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FLAT FLOW IS MOTION BY CRYSTALLINE
CURVATURE FOR CURVES
WITH CRYSTALLINE ENERGIES

FRED ALMGREN & JEAN E. TAYLOR

Abstract

For interface energies which are crystalline, motion of curves in
the plane by crystalline curvature typically coincides with their
flat curvature flow.

We study the time evolution of curves P(t) in the plane moving with
normal velocities equal to a “weighted mean curvature” derived from
an interface energy function ® which is assumed to be crystalline and
even. Our main result is that if one starts with a good polygonal curve
P(0), then two different formulations of what such evolution should
mean typically coincide. (All terms in italics are defined below.)

The first formulation is that of motion by crystalline curvature, in
which the P(t)’s are computed by integration of a coupled system of
ordinary differential equations in the time variable ¢; each P(t) contin-
ues to be a good polygonal curve having no more line segments than
P(0) has [10].

The second formulation is that of flat ® curvature flow, in which
discrete time approximations are obtained by solving sequences of vari-
ational problems in which all possible curves (not just polygonal ones)
are in competition; the flow is obtained as a limit of such discrete time
approximations [4].

We show below that these two different procedures produce the same
curve evolutions, except perhaps in cases in which many edges coalesce
into one in the motion by crystalline curvature. A more painstaking
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analysis than the present one would be required in order to understand
what happens in such a case; it is conceivable that different flows might
result.

Variational ideas have always been at the heart of the study of evo-
lution processes involving crystalline curvature; see, for example [10].
Our present result means that curves which minimize crystalline en-
ergy in competition with all conceivable curves will in fact lie in a very
restricted class of polyhedral curves. Furthermore, the solution curve
at time ¢t + At typically will be obtained as a slight perturbation of
the solution curve at time ¢, this perturbation leaving normal vectors
unchanged.

In the context of smooth elliptic interface energies (instead of the
present crystalline ones), flat curvature flows coincide with classical
smooth flows so long as the latter exist; this was shown by the authors
together with L. Wang in [4]. It seems, therefore, that the variational
formulation of curvature driven flows as flat flows is a reasonable theory
within which to formulate and analyze motions driven by arbitrary
interface energy functions, and that the crystalline methods, at least
sometimes, provide a practical method for computing such flows.

The evolutions of curves and surfaces driven by various curvatures
have been studied by a number of mathematicians in recent years; the
article [13] surveys several different mathematical approaches and gives
examples of how and why such evolutions have significance within ma-
terials science. Flat ® curvature flows were first proposed at the 1991
Five Colleges Regional Geometry Institute and were discussed in [3];
the paper [4] contains precise statements and proofs. To the best of
our knowledge, formulation of crystalline curvature evolution within
the context of coupled ordinary differential equations was first publicly
proposed in a paper [9] presented by the second author in a 1988 lecture
in Brazil at a meeting in honor of M. do Carmo. The second author also
showed a videotape in her 1989 AMS-MAA lecture [8] which demon-
strated an early version of her computer program for computing such
motion, and gave a mathematical analysis of such motion in her paper
[10] and demonstrated a much more elaborate version of the program in
[11]. A similar formulation of motion of curves by crystalline curvature
was suggested independently in 1989 by S. Angenent and M. Gurtin in
[1]. Also in 1989, Roberts [6] investigated a similar motion, purely as a
computational approximation to motion by curvature of embedded or
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immersed closed planar curves (with no proofs about the motion or the
nature of the approximation). The motion of a curve by its crystalline
curvature is illustrated in Figure 0.

FIGURE 0. This curve evolution was computed using the
equations for motion by crystalline curve, with the Wulff
shape being a regular octagon. The main theorem of this
paper is that the same motion results from flat curvature
flow.

The second author has also studied motion of surfaces in space driven
by crystalline curvature and set forth a system of differential equations
for such motion [9]. In contrast to the case of polyhedral curves in
the plane in which the number of line segments can only decrease un-
der crystalline evolution, it often happens for polyhedral surfaces that
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facets should subdivide. In some situations the amount of subdivision
is not bounded, and one is led to formulate such curvature evolution
within varifold geometry; see for example the video and text of [12].
The second author conjectures that the crystalline motion of surfaces in
space, properly understood, will coincide with flat curvature evolution
(as is the case in the plane according to the present paper).

During the preparation of this paper the authors were supported in
part by grants from the National Science Foundation. Additionally, the
first author was a visiting member of the Institute for Advanced Study
and the second author was partially supported by DARPA through
the National Institute for Standards and Technology. Karen Almgren
produced all but the first figure for this paper.

1. Basic assumptions

1.1. Ambient dimension. We consider motion of curves in the
plane.

1.2. Surface energy. We assume that our “surface” energy (here
curve energy) integrand ® : R? — R* is even and crystalline, that is,
that ® maps non-zero (normal) vectors to positive real numbers and
satisfies ®(\v) = A®(v) for all real numbers )\ and every v € R?, and
the Wulff shape for ®

W= {z:zev < ®(v) for every v}

is a centrally symmetric convex set with polygonal boundary in the
plane, with positive orientation. We denote W’s unit exterior normal
vectors by n;, n,, ... , ny in counter clockwise order, and define n;4; :=
Ny, N :=Ny.

2. Admissible simple closed curves

Our detailed analysis will be for simple closed polyhedral curves
parametrized with coordinates characteristic of the crystalline varia-
tional calculus. This analysis can easily be extended to apply to disjoint
unions of simple closed polyhedral curves, as stated in 9 below.

2.1. Admissible sequences of normal vectors. By an admissi-
ble sequence of normal vectors we mean an N-tuple v = (vy,vs,... ,UN)
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(some N, with the convention vy, := vy, 1y := vy) such that each
v; is one of the n;’s and, for each i = 1,2, ..., N, if v; = n; then
Vitr € {nj_1, N}

2.2. Intersection points, line segments, and associated cur-
rents. Associated with each admissible sequence v = (v, v5,v3,... ,UN)

of normal vectors and each N-tuple s = (sy, s3, $3, ..., sy) (with
SN+41 i= 81, So := sy) of real numbers are the following:
(i) a sequence p(s) = (pi(s), p2(s), ps(s), ..., pn(s)) (with again

Do := PN, PN+1 = p1) of points of intersection in the plane defined by
requiring for each 7 that

pi(s)ev;=s;, and p;(s)eviy = si;
(ii) oriented line seqments (integral 1 currents)
Ji(s) = [pi(s), Pir1(s)]
having lengths
i(s) == |pi+1(3) - pi(s)]

for each i;
(iii) the oriented closed polygonal curve

N
J(s) == Z: J;i(s).

In order to avoid using even more notation that we already do, we use
the same symbol for oriented curves, regarded as integral 1-currents,
as for the same curves regarded as sets. Thus we will usually say, for
example, that ¢ € J as opposed to g € sptJ. However, for reasons
of consistency with [4], we will continue to distinguish between a 2-
dimensional region K and its associated positively oriented 2-current

[K).

2.3. The parameter spaces S(v) and admissible curves. As-

sociated with each admissible sequence v = (v, v, Vs, ... , vy) of nor-
mal vectors is the open (possibly empty for the moment) subset S(v)
of RN consisting of those N-tuples s = (s1, Sg, 3, ... , SN = o) for

which the following is true:

(i) £; # 0 for each i, and p;;1(s) = pi(s) + £i(s) * v; (the operator *
rotates a vector counterclockwise by 90 degrees; for example, *(0,1) =
(_1: 0))1
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(ii) J(s) is a simple closed oriented polygonal curve in the plane
with multiplicity one, and its interior K(s) (the bounded open set for
which the curve is the boundary), when positively oriented to make an
integral 2-current [K], satisfies 9[K (s)] = J(s).

An oriented simple closed curve P is called admissible provided there
is an admissible sequence v of normal vectors and an s € §(v) such
that P = J(s). Note that v and s are unique up to the choice of which
line segment is called the first segment.

Condition (i), together with the admissibility of v, is the requirement
that the curve be “good,” in the terminology of [10]. Flat & curvature
flows consider only boundaries of regions, which is why we impose con-
dition (ii) as well. The assumption that the orientation of the curve
makes it be the boundary of a bounded region of positive orientation
is for simplicity of notation in the following analysis; the results apply
equally well without that assumption, as stated in 9 below.

One of the distinctive characteristics of the crystalline variational cal-
culus is parametrization of interfaces in terms of coordinates in spaces
S(v).

3. Crystalline curvature, motion by crystalline
curvature, the energy £, and flat flows

Suppose v is an admissible sequence of normal vectors and s € S(v).
3.1. Surface energy and crystalline curvature. We define

2(J(s)) = 3 Bk

(see 3.3 for a more general definition).
As shown in [10], a straightforward calculation produces the fact
that for each ¢,
ORI _ y

68,;
where
1 if (o1, Vi, Viga) = (nj_1, Ny, njpq) for some j,
o, =4 -1 if (vi_1, vi, Vit1) = (Rj41, nj, nj—;) for some j,

0 otherwise ,
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and A;(v;) is the length of the edge of the Wulff shape W having normal
vector v;. Note in particular that given v, ®(J(s)) is an affine function

of s e S(v).
A simple calculation also shows
OArea(K(s))
aSi = Zi(s).

Therefore, in analogy with the fact that curvature is the rate of decrease
of arc length with respect to area swept out under deformations, the

number
o A(v;)

£i(s)
is called the crystalline curvature of J(s) at J;(s).

3.2. Motion by crystalline curvature. Suppose v is an admissi-
ble sequence of normal vectors and s° € S(v). By motion by crystalline
curvature (for the crystalline even integrand @ in the plane) starting at
the admissible curve P, = J(s°) we mean a function P which assigns
to each nonnegative time ¢ an integral 1 current P(t) constructed by
the following procedure.

Let s(t) be a solution to the system of ordinary differential equations

ds; —oA(v;)
dt N Z,-(s) ’

i=1,..., N,

with initial condition s(0) = s°, and let ¢; > 0 be the supremum of the
times ¢ at which all £;(s(¢))’s are positive. For 0 <t < t;, we set

P(t) = J(s(t)).

The second author has analyzed the behavior of P(t) as t 1 ¢, and has
established the following in Proposition 3.1 in [10]:

Let I c {1,..., N} denote the collection of those i’s for which
limyyy, £;(s(t)) = 0. Then, either I = {1, ..., N}, in which case we
set P(t) = 0forallt; <t < oo, or 0; = 0 for each ¢ in I. (The
intuition behind the proof is that if an edge with o; nonzero gets short,
then it moves fast, and so avoids getting squeezed to zero length.) The
vanishing of a single edge J;(s(t)) (with o; = 0) as t 1 t; results in a
“merging” of edge J;_;(s(t)) with edge J;;1(s(¢)) at time ¢ = ¢; since
the condition o; = 0 implies v;_; = v;y;.



8 F ALMGREN & J.E. TAYLOR

Similarly, if 7 and 7+2 belong to I then the edges J;_1(s(t)), Ji+1(s(t)),
and J;,3(s(t)) all merge to make a single edge at time ¢ = ¢;, etc.

At time t = ¢, one can thus choose a new admissible sequence v* (a
subsequence of v) of normal vectors and a new s! in S(v') such that
P(t;) = J(s') = limyyy, P(t). One then defines P(t) for times greater
than ¢; up until the time that the next edge vanishes by solving the
obvious new system of ordinary differential equations. One then defines
P(t) for all times in the obvious manner.

It is also part of the analysis of [10] that several different P(t)’s so
constructed will never meet each other provided the supports of the
P(0)’s are pairwise disjoint. The analysis of [10] also applies equally
well to curves P(t) which are oriented clockwise, i.e.,

IIK ()] = —J(s)

in 2.3(iii). (Much of [10] applies more generally than considered in this
paper. In particular, [10] also considers immersed oriented curves and
integrands ® which are not even).

3.3. The space K, the energy £, and flat & curvature flows.
We denote by K the space of integral 2-currents in R? of positive ori-
entation associated with bounded Lebesgue-measurable subsets K of
R? having finite perimeter, and when we write [K] € K we mean, in
particular, that K is such a set of finite perimeter. Associated with
each such K is the rectifiable set K of points p in R? at which K
has a well defined unit exterior normal vector ng(p). As currents we
can write J[K] = H!|_ 0K A xng (a rectifiable 1-current is specified
by giving a rectifiable set together with a unit tangent vector and a
multiplicity at almost every each point in that set; here the set is 0K,
the unit tangent vector is *ng, and the multiplicity is 1).

If [K] € K, we define

B(AK]) := /  2x(@) d's;

this agrees with our definition in 3.1 if [K] = [K(s)] for some s € S(v).
Whenever [K] € K and [L] € K and At is a positive number we set

£(1K1 1), A1) = 2D + 53 [ (0, 0K) dL%p
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here
KAL=((K~L)U(L~K))=KN(RR~L)U(RR~K)NL

denotes the symmetric difference between K and L and £? is Lebesgue
measure on R2.

We define approximate flows 0[K;(t)] for j = 1, 2, 3, ... starting
at the initial position 9[K (0)] ([K(0)] € K) as follows. For each fixed
integer j we set At =277 and choose

[K;()]: R* — K
by the inductive requirements that

[K;(0)] = [K(0)],
and whenever k =0, 1, 2, 3, ..., then [K,;(kAt + At)] is chosen so that

{etx,0at), 21, 9)},

= inf
[Llek

e([K,-(kAt)], (K, (kA + A, At)

and
K;(kAt+ 1) = K;(kAt + At)

for each 0 < 7 < At.
A function 9[K(-)]: Rt — 0K is called a flat ® curvature flow pro-
vided
lim MK (0] - [Kyp (O =0

(that is, the area of the symmetric difference of the sets goes to zero)
locally uniformly in time ¢ for some approximate flows J[K;(t)] and
some subsequence j(1), 7(2), 7(3), ... of 1, 2,3, ....

3.4. A first variation equation for £ minimizers and the
resulting ordinary differential equation for ® curvature flow.
Suppose v is an admissible sequence of normal vectors and s* € S(v),
so that J(s*) is an admissible polyhedral curve bounding the region
K(s*). Since S(v) is open there will exist p > 0 such that the ball
BY (s*, p) lies inside S(v). We will show in 6 that for every small
enough At there is some s* € S(v) so that [J(sT)] is an £ minimizer,
namely,

£ (r o KL At) = int {EQ (), ), A1) .
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Since it is a minimizer in the larger class, it is also a minimizer within
the smaller class of admissible curves. For each i we conclude that

6%5 ([K (s)LIK(s5)), At) =0.

We compute this partial derivative (in particular, we use the calculation
mentioned in 3.1) and obtain that for a suitable C (uniformly bounded
for s near s*),

1
—o;A(v;) = Esign(sf - s})
1 . * 2
-lim — - dist (z, 0K (s*)) dL’z
1 h—0 h zeK(sL)AK(sL,...,sE+h,...,8%)
= —sign(sf — s}) dist (z, 0K (s*)) dH'z
Alt z€J;(sL)

= 5 [6(s") (s} = 57) £ Cls* — 5°P7]

=t )As' (uoe'?s')),

Which can be rearranged to

AS,’
At

(1:}:0 |As| ) _ or,-A(v,-).

ti(s*) £i(s*)

Suppose then that 9[K*(t)] is a flat ® curvature flow starting at some
IJ[K (s°)] € S(v). Then a straightforward adaptation of Euler’s method
for constructing solutions to ordinary differential equations (based on
the fact, which we will show in 5.1, that |As| | 0 as At | 0 locally
uniformly for s* in §(v)) guarantees for short times ¢ that we can write

K ()] = [K(s(®))),
where s(t) satisfies the system of ordinary differential equations

ds; _ ol (v;)

dt Zi(.s) ’

with initial condition s(0) = s°.
Therefore the flat ® curvature flow will be the same as the motion
by crystalline curvature, provided we do indeed prove that given an
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admissible J(s*) then for every small enough At there is some s* € S(v)
so that J(s) is an £ minimizer.

A review of the construction of flat & curvature flows together with
the uniformity of the estimates in 5 will establish that

(K™ ()] = [K(s(2))]

up until the time at which one of the ¢;(s)’s vanishes. We will show
in 7 that the flat ® curvature flow makes the same merging transfor-
mation that motion by crystalline curvature does, at the time when
one and only one ¢;(s) approaches zero, thereby enabling us in general
to conclude that the flat ® curvature flow is the same as the motion
by crystallime curvature up until the time the entire curve shrinks to a
point (Theorem 8) (beyond that time, both are identically zero).

4. Regular and inverse corners

By a regular corner we mean a current of the form

[p — @ *nj,pl +[p,p + B*nji4],

and by an inverse corner we mean a current of the form

[p — B*njy, p]+[p, p+ a*ny],

each associated with some point p in R?, some j € {1,2, ..., J} and
some nonnegative numbers a and 8. (Recall that * rotates a normal
vector by 90 degrees to make it a tangent vector.) See Figure 1.

Since each regular corner is a translation of part of a tangent cone
to the boundary of the Wulff shape for ®, and each inverse corner is
part of a tangent cone to the boundary of the central inversion of the
Wulff shape (which is a negatively oriented region) we infer (as in [7])
that every regular and inverse corner is absolutely ¢ minimizing. By
this we mean that if T is any integral 1 current such that

OT =[p+ B*n;]—[p— axn,]

or
OT =[p+ a*n;]—[p— B*njnl,
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then ®(T) > a®(n;)+ BP(n;41), the integral of  over the correspond-
ing regular or inverse corner.

n1 /I\
PN
2 ppeny

)
p p-a*ny /
/ -

p+o *ny p

p+pen,

FIGURE 1(A). Sample Wulff shape (b) A regular corner
(c) An inverse corner.

The purpose of the a and S is to ensure that the corners, when used
as barriers, are long enough to extend into regions where we know that
no curve is present, and short enough not to extend into other regions
of space where other portions of the curve may again exist.

5. Minimizers near admissible polyhedral curves
are oriented simple closed curves

Suppose v is an admissible sequence of normal vectors, and s* € S(v)
(so that J(s*) = 0K(s*) is an admissible polyhedral curve). Suppose
that for small At’s, [La,] is an £ minimizer, namely,

& (") (2ol ) {ewweon i, a0/,

= inf
[HleK

5.1. Closeness of minimizers. The fact that J(s*) is admissible
guarantees the existence of S > 0 with the following property: Let W

be the scaled Wulff set {Sz : £ € W}. Suppose p € J(s*). Then there
will exist q; and ¢, such that

{ql} + Ws C ClosureK(s*), pE {ql} + 0Ws,

{g2} + Ws C Closure(R* ~ K(s*)), p€ {g}+ 0Ws.
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We assert the existence of constants C° < oo and § > 0 (depending
on K(s*)), with C°0 < S min; ®(n;), such that if 0 < At < § then

(x)  0La, C V(s*, C°At) := {:z:: dist(z, 0K (s*)) < CoAt}.

The details of the argument establishing () follow closely the proof of
conclusions (1) and (2) of Theorem 5.4 of [4] based on the estimates
of Proposition 5.3 of [4]. The numbers C?°, 4, and S can be chosen to
depend continuously on s* but are awkward to describe analytically.

5.2. The curve 9[L,] is indecomposable if At is small. It
follows from [5 (4.2.25)] that each 9[L ] can be written as the (possibly
countably infinite) sum of integral 1-cycles which are indecomposable.
Clearly, at least one of these cycles, call it Th;, will be homologous, as
a current, with 9[K (s*)] in V(s*, C°At). One infers from our remarks
about corners above that, provided At is small, ®(Ta;) will very nearly
equal ®(9[K (s*)]) (®(Ta:) will not exceed ®(J[K (s*)]) because Ly, is
obtained by £ minimization). Hence, d[La;] — Ta; is an integral 1-
cycle having very small mass (provided At is very small). A short
argument based on the isoperimetric inequality shows that this 1-cycle
is in fact not present (8[La:] — Ta: = 0), since possible savings in bulk
energy cannot match the cost in surface energy (recall that dLA; C
V(s*, CoAt)). Since Ta; is indecomposable, it is in fact an oriented
simple closed curve.

6. Proposition. £ minimizers near admissible curves with
long sides are admissible curves

Suppose v is an admissible sequence of normal vectors and s* € S (v),
so that J(s*) = 0K (s*) is an admissible oriented polyhedral curve.
For At < min{4, (8Cov; ® v;y1)" 4;, (4Cov; ® v;_1)~4;} suppose that
Ta: = OLA; is an € minimizer, namely,

E(IK (7, s A1) = in {ex(™), 11, 29}
Then T = J(s) for some s € S(v).

Proof. We abbreviate T = Th; and L = La;. The arguments we use
in this section are based on the use of corners as barriers. To simplify
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our terminology we will describe the construction of s’ in the region
near J, while making specific assumptions on v and the I;’s; the ideas
apply in general. We therefore suppose for purposes of exposition that
ny = (27%,27%), ny = (0, 1), n3 = (— 2%, 2-%) are normal vectors of
consecutive facets of 9W. We further assume that Cyé > 1/8.

FIGURE 2(A). section 6, first case.

First case (see Figure 2a). Suppose, for example,
JI(S*) = [(2’ _1)) (17 0)]) ']2(5*) = [(1’ O)’ ('—1’ 0)],
J3(s*) =[(=1, 0), (-2, 1)],

so that the first vertex of J;(s*) is regular and the second vertex is
inverse. By assumption, the J; are long compared to 1/8; this enables
us to use our corner barriers. Consider the inverse corner

CI = [(3/2’ 0)’ (_1/27 0)] + [(_1/27 0)7 (_17 1/2)]

Since it is absolutely ® minimizing, if any part of T inside (-2, 2) x
(=1, 1) were above C’, then one could replace it with part of C with-
out increasing ® energy while strictly decreasing the bulk energy in-
tegral over K(s*)L. Thus C' is a barrier from above to 7. This fact
together with an analogous argument from below enables one to con-
clude that

OILIL (=1/2, 1/2) x (=1, 1) =[(1/2, 0), (~1/2, 0)}.

We set g, = (0, 0) and sf = s} = 0. The general statement is that if
one vertex of J; is regular and the next is inverse, then the part of T
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near J; in fact is J;, with the same s}, except perhaps near the ends of
J;.

9,

ChO

FIGURE 2(B). section 6, second case.

Second case (see Figure 2b). Suppose, for example,
JI(S*) = [(21 _1)’ (1) 0)]’ J2(S*) = [(17 0)7 (_1, 0)])

J3(5*) = [(—17 O)a (_—2a —1)]7

so that both endpoints of J,(s*) are regular corners. Suppose also that
At is small enough and that the geometry of the rest of T' is such that

TN[-2,2] x [-1, 1] C {z: dist(z, Ji(s*) U J2(s*) U J3(s*)) < 1/8}.

(This is not necessary, but since J is a single curve, we can isolate pieces
of the curve, and this is equivalent.) The point again is that lengths
are long compared to 1/8, so that we can use our corner barriers. For
nonpositive numbers h we now consider the corners (straight lines)

Ch = [(3/2’ h)') (—3/27 h’)],

which are absolutely ® minimizing. If any part of T inside (-2, 2) x
(-1, 1) were above C} for h = 0, then one could replace it with part
of C, without increasing ® energy while strictly decreasing the bulk
energy integral over K(s*)AL. We conclude that Cj is a barrier from
above to T. We now make h more negative until C, first makes contact
with T, say at h = h°. We denote a first point of contact by ¢,. Note
that the barriers associated with J;(s*) and J;(s*) restrict the position
of g, to lie within the closure of K(s*) as indicated in Figure 2b. We
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set sz = s3 + h® = hC. Similar definitions hold for the case of both
endpoints being inverse corners.

Completion of Proof. The key observation is that consecutive
g:’s as constructed above must be connected by 7" and that the unique
cheapest way to do this (counting both interface and bulk energies)
is by using the regular and inverse corners paralleling 9[K (s*)], since
interface energy is absolutely minimized by such a connection, and since
any other connecting curve respecting the barriers above and of equal
or greater interface energy must produce greater bulk energy.

7. The structure of £ minimizers near admissible
polyhedral curves with not more than one short side

As in 6 we suppose that v is an admissible sequence of normal vectors
and s* € S(v) so that 9[K(s*)] is an admissible polyhedral curve.
Suppose that for a small At < 8, Ta; = 9[La¢] is an £ minimizer,
namely,

E(IK (L, ad, At) = int {6, 1], A9},

= inf

[H]ek
Again we abbreviate T = Ta; and L = Lpa;, with T = J[L]. The
arguments we use in this section are also based on the use of corners
as barriers. We need to assume that At is sufficiently small compared
to the £;(s*)’s with one ¢;(s*) excepted and also to the constraints
of the global geometry of J(s*). Assuming that At is small enough to
justify our arguments (as indicated below), we will analyze the possible
structures of T. Because of the results in [10] cited in 3.2 above, we
need only consider the situation in which the short side, say J3(s*), has
as its endpoints one regular and one inverse corner, i.e., 03 = 0; this
implies that v, = v4. One possibility is that there will be s in S(v)
near s* such that L = K(s%). The other possibility is that the short
edge will disappear and the two adjacent edges will merge into a new
single edge. If this happen we make corresponding changes in v and s.

The three cases we must consider depend on the behavior of the next
corners out (i.e., corners between J4(s*) and Js(s*) and between J; (s*)
and Jp(s*)). If one is regular and one is inverse, then v; = v5. We
suppose that At is small enough and that the geometry of the rest of
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T is such that
TN[-2,2] x[-1, 1] C {z: dist(z, J;(s*) U Jo(s*) U J5(s*)) < 1/8}.

The point is that the side lengths ¢;(s*), £2(s*), £4(s*), £5(s*) are as-
sumed long compared to 1/8 while the side length ¢3(s*) can be short.
In our first case, we assume one endpoint of J3(s*) is regular and the
other is inverse and that v3 = v; = v5. In our second case, we assume
one endpoint is regular and the other is inverse but that v3 # vy, = vs.
In our third case, we assume that both endpoints are regular or both
points are inverse. It seems useful to describe the ideas in a concrete
context rather than introduce general terminology at this point. We
therefore suppose for purposes of exposition that n, = (27%, 27%),
ny = (0,1), ny = (—27%,27%) are normal vectors of consecutive
facets of W, that § = 1/8, and that 0 < € < 1/8 in what follows.

FIGURE 3(A). section 7, first case.

First case (see figure 3a). Suppose
L(s") =12, 1), (1+¢ —€)], J(s7) =[1+¢ —¢), (6, —€)],

J3(3*) = [(6’ —6), (—Ea E)], J4(3*) = [(_67 6)’ (—1 -6 6)],
J5(3*) = [('_1 -6 6), (_2, 1)]
The inverse corners
[(5/47 6), (_3/4’ 6)] + [(—3/4a 6), (_1a 1/4 + 6)],

[(5/47 —6)7 (67 _6)] + [(67 —E)a (_1/4 +¢ 1/4 - E)]
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give barriers to T' from above while the regular corners
[(1,-1/4 =€), (3/4, =) + [(3/4, —¢), (=5/4, —¢]],
[(1/4 —€,—1/4+¢€), (=€, €)] + [(—¢€,€), (—5/4,¢€)]
give barriers to T from below. We infer
T (-3/4,3/4) x (-1, 1)
=[(3/4, =), (&, —e)] +[(e, =€) (=&, N +[(—e; €), (=3/4, €]}
We therefore take g, = (1/2, —€), g3 = (0, 0), g4 = (=1/2, €), s§ = s3,

sk = s3, sL = s;. The specification of the other s/’s is done as in

section 6 since the other edges are all long. We argue as in section 6
that T = J(sb).
Second case. Suppose

J(s) =12, -1, A~ €], L(sT)=[1-¢¢), (66
J3(s7) = [(e; €), (=€, =€), Ju(s™) =[(—¢, =€), (-1 + ¢ —€)],
Js(s*) =[(—1+¢€, —¢), (—2, 1)].
For —1/8 < h < 1/8 we consider the inverse and regular corners
CL = ((5/4, h), (~3/4, W)] +[(~3/4,h), (=5/4,1/2 + h)],

OF = [(5/4,h), (3/4, W] + [3/4, k), (~5/4, h)].
As in section 6, C! provides a barrier from above for T', and C¥, pro-
vides a barrier from below. We set h® = inf{h: C{ N T = ¢} and
ho = sup {h: CENT = 0}, and choose g, € C{e NT, g4 € C{L NT. In
view of our remarks about barriers above, we infer € > h® > ho > —e so
that we can choose g3 € Js(s*) N Cf,. We now consider two subcases.

h©

FIGURE 3(B). section 7, first subcase of second case.
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First subcase (see Figure 3b). If hy < h°, we set s& = A, st =
s3 =0, sZ = h®. The specification of the other s{’s is done as in section
6. We argue as in section 6 that 7' = J(s?).

Second subcase. If hy = h?, then we could have chosen g2 and g,
so that ¢, = g3 = ¢4. We note

T (=3/4,3/4) x (=1,1) = [(3/4, h°), (=3/4, h°)].

The specification of the s’s for 5 ¢ {2, 3, 4} is done as in section 6 since
those side lengths are long. We now choose a new index set by setting
vl = (v, vy, s, ..., vy) and a new s' = (s, B, &0, ... | %) € S(vh).
Using {q1,43,¢s, ... } we argue as in section 6 that T = J(s).

Third case. Suppose, for small numbers e,

JI(S*) = [(2a _1)7 (]- — & 6)]a J2(3*) = [(1 + —¢, 6)7 (6, E)L
J3(3*) = [(6, 6), (_67 —6)]1 J4('5*) = [(-67 "6), (‘1 - € _—6)]a
J5(3*) = [(—1 -6 _6)7 (*2) “1)]

We consider the inverse corners (actually, corner and line segment)
CI = [(1/4a 1/4)7 (—6) *6)] + [(_67 -6) + (—5/4’ '—f)]a

CI{ = [(5/4a h)a (_5/4a h)]7

for —1/8 < h < e. Both C' and C! are barriers to T from above as in
section 6. We make the values of h more negative (starting at h = €)
until C] makes first contact with T, say at h = hy. We consider two
subcases.

QS=q4 y

FIGURE 3(C). section 7, first subcase of third case.
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First subcase (see Figure 3c). If hy > —¢, we denote a point of
first contact by g;. We can now restrict our attention to the part of
the curve beyond ¢,, and employ another barrier

C":=[(1/2,—¢€),(—3/4 — ¢,—€)] +[(=3/4 — €, —€) + (—=5/4,—-1/2)].

We can thus set g3 = g4 = (—¢, —¢). We also set sI = hg, s& = s3 =0,
sk = s;. The other ¢;’s and sl’s are determined as in section 6 since

those side lengths are long. We argue as in section 6 that 7' = J(s).

q2=Q3=q4

e TN e

FIGURE 3(D). section 7, second subcase of third case.

Second subcase (see figure 3d). If hy < —¢, then we choose ¢, =
g3 = q4 as a point of contact and argue as in section 6 that

OILIL (=3/4, 3/4) x (=1,1) =[(3/4, ho), (=3/4, ho)}-

The specification of the s*’s for « € {2, 3, 4} is done as in section 6 since
those side lengths are long. We now choose a new index set by setting
vt = (v, vy, Vs, ..., vy) and a new s' = (8%, ho, s2, ..., s%) € S(n).
Using {q1,q2,¢s, - .. } we argue as in section 6 that T = J(s').

8. Theorem (Flat crystalline flows starting with
admissible curves in the plane remain admissible
curves provided edges vanish at distinct times)

Suppose the interface energy function ® is crystalline and even, and
v is an admissible sequence of normal vectors, and s° belongs to S(v).
Let P(t) denote the motion by crystalline curvature for ® with initial
condition P(0) = J(s°). We assume that, prior to the final vanishing of
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P(t), at most one of the edges of P(t) vanishes at any particular time.
Then P(t) is the unique flat ® curvature flow beginning with P(0).
Proof. In view of the remarks in 3.4 above and Proposition 6, the
main thing to check is that the transitions which occur when a line
segment vanishes in the crystalline motion correspond to the behavior
of the flat flow. This follows from the estimates given in section 7 and
the definitions of flat & curvature flows. Details are left to the reader.

9. Theorem (Crystalline even ® curvature
flows of collections of admissible polyhedral
curves in the plane)

Suppose the interface energy function ® is crystalline and even. Let
Py, Py, ..., Py be admissible curves in the plane whose supports are
pairwise disjoint, and suppose P(0) is a 1 current equal to a sum of
the P,;’s, each with multiplicity plus one or minus one. Denote by P(t)
the motion by crystalline curvature with initial condition P(0). We
assume that, prior to the final vanishing of each P;(t), at most one of
the edges of P;(t) vanishes at any particular time. Finally, suppose
that P(0) = 9[K] for some [K] € K. Then P(t) is the unique flat ®
curvature flow beginning with P(0).

Proof. A change in the orientation of an admissible curve affects
the proof only in notation. Also, for an even integrand ®, polygo-
nal curves moving by crystalline curvature are barriers for each other
[10]. Therefore we can apply the results of Theorem 8 in this more
general context.
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