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MOBIUS CONE STRUCTURES
ON 3-MANIFOLDS
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Abstract

We show that for any given angle a G (0, 2π), any closed 3-manifold
has Mόbius cone structure with cone angle a .

1. Introduction

In this paper we prove
Theorem 1. For any positive r < 2 any closed orientable 3-manifold

M has a singular Riemannian metric ds of the following form: There
are local coordinates (z, t) (z complex and t real) in M so that in the
coordinate the metric ds is:

(a) conformally flat: ds = u{z, t)(\dz\2 + \dt\2) or,
(b) conformally flat with cone singularity of angle rπ,

ds = u(z,t) (\dz\2/\z\2-r + \dt\2),

where u(z, i) is a smooth positive function of z, t. Furthermore, if r =
2/n for some positive integer n > 1, then the monodromy group of the
conformally flat structure is a discrete subgroup of SO(4, 1).

Due to the solution of the Yamabe problem by Schoen [14] it seems
highly possible that in each such conformal class, there exists a Rieman-
nian metric having the same form as above so that the scalar curvature is
constant. Furthermore, the metric is unique if the singular set is nonempty
and the pair (M, singular set) is not ( S 3 , circle).

We may also state the result in terms of Mόbius cone geometry as fol-
lows. Given a e (0, 2π), a Euclidean lens of angle a is defined to be
the intersection of two balls at an angle a if a < π, to be a ball together
with a circle in the boundary if a = π , and to be the complement of the
interior of a Euclidean lens of angle 2π-a if a > π . An α-cone 3-sphere
Si is the quotient of a Euclidean lens of angle α by the rotation about
the edge of the lens which identifies the two boundary half-spheres of the
lens. A 3-manifold M is said to have Mόbius cone structure with cone
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angle a if it has a singular conformally flat structure so that each point in
M has a neighborhood conformal to an open set in Sa . The above result
is the same as

Theorem 2. Given any positive a <2π, any closed orientable 3-mani-
folds M has a singular conformally flat structure so that each point in M
has a neighborhood which is conformal to an open set in Sa . Furthermore,
if the given cone angle is 2π/n for some n e Z + , then the monodromy
group is a discrete subgroup of SO(4, 1).

The singularity forms a link in the manifold. As the cone angle a tends
to 2π, the number of components of the singularity increases to infinity.
We call the singular conformal structure a Mόbius cone structure with cone
angle a.

Essentially, we show that 3-dimensional Dehn surgery can be realized
in Mόbius cone geometry £* . The basic idea of the proof comes from
Gromov, Lawson, and Thurston's construction in [4]. The main geometric
object that we will study in detail is the Mόbius Polygon in S . These
are solid tori in S whose boundary is a union of finitely many annuli
so that each annulus is in a 2-sphere and the interiors of these annuli are
disjoint. Regular Mόbius Polygons were first used by Gromov, et al. in
their construction of hyperbolic structures on plan bundles over surfaces.

As another consequence of the study on Mόbius Polygons, we show
Theorem 3. Let R —• We —• Σ be the plan bundle over a surface of

genus g > 1 so that the Euler number ise.If\e\=g-ί, then there exists

a complete hyperbolic metric on We Furthermore, the conformal infinity

of We in the hyperbolic metric is a Mόbius structure on the associated

circle bundle over Σ .

This answers a question of Kuiper [6] affirmatively. We were informed
by Kapovich that Kuiper and Waterman have also discovered the similar
metric.

In [10], we prove a stronger result that Theorem 3 is still true for all
\e\ < {g - 1) using different constructions.

The most interesting Mόbius Polygons are the ideal ones. These are
obtained as the complement of a necklace formed by tangent balls in R3.
We discovered the analog phenomena to Thurston's construction of hyper-
bolic metrics on compact surfaces by using hyperbolic ideal polygons in
H2 . Similar to Thurston's completion of hyperbolic metric, the confor-
mal completion to noncusp ends in this case is to add a torus to the end
and the boundary of the ideal Mόbius Polygon behaves like a leaf of Reeb
foliation in the interior of a solid torus. We intend to carry out the study
in [10].
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The paper is organized as follows. We define Mόbius Polygons and
discuss their basic properties in §2. The most useful invariant introduced
in §2 is the torsion of a Mόbius n-gon. We show that torsion is addictive
with respect to the gluing of two Mόbius Polygons. In §3, we discuss regular
convex Mόbius Polygons and prove a result concerning the existence of
regular Mόbius Polygons with prescribed torsion. The main theorem and
Theorem 3 are proved in §§4 and 5 respectively.

2. Mδbius Polygons in S3

The basic facts about Mόbius geometry in (S3, Mob(£3)) may be
found in Beardon's book [1] or in [15]. We will use S3 to denote the
unit sphere in C 2 . Mob(53) is the group of all diffeomorphisms of S3

preserving angles. We will identify S3 with R = R U { o o } b y a
stereographic projection. We will abuse the use of language by saying that
lines and planes in R3 are special types of circles and 2-spheres in S3.
Elements in Mob+(5'3) (orientation-preserving Mόbius transformations)
are classified into three types: hyperbolic, parabolic, and elliptic. For each
circle C in S3, the half-turn about C, denoted by Hc , is the orientation-
preserving Mόbius involution leaving C pointwise fixed. Given a set X
containing more than one point, the span of X, denoted by sp(ΛΓ), is the
sphere of the smallest dimension containing X. A pair of circles A, B
is said to be standard if (A, B) is Mόbius equivalent to the pair (z-axis,
the unit circle in the xy-plan).

The basic geometric objects that we will study are in the following.
2.1. Definition, (a) A Mόbius annulus A is a topological annulus in

a 2-sphere so that A is bounded by two circles. The middle circle of
a Mόbius annulus A is the circle C in A so that inversion about C
leaves A invariant. An orthogonal arc in a Mόbius annulus A is a circular
arc orthogonal to both boundary components of A . The module of A,
denoted by m(A), is the module of the open annulus int(^4) in

3

)
(b) A Mόbius n-gon P is a topological solid torus in S3 so that its

boundary 9P is a union of Mόbius annuli F{, F2,..., Fn, and their
interiors are all disjoint. Each Ft is called a face of P, and each circle in
<9F is called an edge of P. A Mόbius Polygon is said to be convex if the
dihedral angle at each edge of P is less than π. Two Mόbius Polygons
are said to be equivalent if there is a Mόbius transformation sending one
to the other.
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For each Mόbius annulus A, there exists a unique circle C in S3 so
that C and each component of dA form a standard pair. Furthermore,
A n C = φ, and C is orthogonal to sp(Λ). We call C the α.m of 4̂ .
A Mόbius n-gon is said to be of type PSL(2, R) if the axes of its faces
are the same; and is said to be of type PSL(2, C) if the axes of its faces
are in a fixed 2-sphere, i.e., all its faces are orthogonal to a fixed 2-sphere.
Clearly a PSL(2, R) Mόbius n-gon is also a PSL(2, C) Mόbius n-gon.

All PSL(2, R) Mόbius n-gons are constructed as follows. Take a circle
C (to be the common axis) and a disc D with dD = C, and consider
int(D) as a model for the hyperbolic plane H2. Given any hyperbolic
polygon Δ of n sides (not necessary convex) in int(D), the rotation of
Δ about C, denoted by Δ x Sι, is a PSL(2, R) Mόbius n-gon. Con-
versely, all PSL(2, R) Mόbius n-gons which are disjoint from their axes
are equivalent to a Δ x Sι. In particular, all convex PSL(2, R) Mόbius
n-gons are of the form Δ x ί 1 . If a PSL(2, R) Mόbius n-gon intersects
its axis, then it is equivalent to S3-int(Δ x Sι) for a hyperbolic polygon
Δ. Furthermore, dihedral angles of Δ x Sι are the same as inner angles
of Δ, and the modules of the faces are the same as the hyperbolic length
of the edges of Δ.

2.2. Lemma. Given a Mόbius n-gon P, let Aut(P) = {g e Mob(53)|

g(P) = p}. Then the following hold:
(a) P is of type PSL(2, R) if and only if Aut(P) is infinite.
(b) P is of type PSL(2, C) if and only if there exists g e Mob(53)-{id}

so that g leaves each face invariant.
(c) // P is not of type PSL(2, C), then Aut(P) is a subgroup of a

dihedral group. Furthermore, if Aut(P) acts transitively on the set of all
faces of P, then there is a cyclic subgroup of order n in Aut(P) which acts
transitively on the set of all faces of P.

(d) There are no Mόbius bi-gons in S3 all Mόbius 3-gons are of type
PSL(2, R) and all Mόbius 4-gons are of type PSL(2, C).

Proof The proof is based on the following fact about Mob(53).
Namely, if g £ Mob(53) leaves three pairwise disjoint unlinked circles
Cj, C2 , C3 invariant, then g is either an inversion about a 2-sphere or a
rotation about a circle, or an orientation-reversing involution with exactly
two fixed points. In the first case, all Cz 's are orthogonal to Fix(#), in the
second case (Fix(g), Cz) is a standard pair for each i, and in the third
case, we may assume after a Mόbius conjugation that g sends x to -x
in R3. Thus all circles are centered at the origin. We now use this fact to
prove the statements.
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To prove (a), if P is of type PSL(2, R), then any rotation about the
common axis is in Aut(P). To show the converse, we first note that there
is an element g in Aut(P) having infinite order. Indeed, since Aut(P)
is a closed Lie subgroup of SO(4, 1) by definition, it either contains a
nontrivial element of infinite order or is discrete. If it is discrete, then
exhausting Aut(P) by finitely generated subgroups and using Selberg's
lemma, we conclude that Aut(P) has to be finite if it contains no ele-
ment of infinite order. Now h = gnl is of infinite order and leaves each
face of P invariant. Since there are no Mόbius bi-gons in S3, h leaves
at least three pairwise unlinked circles invariant (namely the edges of P).
By the fact above, h must be a rotation about a circle C, and C and
each edge of P form a standard pair. Thus P is of type PSL(2, R).

To see (b), if P is of type PSL(2, C), we take g to be the inversion
about the 2-sphere orthogonal to all edges (hence to all faces). Conversely,
if g e Aut(P) - {id} leaves each edge invariant, then by the fact above,
g is either a rotation about a circle or an inversion about a 2-sphere, or
an orientation-reversing involution with exactly two fixed points, and P
is of type PSL( 2, C) in the first two cases. The last case does not occur.
Indeed, we may assume after a Mόbius transformation that g sends x to
-JC in R3. Then all edges of P are circles whose Euclidean centers are
the origin. This implies that all faces of P are planes passing through the
origin. This is absurd.

To prove (c), we construct a natural homomorphism p : Aut(P) —>
Dihn = Iso (regular Euclidean «-gon) by simply coding the action of
Aut(P) on the set of faces of P. If P is not of type PSL(2, C), then
Ker( p) consists of the identity element by (b). Thus the first and second
statements follow.

To prove (d), we note first that the set of the spans of n faces of P
has no common intersection points. Indeed, each common point must be
in the intersection of all edges, which is the empty set. Now if n = 3,
we apply the fact that any three 2-spheres with no common intersection
point is orthogonal to a circle. If n — 4, we apply the fact that any four
2-spheres in *S3 with no common intersection point is orthogonal to a fifth
2-sphere (see [9] for a proof). This completes the proof, q.e.d.

The following lemma shows the special feature of convex Mόbius Poly-
gons.

2.3. Lemma. Suppose P is a convex Mόbius n-gon with faces F{,

F2,... Fn ordered cyclically. Take a point p in int(P), and let Bt be the

ball in S3 so that dBi = sp(iv) and p is not in B{. Then N = Un

i=χBi is
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a solid torus in S3 with boundary dP. In particular, P n int(B.) = φ for
each i.

Proof. After a Mόbius transformation we may assume that p is the
infinity. Thus Bi is the 3-ball in R3 bounded by sp(-F) ) E a c h F( has two
sides: the concave and convex sides. By the dihedral angle assumption on
P, the concave side of F. is in P. Thus a small neighborhood of FiuFi+ι

in Bt U Bi+ι is in Pc, the complement of P in R . Now construct an

abstract solid torus Nf which is a disjoint union of these B so that B

and BM are identified according to their configuration in R . To be

more precise, a point x e Bi and a point y e BM are identified if and

only if x = y in B Π Bi+ι in R3 ( the index / is counted mod( n)).

There exists a natural immersion Φ : Nf —> S3 by sending each point

x e N' to its real representative. Since Φ : dNf -> S3 is an embedding,

Φ is also an embedding. Thus the image of N* under Φ is either P or

cl(Pc). By the choice of the initial point p , the second case must occur,

and the result follows, q.e.d.
We call int(Pc) (again a Mόbius «-gon) a necklace if P is a convex

Mόbius n-gon.
An oriented Mόbius n-gon P is a Mόbius «-gon with an orientation in

P together with orientations in all edges of P so that these oriented edges
represent the same homology class in Hχ{dP, Z ) . Each face F of P has
the induced orientation from P. We label the faces and their boundary
components by Fi and E , Et_{ so that the induced orientation on E.
from Ft is the same as the given orientation on E.. Thus E. = F(nFi+l,
i mod( n ). We also orient each orthogonal arc of Fi so that it starts from
E._x and ends at E.. Let C( be the middle circle of Ft. Then the twist
map τF of E is the Mόbius transformation Hro...oHr oHr o....oHr L
: E —> Et. Clearly τE is orientation preserving and is conjugated to τE .
For PSL( 2, R) Mόbius tf-gons, the twist map is always the identity map.

The twist map is closely related to a natural oriented foliation on dP.
Consider the set of all oriented orthogonal arcs in the faces. The joining of
these orthogonal arcs gives a foliation on dP. The leaves of the foliation
are transverse to the edges and the middle circles. Indeed, the twist map is
the holonomy map of the oriented foliation at the edge. There is a closed
leave in the foliation if and only if τE has some periodic points.

2.4. Torsion of Mδbius Polygons. We are mainly interested in those
Mόbius «-gons P so that (a) the twist map is elliptic and (b) a meridian
curve of P intersects an edge at one point. For instance, a convex Mόbius
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Polygon satisfies the above condition (b) by Lemma 2.3. For these P, we
will define the torsion of P as follows.

Suppose m is a meridian of P which intersects each edge in P at one
point. We then orient m so that the intersection number of m with the
oriented edge is + 1.

Since τE is elliptic and preserves the orientation of E(, τE is a rota-
tion, say by an angle 2πa where a £ [0, 1). Given x e Et let y — τE (x).
Let L be the oriented segment in the oriented leaf starting at x and end-
ing at y and let M be the arc in E. starting at y and ending at x
according to the orientation on E . Both L and M have the induced
orientations. We call the oriented simple closed curve L u ¥ a character-
istic curve of P. Suppose the intersection number between the oriented
meridian m and the characteristic curve Lu M is k. Then the torsion
of P is defined to be k - a, denoted by τ{P). It is an integer if and only
if the twist map is the identity map and it is a rational number if and only
if the twist map is a rational rotation (periodic). For a convex PSL( 2, R)
Mόbius n-gon, its torsion is always zero.

2.5. Lemma. Given an oriented Mόbius n-gon P, let -P be the same
Mόbius n-gon with opposite orientation on P but the same edge orienta-
tion. Then

τ(-P) = -τ(P).

Indeed, the twist map τE for —P has rotation angle 2π(l - a) and a

characteristic curve for —P is -(L) u —(E. - M). Thus the result follows.

We say that a twist map τE of P is comparable to a face Ft containing

E if τE is the restriction of a Mobius transformation of Ft.

2.6. Lemma (Gluing lemma). Suppose that P, P1 are two oriented con-
vex Mobius Polygons, and that F{, F[ are two faces of P, P' respectively
so that their modules are the same. Let dF{ = EnuE{ and dF[ = E'm\JE[,
and let h : (F{, En, Ex) —• {F[, E'm , E[) be an orientation-reversing
Mobius transformation preserving the orientations in the edges. Then Q
= PUhP

f is an oriented Mobius (n + m- 2)-gon in S3. Furthermore, the
following hold:

(a) The twist map of Q at Ex{= h (E'm)) is h o τE, o h o τ in

particular, if P1 is a convex PSL(2, R) Mόbius Polygon, then the twist
map of Q is the same as the twist map of P, and τ(Q) = τ(P).

(b) If τE and τE> are both comparable with the faces Fχ and F[, then



326 FENG LUO

Proof. Suppose P has n faces Fχ, F2, ..., F π , and P' has m faces

F[, ..., i7^ ordered cyclically according to the orientations. Let 2?j and

2?j be the balls in the necklaces c\{Pc) and c\{Plc) corresponding to Fχ

and F[ respectively. Then by Lemma 2.3, P is in the complement of

VDX(BX) , and P' is in the complement of int(B[). We find a copy of P

inside 2?j after the inversion about dB{. By composing with a Mόbius

transformation, we may assume that Fx = F[ (thus Bχ = B[) and int(P)

and int(P') lie in the different sides of dBχ. Thus the gluing P u Λ P' can

be realized in S3 and Q is still an oriented Mόbius (n + m- 2)-gon. A

meridian curve mQ of Q is the homological sum of two meridians of P

and P' respectively. Thus mQ intersects each edge of Q at one point.

The first statement (1) follows from the definition.

To see (2), since τE and τ'E are comparable to the faces, hΓx oτE> oh

and τE commute, and their composition is again an elliptic transforma-

tion of rotation angle 2π(α + β) where 2πa and 2πβ are the rotation

angles of τ , and τF> respectively. Take a point x e Eλ , let L be the

leaf of the oriented natural foliation on dP starting at x and ending at

τE ( x ) = y 9 and let M be the oriented arc of Eχ from y to x. Sim-

ilarly let L' be the leaf of the natural foliation on dPf starting at h(y)

and ending at z = xE> (h(y)), and let Mf be the oriented arc in E'm from

z to h(y). To find a characteristic curve of β , we need to distinguish

two cases.
Case 1. a+β < I. Then M\Jh~ι(Mf) is an oriented embedded arc in

Eχ from h~\z) to JC. Thus, the curve K = Luh~\L')uMuh~\M')-
(Lnint^ j)) is a characteristic curve of β . Since an oriented meridian of
Q is the homological sum of oriented meridian curves of P and P', the
intersection number adds. Therefore the intersection number between the
oriented meridians of Q and K is the sum of the intersection numbers
between the meridians of P and P' and the characteristic curves of P
and P1 respectively. This shows that τ(β) = τ(P) + τ(P').

Case 2. a + /? > 1. Then Λf U h~ι(Mf) goes around 1^ once from
h~ι(z) to x . The oriented arc MUh~ι(Mf)-Eι is used in constructing
a characteristic curve of Q. Thus the intersection number is one less than
the sum of the intersection numbers between the meridians of P and
P1 with their characteristic curves. Since the rotation angle of the twist
map for Q at E{ is now 2π(a + β - 1), this shows again that τ(Q) =
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3. Regular Mδbius w-gons

A Mδbius n-gon P is called regular if Aut(P) acts transitively on the
set of all faces of P. We will be interested in regular Mόbius Aj-gons
which are not of type PSL( 2, C) . Thus by Lemma 2.2, there exists φ e
Aut(P) so that φiFj) = Fi+ι for all / mod(«), where Fχ, ..,Fn are
cyclically ordered faces of P. We may assume after a conjugation that φ
is an elliptic element in the maximal compact subgroup 0(4) of MotyS13).
This motivates the following spherical geometric construction of regular
Mόbius H-gons. See Gromov et al. [4] for a reference.

3.1. Given an integer p and two complex numbers of norm less than
one e, e so that the sum of their norms is 1, let Γ = Γe c S3 =

{{z,w)eC2\\z\2 + \w\2 = 1} be given by {(eei{, e'eipt)\t e [0, 2π]} . Γ

is unknotted in S3 and oriented according to the natural order of /. Then

the linking number lk(Γe p, Γδ p ) = p for \δ\ Φ |e | , | e ' | . For each integer

n > 2, construct a regular sphere polygon γ = γ€ p n whose vertices are

υk = (eηk,efrfk) e Ttp where η = e2πi/n and k = 0, 1, ..., n - 1.

Let φ : S3 —• S3 be the periodic isometry defined by φ(z, w) =

{ze2iπ/n,we2piπ/n). Then vk = / ( ? ; 0 ) 5 a n d 0 leaves 7 invariant.

The /oca/ torsion τ of an edge of γ is defined as follows. Assume an
orientation is given on S3, and γ is oriented according to the natural
orders of vk

9s. Along each edge e of γ , let Λ^e) be the oriented
normal plane to e. Now define at each vertex v of γ a distinguished
unit normal vector nv e Nv(e+)Γ\Nυ{e_) where e_ and e+ are the edges
e_Π e+ = υ , and £+ follows e_ in the orientation of γ . We assume that
{nυ 9 e_xe_^) is positive. Suppose now that e is an edge of γ with ends
v_ and v+ (υ+ follows v_). Then the torsion τ of e is the unique
angle formed in passing from nυ to nv in the normal plane to e. The

following formula was obtained in [4] in the case that e and e are real.
It still holds for complex e and e ' .

3.2. Lemma. The local torsion τ can be calculated as

_ |e'|2sir\2(2pπ/n)cos(2π/n) + |e|2sin2(2π/«)cos(2pπ/n)

le'l2 sin2(2pπ/n) + \e\2 sin2(2π/«) '

We now construct a necklace N = Ne n p = Bχ u ... U i?Π based on
7 by putting a ball of spherical radius r centered at υk . The condition
on n, r, and 7 to guarantee that P = int(7V)c is a Mόbius «-gon is
complicated. However, there is a very easy sufficient condition: (1) each
B. intersects Bi+ι nontangentially i mod( n), and (2) BiΓ\Bj = φ if the
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indexes / and j are not adjacent mod( n). To translate these in terms

of distances, we use dE(x, y) to denote the Euclidean distance between

x9 y e C2 and use ds(x, y) to denote the spherical distance between

x,yeS3. Clearly dE(x, y) = 2 sin{ds(x, y)/2) if x, y £ S3. Then the

above two conditions become:
(Cj) mink=ι 2 n_{ dE(v0,vk) is dE{v0,vx) and dE(v0,vn_{);

(C ? ) Suppose mink=2,3,..,n-2dE(υo>υk) = rfΛ'vm) T h e n t h e

spherical radius r of ball 5̂  satisfies

ds{υ0, υx)/2 < r < ds(v0, vm)/2.

One calculates that

= 4|e|2 sin2(λ:π/«) + 4|e'|2 sin2{kpπ/n).

For fixed e, /?, «, ? is parametrized by the radius r of 2? . Larger

radius corresponds to larger inner angle. Under conditions (C{), ( C 2)

the largest inner angle of P corresponding to r = ds(v0, vm)/2 is given

by π-2ύτΓι(dE(υQ, vx)/dE(vQ, υm)). Thus, under (C x ), ( C 2 ), the inner

angle of P takes all values in (0, π - 2sin~ι(dE(υ0, vγ)/dE(υQ9 υm))).
The local torsion τ of γ is closely related to the twist map of the regular

Mόbius n-gon P. We orient P and edges of P as follows. P has the
induced orientation from S3, and edges are oriented so that the linking
number between an edge and the oriented core curve γ of the necklace
int(P)c is 1.

3.3. Lemma. Let P be an oriented regular convex Mόbius n-gon in-
variant under the symmetry φ(z,w) = (ze2πι/n, we2pπι/n).

(a) Then φ action on P is conjugated to μ(x, t) = (xe2πι/n, te2pπι/n)
action on the solid torus {x e C\\x\ < 1} x {t e C\\t\ = 1}.

(b) Suppose Fχ is a face of P with two boundary components Eo and

Eχ— φ (Eo ) and middle circle Cχ. Then, Hc o φ is an elliptic transfor-

mation of S3 leaving Eo invariant so that Hc o φ rotates Eo by an angle

τ and rotates oriented normal planes to Eo by an angle 2π - a, where a

is the dihedral angle of P at its edges. In particular, the twist map of an

edge of P is a rotation by the angle τn.
Proof (a) By Lemma 2.2, P is a solid torus so that the edges of P

are the longitude curves of P. Since φ acts transitively on the set of all
edges, φ is conjugated to μ(x, t) = {xe2πι/n, te2kπι/n) action on the solid
torus {x e C\\x\ < l } x { / e C||ί| = 1} for some integer k. We claim that
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k = p mod( n). Indeed, φ has two invariant circles Cz = {(z, 0)| |z| = 1}
3and Cw = {(0, w)\\w\ = 1} in S3 so that the rotation angle of φ on Cw

is 2pπ/n . One calculates easily that the linking numbers lk(C z, γ) = /?,
and ^ ( C ^ , y) = 1. Thus, if L is an oriented invariant core curve of P,

then L is an unknot in S3 so that lk(y, L) = 1. This implies that L
and Cw are isotopic in S3 - γ, and the rotation angles of 0 on L and
y are the same. Thus the result follows. It seems highly possible that if
condition (Cχ) holds, then Cw is always in the interior of P.

(b) Let L be the great 2-sphere in S3 intersecting Fχ orthogonally at
the middle circle Cχ, and let R be the spherical reflection about L. Then,
Hc = R o Inv where Inv is the inversion about sp(iΓ

1). In particular,
Hc \ ,F v = i? | s p ( ir). Thus, Hc o φ\ : Eo -> £ 0 is an isometry with respect
to the induced metric on Eo. To find the rotation angle, we mark the
normal vector at υ by ni ( = nv ). Let mi be the (spherical) parallel
translation of ni from v. to the middle point of the edge v vM . Then
Φini;) = mi+x for / mod(«). R{m0) is obtained from n0 by parallel
translating it along the edge vQv{ to its middle point. Thus Rφ(m_{)
( = Rm0) and m_{ form an angle τ counted positively from m_χ to
R(m_ι) in the oriented normal bundle to the edge. This shows that the
rotation angle of Hc o φ on EQ is τ . On the other hand, since Hc o
φ(sp(F0)) = sp(Fj), the rotation angle of Hc o φ in the oriented normal
bundle of Eo is then 2π - α where a is the dihedral angle of P at
£ 0 . q.e.d.

We summarize the observations about constructing a regular convex
Mόbius n-gon as follows.

3.4. Proposition. Given positive integers p, n and τ e [0, π ), let

2 _ Ί 2/ι I2 _ s ^ n (2π/rc)(cosτ - cos2pπ/n)

sin2(2πp/n)(cos2π/n — cosτ) '

and let ak = sin2(/cπ//ί) + λsin2(pkπ/n). Suppose a{ > aχ for all i =
2 , 3 , . . . , [n/2] + 1 and am = min 1 < / < : [ r t / 2 ] + 1 ar Then there is a regular
convex Mόbius n-gon P such that

(1) P is invariant under φ(z,w) = (ze2πi/n, we2pπi/n),

(2) the dihedral angle of P is any given number in (0, π - 2 sin" ι

(3) the torsion of P is p - nτ/2π.
Proof Since α = ai_n, a{ > aχ for all i = 2, 3, ..., [/ι/2]+l is

equivalent to condition (C x ) . Thus, (1) and (2) follow. To see (3), we
compute the intersection number in two steps. Take x = x0 e Eo and
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let xt = φι{x0). Joint x. to JC/+1 by a circular arc ci in Fi+ι, and let
C' = u" = 1 c Γ C' is oriented so that xχ follows x0 in c 0 . Then C' is
^-invariant, and the intersection number between the oriented meridian
of P and C' is p . Indeed, C' is isotopic to a curve of the form Yδ for
some <J (0 < \δ\ < 1) in P. Since the linking number l k ^ p , Γe ^ j = /?,
the assertion follows. Now let C be a characteristic curve on 9 ? . Then
in the homology group Hχ(P, Z ) , [C] = [C'] - [A7τ/2π][£0] due to the
local twisting of degree τ in each face. This implies that the intersection
number between the oriented meridian and the characteristic curve is p —
[nτ/2π]. Since the rotation angle of a twist map of P is 2π(nτ/2π -
[nτ/2π]), thus the torsion of P is p - nτ/2π.

3.5. Corollary. For any real number T, there exists a regular convex
Mόbius n-gon P with arbitrary small dihedral angle so that the torsion of
P is T.

Proof. We may assume that T is nonnegative since a change of the
orientation of P will reverse the sign of the torsion. Take any integer
p > T + 2, τ = 2π(p - T)/n we claim that for large n, the conditions
in Proposition 3.4 hold. First note that

limλ = (2pT-T2)/p2((p-T)2-l)
n—*oo

is a positive number. The inequality ak> aχ is equivalent to

sin (kπ/n) - sin2(π/n) > λ(sin2pπ/n - sin kπp/n)

for fc = 2, 3, ..., [ Λ / 2 ] + 1.
The left-hand side of the above inequality is strictly increasing in k e

[ 1, n12], and the right-hand side of it is strictly decreasing in k e [ 1, n/2p].
Thus, the above inequality holds for all k e [1, n/2p]. Now choose n so
large that

sin {[n/2p]π/n) - sin π/n > λ sin (pπ/n).

Indeed, as n tends to infinity, the left-hand side above tends to the
positive number sin2 2π/p and the right-hand side tends to zero since λ
is bounded.

Then for all k > [n/2p] and k<n/2,

sin2(kπ/n) - sin2(π/n) > sin2([n/2p]π/n) - sin2 π/n

> A sin (pπ/n) > Λ,(sin (pπ/n) — sin (kπp/n)).
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Thus the above inequality holds, and by Proposition 3.4, the dihedral angle
of P can be arbitrary small.

4. Proof of the main theorem

Recall an α-cone sphere Sa is the quotient of a Euclidean lens of an-
gle a by the rotation about the edge of the lens which identifies the two
boundary half-spheres of the lens. Our goal is to prove the following.

4.1. Theorem. Given any a e (0, 2π), any closed orientable ^-mani-
fold M has a singular conformally flat structure so that each point in M
has a neighborhood which is conformal to an open set in S^ . Furthermore,
if the cone angle is 2π/n, n e Z+, then the monodromy group is a discrete
subgroup of SO(4, 1).

Since the technical details of the proof are complicated, we will describe
below the basic idea of the proof in the case that a = π.

It is known from the work of Lickorish [7] (see Rolfsen's book [13])
that any closed orientable 3-manifold is obtained by doing 1 or - 1 Dehn
surgeries on the components of a closed pure braid in S3.

Our goal is to realize this surgery construction in Mόbius cone geometry.
We first cover each component of the braid by small balls so that their

union forms a necklace with small exterior angles. These necklaces are
all disjoint and form a regular neighborhood of the braid. The edges of
the Mόbius Polygon are the meridian curves of the braids. We will start
a sequence of modification in each necklace to achieve the Dehn surgery.
Suppose N is such a necklace with cyclically ordered faces Fχ, F2, ..., Fn ,
and suppose Ht is the half-turn about the middle circle of F( for each /.
We then introduce an identification on dN by these half-turns, i.e., each
side F. is self-identified by H . The quotient space will be homeomorphic
to a ±1-Dehn surgeries on the component of the braid if we choose the
necklace suitably. To see this, take the edge E = F{nFn of the Mόbius
n-gon int(N)c. The Mόbius transformation φ = Hn o Hn_χ o ... o Hχ

sends E to itself. This shows that points x, φ(x), φ2{x), ... in E are
all identified in the quotient. Thus the quotient is a manifold if and only
if φ is periodic in, i.e., φk = id in E for some integer k. We require
that k = 1.

(1) <£ = id in E.
Assume that (1) holds. Then the quotient is homeomorphic to an integer

coefficient Dehn surgery on dN. To see this, consider a characteristic
curve C in dN. Since the twist map is the identity map, C is invariant
under the identification. The quotient of C is a wedge of closed intervals
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and is contractible. The quotient of N is homeomorphic to a Dehn surgery
on dN killing C. The Dehn surgery coefficient is the intersection number
between a meridian m of P = int(N)c and C which in turn is the torsion
of the Mόbius n-gon P. Thus we require that

(2) the torsion of Ίn\(N)c is +1 or - 1 depending on the Dehn surgery
coefficient.

Lastly, since all edges of N are identified to one edge in the quotient,
we also need the following:

(3) The sum of the exterior angles of TV is 2π, i.e., the sum of the
interior angles of P is 2π .

Now the modification of N goes as follows. Start with N having
small inner angles and torsion T. Use Corollary 3.5 to construct a regular
Mόbius tf'-gon P' of torsion -T±\ and small inner angles. We choose
P' so that the module of a face of P' is the same as the module of a
face of P. Glue P' to P along the face to obtain a new Mόbius Polygon
Q with torsion ±1 using Lemma 2.6. Finally we attach a PSL(2, R)
Mόbius Polygon to a face of Q to make the sum of the inner angles to be
2π. Thus, Q satisfies (1), (2), and (3).

To show the theorem for arbitrary angle a, we replace each Mόbius
annulus Fz which is a face of TV by a union of two Mόbius annuli which
intersect along one boundary circle at an angle a.

4.2. Spherical polygons. Recall that S is the unit sphere in C with
the standard induced metric.

4.3. Lemma. Given any knot K and any neighborhood U of K in
S3, there is δ > 0 so that for all e e (0, δ ), there exists a spherical
polygon L€ in U so that the following hold:

(1) Le is isotopic to K in U\
(2) the length of each edge of Le is e ,
(3) the exterior angle of Le at each vertex is at most Cy/e for some

constant C depending on K,
(4) two vertices of Le are at most 1.5 e apart if and only if they are

adjacent.
Proof We may assume that K is C°° smooth and contains a small

geodesic segment Kr of length δ0. By a standard approximation argu-
ment, there exists δ{ > 0 so that for all e e (0, δχ), if Ae is a spher-
ical polygon satisfies (a) each vertex of Ae is in K and (b) the length
of each edge of Ae is in (e/2, 2e ), then Ae is isotopic to K in U,
and the exterior angle of Ae is at most e . Furthermore, for each x
in K, the sphere of radius e centered at x intersects K (and Ae)
at two points. To construct Le, we fix an orientation on K and take
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δ = m i n ^ j , <y 10, π / 1 0 0 ) > a n d l e t κ' = [ « _ , v + ] where v+ follows υ_
in the orientation of K. In general, if x, y e 5 s so that their spherical
distance is less than π, then we use [x, y] to denote the oriented geodesic
segment from x t o y . Now for e e (0, δ), take pχ € [ υ_ , v+ ] so that
ds(pχ, v+) = e . Inductively, suppose pf. is chosen in AT. Then p.+ι is
the point in K following p. so that ds ( /?,. , pi+x) = c . Let /?w be the first
point in pχ, /?2 , ... so that /?m G [ v_ , ^ ] and ds(pm, v_) e (0, e].
Now the length / of [pm ,pχ ] satisfies ί o -2e < / < δQ-e . We divide [pm ,
Pjjinto [//2e]+l equal segments, say by the points qχ,..., ^r//2ei On each
small segment [# z , ^.+1 ], construct a spherical triangle Aqiqi+ιri of side
lengths e , e , //([//2e]+l). Since 2e/(l+2e//) < //([//2c]+l]) < 2e , an
easy calculation shows that the inner angles of triangle Aqiqi+ιri at #z and
^r.+1 and the exterior angle at rf. are at most C>/e for small e . We take
the spherical polygon Le to be the one with vertices pχ,..., pm, q{, rχ,
q2 ,.... <fy/2e] By ^ e construction, Le satisfies all the conditions, q.e.d.

4.4. Spherical regular necklaces. Suppose now that L = Le is a spher-
ical w-gon so that each edge has length e , and exterior angle at each vertex
is less than CΛJZ . By choosing e very small, we may assume that the ex-
terior angle of L is very small. We label the vertices of L€ to be vχ,..., vn

cyclically. Construct a spherical necklace N = Ne r n by putting spherical
ball B. of radius r > e/2 centered at v.. The existence of such a necklace
is guaranteed by Lemma 4.3 (4). We call N and P = Pe r n = int(Λ^)c

Mόbius Polygons based on the spherical polygon L. We also call r the
radius of the necklace N. Let F. = PndBi be the /th face of P, E. =
F(n ^/_i be the rth edge of P, and Cz be the middle circle of F..

4.5. Lemma. The twist map τE : E{ -> Ei is an isometry with respect

to the induced metric on Et. Furthermore, the torsion of P = P€ r n is
independent of the radius r.

We also call τ the torsion of the spherical equal-sided polygon L.
Proof Let L. be the great 2-sphere which bisects the angle ^.vi_χvivi+χ

at v., and let R. be the spherical reflection about L . Since L has equal
edge lengths, L intersects dBt orthogonally at the middle circle Ct of
Ft. In particular, Hc = R. oInv^ = lnvi oR. where Inv is the inversion
about dB . Thus Hr\π : E. , -• £. is the same as iϊ .L (which
preserves the natural orientations). This implies τE = RtoR(_x o...oRno

Rn_x o ...Ri+ι\E is an isometry of Ei —• Ei with respect to the induced
metric. The rotation angle of τE is independent of the radius r since
these Ri 's are independent of the radius. On the other hand the torsion
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τ(r) of Pe r n is continuous in r (for fixed e, n) and τ(r) = -namod(Z)

where a is the rotation angle of τE . It follows that the torsion of P t r n

is independent of the radius r.
4.6. Given an equal-sided spherical n-gon L and a positive integer

k > 2, we may divide each edge of L into A: equal parts to obtain
an equal-sided spherical kn-gon Lf. Suppose TV = Ne and TV7 =
Nf

e/k r, nk are two spherical necklaces of radii r and r based on L and

L' respectively.
4.7. Lemma, (a) The torsion of P = int(N)c and of P' = int(N')c are

the same, i.e., the torsions of L and l! are the same.

(b) Suppose B't is a ball in the necklace N1 centered at a partition point,

and F! is the corresponding face with an edge E\. Then the twist map τE>

of Ef. in Nf is comparable with Fj.

Proof (a) By Lemma 4.5, the torsion of N^k r> nk is independent

of the radius. We compare the two Mόbius Polygons P = P€ r n and
p' = pf

€/k r nk . p is obtained from Pf by attaching a PSL( 2, R j Mόbius

Polygon (each of them has a common axis sp([^, vi+ι])) along faces of

P. Indeed, suppose [v., vi+ι] is an edge of Le, and [vt, vi+ι] is covered

by the same radius balls B , B. , B. , ..., B. , BiMλ . Then, U^" 1^. -
1 h h ιk-\ ι + i J~ι ιj

int{Bi U Bi+ι) is a PSL( 2, R) Mόbius Polygon with axis sp([^., vM]).
These are the attaching Mόbius Polygons to P to obtain P'. By Lemma
2.6, the result follows.

(b) Consider three adjacent balls B' _χ, 5 , B'i+ι. They all have the
same spherical radii and they are centered at υ'i_ι, υ. and v'M so that
these three points lie on a great circle. This shows that any spherical
rotation about sp([v.vi+ι\) leaves the face Fj invariant. In particular, it
rotates E\ with respect to the induced metric. By the proof of Lemma
4.5, τE> : E\ -> E' is a spherical rotation, and we obtain the result.

4.8. Proof of Theorem 4.1. By the work of Lickorish [7] (see also [13]),
M is obtained by doing +1 or - 1 Dehn surgery on the components of a
pure closed braid in S3 . Fix a tubular neighborhood U of the braid in
S3. There are now three cases according to the given angle a = π, a < π
or a > π .

Case 1. a = π . Since all geometric construction to achieve the Dehn
surgery will be within any given regular neighborhood U of the braid,
we will simply focus on one component K of the braid. By Lemmas 4.3
and 4.6, we may assume that K is isotopic to a spherical polygon L of
equal side length in U. Let τ be the torsion of L. By Corollary 3.4
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and Lemma 4.3, we construct a regular spherical polygon Γ so that the
torsion of Γ is - τ - 1 or - τ + 1 where +1 or - 1 depends on the Dehn
surgery coefficient. Divide each edge of L into k (k very large and to
be determined) equal parts to obtain a new equal-sided spherical polygon
Le of edge length e . Let Nr be the spherical necklace based on Le of
radius r. Choose k very large, so that there exists Nr satisfying

(*) the sum of the exterior angles of N is at least 2π, and each

exterior angle of Nr is less than any given number, say less than π/4 in

our case (k depends on this number).
The exterior angles of Nr are estimated as follows. Fix two positive

numbers δχ < δ2 < 2, and consider the necklace Nr so that the radius
r e (e/δ2k, e/δ{k). Then the exterior angle of Nr at each edge is given
by 2cos"1(^/^l) which is at most 2cos"1(ff/ff)) and is at least

2ws~ι(*F£βkλ). Thus, for δ{ sufficiently near 2, the exterior angle is

arbitrary small. On the other hand, the sum of the exterior angles of Nr

is Ink cos"1 (^*J$kλ) which tends to infinity as k goes to infinity.

Perform the same subdivision procedure to Γ to obtain a new spherical

polygon Γ€/ of edge length e . Let N'r, be the spherical necklace based on
iΛ of radius / . Then, there exists a radius rr

Q so that the sum of the ex-

terior angles of N1, is > 2π and each exterior angle of N1, < π/4. Take

two faces Fr and F[, of the Mόbius Polygons int(N r)
c and int(7Vr'/)c so

that both faces correspond to balls centered at division points. The mod-

ule of Fr, m(Fr) {m{F'r>) respectively) depends strictly monotonically

and continuously on the radius r (and / respectively). Furthermore, the

module m(Fr) tends to oo as r —• e/2. We may assume without loss

of generality that m(Fr) > rn(F',). Then there exists a strictly mono-

tonic continuous function φ(r) of / sending the open interval (0, r'o)

to (0, r0) so that m(F,,,)) = m(F'r,) for all / . We now glue the Mόbius

polygon Pφ(ff) = inX(Nφ{/))
c to P'r, = int(Λ^/)c along the face Fφ{/) and

F\. By Lemma 4.7, the twist maps of P ^ (or P'r,) at the edges of the

face Fw/v (or Fr>) are compatible with the faces Fr (or F'r,). Thus, the

glued Mόbius polygon Qr, = Pφ,r>, U P'r> has torsion +1 or - 1 depending

on the Dehn surgery coefficient by Lemma 2.6. Qr> is still convex by the

assumption on the dihedral angles on Pr and P\. The sum of the inner

angles of Qr> is arbitrary small as r tends to e'/2 and is at least 2π for

the initial r = r'o by the construction. Thus, there exists a radius / so

that the sum of the inner angles of Qr> is 2π . By our previous argument,
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the identification on dQr> induced by the half-turns about the middle cir-
cles in faces gives rise to the +1 or - 1 Dehn surgery. By the construction,
the quotient space has a Mόbius cone structure with cone angle π at the
set corresponding to the middle circles of faces of Qr>. Furthermore by
Poincare polyhedron theorem, the monodromy is a discrete subgroup of
SO(4,1).

Case 2. a < π . Given any positive number /, let Δ / α be the unique

isosceles hyperbolic triangle so that the base has length /, and the an-

gle at the top vertex is a. Let Δz α xSι be the corresponding convex

PSL(2, R) Mόbius 3-gon. For each r e (e'/2, r'o) and each face F of

Qr> constructed above, we attach the Mόbius 3-gon Δw ( / Γ ) α x S{ to Qr>

along the face F to obtain Qr, a = Qr, Ufaces Am{F) a x Sι. We claim

that Qr> a is still a convex Mόbius Polygon in S3 if we choose Qr, appro-
priately. Indeed, both the dihedral angles of Qr> and the dihedral angles
of Δ m ( F ) a x Sι at the {bottom vertices } xSι can be made arbitrary small
if both k and the modules of the faces of the necklaces are large. Thus
the attaching procedure can be realized in S as in the proof of Lemma
2.6.

The torsion of Qr> a is still the same as Qr< which is ± 1 by Lemma
2.6(a). The sum of the dihedral angles of Qr> a at the edges of Qr> tends
to zero as r —> e'/2 and is larger than 2π for the initial radius r =
r'o. Thus, we find one radius / so that the sum is exactly 2π. Now,
introduce an identification on dQr> a as follows: for each adjacent face

F, Ff of Qr, a corresponding to Δ m ( 5 ) a x Sι, let C = F Π F1 be the

edge corresponding to {top vertex} x Sι. The degree a rotation about
C, denoted by Hc a, identifies F with Fr. These Hc a generate the
identification on dQr> α . By the previous argument, the quotient space is
the same as performing +1 or - 1 Dehn surgery on K.

Again by the construction, the quotient space has a Mόbius cone struc-
ture with cone angle a. Furthermore, the monodromy group is discrete
(due to the convexity of Qr, a ) if a = 2π/n for some positive integer n
by Poincare polyhedral theorem.

Case 3. a > π. This is the most difficult case since we now need to

"dig" out Mόbius 3-gon from Qr,. To achieve this, we now attach Mόbius

3-gons Δ7 a x Sι to Qr> inside Qr>. The only problem that may occur

is that the result may not be a Mόbius Polygon in S3. To guarantee the
embeddedness, we first choose the spherical polygons L and Γ with very
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small exterior angle. We again subdivide both L and Γ enough times so
that the condition (*) in Case 1 still holds. Thus we obtain two subdivided
spherical equal-sided polygons Le and Γc/. We also have two spherical
necklaces Nr and N'r> of radii r and r based on them respectively.

To show that attaching Δm(/Γ) β x Sι to all faces of Nr (respectively

N'r,) still produces a Mόbius Polygon in S , we first consider the very
special case that the spherical polygon L is a regular polygon whose ver-
tices are in a circle. Thus, the corresponding spherical necklace is of
type PSL( 2, R) whose axis is the given circle. In this case, if we at-
tach Δ w ( F ) β x Sι to all its faces, the resulting Mόbius Polygon is still

embedded in S3. Indeed, the attaching procedure is actually achieved in
the hyperbolic plan H2 in this case. It is implied by the following lemma.

4.9. Lemma. Given 0 < β < π, let N = [2π/β]. If n > N, and P is a
regular hyperbolic n-gon whose edge length is I in H , then isometricaϊly
attaching Aι β to each edge of P inside P will produce an embedded
hyperbolic 2n-gon.

Indeed, suppose O is the center of P, and the vertices of P are vx,
..., vn ordered cyclically. The isosceles triangle Aυ.υi+ιO has top angle
2π/n < β . Moving O toward the middle point of v.υi+ι will then pro-
duce an isosceles hyperbolic triangle of top angle β based on vtvi+l inside
P. Performing this procedure at every such isosceles triangle v.υi+ιθ9 we
obtain the embedded hyperbolic 2rc-gon.

Now the general case of attaching Δ , F ) β x S 1 follows from the spe-
cial case since we can always choose the spherical polygon L to have
extremely small exterior angles, and we can subdivide L enough time so
that locally the attaching procedure is almost the same as the special case
above. Thus, one obtains an embedded Mόbius Polygon after attaching
these PSL(2,R) 3-gons.

Now suppose subdivisions are fine enough for both Le and Γc/. Then
the corresponding spherical necklace Nr and N'r> based on them are en-
larged by attaching these Mόbius 3-gon Δ m ( F ) β to all faces except for
two faces Fr and F'r> respectively. Both of these faces are centered at
division points. By the discussion above, we have two Mόbius Polygons
Ar = m\{NrΌF^FrAm{F)J$xSx)c and 4 , = int(Λ£ U ^ Δw ( F, ) > / ? x S 1 ) '

in S3.
The dihedral angles of Ar (respectively A'r>) are estimated in the same

way as before. Fix a positive number δ < 2, and consider necklaces Nr

so that the radius r e (e/δk, e/k). Then the dihedral angle of Ar at each
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edge corresponding to Nr is at least a constant angle depending on e , δ .
The sum of the dihedral angles of Ar at the edges corresponding to Nr

can be arbitrary large if k is large. Thus, we may assume that there are
radii rQ and r'o so that the sum of the dihedral angles of Ar and A'r, at

the edges corresponding to iV_ and N1, are both larger than 2π.

We assume without loss of generality that m(Fr) > m(F^). Thus, for

each r <r0, there exists a unique φ(r) so that rn(Fφ{r>)) = m(F^). We

now glue A'r, to Aφ,,, along Fφ^,, to obtain a Mόbius Polygon Qr> a in

S 3 . That Qr, a is still embedded in S3 follows from the fact that A'r, and
Λφ^ lie in balls bounded by sp(Fr,) and sp(Fφ,,Λ respectively. Thus the

gluing process can always be realized in S3 (see the proof of Lemma 2.6).

The torsion of Qr> is +1 or - 1 according to the Dehn surgery coeffi-

cient. Again, as r = r'o, the sum of the inner angles of Qr> a at the edges

corresponding to the edges of Λ^ and Nφ,,, is > 2π . Thus, we find an

intermediate radius r so that the sum of the inner angle is 2π . Now,

introduce an identification on d Qr> a as in the second case. The quotient

is the same as performing a +1 or - 1 Dehn surgery on the corresponding

link. Furthermore, by Poincare polyhedron theorem, the quotient has a

Mόbius cone structure of cone angle a.
4.10. Remark. The restriction to Dehn surgery on trivial knots in

the proof is not necessary. The proof works on Dehn surgery on any
conformally flat 3-manifold, and the Dehn surgery coefficient can be any
given rational number, i.e., Dehn surgery can always be realized in Mόbius
cone geometry. In particular, the result holds for nonorientable closed 3-
manifolds as well.

5. A solution of a problem of Kuiper

Our construction of Mόbius structures on circle bundles over surface
is based on a simple topological identification. In dimension two, if the
opposite sides of a planar 2«-gon are identified by homeomorphisms re-
versing the induced orientations of the sides, then the quotient is a closed
surface of genus [n/2] - 1. There are two cycles of vertices if n is odd,
and only one cycle of vertices if n is even.

5.1. Proposition. Suppose P is a regular convex Mόbius 2n-gon in-

variant under φ(z, w) = {ze2πi/n, we2pπi/n) so that
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(1) the inner angle of P is 2π/m where m = 2n if n is even, and
m = n if n is odd; and

(2) the local torsion of P is 2πT/m for some nonnegative integer T.
Identify the opposite sides of P by Hr o φn where C. is the middle

circle of the ithface of P. Then the quotient is homeomorphic to a circle

bundle over surface Σg of genus g = [n/2] - 1 and has a Mόbius structure

with discrete monodromy group isomorphic to πj(Σ^). Furthermore, the

Euler number of the fibration is the torsion p — nT/m of P.

Proof Suppose E , ..., Eέ form a cycle of edges under the identifi-

cation. Then one calculates easily that the cycle transformation of E. is

(Hc oφ)m . Under conditions (1) and (2), by Lemma 3.3, the cycle trans-

formation is the identity map. Thus, by Poincare polyhedron theorem,

the side pairing generates a discrete group isomorphic to 7cx(Σg) where

Σ denotes the surface of genus g. Furthermore, the quotient space is

homeomorphic to a circle bundle over surface of genus [n/2] - 1 (see [5],

[6], or [8] for more details).
To find the Euler number of the fibration of the quotient over Σ^ , we

consider a characteristic curve C in dP. Since the twist map of each edge
is the identity map, C is invariant under the identification, and intersects
each edge transversely at one point. The Euler number of the fibration is
the intersection number of meridian curve of P with the characteristic
curve. Thus the proposition is proved, q.e.d.

We now apply Proposition 5.1 to show
5.2. Theorem. There exists a Mόbius structure with discrete mono-

dromy group on the circle bundle over surface of genus 2 so that the Eu-
ler number of the bundle is one.

Proof Take a regular convex Mόbius 10-gon P, with local torsion
τ = 2π/5 so that P is invariant under periodic map

φ(z, w) = (ze , we ).

By Proposition 3.7, it suffices to show that among these regular 10-gons,
there is one with inner angle 2π/5. We now calculate the range of the
dihedral angles, λ = ^(^/iQ)(cos2π/5-coS6π/i0) w 0.472135954, ak =

° sin'!(6π/10)(cos2π/10-cos2π/5) k

sin2(fcπ/5) + λ sin2(3A:π/5) are found to be

α, « 0.40458495

a2 w 0.772542473
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a3 * 0.699593468

a4π 1.06762757

α 5 « 1.472135954

and ak = al0_k . Thus, the smallest ak is aχ = α9 and the next smallest
o n e i s α 3 = α 7 . β = π - 2 sin"1 x / V ^ ~ 81.00141029° > 72°. By
Proposition 3.3, the dihedral angle of these P take all values in (0 , β).
Hence, there is one with inner angle 2π/5 , and the theorem follows from
Proposition 3.6. q.e.d.

Note that the construction actually exists in H . See Gromov et al.
[4] or Kuiper [6] for detailed discussion concerning Mόbius Polygons in
S3 and their convex hulls in H4 . We have actually produced a complete
hyperbolic metric on a nontrivial plane bundle over a surface of genus 2.
Since all closed orientable surfaces are covering spaces of Σ 2 , the above
theorem implies that all plane bundles over Σ (g > I) with Euler number
g-1 have complete hyperbolic structures.
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