MÖBIUS CONE STRUCTURES ON 3-MANIFOLDS

FENG LUO

Abstract

We show that for any given angle $\alpha \in(0,2 \pi)$, any closed 3-manifold has Möbius cone structure with cone angle α.

1. Introduction

In this paper we prove
Theorem 1. For any positive $r<2$ any closed orientable 3-manifold M has a singular Riemannian metric ds of the following form: There are local coordinates (z, t) (z complex and t real) in M so that in the coordinate the metric ds is:
(a) conformally flat: $d s=u(z, t)\left(|d z|^{2}+|d t|^{2}\right)$ or,
(b) conformally flat with cone singularity of angle $r \pi$,

$$
d s=u(z, t) \cdot\left(|d z|^{2} /|z|^{2-r}+|d t|^{2}\right)
$$

where $u(z, t)$ is a smooth positive function of z, t. Furthermore, if $r=$ $2 / n$ for some positive integer $n>1$, then the monodromy group of the conformally flat structure is a discrete subgroup of $\mathrm{SO}(4,1)$.

Due to the solution of the Yamabe problem by Schoen [14] it seems highly possible that in each such conformal class, there exists a Riemannian metric having the same form as above so that the scalar curvature is constant. Furthermore, the metric is unique if the singular set is nonempty and the pair (M, singular set) is not (S^{3}, circle).

We may also state the result in terms of Möbius cone geometry as follows. Given $\alpha \in(0,2 \pi)$, a Euclidean lens of angle α is defined to be the intersection of two balls at an angle α if $\alpha<\pi$, to be a ball together with a circle in the boundary if $\alpha=\pi$, and to be the complement of the interior of a Euclidean lens of angle $2 \pi-\alpha$ if $\alpha>\pi$. An α-cone 3 -sphere S_{α}^{3} is the quotient of a Euclidean lens of angle α by the rotation about the edge of the lens which identifies the two boundary half-spheres of the lens. A 3-manifold M is said to have Möbius cone structure with cone

[^0]angle α if it has a singular conformally flat structure so that each point in M has a neighborhood conformal to an open set in S_{α}. The above result is the same as

Theorem 2. Given any positive $\alpha<2 \pi$, any closed orientable 3-manifolds M has a singular conformally flat structure so that each point in M has a neighborhood which is conformal to an open set in S_{α}^{3}. Furthermore, if the given cone angle is $2 \pi / n$ for some $n \in Z_{+}$, then the monodromy group is a discrete subgroup of $S O(4,1)$.

The singularity forms a link in the manifold. As the cone angle α tends to 2π, the number of components of the singularity increases to infinity. We call the singular conformal structure a Möbius cone structure with cone angle α.

Essentially, we show that 3-dimensional Dehn surgery can be realized in Möbius cone geometry S_{α}^{3}. The basic idea of the proof comes from Gromov, Lawson, and Thurston's construction in [4]. The main geometric object that we will study in detail is the Möbius Polygon in S^{3}. These are solid tori in S^{3} whose boundary is a union of finitely many annuli so that each annulus is in a 2-sphere and the interiors of these annuli are disjoint. Regular Möbius Polygons were first used by Gromov, et al. in their construction of hyperbolic structures on plan bundles over surfaces.

As another consequence of the study on Möbius Polygons, we show
Theorem 3. Let $R^{2} \rightarrow W_{e, g} \rightarrow \Sigma_{g}$ be the plan bundle over a surface of genus $g>1$ so that the Euler number is e. If $|e|=g-1$, then there exists a complete hyperbolic metric on $W_{e, g}$. Furthermore, the conformal infinity of $W_{e, g}$ in the hyperbolic metric is a Möbius structure on the associated circle bundle over Σ_{g}.

This answers a question of Kuiper [6] affirmatively. We were informed by Kapovich that Kuiper and Waterman have also discovered the similar metric.

In [10], we prove a stronger result that Theorem 3 is still true for all $|e| \leq(g-1)$ using different constructions.

The most interesting Möbius Polygons are the ideal ones. These are obtained as the complement of a necklace formed by tangent balls in R^{3}. We discovered the analog phenomena to Thurston's construction of hyperbolic metrics on compact surfaces by using hyperbolic ideal polygons in H^{2}. Similar to Thurston's completion of hyperbolic metric, the conformal completion to noncusp ends in this case is to add a torus to the end and the boundary of the ideal Möbius Polygon behaves like a leaf of Reeb foliation in the interior of a solid torus. We intend to carry out the study in [10].

The paper is organized as follows. We define Möbius Polygons and discuss their basic properties in $\S 2$. The most useful invariant introduced in $\S 2$ is the torsion of a Möbius n-gon. We show that torsion is addictive with respect to the gluing of two Möbius Polygons. In §3, we discuss regular convex Möbius Polygons and prove a result concerning the existence of regular Möbius Polygons with prescribed torsion. The main theorem and Theorem 3 are proved in $\S \S 4$ and 5 respectively.

2. Möbius Polygons in S^{3}

The basic facts about Möbius geometry in $\left(S^{3}, \operatorname{Mob}\left(S^{3}\right)\right)$ may be found in Beardon's book [1] or in [15]. We will use S^{3} to denote the unit sphere in $C^{2} . \operatorname{Mob}\left(S^{3}\right)$ is the group of all diffeomorphisms of S^{3} preserving angles. We will identify S^{3} with $\bar{R}^{3}=R^{3} \cup\{\infty\}$ by a stereographic projection. We will abuse the use of language by saying that lines and planes in \bar{R}^{3} are special types of circles and 2 -spheres in S^{3}. Elements in $\mathrm{Mob}^{+}\left(S^{3}\right)$ (orientation-preserving Möbius transformations) are classified into three types: hyperbolic, parabolic, and elliptic. For each circle C in S^{3}, the half-turn about C, denoted by H_{C}, is the orientationpreserving Möbius involution leaving C pointwise fixed. Given a set X containing more than one point, the span of X, denoted by $\operatorname{sp}(X)$, is the sphere of the smallest dimension containing X. A pair of circles A, B is said to be standard if (A, B) is Möbius equivalent to the pair (z-axis, the unit circle in the $x y$-plan).

The basic geometric objects that we will study are in the following.
2.1. Definition. (a) A Möbius annulus A is a topological annulus in a 2 -sphere so that A is bounded by two circles. The middle circle of a Möbius annulus A is the circle C in A so that inversion about C leaves A invariant. An orthogonal arc in a Möbius annulus A is a circular arc orthogonal to both boundary components of A. The module of A, denoted by $m(A)$, is the module of the open annulus $\operatorname{int}(A)$ in $\operatorname{sp}(A)$.
(b) A Möbius n-gon P is a topological solid torus in S^{3} so that its boundary ∂P is a union of Möbius annuli $F_{1}, F_{2}, \ldots, F_{n}$, and their interiors are all disjoint. Each F_{i} is called a face of P, and each circle in ∂F_{i} is called an edge of P. A Möbius Polygon is said to be convex if the dihedral angle at each edge of P is less than π. Two Möbius Polygons are said to be equivalent if there is a Möbius transformation sending one to the other.

For each Möbius annulus A, there exists a unique circle C in S^{3} so that C and each component of ∂A form a standard pair. Furthermore, $A \cap C=\phi$, and C is orthogonal to $\operatorname{sp}(A)$. We call C the axis of A. A Möbius n-gon is said to be of type $\operatorname{PSL}(2, R)$ if the axes of its faces are the same; and is said to be of type $\operatorname{PSL}(2, C)$ if the axes of its faces are in a fixed 2 -sphere, i.e., all its faces are orthogonal to a fixed 2 -sphere. Clearly a $\operatorname{PSL}(2, R)$ Möbius n-gon is also a $\operatorname{PSL}(2, C)$ Möbius n-gon.

All $\operatorname{PSL}(2, R)$ Möbius n-gons are constructed as follows. Take a circle C (to be the common axis) and a disc D with $\partial D=C$, and consider $\operatorname{int}(D)$ as a model for the hyperbolic plane H^{2}. Given any hyperbolic polygon Δ of n sides (not necessary convex) in $\operatorname{int}(D)$, the rotation of Δ about C, denoted by $\Delta \times S^{1}$, is a $\operatorname{PSL}(2, R)$ Möbius n-gon. Conversely, all $\operatorname{PSL}(2, R)$ Möbius n-gons which are disjoint from their axes are equivalent to a $\Delta \times S^{1}$. In particular, all convex $\operatorname{PSL}(2, R)$ Möbius n-gons are of the form $\Delta \times S^{1}$. If a $\operatorname{PSL}(2, R)$ Möbius n-gon intersects its axis, then it is equivalent to $S^{3}-\operatorname{int}\left(\Delta \times S^{1}\right)$ for a hyperbolic polygon Δ. Furthermore, dihedral angles of $\Delta \times S^{1}$ are the same as inner angles of Δ, and the modules of the faces are the same as the hyperbolic length of the edges of Δ.
2.2. Lemma. Given a Möbius n-gon P, let $\operatorname{Aut}(P)=\left\{g \in \operatorname{Mob}\left(S^{3}\right) \mid\right.$ $g(P)=P\}$. Then the following hold:
(a) P is of type $\operatorname{PSL}(2, R)$ if and only if $\operatorname{Aut}(P)$ is infinite.
(b) P is of type $\operatorname{PSL}(2, C)$ if and only if there exists $g \in \operatorname{Mob}\left(S^{3}\right)-\{\mathrm{id}\}$ so that g leaves each face invariant.
(c) If P is not of type $\operatorname{PSL}(2, C)$, then $\operatorname{Aut}(P)$ is a subgroup of a dihedral group. Furthermore, if $\operatorname{Aut}(P)$ acts transitively on the set of all faces of P, then there is a cyclic subgroup of order n in $\operatorname{Aut}(P)$ which acts transitively on the set of all faces of P.
(d) There are no Möbius bi-gons in S^{3}; all Möbius 3-gons are of type $\operatorname{PSL}(2, R)$ and all Möbius 4-gons are of type $\operatorname{PSL}(2, C)$.

Proof. The proof is based on the following fact about $\operatorname{Mob}\left(S^{3}\right)$. Namely, if $g \in \operatorname{Mob}\left(S^{3}\right)$ leaves three pairwise disjoint unlinked circles C_{1}, C_{2}, C_{3} invariant, then g is either an inversion about a 2 -sphere or a rotation about a circle, or an orientation-reversing involution with exactly two fixed points. In the first case, all C_{i} 's are orthogonal to $\operatorname{Fix}(g)$, in the second case $\left(\operatorname{Fix}(g), C_{i}\right)$ is a standard pair for each i, and in the third case, we may assume after a Möbius conjugation that g sends x to $-x$ in \bar{R}^{3}. Thus all circles are centered at the origin. We now use this fact to prove the statements.

To prove (a), if P is of type $\operatorname{PSL}(2, R)$, then any rotation about the common axis is in $\operatorname{Aut}(P)$. To show the converse, we first note that there is an element g in $\operatorname{Aut}(P)$ having infinite order. Indeed, since $\operatorname{Aut}(P)$ is a closed Lie subgroup of $\mathrm{SO}(4,1)$ by definition, it either contains a nontrivial element of infinite order or is discrete. If it is discrete, then exhausting $\operatorname{Aut}(P)$ by finitely generated subgroups and using Selberg's lemma, we conclude that $\operatorname{Aut}(P)$ has to be finite if it contains no element of infinite order. Now $h=g^{n!}$ is of infinite order and leaves each face of P invariant. Since there are no Möbius bi-gons in S^{3}, h leaves at least three pairwise unlinked circles invariant (namely the edges of P). By the fact above, h must be a rotation about a circle C, and C and each edge of P form a standard pair. Thus P is of type $\operatorname{PSL}(2, R)$.

To see (b), if P is of type $\operatorname{PSL}(2, C)$, we take g to be the inversion about the 2 -sphere orthogonal to all edges (hence to all faces). Conversely, if $g \in \operatorname{Aut}(P)-\{i d\}$ leaves each edge invariant, then by the fact above, g is either a rotation about a circle or an inversion about a 2 -sphere, or an orientation-reversing involution with exactly two fixed points, and P is of type $\operatorname{PSL}(2, C)$ in the first two cases. The last case does not occur. Indeed, we may assume after a Möbius transformation that g sends x to $-x$ in \bar{R}^{3}. Then all edges of P are circles whose Euclidean centers are the origin. This implies that all faces of P are planes passing through the origin. This is absurd.

To prove (c), we construct a natural homomorphism $\rho: \operatorname{Aut}(P) \rightarrow$ $\mathrm{Dih}_{n}=$ Iso (regular Euclidean n-gon) by simply coding the action of $\operatorname{Aut}(P)$ on the set of faces of P. If P is not of type $\operatorname{PSL}(2, C)$, then $\operatorname{Ker}(\rho)$ consists of the identity element by (b). Thus the first and second statements follow.

To prove (d), we note first that the set of the spans of n faces of P has no common intersection points. Indeed, each common point must be in the intersection of all edges, which is the empty set. Now if $n=3$, we apply the fact that any three 2 -spheres with no common intersection point is orthogonal to a circle. If $n=4$, we apply the fact that any four 2-spheres in S^{3} with no common intersection point is orthogonal to a fifth 2-sphere (see [9] for a proof). This completes the proof. q.e.d.

The following lemma shows the special feature of convex Möbius Polygons.
2.3. Lemma. Suppose P is a convex Möbius n-gon with faces F_{1}, $F_{2}, \ldots F_{n}$ ordered cyclically. Take a point p in $\operatorname{int}(P)$, and let B_{i} be the ball in S^{3} so that $\partial B_{i}=\operatorname{sp}\left(F_{i}\right)$ and p is not in B_{i}. Then $N=\cup_{i=1}^{n} B_{i}$ is
a solid torus in S^{3} with boundary ∂P. In particular, $P \cap \operatorname{int}\left(B_{i}\right)=\phi$ for each i.

Proof. After a Möbius transformation we may assume that p is the infinity. Thus B_{i} is the 3 -ball in R^{3} bounded by $\operatorname{sp}\left(F_{i}\right)$. Each F_{i} has two sides: the concave and convex sides. By the dihedral angle assumption on P, the concave side of F_{i} is in P. Thus a small neighborhood of $F_{i} \cup F_{i+1}$ in $B_{i} \cup B_{i+1}$ is in P^{c}, the complement of P in $\overline{\mathbb{R}}^{3}$. Now construct an abstract solid torus N^{\prime} which is a disjoint union of these B_{i} so that B_{i} and B_{i+1} are identified according to their configuration in R^{3}. To be more precise, a point $x \in B_{i}$ and a point $y \in B_{i+1}$ are identified if and only if $x=y$ in $B_{i} \cap B_{i+1}$ in $R^{3}($ the index i is counted $\bmod (n))$. There exists a natural immersion $\Phi: N^{\prime} \rightarrow S^{3}$ by sending each point $x \in N^{\prime}$ to its real representative. Since $\Phi: \partial N^{\prime} \rightarrow S^{3}$ is an embedding, Φ is also an embedding. Thus the image of N^{\prime} under Φ is either P or $\operatorname{cl}\left(P^{c}\right)$. By the choice of the initial point p, the second case must occur, and the result follows. q.e.d.

We call $\operatorname{int}\left(P^{c}\right)$ (again a Möbius n-gon) a necklace if P is a convex Möbius n-gon.

An oriented Möbius n-gon P is a Möbius n-gon with an orientation in P together with orientations in all edges of P so that these oriented edges represent the same homology class in $H_{1}(\partial P, Z)$. Each face F of P has the induced orientation from P. We label the faces and their boundary components by F_{i} and E_{i}, E_{i-1} so that the induced orientation on E_{i} from F_{i} is the same as the given orientation on E_{i}. Thus $E_{i}=F_{i} \cap F_{i+1}$, $i \bmod (n)$. We also orient each orthogonal arc of F_{i} so that it starts from E_{i-1} and ends at E_{i}. Let C_{i} be the middle circle of F_{i}. Then the twist $\operatorname{map} \tau_{E_{i}}$ of E_{i} is the Möbius transformation $H_{C_{i}} \circ \ldots \circ H_{C_{n}} \circ H_{C_{1}} \circ \ldots .\left.\circ H_{C_{i+1}}\right|_{E_{i}}$ $: E_{i} \rightarrow E_{i}$. Clearly $\tau_{E_{i}}$ is orientation preserving and is conjugated to $\tau_{E_{j}}$. For $\operatorname{PSL}(2, R)$ Möbius n-gons, the twist map is always the identity map.

The twist map is closely related to a natural oriented foliation on ∂P. Consider the set of all oriented orthogonal arcs in the faces. The joining of these orthogonal arcs gives a foliation on ∂P. The leaves of the foliation are transverse to the edges and the middle circles. Indeed, the twist map is the holonomy map of the oriented foliation at the edge. There is a closed leave in the foliation if and only if $\tau_{E_{i}}$ has some periodic points.
2.4. Torsion of Möbius Polygons. We are mainly interested in those Möbius n-gons P so that (a) the twist map is elliptic and (b) a meridian curve of P intersects an edge at one point. For instance, a convex Möbius

Polygon satisfies the above condition (b) by Lemma 2.3. For these P, we will define the torsion of P as follows.

Suppose m is a meridian of P which intersects each edge in P at one point. We then orient m so that the intersection number of m with the oriented edge is +1 .

Since $\tau_{E_{i}}$ is elliptic and preserves the orientation of $E_{i}, \tau_{E_{i}}$ is a rotation, say by an angle $2 \pi \alpha$ where $\alpha \in[0,1)$. Given $x \in E_{i}$ let $y=\tau_{E_{i}}(x)$. Let L be the oriented segment in the oriented leaf starting at x and ending at y; and let M be the arc in E_{i} starting at y and ending at x according to the orientation on E_{i}. Both L and M have the induced orientations. We call the oriented simple closed curve $L \cup M$ a characteristic curve of P. Suppose the intersection number between the oriented meridian m and the characteristic curve $L \cup M$ is k. Then the torsion of P is defined to be $k-\alpha$, denoted by $\tau(P)$. It is an integer if and only if the twist map is the identity map and it is a rational number if and only if the twist map is a rational rotation (periodic). For a convex $\operatorname{PSL}(2, R)$ Möbius n-gon, its torsion is always zero.
2.5. Lemma. Given an oriented Möbius n-gon P, let $-P$ be the same Möbius n-gon with opposite orientation on P but the same edge orientation. Then

$$
\tau(-P)=-\tau(P)
$$

Indeed, the twist map $\tau_{E_{i}}$ for $-P$ has rotation angle $2 \pi(1-\alpha)$ and a characteristic curve for $-P$ is $-(L) \cup-\left(E_{i}-M\right)$. Thus the result follows.

We say that a twist map $\tau_{E_{i}}$ of P is comparable to a face F_{i} containing E_{i} if $\tau_{E_{i}}$ is the restriction of a Möbius transformation of F_{i}.
2.6. Lemma (Gluing lemma). Suppose that P, P^{\prime} are two oriented convex Möbius Polygons, and that F_{1}, F_{1}^{\prime} are two faces of P, P^{\prime} respectively so that their modules are the same. Let $\partial F_{1}=E_{n} \cup E_{1}$ and $\partial F_{1}^{\prime}=E_{m}^{\prime} \cup E_{1}^{\prime}$, and let $h:\left(F_{1}, E_{n}, E_{1}\right) \rightarrow\left(F_{1}^{\prime}, E_{m}^{\prime}, E_{1}^{\prime}\right)$ be an orientation-reversing Möbius transformation preserving the orientations in the edges. Then Q $=P \cup_{h} P^{\prime}$ is an oriented Möbius ($n+m-2$)-gon in S^{3}. Furthermore, the following hold:
(a) The twist map of Q at $E_{1}\left(=h^{-1}\left(E_{m}^{\prime}\right)\right)$ is $h^{-1} \circ \tau_{E_{m}^{\prime}} \circ h \circ \tau_{E_{1}}$; in particular, if P^{\prime} is a convex $\operatorname{PSL}(2, R)$ Möbius Polygon, then the twist map of Q is the same as the twist map of P, and $\tau(Q)=\tau(P)$.
(b) If $\tau_{E_{1}}$ and $\tau_{E_{m}^{\prime}}$ are both comparable with the faces F_{1} and F_{1}^{\prime}, then

$$
\tau(Q)=\tau(P)+\tau\left(P^{\prime}\right)
$$

Proof. Suppose P has n faces $F_{1}, F_{2}, \ldots, F_{n}$, and P^{\prime} has m faces $F_{1}^{\prime}, \ldots, F_{m}^{\prime}$ ordered cyclically according to the orientations. Let B_{1} and B_{1}^{\prime} be the balls in the necklaces $\operatorname{cl}\left(P^{c}\right)$ and $\operatorname{cl}\left(P^{c}\right)$ corresponding to F_{1} and F_{1}^{\prime} respectively. Then by Lemma $2.3, P$ is in the complement of $\operatorname{int}\left(B_{1}\right)$, and P^{\prime} is in the complement of $\operatorname{int}\left(B_{1}^{\prime}\right)$. We find a copy of P inside B_{1} after the inversion about ∂B_{1}. By composing with a Möbius transformation, we may assume that $F_{1}=F_{1}^{\prime}$ (thus $B_{1}=B_{1}^{\prime}$) and int (P) and $\operatorname{int}\left(P^{\prime}\right)$ lie in the different sides of ∂B_{1}. Thus the gluing $P \cup_{h} P^{\prime}$ can be realized in S^{3} and Q is still an oriented Möbius ($n+m-2$)-gon. A meridian curve m_{Q} of Q is the homological sum of two meridians of P and P^{\prime} respectively. Thus m_{Q} intersects each edge of Q at one point.

The first statement (1) follows from the definition.
To see (2), since $\tau_{E_{1}}$ and $\tau_{E_{1}}^{\prime}$ are comparable to the faces, $h^{-1} \circ \tau_{E_{m}^{\prime}} \circ h$ and $\tau_{E_{1}}$ commute, and their composition is again an elliptic transformation of rotation angle $2 \pi(\alpha+\beta)$ where $2 \pi \alpha$ and $2 \pi \beta$ are the rotation angles of $\tau_{E_{1}}$ and $\tau_{E_{m}^{\prime}}$ respectively. Take a point $x \in E_{1}$, let L be the leaf of the oriented natural foliation on ∂P starting at x and ending at $\tau_{E_{1}}(x)=y$, and let M be the oriented arc of E_{1} from y to x. Similarly let L^{\prime} be the leaf of the natural foliation on ∂P^{\prime} starting at $h(y)$ and ending at $z=\tau_{E_{m}^{\prime}}(h(y))$, and let M^{\prime} be the oriented arc in E_{m}^{\prime} from z to $h(y)$. To find a characteristic curve of Q, we need to distinguish two cases.

Case 1. $\alpha+\beta<1$. Then $M \cup h^{-1}\left(M^{\prime}\right)$ is an oriented embedded arc in E_{1} from $h^{-1}(z)$ to x. Thus, the curve $K=L \cup h^{-1}\left(L^{\prime}\right) \cup M \cup h^{-1}\left(M^{\prime}\right)-$ ($L \cap \operatorname{int}\left(F_{1}\right)$) is a characteristic curve of Q. Since an oriented meridian of Q is the homological sum of oriented meridian curves of P and P^{\prime}, the intersection number adds. Therefore the intersection number between the oriented meridians of Q and K is the sum of the intersection numbers between the meridians of P and P^{\prime} and the characteristic curves of P and P^{\prime} respectively. This shows that $\tau(Q)=\tau(P)+\tau\left(P^{\prime}\right)$.

Case 2. $\alpha+\beta \geq 1$. Then $M \cup h^{-1}\left(M^{\prime}\right)$ goes around E_{1} once from $h^{-1}(z)$ to x. The oriented arc $M \cup h^{-1}\left(M^{\prime}\right)-E_{1}$ is used in constructing a characteristic curve of Q. Thus the intersection number is one less than the sum of the intersection numbers between the meridians of P and P^{\prime} with their characteristic curves. Since the rotation angle of the twist map for Q at E_{1} is now $2 \pi(\alpha+\beta-1)$, this shows again that $\tau(Q)=$ $\tau(P)+\tau\left(P^{\prime}\right)$.

3. Regular Möbius n-gons

A Möbius n-gon P is called regular if $\operatorname{Aut}(P)$ acts transitively on the set of all faces of P. We will be interested in regular Möbius n-gons which are not of type $\operatorname{PSL}(2, C)$. Thus by Lemma 2.2, there exists $\phi \in$ $\operatorname{Aut}(P)$ so that $\phi\left(F_{i}\right)=F_{i+1}$ for all $i \bmod (n)$, where $F_{1}, . ., F_{n}$ are cyclically ordered faces of P. We may assume after a conjugation that ϕ is an elliptic element in the maximal compact subgroup $O(4)$ of $\operatorname{Mob}\left(S^{3}\right)$. This motivates the following spherical geometric construction of regular Möbius n-gons. See Gromov et al. [4] for a reference.
3.1. Given an integer p and two complex numbers of norm less than one $\epsilon, \epsilon^{\prime}$ so that the sum of their norms is 1 , let $\Gamma=\Gamma_{\epsilon, p} \subset S^{3}=$ $\left\{\left.(z, w) \in C^{2}| | z\right|^{2}+|w|^{2}=1\right\}$ be given by $\left\{\left(\epsilon e^{i t}, \epsilon^{\prime} e^{i p t}\right) \mid t \in[0,2 \pi]\right\} . \Gamma$ is unknotted in S^{3} and oriented according to the natural order of t. Then the linking number $\operatorname{lk}\left(\Gamma_{\epsilon, p}, \Gamma_{\delta, p}\right)=p$ for $|\delta| \neq|\epsilon|,\left|\epsilon^{\prime}\right|$. For each integer $n>2$, construct a regular sphere polygon $\gamma=\gamma_{\epsilon, p, n}$ whose vertices are $v_{k}=\left(\epsilon \eta^{k}, \epsilon^{\prime} \eta^{p k}\right) \in \Gamma_{\epsilon, p}$ where $\eta=e^{2 \pi i / n}$ and $k=0,1, \ldots, n-1$. Let $\phi: S^{3} \rightarrow S^{3}$ be the periodic isometry defined by $\phi(z, w)=$ $\left(z e^{2 i \pi / n}, w e^{2 p i \pi / n}\right)$. Then $v_{k}=\phi^{k}\left(v_{0}\right)$, and ϕ leaves γ invariant.

The local torsion τ of an edge of γ is defined as follows. Assume an orientation is given on S^{3}, and γ is oriented according to the natural orders of v_{k} 's. Along each edge e of γ, let $N_{x}(e)$ be the oriented normal plane to e. Now define at each vertex v of γ a distinguished unit normal vector $n_{v} \in N_{v}\left(e_{+}\right) \cap N_{v}\left(e_{-}\right)$where e_{-}and e_{+}are the edges $e_{-} \cap e_{+}=v$, and e_{+}follows e_{-}in the orientation of γ. We assume that $\left\langle n_{v}, e_{-} \times e_{+}\right\rangle$is positive. Suppose now that e is an edge of γ with ends v_{-}and $v_{+}\left(v_{+}\right.$follows $\left.v_{-}\right)$. Then the torsion τ of e is the unique angle formed in passing from $n_{v_{-}}$to $n_{v_{+}}$in the normal plane to e. The following formula was obtained in [4] in the case that ϵ and ϵ^{\prime} are real. It still holds for complex ϵ and ϵ^{\prime}.
3.2. Lemma. The local torsion τ can be calculated as

$$
\cos \tau=\frac{\left|\epsilon^{\prime}\right|^{2} \sin ^{2}(2 p \pi / n) \cos (2 \pi / n)+|\epsilon|^{2} \sin ^{2}(2 \pi / n) \cos (2 p \pi / n)}{\left|\epsilon^{\prime}\right|^{2} \sin ^{2}(2 p \pi / n)+|\epsilon|^{2} \sin ^{2}(2 \pi / n)} .
$$

We now construct a necklace $N=N_{\epsilon, n, p}=B_{1} \cup \ldots \cup B_{n}$ based on γ by putting a ball of spherical radius r centered at v_{k}. The condition on n, r, and γ to guarantee that $P=\operatorname{int}(N)^{c}$ is a Möbius n-gon is complicated. However, there is a very easy sufficient condition: (1) each B_{i} intersects B_{i+1} nontangentially $i \bmod (n)$, and (2) $B_{i} \cap B_{j}=\phi$ if the
indexes i and j are not adjacent $\bmod (n)$. To translate these in terms of distances, we use $d_{E}(x, y)$ to denote the Euclidean distance between $x, y \in C^{2}$; and use $d_{S}(x, y)$ to denote the spherical distance between $x, y \in S^{3}$. Clearly $d_{E}(x, y)=2 \sin \left(d_{S}(x, y) / 2\right)$ if $x, y \in S^{3}$. Then the above two conditions become:
$\left(C_{1}\right) \min _{k=1,2, \ldots, n-1} d_{E}\left(v_{0}, v_{k}\right)$ is $d_{E}\left(v_{0}, v_{1}\right)$ and $d_{E}\left(v_{0}, v_{n-1}\right)$;
$\left(C_{2}\right)$ Suppose $\min _{k=2,3, \ldots, n-2} d_{E}\left(v_{0}, v_{k}\right)=d_{E}\left(v_{0}, v_{m}\right)$. Then the spherical radius r of ball B_{i} satisfies

$$
d_{S}\left(v_{0}, v_{1}\right) / 2<r<d_{S}\left(v_{0}, v_{m}\right) / 2
$$

One calculates that

$$
\begin{aligned}
d_{E}^{2}\left(v_{0}, v_{k}\right) & =|\epsilon|^{2}\left|1-\eta^{k}\right|^{2}+\left|\epsilon^{\prime}\right|^{2}\left|1-\eta^{p k}\right|^{2} \\
& =4|\epsilon|^{2} \sin ^{2}(k \pi / n)+4\left|\epsilon^{\prime}\right|^{2} \sin ^{2}(k p \pi / n)
\end{aligned}
$$

For fixed ϵ, p, n, P is parametrized by the radius r of B_{i}. Larger radius corresponds to larger inner angle. Under conditions $\left(C_{1}\right),\left(C_{2}\right)$ the largest inner angle of P corresponding to $r=d_{S}\left(v_{0}, v_{m}\right) / 2$ is given by $\pi-2 \sin ^{-1}\left(d_{E}\left(v_{0}, v_{1}\right) / d_{E}\left(v_{0}, v_{m}\right)\right)$. Thus, under $\left(C_{1}\right),\left(C_{2}\right)$, the inner angle of P takes all values in $\left(0, \pi-2 \sin ^{-1}\left(d_{E}\left(v_{0}, v_{1}\right) / d_{E}\left(v_{0}, v_{m}\right)\right)\right.$).

The local torsion τ of γ is closely related to the twist map of the regular Möbius n-gon P. We orient P and edges of P as follows. P has the induced orientation from S^{3}, and edges are oriented so that the linking number between an edge and the oriented core curve γ of the necklace $\operatorname{int}(P)^{c}$ is 1 .
3.3. Lemma. Let P be an oriented regular convex Möbius n-gon invariant under the symmetry $\phi(z, w)=\left(z e^{2 \pi i / n}, w e^{2 p \pi i / n}\right)$.
(a) Then ϕ action on P is conjugated to $\mu(x, t)=\left(x e^{2 \pi i / n}, t e^{2 p \pi i / n}\right)$ action on the solid torus $\{x \in C \| x \mid \leq 1\} \times\{t \in C \| t \mid=1\}$.
(b) Suppose F_{1} is a face of P with two boundary components E_{0} and $E_{1}=\phi\left(E_{0}\right)$ and middle circle C_{1}. Then, $H_{C_{1}} \circ \phi$ is an elliptic transformation of S^{3} leaving E_{0} invariant so that $H_{C_{1}} \circ \phi$ rotates E_{0} by an angle τ and rotates oriented normal planes to E_{0} by an angle $2 \pi-\alpha$, where α is the dihedral angle of P at its edges. In particular, the twist map of an edge of P is a rotation by the angle τn.

Proof. (a) By Lemma 2.2, P is a solid torus so that the edges of P are the longitude curves of P. Since ϕ acts transitively on the set of all edges, ϕ is conjugated to $\mu(x, t)=\left(x e^{2 \pi i / n}, t e^{2 k \pi i / n}\right)$ action on the solid torus $\{x \in C||x| \leq 1\} \times\{t \in C| | t \mid=1\}$ for some integer k. We claim that
$k \equiv p \bmod (n)$. Indeed, ϕ has two invariant circles $C_{z}=\{(z, 0) \| z \mid=1\}$ and $C_{w}=\{(0, w)| | w \mid=1\}$ in S^{3} so that the rotation angle of ϕ on C_{w} is $2 p \pi / n$. One calculates easily that the linking numbers $1 \mathrm{k}\left(C_{z}, \gamma\right)=p$, and $\mathrm{lk}\left(C_{w}, \gamma\right)=1$. Thus, if L is an oriented invariant core curve of P, then L is an unknot in S^{3} so that $\operatorname{lk}(\gamma, L)=1$. This implies that L and C_{w} are isotopic in $S^{3}-\gamma$, and the rotation angles of ϕ on L and γ are the same. Thus the result follows. It seems highly possible that if condition $\left(C_{1}\right)$ holds, then C_{w} is always in the interior of P.
(b) Let L be the great 2 -sphere in S^{3} intersecting F_{1} orthogonally at the middle circle C_{1}, and let R be the spherical reflection about L. Then, $H_{C_{1}}=R \circ$ Inv where Inv is the inversion about $\operatorname{sp}\left(F_{1}\right)$. In particular, $\left.H_{C_{1}}\right|_{\mathrm{sp}\left(F_{1}\right)}=\left.R\right|_{\mathrm{sp}\left(F_{1}\right)}$. Thus, $H_{C_{1}} \circ \phi \mid: E_{0} \rightarrow E_{0}$ is an isometry with respect to the induced metric on E_{0}. To find the rotation angle, we mark the normal vector at v_{i} by $n_{i}\left(=n_{v_{i}}\right)$. Let m_{i} be the (spherical) parallel translation of n_{i} from v_{i} to the middle point of the edge $v_{i} v_{i+1}$. Then $\phi\left(m_{i}\right)=m_{i+1}$ for $i \bmod (n) . \quad R\left(m_{0}\right)$ is obtained from n_{0} by parallel translating it along the edge $v_{0} v_{1}$ to its middle point. Thus $R \phi\left(m_{-1}\right)$ ($=R m_{0}$) and m_{-1} form an angle τ counted positively from m_{-1} to $R\left(m_{-1}\right)$ in the oriented normal bundle to the edge. This shows that the rotation angle of $H_{C_{1}} \circ \phi$ on E_{0} is τ. On the other hand, since $H_{C_{1}} \circ$ $\phi\left(\operatorname{sp}\left(F_{0}\right)\right)=\operatorname{sp}\left(F_{1}\right)$, the rotation angle of $H_{C_{1}} \circ \phi$ in the oriented normal bundle of E_{0} is then $2 \pi-\alpha$ where α is the dihedral angle of P at E_{0}. q.e.d.

We summarize the observations about constructing a regular convex Möbius n-gon as follows.
3.4. Proposition. Given positive integers p, n and $\tau \in[0, \pi)$, let

$$
\lambda=\left|\epsilon^{\prime}\right|^{2} /|\epsilon|^{2}=\frac{\sin ^{2}(2 \pi / n)(\cos \tau-\cos 2 p \pi / n)}{\sin ^{2}(2 \pi p / n)(\cos 2 \pi / n-\cos \tau)}
$$

and let $a_{k}=\sin ^{2}(k \pi / n)+\lambda \sin ^{2}(p k \pi / n)$. Suppose $a_{i}>a_{1}$ for all $i=$ $2,3, \ldots,[n / 2]+1$ and $a_{m}=\min _{1<i<[n / 2]+1} a_{i}$. Then there is a regular convex Möbius n-gon P such that
(1) P is invariant under $\phi(z, w)=\left(z e^{2 \pi i / n}, w e^{2 p \pi i / n}\right)$,
(2) the dihedral angle of P is any given number in $\left(0, \pi-2 \sin ^{-1} \sqrt{\frac{a_{1}}{a_{m}}}\right)$,
(3) the torsion of P is $p-n \tau / 2 \pi$.

Proof. Since $a_{i}=a_{i-n}, a_{i}>a_{1}$ for all $i=2,3, \ldots,[n / 2]+1$ is equivalent to condition (C_{1}). Thus, (1) and (2) follow. To see (3), we compute the intersection number in two steps. Take $x=x_{0} \in E_{0}$ and
let $x_{i}=\phi^{i}\left(x_{0}\right)$. Joint x_{i} to x_{i+1} by a circular arc c_{i} in F_{i+1}, and let $C^{\prime}=\cup_{i=1}^{n} c_{i}$. C^{\prime} is oriented so that x_{1} follows x_{0} in c_{0}. Then C^{\prime} is ϕ-invariant, and the intersection number between the oriented meridian of P and C^{\prime} is p. Indeed, C^{\prime} is isotopic to a curve of the form $\Gamma_{\delta, p}$ for some $\delta(0<|\delta|<1)$ in P. Since the linking number $1 \mathrm{k}\left(\Gamma_{\delta, p}, \Gamma_{\epsilon, p}\right)=p$, the assertion follows. Now let C be a characteristic curve on ∂P. Then in the homology group $H_{1}(P, Z),[C]=\left[C^{\prime}\right]-[n \tau / 2 \pi]\left[E_{0}\right]$ due to the local twisting of degree τ in each face. This implies that the intersection number between the oriented meridian and the characteristic curve is $p-$ $[n \tau / 2 \pi]$. Since the rotation angle of a twist map of P is $2 \pi(n \tau / 2 \pi-$ [$n \tau / 2 \pi]$), thus the torsion of P is $p-n \tau / 2 \pi$.
3.5. Corollary. For any real number T, there exists a regular convex Möbius n-gon P with arbitrary small dihedral angle so that the torsion of P is T.

Proof. We may assume that T is nonnegative since a change of the orientation of P will reverse the sign of the torsion. Take any integer $p>T+2, \tau=2 \pi(p-T) / n$ we claim that for large n, the conditions in Proposition 3.4 hold. First note that

$$
\lim _{n \rightarrow \infty} \lambda=\left(2 p T-T^{2}\right) / p^{2}\left((p-T)^{2}-1\right)
$$

is a positive number. The inequality $a_{k}>a_{1}$ is equivalent to

$$
\sin ^{2}(k \pi / n)-\sin ^{2}(\pi / n)>\lambda\left(\sin ^{2} p \pi / n-\sin ^{2} k \pi p / n\right)
$$

for $k=2,3, \ldots,[n / 2]+1$.
The left-hand side of the above inequality is strictly increasing in $k \in$ [$1, n / 2$], and the right-hand side of it is strictly decreasing in $k \in[1, n / 2 p]$. Thus, the above inequality holds for all $k \in[1, n / 2 p]$. Now choose n so large that

$$
\sin ^{2}([n / 2 p] \pi / n)-\sin ^{2} \pi / n>\lambda \sin ^{2}(p \pi / n)
$$

Indeed, as n tends to infinity, the left-hand side above tends to the positive number $\sin ^{2} 2 \pi / p$ and the right-hand side tends to zero since λ is bounded.

Then for all $k \geq[n / 2 p]$ and $k \leq n / 2$,

$$
\begin{aligned}
\sin ^{2}(k \pi / n)-\sin ^{2}(\pi / n) & \geq \sin ^{2}([n / 2 p] \pi / n)-\sin ^{2} \pi / n \\
& >\lambda \sin ^{2}(p \pi / n)>\lambda\left(\sin ^{2}(p \pi / n)-\sin ^{2}(k \pi p / n)\right)
\end{aligned}
$$

Thus the above inequality holds, and by Proposition 3.4, the dihedral angle of P can be arbitrary small.

4. Proof of the main theorem

Recall an α-cone sphere S_{α}^{3} is the quotient of a Euclidean lens of angle α by the rotation about the edge of the lens which identifies the two boundary half-spheres of the lens. Our goal is to prove the following.
4.1. Theorem. Given any $\alpha \in(0,2 \pi)$, any closed orientable 3-manifold M has a singular conformally flat structure so that each point in M has a neighborhood which is conformal to an open set in S_{α}^{3}. Furthermore, if the cone angle is $2 \pi / n, n \in Z_{+}$, then the monodromy group is a discrete subgroup of $S O(4,1)$.

Since the technical details of the proof are complicated, we will describe below the basic idea of the proof in the case that $\alpha=\pi$.

It is known from the work of Lickorish [7] (see Rolfsen's book [13]) that any closed orientable 3 -manifold is obtained by doing 1 or -1 Dehn surgeries on the components of a closed pure braid in S^{3}.

Our goal is to realize this surgery construction in Möbius cone geometry.
We first cover each component of the braid by small balls so that their union forms a necklace with small exterior angles. These necklaces are all disjoint and form a regular neighborhood of the braid. The edges of the Möbius Polygon are the meridian curves of the braids. We will start a sequence of modification in each necklace to achieve the Dehn surgery. Suppose N is such a necklace with cyclically ordered faces $F_{1}, F_{2}, \ldots, F_{n}$, and suppose H_{i} is the half-turn about the middle circle of F_{i} for each i. We then introduce an identification on ∂N by these half-turns, i.e., each side F_{i} is self-identified by H_{i}. The quotient space will be homeomorphic to a ± 1-Dehn surgeries on the component of the braid if we choose the necklace suitably. To see this, take the edge $E=F_{1} \cap F_{n}$ of the Möbius n-gon $\operatorname{int}(N)^{c}$. The Möbius transformation $\phi=H_{n} \circ H_{n-1} \circ \ldots \circ H_{1}$ sends E to itself. This shows that points $x, \phi(x), \phi^{2}(x), \ldots$ in E are all identified in the quotient. Thus the quotient is a manifold if and only if ϕ is periodic in, i.e., $\phi^{k}=\mathrm{id}$ in E for some integer k. We require that $k=1$.
(1) $\phi=$ id in E.

Assume that (1) holds. Then the quotient is homeomorphic to an integer coefficient Dehn surgery on ∂N. To see this, consider a characteristic curve C in ∂N. Since the twist map is the identity map, C is invariant under the identification. The quotient of C is a wedge of closed intervals
and is contractible. The quotient of N is homeomorphic to a Dehn surgery on ∂N killing C. The Dehn surgery coefficient is the intersection number between a meridian m of $P=\operatorname{int}(N)^{c}$ and C which in turn is the torsion of the Möbius n-gon P. Thus we require that
(2) the torsion of $\operatorname{int}(N)^{c}$ is +1 or -1 depending on the Dehn surgery coefficient.

Lastly, since all edges of N are identified to one edge in the quotient, we also need the following:
(3) The sum of the exterior angles of N is 2π, i.e., the sum of the interior angles of P is 2π.

Now the modification of N goes as follows. Start with N having small inner angles and torsion T. Use Corollary 3.5 to construct a regular Möbius n^{\prime}-gon P^{\prime} of torsion $-T \pm 1$ and small inner angles. We choose P^{\prime} so that the module of a face of P^{\prime} is the same as the module of a face of P. Glue P^{\prime} to P along the face to obtain a new Möbius Polygon Q with torsion ± 1 using Lemma 2.6. Finally we attach a $\operatorname{PSL}(2, R)$ Möbius Polygon to a face of Q to make the sum of the inner angles to be 2π. Thus, Q satisfies (1), (2), and (3).

To show the theorem for arbitrary angle α, we replace each Möbius annulus F_{i} which is a face of N by a union of two Möbius annuli which intersect along one boundary circle at an angle α.
4.2. Spherical polygons. Recall that S^{3} is the unit sphere in C^{2} with the standard induced metric.
4.3. Lemma. Given any knot K and any neighborhood U of K in S^{3}, there is $\delta>0$ so that for all $\epsilon \in(0, \delta)$, there exists a spherical polygon L_{ϵ} in U so that the following hold:
(1) L_{ϵ} is isotopic to K in U;
(2) the length of each edge of L_{ϵ} is ϵ,
(3) the exterior angle of L_{ϵ} at each vertex is at most $C \sqrt{\epsilon}$ for some constant C depending on K,
(4) two vertices of L_{ϵ} are at most 1.5ϵ apart if and only if they are adjacent.

Proof. We may assume that K is C^{∞} smooth and contains a small geodesic segment K^{\prime} of length δ_{0}. By a standard approximation argument, there exists $\delta_{1}>0$ so that for all $\epsilon \in\left(0, \delta_{1}\right)$, if A_{ϵ} is a spherical polygon satisfies (a) each vertex of A_{ϵ} is in K and (b) the length of each edge of A_{ϵ} is in $(\epsilon / 2,2 \epsilon)$, then A_{ϵ} is isotopic to K in U, and the exterior angle of A_{ϵ} is at most ϵ. Furthermore, for each x in K, the sphere of radius ϵ centered at x intersects K (and A_{ϵ}) at two points. To construct L_{ϵ}, we fix an orientation on K and take
$\delta=\min \left(\delta_{1}, \delta_{0} / 10, \pi / 100\right)$, and let $K^{\prime}=\left[v_{-}, v_{+}\right]$where v_{+}follows v_{-} in the orientation of K. In general, if $x, y \in S^{3}$ so that their spherical distance is less than π, then we use $[x, y]$ to denote the oriented geodesic segment from x to y. Now for $\epsilon \in(0, \delta)$, take $p_{1} \in\left[v_{-}, v_{+}\right]$so that $d_{S}\left(p_{1}, v_{+}\right)=\epsilon$. Inductively, suppose p_{i} is chosen in K. Then p_{i+1} is the point in K following p_{i} so that $d_{S}\left(p_{i}, p_{i+1}\right)=\epsilon$. Let p_{m} be the first point in p_{1}, p_{2}, \ldots so that $p_{m} \in\left[v_{-}, p_{1}\right]$ and $d_{S}\left(p_{m}, v_{-}\right) \in(0, \epsilon]$. Now the length l of $\left[p_{m}, p_{1}\right.$] satisfies $\delta_{0}-2 \epsilon \leq l \leq \delta_{0}-\epsilon$. We divide [p_{m}, $\left.p_{1}\right]$ into $[l / 2 \epsilon]+1$ equal segments, say by the points $q_{1}, \ldots, q_{[l / 2 \epsilon]}$. On each small segment $\left[q_{i}, q_{i+1}\right.$], construct a spherical triangle $\Delta q_{i} q_{i+1} r_{i}$ of side lengths $\epsilon, \epsilon, l /([l / 2 \epsilon]+1)$. Since $2 \epsilon /(1+2 \epsilon / l)<l /([l / 2 \epsilon]+1]) \leq 2 \epsilon$, an easy calculation shows that the inner angles of triangle $\Delta q_{i} q_{i+1} r_{i}$ at q_{i} and q_{i+1} and the exterior angle at r_{i} are at most $C \sqrt{\epsilon}$ for small ϵ. We take the spherical polygon L_{ϵ} to be the one with vertices $p_{1}, \ldots, p_{m}, q_{1}, r_{1}$, $q_{2}, \ldots . q_{[l / 2 \epsilon]}$. By the construction, L_{ϵ} satisfies all the conditions. q.e.d.
4.4. Spherical regular necklaces. Suppose now that $L=L_{\epsilon}$ is a spherical n-gon so that each edge has length ϵ, and exterior angle at each vertex is less than $C \sqrt{\epsilon}$. By choosing ϵ very small, we may assume that the exterior angle of L is very small. We label the vertices of L_{ϵ} to be v_{1}, \ldots, v_{n} cyclically. Construct a spherical necklace $N=N_{\epsilon, r, n}$ by putting spherical ball B_{i} of radius $r>\epsilon / 2$ centered at v_{i}. The existence of such a necklace is guaranteed by Lemma 4.3 (4). We call N and $P=P_{\epsilon, r, n}=\operatorname{int}(N)^{c}$ Möbius Polygons based on the spherical polygon L. We also call r the radius of the necklace N. Let $F_{i}=P \cap \partial B_{i}$ be the i th face of $P, E_{i}=$ $F_{i} \cap F_{i-1}$ be the i th edge of P, and C_{i} be the middle circle of F_{i}.
4.5. Lemma. The twist map $\tau_{E_{i}}: E_{i} \rightarrow E_{i}$ is an isometry with respect to the induced metric on E_{i}. Furthermore, the torsion of $P=P_{\epsilon, r, n}$ is independent of the radius r.

We also call τ the torsion of the spherical equal-sided polygon L.
Proof. Let L_{i} be the great 2-sphere which bisects the angle $\angle v_{i-1} v_{i} v_{i+1}$ at v_{i}, and let R_{i} be the spherical reflection about L_{i}. Since L has equal edge lengths, L_{i} intersects ∂B_{i} orthogonally at the middle circle C_{i} of F_{i}. In particular, $H_{C_{i}}=R_{i} \circ \operatorname{Inv}_{i}=\operatorname{Inv}_{i} \circ R_{i}$ where Inv_{i} is the inversion about ∂B_{i}. Thus $\left.H_{C_{i}}\right|_{E_{i-1}}: E_{i-1} \rightarrow E_{i}$ is the same as $\left.R_{i}\right|_{E_{i-1}}$ (which preserves the natural orientations). This implies $\tau_{E_{i}}=R_{i} \circ R_{i-1} \circ \ldots \circ R_{n} \circ$ $\left.R_{n-1} \circ \ldots R_{i+1}\right|_{E_{i}}$ is an isometry of $E_{i} \rightarrow E_{i}$ with respect to the induced metric. The rotation angle of $\tau_{E_{i}}$ is independent of the radius r since these R_{i} 's are independent of the radius. On the other hand the torsion
$\tau(r)$ of $P_{\epsilon, r, n}$ is continuous in r (for fixed $\left.\epsilon, n\right)$ and $\tau(r)=-n a \bmod (Z)$ where a is the rotation angle of $\tau_{E_{i}}$. It follows that the torsion of $P_{\epsilon, r, n}$ is independent of the radius r.
4.6. Given an equal-sided spherical n-gon L and a positive integer $k \geq 2$, we may divide each edge of L into k equal parts to obtain an equal-sided spherical $k n$-gon L^{\prime}. Suppose $N=N_{\epsilon, r, n}$ and $N^{\prime}=$ $N_{\epsilon / k, r^{\prime}, n k}^{\prime}$ are two spherical necklaces of radii r and r^{\prime} based on L and L^{\prime} respectively.
4.7. Lemma. (a) The torsion of $P=\operatorname{int}(N)^{c}$ and of $P^{\prime}=\operatorname{int}\left(N^{\prime}\right)^{c}$ are the same, i.e., the torsions of L and L^{\prime} are the same.
(b) Suppose B_{i}^{\prime} is a ball in the necklace N^{\prime} centered at a partition point, and F_{i}^{\prime} is the corresponding face with an edge E_{i}^{\prime}. Then the twist map $\tau_{E_{i}^{\prime}}$ of E_{i}^{\prime} in N^{\prime} is comparable with F_{i}^{\prime}.

Proof. (a) By Lemma 4.5, the torsion of $N_{\epsilon / k, r^{\prime}, n k}^{\prime}$ is independent of the radius. We compare the two Möbius Polygons $P=P_{\epsilon, r, n}$ and $P^{\prime}=P_{\epsilon / k, r, n k}^{\prime} . P$ is obtained from P^{\prime} by attaching a $\operatorname{PSL}(2, R)$ Möbius Polygon (each of them has a common axis $\mathrm{sp}\left(\left[v_{i}, v_{i+1}\right]\right)$) along faces of P. Indeed, suppose $\left[v_{i}, v_{i+1}\right.$] is an edge of L_{ϵ}, and $\left[v_{i}, v_{i+1}\right.$] is covered by the same radius balls $B_{i}, B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{k-1}}, B_{i+1}$. Then, $\cup_{j=1}^{k-1} B_{i_{j}}-$ $\operatorname{int}\left(B_{i} \cup B_{i+1}\right)$ is a $\operatorname{PSL}(2, R)$ Möbius Polygon with axis $\operatorname{sp}\left(\left[v_{i}, v_{i+1}\right]\right)$. These are the attaching Möbius Polygons to P to obtain P^{\prime}. By Lemma 2.6, the result follows.
(b) Consider three adjacent balls $B_{i-1}^{\prime}, B_{i}^{\prime}, B_{i+1}^{\prime}$. They all have the same spherical radii and they are centered at $v_{i-1}^{\prime}, v_{i}^{\prime}$ and v_{i+1}^{\prime} so that these three points lie on a great circle. This shows that any spherical rotation about $\mathrm{sp}\left(\left[v_{i} v_{i+1}\right]\right)$ leaves the face F_{i}^{\prime} invariant. In particular, it rotates E_{i}^{\prime} with respect to the induced metric. By the proof of Lemma 4.5, $\tau_{E_{i}^{\prime}}: E_{i}^{\prime} \rightarrow E_{i}^{\prime}$ is a spherical rotation, and we obtain the result.
4.8. Proof of Theorem 4.1. By the work of Lickorish [7] (see also [13]), M is obtained by doing +1 or -1 Dehn surgery on the components of a pure closed braid in S^{3}. Fix a tubular neighborhood U of the braid in S^{3}. There are now three cases according to the given angle $\alpha=\pi, \alpha<\pi$ or $\alpha>\pi$.

Case 1. $\alpha=\pi$. Since all geometric construction to achieve the Dehn surgery will be within any given regular neighborhood U of the braid, we will simply focus on one component K of the braid. By Lemmas 4.3 and 4.6, we may assume that K is isotopic to a spherical polygon L of equal side length in U. Let τ be the torsion of L. By Corollary 3.4
and Lemma 4.3, we construct a regular spherical polygon Γ so that the torsion of Γ is $-\tau-1$ or $-\tau+1$ where +1 or -1 depends on the Dehn surgery coefficient. Divide each edge of L into k (k very large and to be determined) equal parts to obtain a new equal-sided spherical polygon L_{ϵ} of edge length ϵ. Let N_{r} be the spherical necklace based on L_{ϵ} of radius r. Choose k very large, so that there exists $N_{r_{0}}$ satisfying
(*) the sum of the exterior angles of $N_{r_{0}}$ is at least 2π, and each exterior angle of $N_{r_{0}}$ is less than any given number, say less than $\pi / 4$ in our case (k depends on this number).

The exterior angles of N_{r} are estimated as follows. Fix two positive numbers $\delta_{1}<\delta_{2}<2$, and consider the necklace N_{r} so that the radius $r \in\left(\epsilon / \delta_{2} k, \epsilon / \delta_{1} k\right)$. Then the exterior angle of N_{r} at each edge is given by $2 \cos ^{-1}\left(\frac{\sin (\epsilon / 2 k)}{\sin (r)}\right)$ which is at most $2 \cos ^{-1}\left(\frac{\sin (\epsilon / 2 k)}{\sin \left(\epsilon / \delta_{1} k\right)}\right)$ and is at least $2 \cos ^{-1}\left(\frac{\sin (\epsilon / 2 k)}{\sin \left(\epsilon / \delta_{2} k\right)}\right)$. Thus, for δ_{1} sufficiently near 2 , the exterior angle is arbitrary small. On the other hand, the sum of the exterior angles of N_{r} is $2 n k \cos ^{-1}\left(\frac{\sin (\epsilon / 2 k)}{\sin \left(\epsilon / \delta_{2} k\right)}\right)$ which tends to infinity as k goes to infinity.

Perform the same subdivision procedure to Γ to obtain a new spherical polygon $\Gamma_{\epsilon^{\prime}}$ of edge length ϵ^{\prime}. Let $N_{r^{\prime}}^{\prime}$ be the spherical necklace based on $\Gamma_{\epsilon^{\prime}}^{\prime}$ of radius r^{\prime}. Then, there exists a radius r_{0}^{\prime} so that the sum of the exterior angles of $N_{r_{0}^{\prime}}^{\prime}$ is $>2 \pi$ and each exterior angle of $N_{r_{0}^{\prime}}^{\prime}<\pi / 4$. Take two faces F_{r} and $F_{r^{\prime}}^{\prime}$ of the Möbius Polygons $\operatorname{int}\left(N_{r}\right)^{c}$ and $\operatorname{int}\left(N_{r^{\prime}}^{\prime}\right)^{c}$ so that both faces correspond to balls centered at division points. The module of $F_{r}, m\left(F_{r}\right) \quad\left(m\left(F_{r^{\prime}}^{\prime}\right)\right.$ respectively $)$ depends strictly monotonically and continuously on the radius r (and r^{\prime} respectively). Furthermore, the module $m\left(F_{r}\right)$ tends to ∞ as $r \rightarrow \epsilon / 2$. We may assume without loss of generality that $m\left(F_{r_{0}}\right) \geq m\left(F_{r_{0}^{\prime}}^{\prime}\right)$. Then there exists a strictly monotonic continuous function $\phi\left(r^{\prime}\right)$ of r^{\prime} sending the open interval $\left(0, r_{0}^{\prime}\right)$ to $\left(0, r_{0}\right)$ so that $m\left(F_{\phi\left(r^{\prime}\right)}\right)=m\left(F_{r^{\prime}}^{\prime}\right)$ for all r^{\prime}. We now glue the Möbius polygon $P_{\phi\left(r^{\prime}\right)}=\operatorname{int}\left(N_{\phi\left(r^{\prime}\right)}\right)^{c}$ to $P_{r^{\prime}}^{\prime}=\operatorname{int}\left(N_{r^{\prime}}^{\prime}\right)^{c}$ along the face $F_{\phi\left(r^{\prime}\right)}$ and $F_{r^{\prime}}^{\prime}$. By Lemma 4.7, the twist maps of $P_{\phi\left(r^{\prime}\right)}$ (or $P_{r^{\prime}}^{\prime}$) at the edges of the face $F_{\phi\left(r^{\prime}\right)}$ (or $F_{r^{\prime}}$) are compatible with the faces F_{r} (or $F_{r^{\prime}}^{\prime}$). Thus, the glued Möbius polygon $Q_{r^{\prime}}=P_{\phi\left(r^{\prime}\right)} \cup P_{r^{\prime}}^{\prime}$ has torsion +1 or -1 depending on the Dehn surgery coefficient by Lemma 2.6. $Q_{r^{\prime}}$ is still convex by the assumption on the dihedral angles on P_{r} and $P_{r^{\prime}}^{\prime}$. The sum of the inner angles of $Q_{r^{\prime}}$ is arbitrary small as r^{\prime} tends to $\epsilon^{\prime} / 2$ and is at least 2π for the initial $r^{\prime}=r_{0}^{\prime}$ by the construction. Thus, there exists a radius r^{\prime} so that the sum of the inner angles of $Q_{r^{\prime}}$ is 2π. By our previous argument,
the identification on $\partial Q_{r^{\prime}}$ induced by the half-turns about the middle circles in faces gives rise to the +1 or -1 Dehn surgery. By the construction, the quotient space has a Möbius cone structure with cone angle π at the set corresponding to the middle circles of faces of $Q_{r^{\prime}}$. Furthermore by Poincaré polyhedron theorem, the monodromy is a discrete subgroup of $\mathrm{SO}(4,1)$.

Case 2. $\alpha<\pi$. Given any positive number l, let $\Delta_{l, \alpha}$ be the unique isosceles hyperbolic triangle so that the base has length l, and the angle at the top vertex is α. Let $\Delta_{l, \alpha} \times S^{1}$ be the corresponding convex $\operatorname{PSL}(2, R)$ Möbius 3-gon. For each $r^{\prime} \in\left(\epsilon^{\prime} / 2, r_{0}^{\prime}\right)$ and each face F of $Q_{r^{\prime}}$ constructed above, we attach the Möbius 3-gon $\Delta_{m(F), \alpha} \times S^{1}$ to $Q_{r^{\prime}}$ along the face F to obtain $Q_{r^{\prime}, \alpha}=Q_{r^{\prime}} \cup_{\text {faces }} \Delta_{m(F), \alpha} \times S^{1}$. We claim that $Q_{r^{\prime}, \alpha}$ is still a convex Möbius Polygon in S^{3} if we choose $Q_{r^{\prime}}$ appropriately. Indeed, both the dihedral angles of $Q_{r^{\prime}}$ and the dihedral angles of $\Delta_{m(F), \alpha} \times S^{1}$ at the $\{$ bottom vertices $\} \times S^{1}$ can be made arbitrary small if both k and the modules of the faces of the necklaces are large. Thus the attaching procedure can be realized in S^{3} as in the proof of Lemma 2.6 .

The torsion of $Q_{r^{\prime}, \alpha}$ is still the same as $Q_{r^{\prime}}$ which is ± 1 by Lemma 2.6(a). The sum of the dihedral angles of $Q_{r^{\prime}, \alpha}$ at the edges of $Q_{r^{\prime}}$ tends to zero as $r^{\prime} \rightarrow \epsilon^{\prime} / 2$ and is larger than 2π for the initial radius $r^{\prime}=$ r_{0}^{\prime}. Thus, we find one radius r^{\prime} so that the sum is exactly 2π. Now, introduce an identification on $\partial Q_{r^{\prime}, \alpha}$ as follows: for each adjacent face F, F^{\prime} of $Q_{r^{\prime}, \alpha}$ corresponding to $\Delta_{m(B), \alpha} \times S^{1}$, let $C=F \cap F^{\prime}$ be the edge corresponding to $\{$ top vertex $\} \times S^{1}$. The degree α rotation about C, denoted by $H_{C, \alpha}$, identifies F with F^{\prime}. These $H_{C, \alpha}$ generate the identification on $\partial Q_{r^{\prime}, \alpha}$. By the previous argument, the quotient space is the same as performing +1 or -1 Dehn surgery on K.

Again by the construction, the quotient space has a Möbius cone structure with cone angle α. Furthermore, the monodromy group is discrete (due to the convexity of $Q_{r^{\prime}, \alpha}$) if $\alpha=2 \pi / n$ for some positive integer n by Poincaré polyhedral theorem.

Case 3. $\alpha>\pi$. This is the most difficult case since we now need to "dig" out Möbius 3-gon from $Q_{r^{\prime}}$. To achieve this, we now attach Möbius 3-gons $\Delta_{l, \alpha} \times S^{1}$ to $Q_{r^{\prime}}$ inside $Q_{r^{\prime}}$. The only problem that may occur is that the result may not be a Möbius Polygon in S^{3}. To guarantee the embeddedness, we first choose the spherical polygons L and Γ with very
small exterior angle. We again subdivide both L and Γ enough times so that the condition (*) in Case 1 still holds. Thus we obtain two subdivided spherical equal-sided polygons L_{ϵ} and $\Gamma_{\epsilon^{\prime}}$. We also have two spherical necklaces N_{r} and $N_{r^{\prime}}^{\prime}$ of radii r and r^{\prime} based on them respectively.

To show that attaching $\Delta_{m(F), \beta} \times S^{1}$ to all faces of N_{r} (respectively $N_{r^{\prime}}^{\prime}$) still produces a Möbius Polygon in S^{3}, we first consider the very special case that the spherical polygon L is a regular polygon whose vertices are in a circle. Thus, the corresponding spherical necklace is of type $\operatorname{PSL}(2, R)$ whose axis is the given circle. In this case, if we attach $\Delta_{m(F), \beta} \times S^{1}$ to all its faces, the resulting Möbius Polygon is still embedded in S^{3}. Indeed, the attaching procedure is actually achieved in the hyperbolic plan H^{2} in this case. It is implied by the following lemma.
4.9. Lemma. Given $0<\beta<\pi$, let $N=[2 \pi / \beta]$. If $n>N$, and P is a regular hyperbolic n-gon whose edge length is l in H^{2}, then isometrically attaching $\Delta_{l, \beta}$ to each edge of P inside P will produce an embedded hyperbolic $2 n$-gon.

Indeed, suppose O is the center of P, and the vertices of P are v_{1}, \ldots, v_{n} ordered cyclically. The isosceles triangle $\Delta v_{i} v_{i+1} O$ has top angle $2 \pi / n<\beta$. Moving O toward the middle point of $v_{i} v_{i+1}$ will then produce an isosceles hyperbolic triangle of top angle β based on $v_{i} v_{i+1}$ inside P. Performing this procedure at every such isosceles triangle $v_{i} v_{i+1} O$, we obtain the embedded hyperbolic $2 n$-gon.

Now the general case of attaching $\Delta_{m(F), \beta} \times S^{1}$ follows from the special case since we can always choose the spherical polygon L to have extremely small exterior angles, and we can subdivide L enough time so that locally the attaching procedure is almost the same as the special case above. Thus, one obtains an embedded Möbius Polygon after attaching these $\operatorname{PSL}(2, R) 3$-gons.

Now suppose subdivisions are fine enough for both L_{ϵ} and $\Gamma_{\epsilon^{\prime}}$. Then the corresponding spherical necklace N_{r} and $N_{r^{\prime}}^{\prime}$ based on them are enlarged by attaching these Möbius 3-gon $\Delta_{m(F), \beta}$ to all faces except for two faces F_{r} and $F_{r^{\prime}}^{\prime}$ respectively. Both of these faces are centered at division points. By the discussion above, we have two Möbius Polygons $A_{r}=\operatorname{int}\left(N_{r} \cup_{F \neq F_{r}} \Delta_{m(F), \beta} \times S^{1}\right)^{c}$ and $A_{r^{\prime}}^{\prime}=\operatorname{int}\left(N_{r^{\prime}}^{\prime} \cup_{F^{\prime} \neq F_{r^{\prime}}^{\prime}} \Delta_{m\left(F^{\prime}\right), \beta} \times S^{1}\right)^{c}$ in S^{3}.

The dihedral angles of A_{r} (respectively $A_{r^{\prime}}^{\prime}$) are estimated in the same way as before. Fix a positive number $\delta<2$, and consider necklaces N_{r} so that the radius $r \in(\epsilon / \delta k, \epsilon / k)$. Then the dihedral angle of A_{r} at each
edge corresponding to N_{r} is at least a constant angle depending on ϵ, δ. The sum of the dihedral angles of A_{r} at the edges corresponding to N_{r} can be arbitrary large if k is large. Thus, we may assume that there are radii r_{0} and r_{0}^{\prime} so that the sum of the dihedral angles of $A_{r_{0}}$ and $A_{r_{0}^{\prime}}^{\prime}$ at the edges corresponding to $N_{r_{0}}$ and $N_{r_{0}^{\prime}}^{\prime}$ are both larger than 2π.

We assume without loss of generality that $m\left(F_{r_{0}}\right)>m\left(F_{r_{0}^{\prime}}^{\prime}\right)$. Thus, for each $r^{\prime} \leq r_{0}^{\prime}$, there exists a unique $\phi\left(r^{\prime}\right)$ so that $m\left(F_{\phi\left(r^{\prime}\right)}\right)=m\left(F_{r^{\prime}}^{\prime}\right)$. We now glue $A_{r^{\prime}}^{\prime}$ to $A_{\phi\left(r^{\prime}\right)}$ along $F_{\phi\left(r^{\prime}\right)}$ to obtain a Möbius Polygon $Q_{r^{\prime}, \alpha}$ in S^{3}. That $Q_{r^{\prime}, \alpha}$ is still embedded in S^{3} follows from the fact that $A_{r^{\prime}}^{\prime}$ and $A_{\phi\left(r^{\prime}\right)}$ lie in balls bounded by $\operatorname{sp}\left(F_{r^{\prime}}\right)$ and $\operatorname{sp}\left(F_{\phi\left(r^{\prime}\right)}\right)$ respectively. Thus the gluing process can always be realized in S^{3} (see the proof of Lemma 2.6).

The torsion of $Q_{r^{\prime}}$ is +1 or -1 according to the Dehn surgery coefficient. Again, as $r^{\prime}=r_{0}^{\prime}$, the sum of the inner angles of $Q_{r^{\prime}, \alpha}$ at the edges corresponding to the edges of $N_{r^{\prime}}^{\prime}$ and $N_{\phi\left(r^{\prime}\right)}$ is $\geq 2 \pi$. Thus, we find an intermediate radius r^{\prime} so that the sum of the inner angle is 2π. Now, introduce an identification on $\partial Q_{r^{\prime}, \alpha}$ as in the second case. The quotient is the same as performing $a+1$ or -1 Dehn surgery on the corresponding link. Furthermore, by Poincaré polyhedron theorem, the quotient has a Möbius cone structure of cone angle α.
4.10. Remark. The restriction to Dehn surgery on trivial knots in the proof is not necessary. The proof works on Dehn surgery on any conformally flat 3 -manifold, and the Dehn surgery coefficient can be any given rational number, i.e., Dehn surgery can always be realized in Möbius cone geometry. In particular, the result holds for nonorientable closed 3manifolds as well.

5. A solution of a problem of Kuiper

Our construction of Möbius structures on circle bundles over surface is based on a simple topological identification. In dimension two, if the opposite sides of a planar $2 n$-gon are identified by homeomorphisms reversing the induced orientations of the sides, then the quotient is a closed surface of genus $[n / 2]-1$. There are two cycles of vertices if n is odd, and only one cycle of vertices if n is even.
5.1. Proposition. Suppose P is a regular convex Möbius $2 n$-gon invariant under $\phi(z, w)=\left(z e^{2 \pi i / n}, w e^{2 p \pi i / n}\right)$ so that
(1) the inner angle of P is $2 \pi / m$ where $m=2 n$ if n is even, and $m=n$ if n is odd; and
(2) the local torsion of P is $2 \pi T / m$ for some nonnegative integer T.

Identify the opposite sides of P by $H_{C_{i}} \circ \phi^{n}$ where C_{i} is the middle circle of the ith face of P. Then the quotient is homeomorphic to a circle bundle over surface Σ_{g} of genus $g=[n / 2]-1$ and has a Möbius structure with discrete monodromy group isomorphic to $\pi_{1}\left(\Sigma_{g}\right)$. Furthermore, the Euler number of the fibration is the torsion $p-n T / m$ of P.

Proof. Suppose $E_{i_{1}}, \ldots, E_{i_{m}}$ form a cycle of edges under the identification. Then one calculates easily that the cycle transformation of $E_{i_{1}}$ is $\left(H_{C_{i_{1}}} \circ \phi\right)^{m}$. Under conditions (1) and (2), by Lemma 3.3, the cycle transformation is the identity map. Thus, by Poincare polyhedron theorem, the side pairing generates a discrete group isomorphic to $\pi_{1}\left(\Sigma_{g}\right)$ where Σ_{g} denotes the surface of genus g. Furthermore, the quotient space is homeomorphic to a circle bundle over surface of genus [$n / 2$]-1 (see [5], [6], or [8] for more details).

To find the Euler number of the fibration of the quotient over Σ_{g}, we consider a characteristic curve C in ∂P. Since the twist map of each edge is the identity map, C is invariant under the identification, and intersects each edge transversely at one point. The Euler number of the fibration is the intersection number of meridian curve of P with the characteristic curve. Thus the proposition is proved. q.e.d.

We now apply Proposition 5.1 to show
5.2. Theorem. There exists a Möbius structure with discrete monodromy group on the circle bundle over surface of genus 2 so that the Euler number of the bundle is one.

Proof. Take a regular convex Möbius 10 -gon P, with local torsion $\tau=2 \pi / 5$ so that P is invariant under periodic map

$$
\phi(z, w)=\left(z e^{2 i \pi / 10}, w e^{6 i \pi / 10}\right)
$$

By Proposition 3.7, it suffices to show that among these regular 10 -gons, there is one with inner angle $2 \pi / 5$. We now calculate the range of the dihedral angles. $\quad \lambda=\frac{\sin ^{2}(2 \pi / 10)(\cos 2 \pi / 5-\cos 6 \pi / 10)}{\sin ^{2}(6 \pi / 10)(\cos 2 \pi / 10-\cos 2 \pi / 5)} \approx 0.472135954, a_{k}=$ $\sin ^{2}(k \pi / 5)+\lambda \sin ^{2}(3 k \pi / 5)$ are found to be

$$
\begin{aligned}
& a_{1} \approx 0.40458495 \\
& a_{2} \approx 0.772542473
\end{aligned}
$$

$$
\begin{aligned}
& a_{3} \approx 0.699593468 \\
& a_{4} \approx 1.06762757 \\
& a_{5} \approx 1.472135954
\end{aligned}
$$

and $a_{k}=a_{10-k}$. Thus, the smallest a_{k} is $a_{1}=a_{9}$ and the next smallest one is $a_{3}=a_{7} . \quad \beta=\pi-2 \sin ^{-1} \sqrt{a_{1} / a_{3}} \approx 81.00141029^{\circ}>72^{\circ}$. By Proposition 3.3, the dihedral angle of these P take all values in $(0, \beta)$. Hence, there is one with inner angle $2 \pi / 5$, and the theorem follows from Proposition 3.6. q.e.d.

Note that the construction actually exists in H^{4}. See Gromov et al. [4] or Kuiper [6] for detailed discussion concerning Möbius Polygons in S^{3} and their convex hulls in H^{4}. We have actually produced a complete hyperbolic metric on a nontrivial plane bundle over a surface of genus 2. Since all closed orientable surfaces are covering spaces of Σ_{2}, the above theorem implies that all plane bundles over $\Sigma_{g}(g>1)$ with Euler number g -1 have complete hyperbolic structures.

Acknowledgments

I would like to thank Mike Freedman for encouragement, and also Oded Schramm, Troel Jorgensen, and the referee for helpful comments and suggestions.

Bibliography

[1] A. Beardon, The geometry of discrete groups, Springer, New York, 1983.
[2] I. Belegradek, Conformally flat Seifert manifolds, Siberian Adv. Math. 1 (1993) 1-18.
[3] W. Goldman, Conformally flat manifolds with nilpotent holonomy, Trans. Amer. Math. Soc. 278 (1983) 573-583.
[4] M. Gromov, B. Lawson \& W. Thurston, Hyperbolic 4-manifolds and conformally flat 3-manifolds, Math. Publ. IHES 68 (1988) 27-45.
[5] M. Kapovich, Conformally flat structures on 3-manifolds, J. Differential Geometry 38 (1993) 191-215.
[6] N. Kuiper, Hyperbolic 4-manifolds and tesselations, Math. Publ. IHES 68 (1987) 47-76.
[7] W. Lickorish, A representation of oriented combinatorial 3-manifolds, Ann. Math. 72 (1962) 531-540.
[8] F. Luo, Constructing conformally flat structures on some 3-manifolds, Math. Ann. 294 (1992) 449-458.
[9] , Triangulations in Möbius geometry, Trans. Amer. Math. Soc., 337 (1993) 181-193.
[10] __, Möbius structres on Seifert 3-manifolds I, II, in preparation.
[11] F. Luo \& G. Tian, Liouville equation and spherical convex polytopes, Proc. Amer. Math. Soc. 116 (1992) 1119-1129.
[12] B. Maskit, Kleinian groups, Springer, New York, 1987.
[13] D. Rolfsen, Knots and links, Publish or Perish, Wilmington, DE, 1976.
[14] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geometry 20 (1984) 233-238.
[15] J. B. Wilker, Inversive geometry, The geometric vein (C. Davis, et al., eds.), Springer, New York, 1981.

Rutgers University

[^0]: Received November 16, 1993.

