
J.DIFFERENTIAL GEOMETRY

Vol. 42, No.l July, 1995

FAMILIES OF FLAT MINIMAL TORI
IN CPn

GARY R. JENSEN & RUIJIA LIAO

1. Introduction

A beautiful and quite complete theory has been developed for pseudo-
holomorphic (also called superminimal or isotropic harmonic) maps
from Riemann surfaces into complex projective space (cf. Eells and
Wood [7] and Wolfson [15]). All harmonic maps from the Riemann
sphere are of this type. Pseudoholomorphic maps are generated from
holomorphic maps by a process of taking derivatives. Consequently,
methods of algebraic geometry have been very effective in their study.
The harmonic sequence of a harmonic map has played an important
role in work to establish useful criteria for deciding whether or not a
harmonic map is pseudoholomorphic (cf. [15] and Liao [11]).

We know very few examples of harmonic maps which are not pseudo-
holomorphic. One source of such examples is the family, of dimension
2(n — 2), of weakly Lagrangian, isometric harmonic maps from the flat
complex plane into C P n . None of these maps is pseudoholomorphic.
This family was first described by Kenmotsu [9] and, then Bolton and
Woodward [2], all of whom used the term totally real instead of weakly
Lagrangian. We derive a workable criterion for deciding when the im-
age is a torus (that is, when the map is doubly periodic), and we use
this to find continuous families of noncongruent flat minimal tori in
CPn when n > 5 (as well as in S 2 m + 1 when m > 3).

In Section 3 we state, as our starting point, results of Kenmotsu
[8], [9], Bryant [3] and Bolton and Woodward [2]. In Section 4 we
analyse the solution space of weakly Lagrangian, isometric harmonic
maps / : C —ϊ CPn. The analysis is based on the implicit function
theorem applied to the most symmetric solution, which we call the
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Clifford solution.
In Section 5 we establish a simple criterion for when such a harmonic

map / : C —>• CPn is invariant under some lattice Λ C C; that is,
when / descends to a torus C/Λ. Surprisingly, the Clifford solution in
CPn is a torus only when n = 2,3 and 5, but in Theorem A we find an
infinite number of distinct tori when n > 3, while in Thereom B we find
continuous families of noncongruent tori when n > 5. The existence of
such families contrasts with rigidity results for the pseudoholomorphic
case (cf. Chi [4], Chi and Mo [5] and Chi and Zheng [6]). Also in
contrast to the pseudoholomorphic case is the fact that our examples
are not, in general, contained in a congruent copy of R P n C CPn.
However, we do find infinite families, even continuous families if m > 3,
of flat minimal tori in 5 2 m + 1 .

We exhibit some explicit examples of such families of minimal tori
and check that the harmonic sequence is cyclic for some of them, but for
most of the examples it is infinite, noncyclic. This answers a question
at the end of [15].

In Section 6 we obtain a necessary condition on a torus for there
to exist an isometric, weakly Lagrangian harmonic map from it into
CPn for some n. The condition shows that no such map exists for the
generic torus.

2. Harmonic maps from surfaces into CPn

Consider complex projective space CPn with the Fubini-Study met-
ric g, which is the Kahler metric of constant holomorphic sectional
curvature equal to four. Let K denote its Kahler form. The projection
mapping

(2.1) C n + 1 \ {0} -> CPn

z H-» [z]

sends a nonzero vector z to the one-dimensional complex subspace [z]
containing it. This projection maps the orthogonal complement of the
line through z isometrically onto the complex tangent space of CPn at
[z] (with the metric g).

Let M, ds2 be a connected metric Riemann surface. Let

(2.2) f:M-+CPn
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be a conformal harmonic map, which is equivalent to the assumption
that the image of / is a minimal surface in CPn. For background
and details on such maps we refer to [15]. We will assume that all
maps (2.2) are full in the sense that the image is not contained in any
hyperplane of C P n .

The map (2.2) is weakly Lagrangian if f*κ = 0. Kenmotsu in [9] and
Bolton and Woodward in [2] call this condition totally real However,
Wolfson in [15] used the term totally real to mean no complex or anti-
complex tangent points. At the referee's suggestion, we use the term
weakly Lagrangian.

For any simply connected domain Ω C M, / = [v0], where υ0 : Ω —»
C n + 1 is smooth and has unit length and is called a unit length lift of
/. The harmonic sequence of / is (fj)jez> where / = /0, and each
fjiM—> CPn is a harmonic map. These are defined recursively by

/ r Ί u dv° /dv° \
h = [viU where vx = — - \-Q^IVO)VO,

while /_i is defined in the same way with z replaced by z. This is well
defined as long as Vj is not identically zero, in which case the process
stops and / is called pseudoholomorphic. In this paper we exclude
this case, which means that the harmonic sequence will always extend
infinitely in both directions.

Denoting the harmonic sequence by (fj)jez, we let Vj denote a local
unit length lift of fj to C n + 1 . By their definition, υ0 ± υλ. It can be
shown that / is conformal if and only if also υ0 ± υ2. The harmonic
map / is said to have isotropy order at least r if v0,..., vr form a
unitary set of vectors at each point. Observe that 1 < r < n, with
r = n if and only if the harmonic sequence is cyclic (cf. [11] for details
and additional references).

3. Weakly Lagrangian, flat minimal surfaces

We suppose now that M, ds2 is a connected, simply connected do-
main in the complex plane C with the flat metric ds2 = 2dz dz. Let

/ : M -* CPn

be a full, weakly Lagrangian, isometric, harmonic map.
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The following result of [9], with a simpler proof given in [2], is the

starting point for this paper.

Theorem 3.1. There is a 1 : 1 correspondence between the set of

unitary congruence classes of weakly Lagrangian, isometric harmonic

maps f : M -> CPn and the set %(n)/τ, where H{n) is the set of

solutions to the 3 equations

(3.1)
1

n

in the set

U = { ( r 0 , . ..rn]θu ...,θn)E R 2 n + 1 :rk > 0, k = 0 , . . . n ,

0 < ^ < θn < 2π},

where dj = eιθj, for j = l , . . . , n ; and r is the involution on 7ί(n)
defined by θj \-> 2π — θ^ for j• = 1 , . . . , n.

TΛe correspondence is given by

corresponds to f(z) = [^o(^)]; where

/

(3.2)

and ξk — y/rk, for k = 0, . . . , n . Hence, f extends to a weakly La-
grangian, isometric harmonic map f : C —> CPn.

Remark. To assure that the map / has isotropy order at least r,
for some 3 < r < n, we must add to (3.1) the equations

(3.3) r0 + j = 0 , k = 3 , . . . , r.
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Remark. Let / = [υ0], where v0 is given by (3.2). Let

(3.4) 4 = diag(l, a i , . . . , On).

Then the harmonic sequence of / is given by fj = A* /, for any j G Z.
Remark. Maps v0 : C -> 5 2 n + 1 C C n + 1 given by (3.2) with the

first and third equations of (3.1) satisfied are flat minimal immersions.
The second equation of (3.1) is the condition that the map also be
horizontal with respect to the Hopf projection 5 f 2 n + 1 -> CPn. Thus,
the classification of weakly Lagrangian, flat minimal surfaces in CPn

is equivalent to the classification of flat, horizontal minimal surfaces in
S2n+λ (cf. [3 (p. 269)]). _

The involution [z] >-» [z] = [z] is an isometry of CPn whose fixed
point set, necessarily a totally geodesic submanifold, is R P n . For
any Riemann surface M, if / : M —> CPn is a weakly Lagrangian,
pseudoholomorphic map then there exists a unitary transformation
A e U(n + 1) such that Af(M) C R P n (cf. Bolton et al. [1]). This
result contrasts sharply with the nonpseudoholomorphic case.

Definition. A map / : M —> CPn (or its image f(M)) is said to be
absolutely real if there exists a unitary matrix Q G U(n + 1) such that
Qf(M) C R P n .

The following theorem is in [2], and goes back to [8] and [3].
Theorem 3.2. Let f : C -» CPn be a weakly Lagrangian, isometric

harmonic map corresponding to a solution p = (r 0 , . . . , rn; 0χ,..., θn) E
Ή(n), so that f(z) = [^o(^)]; where vo(z) is given by (3.2). Then, f is
absolutely real if and only if n = 2m + 1 is odd, with m > 1, and

(3 .5) 0 m + 1 + j = 0, + π , 0 = 0o < 0 i < ••• < θm < π ,

for j = 0,1,...,rn.
Equations (3.5) state that the components of the lift (3.2) for /

satisfy the equations ϋ™"1"1**7 = vjj, for j = 0,..., m. Consequently, for
the unitary matrix

( -frn+l Im+l \

the map
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where α0 = 1, is an isometric, minimal immersion of C into Sn.
For future reference we note that equations (3.5) reduce (3.1) to the

two equations

4. The space of solutions

Proposition 4.1. For any n > 2, a solution to (3.1) is given by
Tj = jj^y, for j = 0, . . . , n and ak = e^+% for k = 1, . . . , n. We will
call this the Clifford solution to (3.1). It defines the unique (up to
congruence) weakly Lagrangian isometric harmonic map / : C -> CPn

of isotropy order n.

Proof. Now the ak = e^1 are the (n + l)-roots of unity, and a\ is a
primitive (n-f l)-root of unity, so that the equations (3.1) are satisfied as
well as equations (3.3) for k = 3 , . . . , n when r 0 = rx = = rn = jj~-
(cf. p. 115 of van der Waerden [13]).

To prove uniqueness, let ( r 0 , . . . ,rn\θχ < < θn) G Ή(n). Let
/ = [VQ] be the corresponding weakly Lagrangian, isometric harmonic
map of isotropy order n given by (3.2). Let A be given by (3.4). Then,
for any z G C, the vectors vo(z), Avo(z),..., Anv0(z) form a unitary set
in C n + 1 . But the same is true for the vectors Aυo(z),... ,An+1υ0(z).
It follows that An+1υ0(z) = tvo(z), for some t(z) E C, with \t(z)\ = 1.
Therefore t(z) — 1 for every z, since the first entry of υo(z) is never
zero. By the fullness of /, there exist points z0,..., zn G C such that
vo(zo),... ,υo(zn) form a basis of C n + 1 . Thus, A n + 1 = /, and hence
each a,j is an (n + l)-root of unity.

Proposition 4.2. For n > 3} the Clifford solution is a smooth
point ofΉ(ή). In detail^ let

where aά = eiθj. Let p0 G U denote the Clifford solution. Then
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rankDFP0 = 5. Thus H(n) = •F'~1{l 0 1} i s a smooth 2(π - 2)-

W
dimensional submanifold ofU in a neighborhood ofp0.

Proof. If aj = eiθ', then da, = iajdθj and d(α?) = 2ia}dθi. Thus

(4.2)

If n = 3, then at p 0 we have ax = i, a2 = — 1, α 3 = — t and thus

DF =\ dro + Σ" ajdrj + Σϊ rjiajdθj .

= I dr0 + idrt - dr2 - idr3 - |d0i - \
dr0 - drx + dr2 - dr3 - |<Z^ + ̂ d

\dθ3

whose rank is 5 because the matrix

Λ l

(4.3)

o\
1 0 -1 0 -\
0 1 0 - 1 0
1 - 1 1 - 1 0

\0 0 0 0 -\)

is easily seen to have rank 5.
If n > 4, put Cj = cosθj and Sj = sinθj for j = 1,. . . ,4, where

θj = ^ i . fOΓ e a c h jm Then DFPo has rank 5 if the matrix

(4.4) A =

a1

0
\c

1

2c1s1

1
c2

s2
2 r2 ς 2
1 C 2 S2

2c2S2

1

c3

« 3

2c 3 5 3

1
c4

s 4

r2 - ς 2c 4 s 4

2 c 4 s 4

has rank 5. Letting c = Ci and s = 5χ, one can show that

det A = -32s 2 c (1 + c)(l - c 4 )(l + 2c)

•(12c5 + 18c4 + 7c3 + ό
(4.5)

of which c = cos(^pj-) is never a zero, for any n > 4 (cf. Watkins and
Zeitlin [14] on the minimal polynomial over Q of c).
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The system (3.1) consists of five real equations linear in r 0, .. , r n .
By the Implicit Function Theorem, a neighborhood of the Clifford so-
lution in Ή(n) can be expressed as a graph with the first five variables
given as functions of the remaining 2n — 4 variables.

When n > 4, this can be done explicitly. Namely, writing out the
real and imaginary parts of (3.1) we obtain

(4.6)
o
o
o

where A = A(θu... ,04) is given by (4.4), for arbitrary θλ < < 04,

and B — B(θb,... ,0n) is the 5 x (n — 4) matrix given by (3.1). In

Proposition 4.2 we proved that A is nonsingular at the Clifford solution.

Whenever A is nonsingular, the solution space of (3.1) is given as the

graph

(4.7)

n\
o
o
o

When n = 3, the equations (3.1) are not linear in the first five
variables. However, one has the following 1-parameter family of explicit
solutions. The technique works for any n > 3 to give an explicit m-
parameter family of solutions, where m = [^].

Proposition 4.3. Let n = 3. A smooth curve in W(3) is given by
θi =Θ,Θ3 = -θx, Θ2 = ψ = π,r3 = n , and

I-2c

(4.8)
1

4 ( 1 - c 2 ) '

l + 2c

4(1+ c) '

where c — cos0, for any f < θ < ψ.
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Proof. If 0i = 0, 03 = -0, 02 = π and r 3 = n , then the five
equations of (3.1) defining Ή(3) reduce to

r 0 + 2rχ + r2 = 1,

(4.9) r 0 + c2r! - r2 = 0,

r 0 + (2c2 - l)2ri + r2 = 0,

where c = cos0. Solving for r0, rx and r2 in terms of c, we find that
the only positive solutions are given by (4.8).

5. Tori

We consider now when the solutions / : C —> CPn found in §4 are
actually tori. That is, we look for criteria on the solutions that insure
that there exists a lattice Λ C C such that f(z + λ) = f(z) for every
z G C and λ G Λ, for in that case / induces a full, weakly Lagrangian,
harmonic map / : T -> CPn of the same isotropy order as /, where
T = C/Λ is a torus with the flat metric induced from G.

Let f(z) = [vo(^)], where vQ(z) is given by (3.2) by the solution

Recall that ξk = y/rj^. For points ^,«; G C, we have f(w) = f(z) if

and only if vo(w) = ίwo(^) for some b G 5 1 C C, which in terms of the

components of v0 is equivalent to

(5.1) gα^-a,* = be«i*--ai^ j = 1,..., n.

Put z = x + ΐy, t/; = u + iυ, α̂  = Cj + iSj (that is, Cj = COS0J and
Sj = s h ^ ) . Using the first equation to eliminate b from the remaining
n equations, we reduce (5.1) to the equivalent system

(5.2) Sj(u — x) + (CJ — l)(v — y) = m^π, for some πij G Z,

j = l , . . . ,n. Let

(5 3) Af = {z = x + iyeC: sόx+ (c, - ΐ)y = 0
* " ' mod (π), 7 =
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a free abelian subgroup of C. Here, t = 0 mod (π) means that t = mπ
for some integer m.

We have shown that

(5.4) f(w) = f(z)^w-zeλf.

Proposition 5.1. / : C —)• CPn descends to a torus T = C/Λ if
and only if rank Af = 2.

Proof If rank Λ/ = 2, then C/Λ/ is a torus to which / descends, by
(5.4). Conversely, if / descends to the torus Γ, then f(w) = f(z) for
w — z G Λ, and thus Λ C Af by (5.4), and hence rankΛ/ = rankΛ = 2.

Proposition 5.2. rank Af — 2 if and only if

(5.5) dimQspanQ{(sι, Cι — 1) , . . . , ( s n ,c n — 1)} = 2,

where Q is £Λe /ιeW 0/ rational numbers. Since any two of the vectors

in (5.5), say {sucλ - 1), (s 2,c 2 — 1), are linearly independent over R,

it follows that (5.5) holds if and only if

(5.6) ( 5 j , C j -

for j = l , . . . , n .

We shall call (5.6) the Torus Criterion.
Proof. The first statement is elementary. For the second statement,

we see that (5.5) holds if and only if

(sj.Cj - 1) =pj(suc1 -

for all j , for some Pj,qj £ Q. Since 0 < θλ < θ2 < 2π, it follows that
($i,ci — 1), (s 2,c 2 - 1) are linearly independent over R, since any line
through the origin meets the circle x2 + (y + I ) 2 = 1 in at most one
other point. Thus, (5.6) follows.

Corollary. // / is absolutely real, and Λ/ satisfies the Torus Crite-
rion, then the lift of f to Sn is a flat minimal torus which is a 1 : 1,
2 : 1 or 4 : 1 covering of the image of f in CPn.

Proof If z = x + iy and ck + isk = eιθk for k — 0, . . . , n, then by
Theorem 3.2 we have n = 2m + 1, 0 = θ0 < θλ < • < θm < π and
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where 0 < j < m. If λ = u + iv G A/, then SjU + (CJ - l)v = m^π, for
some mj G Z, for each j , and therefore

x) e2iV \

X ) e -2i V 1

Thus, f(z + λ) = /(*) for all z G C requires that e2iυ = e~2iυ, so that

υ -. z± £ o r s o m e £ £ 2. Taking for λ two generators of A/ over Z, we
find the two corresponding integers fci and A;2 are either both even, one
is odd the other one even, or both odd, which correspond to the cases,
respectively, of the lift of / to Sn covering the image of / one, two or
four times.

(5.7) Remark. If, for a point in Ή(n), we have (c,, Sj) G Q 2 for
j = 1,... ,n, then Λ/ has rank 2, since (5.6) is satisfied.

Proposition 5.3. The Clifford solution is a torus (i.e., descends to
a torus) if and only if n = 2,3 or 5.

Proof. When n = 2 the Clifford solution is the well known Clifford
torus in CP2 (cf. Remark 6.4). We assume that n > 3.

Let Cj = cos ^ and Sj = sin | ^ - , for j = 1,..., n. Then c2 = 2c2 — 1
and 52 = 2cχSi, so that

Applying the Torus Criterion (5.6) to (s n ,c n — 1) = (—Si,ci — 1), since
for the Clifford solution an = ά1 ? we have

which is in Q 2 if and only if C\ G Q.
Now c = cos j-ξpy G Q if and only if n + 1 = 1,2,3,4,6. In fact, it is

certainly rational for these cases, and to see that it is not rational for
any other values of n, we may suppose that n + 1 > 3 so that ζ = e ^
is not real. Thus the minimal polynomial of ζ over R is x2 — 2c + 1.
Hence, c G Q if and only if the minimal polynomial, Φn+i(x), of ζ over
Q is x2 - 2c + 1. But the degree of Φn+i is known to be φ(n + 1)
(the Euler ^-function), which is easily verified to be 2 if and only if
n + 1 = 3,4,6. (Cf. [13] and [14]).
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It remains to verify that the Clifford solution is a torus when n = 3

and 5. In fact, the above calculation verifies the Torus Criterion when

n = 3. As for the n = 5 case, we would then have (s3, c3 — 1) = (0, —2)

and (54,c4 — 1) = (—Si, —c1 — 1). Thus, for K given by (5.8), we have

Ci - 1

(54, c 4
( , ),

C i — 1 •• C i — 1

both of which are in Q 2 , since C\ £ Q, which verifies the Torus Condi-
tion when n — 5.

As we have seen, the Clifford torus is, up to congruence, the only
weakly Lagrangian, isometric harmonic map / : C —> C P 2 . In the next
two results we show that there are countably many flat, minimal tori
in C P 3 , C P 4 and 5 5 ; and that there are continuous families of such
tori in C P n for n > 5 and in S2rn+1 for m > 3.

T h e o r e m A. Let n > 3. There exists a countably infinite number
of noncongruent weakly Lagrangian, isometric harmonic maps f : C —>
C P n whose image is a torus.

Proof. For the case n — 3, consider the 1-parameter family of
solutions given by Proposition 4.3. For any θ for which | < θ < ^ the
corresponding solution has (si,Ci — 1) = (s,c— 1), (s 2 ,c 2 ~ 1) = (0? ~~2)
and (53,c3 — 1) = (-s,c — 1), where s = sin0 and c = cos#. Applying
the Torus Criterion, we have

which is in Q 2 if and only if c £ Q. There is a dense set of θ in the
interval (f, 2f-) for which c = cos# is rational.

For the case n = 4, (4.7) becomes

(5.9
0
0
0

w
where A is given by (4.4). By Proposition 4.2 and the Implicit Function

Theorem we know that there exists an e > 0 such that for any choice
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of 0i,..., 04 for which \θj — 2ϊϊ| < e, there is a unique solution of (3.1)
in Ή(4) given by (5.9). Using a rational parametrization of the circle,
we can see that there is a dense set of values in these intervals at which
COS0J and sinθj are rational for j = 1,... ,n. Consequently, for each
of these solutions, the Torus Criterion is satisfied and the solution is a
torus.

The case n > 5 has a similar proof. The result in this case is sub-
sumed in the following theorem.

Remarks. One can show that of the tori in C P 3 constructed in
the above proof, the Clifford torus has the least area. It is known (cf.
Lawson [10]) that the Clifford torus is the unique flat minimal torus in
S3. However, using Theorem 3.2 one can modify the proof of Theorem
A to prove that there exists at least a countably infinite number of
noncongruent flat minimal tori in 5 2 m + 1 for any m > 2. We give the
details here only for the case m = 2, as we will show in Corollary B
below that there are continuous families of such tori when ra > 3.

Corollary A. There exists a countably infinite family of noncon-
gruent flat minimal tori in S5.

Proof. In this case (3.6) becomes the three equations

(5.10)

where
(1 1 1

A=\lcl-sl4-s2

2

\0 2cχSi 2c2s2

where Cj + isj = eiθj, for j — 0,1,2. By Proposition 4.1 and the Torus
Criterion, we know that for cx +isχ and c2 + is2 rational and sufficiently
close to e*? and e*Ϋ, respectively, on the unit circle, the matrix A will
be invertible and (5.10) will give positive solutions for r0, n and r2.

By the Corollary to Proposition 5.2, this solution gives an absolutely
real flat minimal torus in C P 5 whose lift to 5 5 is a flat minimal torus.

Theorem B. For n > 4 there is a dense set of points in a neigh-
borhood of the Clifford solution in Ή(n) which are tori. Furthermore,
there exist continuous families (ofn — A parameters) of solutions which
are tori in CPn, for n > 4.
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Proof. The proof of the first statement is similar to that of the case
n = 4 given above. For the second statement, choose 0 l 3 . . . ,0n, such
that each θj is sufficiently close to ^ j - and such that cos θj and sin θj
are rational, for j = 1,..., n. Then each of r 5 , . . . , rn can vary freely
in an open interval about ^ - , and each choice of these parameters
determines a solution of (3.1), by (4.7). For all of these solutions, the
values of θj, j = 1,... ,n, remain fixed. Thus, for every solution the
Torus Criterion is satisfied, since cos0j and sin0j are all rational.

Corollary B. There exist continuous families of noncongruent flat
minimal tori in S2m+ι, for any m > 3.

Proof. Apply the method of the proof of Theorem B to the equa-
tions (3.6) in order to obtain a continuous family of absolutely real flat
minimal tori in C P 2 m + 1 . By the Corollary to Proposition 5.2, each of
these tori lifts to a flat minimal torus in 5 f2m+1.

(5.11) Example. We illustrate the proof of Theorem B for the
case of CP 5 . This example shows that the condition of rationality for
all cos#j and sin#j, although sufficient for making all solutions tori, is
not necessary. The Clifford solution is a torus in CP 5 . Let θj = ^p ,
for j = 1,..., 5. Then the matrices A and B of (4.6) are given by

/I 1 1

A =

1 \

π

A I
2 '

We find from (4.7) that for each t satisfying 0 < t < | , a smooth curve
in H(5) is given by θj = ̂ , for j = 1,..., 5, r5 = t and

/I
3

1
3

—

t
—

t
—

t

υ
Since the Torus Criterion is satisfied for the Clifford solution in CP 5 ,

it must be satisfied for the solution given by each value of the parame-
ter t, for 0 < t < | . Thus we have a 1-parameter family of flat, weakly
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Lagrangian, minimal tori in CP 5 , all noncongruent. Since r0 φ r3 ex-
cept when t = | , it follows from Theorem 3.2 that the Clifford solution
is the only member of this continuous family which is absolutely real.

Each of these tori has the same area as that of the Clifford torus
in CP 5 , namely %,. In fact, for every t the solutions have the same
angles θj as the Clifford solution, and thus Λ/ is the same for each
of these solutions. It is an elementary exercise to check that for the
Clifford solution

Af = Spanz{(^= + i)π, (-^= - i)π}

r2τπΎi , 1 x _^
{ + ( + t):m,ne Z}.

Note further that Λ/ being the same for each t means that this is a
1-parameter family of noncongruent minimal immersions of the same
torus, C/Λ/, into CP 5 . Since the metric in C is 2(dx2 + rfy2), the area
of C/Λ/ is

Λ. 2π , 1 x , 4π2

Another interesting feature of this 1-parameter family of solutions is
that except for t = | (that is, the Clifford solution, which has isotropy
order 5) the isotropy order is 2, but not 3. In fact, if we put α, =
cos θj + i sinfy, for j = 1,..., 5, then the solution has isotropy order at
least 3 if and only if

5 1
3 (

= 3 b - ί) - 3ί = 1 - 6ί.

(5.12) Example. We illustrate the proof of Corollary B for the case
of S7. The Clifford solution for n = 7 has θs = ψ, for j = 0,1, . . . , 7.
Using the rational parametrization of the circle

1-t2 . 2t
*""* 7T72 + Z T T 7 2 '

we choose ίi = | , *2 = 1 a n d *3 = | so that

21 .20 , . , -21 .20
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are close to αi = ^ , a2 — i and α3 = zz^r1 respectively. Following
the requirements of Theorem 3.2 we take 64 = —60 — ~1> K = — 6χ,
&β = —&2 and 67 = —63. Then equations (3.6) become

1

ro + n + r 2 + r 3 = -,

840 840

Taking r2 = r, the solutions of (5.13) are

841.1 . -41 + 1764r
Γ 3 = Γ l = 8 0 0 ( 4 " r ) ' Γ o = 1600 '

which are all positive when γ | ^ < r < | . By Theorem 3.2 and the
Torus Criterion, these solutions give a continuous family of noncongru-
ent flat minimal tori in S7.

(5.14) Example. The harmonic sequence is cylic, of period 6,
for each of the weakly Lagrangian flat minimal tori found in Example
(5.11). In fact, if A = diag(l,αi,... ,α5), where α, = e ^ , then the
harmonic sequence for any one of these tori, say /, is (Akf)kez, which
is cyclic because A6 = I.

A cyclic harmonic sequence seems to be the exception for weakly
Lagrangian flat minimal tori in CPn. For consider that in many of our
examples we have taken α̂  = Cj + isj to be rational in the sense that
Cj, Sj E Q in order to insure that the Torus Criterion is satisfied. For
such tori the harmonic sequence is cyclic if and only if Ak = / for some
positive integer fc, where A — diag(l,α l 3... ,αn), which requires that
α* = 1 for each j . But this never happens if CjSj Φ 0, by the following
Lemma 5.4. Hence for all of our examples for which the a,j are all
rational (except for the case α̂  — e^.j — 0, ...,3) the harmonic
sequence is infinite, noncyclic.

Lemma 5.4. Let ζ = p + iq G Sι where p, q G Q. If ζn = 1 for
some positive integer n, then ζ = ±1 or ζ = ±i.

Proof. Suppose that ζn = 1 and that n is the smallest positive
integer for which this is true. Then ζ = e~^ for some positive integer
j which is relatively prime to n (by the minimality of n). Thus, there
is a positive integer k < n such that kj = 1 mod n. If η = e2^1,
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then ζk = 77, and consequently, η = a + iδ, where α, b G Q. But we
have already shown in the proof of Proposition 5.3 that if the real part
of η = e 2 ^ is rational, then n must be one of 1,2,3,4 or 6. Now n
cannot be 3 or 6, because b G Q, and the other values of n show that
η G {±l,t} Hence, ζ = η> € {±1,±»}

6. Necessary conditions on a given torus

We derive next a necessary condition on a given torus T = C/Λ
that it be realizable as a flat, weakly Lagrangian minimal submanifold
of C P n for some n > 2. It will be evident that the generic torus does
not satisfy this condition.

Definition. An integral line in R P 2 is a line defined by a linear
homogeneous equation with integer coefficients.

As there are only a countable number of such lines in R P 2 , a dense
set of points does not lie on any integral line.

Proposition 6.1. Let T = C/Λ and let Λ* C C denote the lattice
dual to A, that is,

Λ* = {a G C : Reaϋ G Zπ,Vι; G Λ}.

Assume that Λ* is generated over Z by a,β G C. // there exists a
weakly Lagrangian, isometric harmonic map f : C/Λ -» C P n for some
n>3, then the point

(6.1) [p] =

\a\2

Reaβ

lies on an integral line in RP 2.
Proof. Here Re and Im denote the real and imaginary parts,

respectively, of a complex number. A weakly Lagrangian, isometric
harmonic map / : C -» C P n descends to T, if and only if (after a
possible rotation of C) Λ C Λ/ if and only if A*f C Λ*. Using the
notation of this section, we have from ΛJ C Λ* that

Sj + i(cj - 1) = mάa + nφ,

for some rrij^rij G Z, for j = 1,..., n. Thus,

1 = s) + c2 = \rrija + Πjβ + i\2



130 GARY R. JENSEN & RUIJIA LIAO

for each j implies that

(6.2) rn)\a\2 + 2mjnjReaβ + n)\β\2 = - 2 r n j l m α - 2n7Im/3,

for j = 1,. . . , n. Write the first three equations of (6.2) in matrix form

as

Qp = -2(Imα)ra -

m = n —

(6.3)

where

and

2m2n2 n2

2m3n3 n\J

is nonsingular, since it is an homogenized Vandermonde matrix with
determinant 2(m2riι — mιΠ2)(m3nι — mιΠ3)(m2n3 — m3n2), which is
nonzero since any pair of the vectors Sj+i(cj — 1) is linearly independent
over R.

If we define v by the vector cross product, ΰ = rh x n (Ξ Z 3 , then

lvQp = 0

is a nontrivial integral equation satisfied by [p].
Example. Let r be any positive irrational number. Let α = y/r,

let β = z, let Λ* be the lattice generated by a and /?, and let Λ be the
dual lattice. Then there is no weakly Lagrangian, isometric harmonic
map f :T = C/Λ —>• CPn for any n > 2. In fact, in this case the point
(6.1) is

r

o ,

which cannot lie on an integral line in R P 2 .

(6.4) R e m a r k s . The unique weakly Lagrangian isometric harmonic
map / : C —» C P 2 , is given by

f(x
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In Ludden et al. [12] and [15] the Clifford torus in CP2 is the name
given to the flat, weakly Lagrangian minimal surface given by the Hopf
projection of Sι x S1 x S1 C 5 5 C C 3. Clearly, /(C) is this surface.

The classical Clifford torus S1 x S1 C S3 is given, for our metric
2dzdz on C, by

cos 2x\
sin 2x
cos2y

\sin2yj

Our Clifford solution g : C -> C P 3 is

g(x + iy) =

e2iy

e2ix

e-2iy

e-2ix

1

~ λ/2

(0
1
0

V

0
i
0

— i

1
0
1

0

i\

0
— i

0 /
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