer, Berlin, 1975.
[8] D. Lehmann, Résidus des sous variétés invariaRvés d'un feuilletage singulier, Ann. Inst. Fourier (Grenoble) 41 (1991) 211258.
[9] A. Lins Neto, Algebraic solutions of polynomial differential equations and foliations in dimension two, Holomorphic Dynamics, Mexico 1986, Lecture Notes in Math. Vol. 1345, Sppinger, Berlin, 1988, 192-232.
[10] ___ Complex codimension one foliations leavingEd (rompact submanifold invariant, Dynamical Systems \& Bifutb\&tion Theory, 1985, Pitman Research Notes in Math. Ser. $160 ;$ Jongman Sci. Tech., Harlow, New York, 1987, 295-317.
[11] M. Soares, A note on algebraic solutions of foliations in dimension 2, Dynamical Systems \& Bifurcation Theory, ${ }^{\text {f }} 1990$, Pitman Research Notes in Math. Ser. 285, Longman Sci. ${ }^{\text {njech., Harlow, }}$ New York, 1993, 250-254.
[12] T. Suwa, Indices of holomorphic vector fields relativé to invariant curves on surfaces, to appear in Proc. Amer. Math. Soc.

[^0]: Received May 23, 1994, and, in revised form, September 20, 1994.

