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EQUIVARIANT IMMERSIONS
AND QUILLEN METRICS

JEAN-MICHEL BISMUT

Abstract

The purpose of this paper is to construct Quillen metrics on the equivari-
ant determinant of the cohomology of a holomorphic vector bundle with
respect to the action of a compact group G . We calculate the behaviour
of the equivariant Quillen metric by immersions, and thus extend a for-
mula of Bismut-Lebeau to the equivariant case.

Let i: Y — X be an embedding of compact complex manifolds. Let 7
be a holomorphic vector bundle on X, and let

(0.1) €, 0):0-¢, =&, = —§—0

be a holomorphic chain complex of vector bundles on X, which, together
with a restriction map r : {Ol y — 1, provides a resolution of the sheaf
i*ﬁy(n) .

Let A(¢), A(n) be the complex lines which are the inverses of the de-
terminants of the cohomology of &, 7, i.e.,

02)  A(¢)=(detH(X,&)™',  A(m) = (detH(Y,n) .

Let G be a compact Lie group acting holomorphically on X and pre-
serving Y, whose action lifts holomorphically to (¢, v) and 7. Let G
be the set of equivalence classes of complex irreducible representations of
G . Then we have the isotypical splittings

H(X, &) = @ Hom(W,H(X, &)W,

(0.3) weG
H(Y,n)= @ Homy (W, H(Y, n)) ® W.

weG
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Set
Ag(&) = €D det(Homy (W, H(X, §)) @ W),
(0.4) weG
Ag(n) = €D det(Homg(W , H(Y , n)) ® W).
weG

An obvious extension of [22] shows that we have a canonical isomorphism
of direct sums of complex lines

(0.5) Ag(m) = A5(&).

Leto =6, cGow € l_l(n)®/16(é ) be the direct sum of nonzero sections,
which defines the canonical isomorphism (0.5).

Let A7, #*, n™, K" be G-invariant Hermitian metrics on
TX, &, TY, n, respectively. By Hodge theory, one can construct
corresponding L, metrics on the lines det(Hom (W, H(X,¢)) ® W),
det(Homg(W , H(Y , n))@ W), which we denote | | sy som_(w , H(x .£)0m) >

I Idet(HomG(W,H(Y,r]))®W) .
If WedG,let y(W) be the corresponding character. Set

1(W)
log(| IA @)= Z log(| |det(HomG(W HX, :))@W))rk(W)
WEG
(0.6) , : (W)
log(| l’lc o Z og(| ldet(HomG(W H(Y ,n) )®W))l'k(W)
WGG

By imitating the construction by Quillen of the Quillen metric [27], [11],
[13] on A(&), A(n), one can modify the symbols log(| lia(é)) , log(| |§o(n))

into new symbols log(]| || 3e)) . 1og(ll [l 3s,,) . Which we call equivariant

Quillen metrics on AG(é) , AG(n) . The modification involves an obvious
extension of the Ray-Singer analytic torsion [28] to the equivariant case.

Then the function g € G — log(||a||i5.(”)® 2 6))(g) is a central function
on G. The purpose of this paper is to give a formula for this function in
terms of local secondary invariants of the holomorphic Hermitian vector
bundles considered above, under natural assumptions on the metrics. This
generalizes earlier work by Bismut-Lebeau [15], where the case where G =
{1} was considered, to the equivariant setting.

Our assumptions are essentially the same as in [15]. Namely we suppose
that A™* is Kahler, and that h”? is the restriction of h’* to TY. Let
N},/ x be the normal bundle to Y in X, and let h™x be the metric in-

duced by RTXly on N, /X - Then we assume that the metrics A% , e, Rom
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on &y, -+, ¢, verify assumption (A) of [5, Definition 1.5] with respect
to h™Mx BT,

If geG, set
(0.7) X,={xeX,gx=x}, Y,={yeY,gy=y}
Let i < be the embedding Yg - X g

Let Td,(TX, h"™) be the Chern-Weil Todd form on X, associated
to the holomorphic Hermitian connection on (TX, nTx ), which appears
in the Lefschetz formulas of Atiyah-Bott [1]. Other Chern-Weil forms

will be denoted in a similar way. In particular the form ch g(é , hg) on

X < is the Chern-Weil representative of the g-Chern character form of ¢

associated to A% S, h*m . Also we denote by ng(TX ), ch g(é) --- the

cohomology classes of ng(TX ,hTX ), chg(é , hc), e
In this paper, by an extension of [14], we first construct a current
T,(¢, h*) on X,, such that

00 ¢ -1 Nyx &
(08)  5—T,(&, k) =Td, (Nyx, K")ch, (1, h")S, —ch (&, k).

Let {(0,s), n(@, s) be the real and imaginary parts of the Lerch series,
ie.,
cos(nf) sin(n6)

09)  0.9=3 =5, nl@.9)=y —5
n>1 n>1

Let R(f, x) be the power series introduced in [7]

RO, x)=) (Z}C(e, -n) + %w, —n)) =
n>1 1 ’

(0.10) n odd .

+ 3 i(z%n(e, —n)+2—;’sﬂ(0, —n)) x.
1

n>0
n éven

Let {(s) be the Riemann zeta function. Let R(x) be the Gillet-Soulé
power series [20]

o | 20¢ x"
(0.11) R(x) = ;l (2127C(—n)+ﬁ(—n)) s
n odd
Clearly

(0.12) R(0, x) = R(x).
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Let Td (TY|, , TX|y , h"*'%) be the Bott-Chern class of forms on ¥,
14 4

associated to the exact sequence of holomorphic Hermitian vector bundles
onY ,0->TY|, - TX|, — N. — 0, constructed in [11, §1f)],
g Y, Y, Y/Xly,

such that
00 ~ TX|
—ng(TYl v, TX| v, h' '

(0.13)  2im )

= T (TX, h™) = Td (TY, h" ) Td,(Ny, 5, K""7).
Over X,, TX| X, splits as a direct sum 7X| x, = eTX lf)‘,g , where
the 6 € [0, 2xn[ are distinct and locally constant, and g acts on TX| i,g
by multiplication by e . Set
(0.14) R(TX)=Y R0, TX|}).

We use a similar notation for R (TY).

The main result of this paper is the following extension of [15, Theorem
0.1].

Theorem 0.1. For g € G, the following identity holds:
(0.15)

10811 g100,0)(8) = = [ T(TX, KT, (& )
&
+/Y Td, ' (Ny R TA(TY Iy, TXIy K™ %) ch (n, h")
14

- /X Td,(TX)R, (T X)ch, (&) + /Y Td,(TY)R,(TY)ch,(n).

In fact [15, Theorem 0.1] is exactly our Theorem 0.1 with g = 1. The
formula of [15, Theorem 0.1] is an important step in the proof of Gillet
and Soulé [21] of the Riemann-Roch Theorem in Arakelov geometry which
they had conjectured in [20]. In particular the genus R(x) was obtained
by Gillet and Soulé [20] by a difficult calculation (with Zagier) of the
Ray-Singer holomorphic torsion of P" equipped with the Fubini-Study
metric. The genus R reappeared in an analytic construction of character-
istic classes in [6]. The calculations of [6] were then a key ingredient to
the proof of the final formula of [15].

In [23], Kohler has calculated the equivariant analytic torsion of P”
associated to an isometry of P" having isolated fixed points. In [7] the
calculations of [6] were extended to the equivariant case. For isometries
with isolated fixed points, the calculation of [23] and [7] fit as well as [20]
and [6].
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Theorem 0.1 should be considered as a new block in the construction
of an Arakelov theory to be in an equivariant context.

Most of our techniques and arguments are taken from [15]. However,
there are certain complications, which we now describe.

1. Anomaly formulas for equivariant Quillen metrics

In [13], Bismut-Gillet-Soulé have established anomaly for usual Quillen
metrics (here for G = {1}), which calculate the ratio of two such metrics
associated to two couples of metrics on T7X,¢ and TY,n. In §1, we
extend this result in an equivariant context. We express the ratio in terms
of Bott-Chern classes evaluated on X, or Y, . Then formula (0.15) is
easily seen to be compatible with these anomaly formulas.

2. Localization on X ) Yg and finite propagation speed

In [15], a key point was the study of the supertrace of certain heat kernel
evaluated on the diagonal of X x X as a function of two parameters u > 0,
T > 0. Here at a formal level the diagonal is replaced by the graph of g
in X xX.

As for the classical heat equation proofs of the Atiyah-Bott Lefschetz
formula [19], [9], [3], [2], this accounts for the localization of certain
supertraces on the fixed point set X i Also in [15], certain supertraces
localized on Y . Here the presence of g forces the localization on Y/g .

In [15], the needed estimates were obtained by using a heavy functional
analytic machinery, which was used to prove that certain rescaled kernels
exhibit a decay faster than the polynomial decay on the diagonal in the di-
rections normal to Y in X . Here, there is the extra complication that not
only we have to show that nonfixed points do not contribute to the asymp-
totics, but also that the rescaled kernels also exhibit the right Gaussian
decay in the directions normal to X R in X . Ultimately, the combination
of these two arguments explains the localization of the supertraces on Yg .

In [15], finite propagation speed methods were used to prove that the
calculation of certain asymptotics was effectively local on X , i.e., that one
could replace X by a small ball. Here finite propagation speed is also used
to study certain heat kernels inside the considered small ball, to obtain the
required Gaussian decay.

Otherwise, the general outlook of the proof of Theorem 0.1 is very
similar to the proof of [15, Theorem 0.1]. We refer to the introduction
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of [15] for more details. As explained before, instead of [6], we use [7]
to evaluate a mysterious current B g(TY , TX|y, el Y) on Yg , which is
responsible for the appearance of R < in (0.15), instead of R in [15].

Because many arguments in the proofs are taken from [15], to avoid
duplicating the arguments of [15], we tried to refer as much as necessary
to [15], including sometimes for notation. However we give as many details
as needed, especially in the construction of local coordinate systems and
of local trivializations of certain vector bundles, and also for the Gaussian
estimates in directions which are normal to X o in X.

The organization of the paper, and even the organization of most of the
sections are deliberately related to [15].

In §1, we give a few algebraic preliminaries. In §2, we construct the
equivariant Quillen metrics, and prove the corresponding anomaly formu-
las. §3 describes the geometric setting of the G-equivariant immersion
problem. Let ;16(5) be the equivariant determinant of the hypercohomol-
ogy of &. Then 4,(§) and ZG(é) are canonically isomorphic. In §4, we
extend a result of [15, §2], by comparing the Quillen metrics on 4,(¢) and
iG(é) . §5 contains a construction of a closed form 8 on R: X R: and a
contour I' by extending [15, §3]. Asin [15], Theorem 0.1 will be obtained
from the equality [ =0 by taking the boundary of I' to infinity.

In §6, by extending [14], we construct the Bott-Chern current Tg (&, h’f) .
§7 summarizes the results of [7].

In §8, we state seven intermediary results, the proofs of six of which
are deferred to §§9-13. We take advantage of the formal similarity of our
intermediary results to corresponding results in [15, §6] to adapt formally
the discussion of [15, §6] in our context, and we prove Theorem 0.1.

§§9-13 are devoted to the proofs of six of the intermediary results which
were alluded to before. These sections are an obvious extension of [15,
§89—13] to the case of a nontrivial group G, but we still use the results of
[15] very much to establish our own results.

As in [15], we use the superconnection formalism of Quillen [26]. In
particular Tr, is our notation for the supertrace, and [4, B] denotes the
supercommutator of 4 and B.

The results contained in this paper were announced in [10].

I. Algebraic preliminaries
Let
(1.1) (V,a):o—.V"?V‘—»...—a»V"-»o
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be a chain complex of finite dimensional complex vector spaces. Here
V=@l

Let h” , ..., " be Hermitian metrics on vo, ..., p" respectively.
We equip V with the metric A" = D, n .

Let G be a compact group. Let p: G — End(}V) be a representation of
G, with values in chain homomorphisms of V', which preserve the metric
B . In particular, if g € G, then p(g) preserves the V'’s.

Let G be the set of equivalence classes of complex irreducible rep-
resentations of G. An element of G is specified by a complex finite
dimensional vector space W together with an irreducible representation
Pw - G— End(W).

For W eG , set

(12)  Vy,=Hom (W, V)eW, V, =Hom (W,V)aW.
Then V,, = @/, ¥, - Let 9, be the map induced by & on ¥, . Then

0 1 n
(1.3) (VW,6W)IO-—>VW6——>WVW—>...B—>WVW—*O
is a chain complex. Finally we have the isotypical splitting
(1.4) (V,0)= @(Vwa aW)!
weG

and the decomposition (1.4) is orthogonal.
If E is a complex finite dimensional representation space for G, let
x(E) be the character of the representation. Put

V) =3 (=1'x(v",
i=0

(1.5) e(V) = i(—l)[dim v,
i=0

e(Vy) = > (~1)' dim(V},).
i=0
By (1.4), we get

(1.6) =3 e(VW)%.
weG

If A is a complex line, let 47! be the dual line. If E is a finite dimen-
sional complex vector space, set

(1.7) det E = A™(E).
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Put

n .
detV = Q(det V)"
i=0
n X | i
detV;, = Q)(det ;)"
i=0

(1.8)

By (1.4), we obtain

(1.9) detV = (X) detV,,.
weG

For0<i<n, V,’,', is a vector subspace of V'. Let K" be the induced

icon V.. L ; i Vi i Y
metric on V. Let || || 4, Vi be the metric on deit _"1/ induced by A%,
and let | || (det Vi)~ be the dual metric on (detV,) . Let || ||, v, be

the obvious tensor product metric on detV), . Similarly let | || ., be
the metric on detV induced by A" . Then (1.9) is an isometry of line
bundles.
Put
(1.10) det(V, G) = @detV
weG
Definition 1.1. We introduce the formal symbol

w
(L.11) 108(1 e, ) = 2 108(1 Il e Vw’_r)f«((w)y

weG

For W € G, let o, € detV,,, o, # 0. Set g = ®W€66W €
det(V, G). Then by definition,

2 2 x(W)
(1-12) IOg(“a“det(V,G)) = ZAIOg(IIGWHde, Vw)rk(W) .
weG
Tautologically, (1.12) is an identity of characters on G. In particular
(1.13) tog(l ges, 6)(1) = 3 1080w gy, )

weG
In fact (1.13) just implies that
2 2
(1.14) 1og(|| I geyr, 6)) (1) = 108(Il I 4oy 1)

Of course, using the orthogonality of the x,’s, knowing the formal
symbol log (|| || fm(,,’a)) is equivalent to knowing the metrics || || 4, v,
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Clearly
H(Vy, 8,,)=Homy(W,H(V,d8)eW,
(1.15) HWV,0)= @ HV,,, dy,).
WeG
For W € G, we define det H(W , 8;,) as in (1.8). Set
(1.16) det(H(V , 0), G) = @D detH(V,,, 8,,).
WeG

By [22], [11, §1a)], for W € G, we have the canonical isomorphism of
complex lines

(1.17) detV,, ~detH(V,,, 9y,).
From (1.17), we get
(1.18) det(V, G) ~det(H(V, 9), G).

Let || ] ger H(V, ,,) be the metric on det H(V},, d,,) corresponding to

1 get v, via the canonical isomorphism (1.17).

Definition 1.2. We introduce the formal symbol
2 2 x(W)
(1-19) IOg(“ “ det(H(V,B),G)) = Z IOg(“ ” de‘H(VanW))-k(W)'

weG

Tautologically, under the identification (1.18),

2 2
(1.20) 1081l I 2 .6)) = 10801 I 3ex 11 .07, 6))-

By an abuse of notation, we will call the formal symbol || || dex(v,G) A
metric on det(V, G). Ineffect, it is a direct sum of metrics on det(V, G) =

@Weadet Vi -

Let 8", 8,, be the adjoints of 0, 9, . Put
(1.21) D=3+0", Dy =08,+0,.

Under the identification (1.4), we have

D= P Dy.

weG

Set
(1.22) K =kerD, K, =kerD,,.
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Then K, K, inherit metrics n*, #*% from the metrics A", AL By
Hodge theory,

(1.23) K~H(V,0), K, ~HW,,3,)
Let | lgwmy,o)> | laenn,,o,) D€ the metrics on detH(V,d),

detH(V,, , 0,,) induced by the metrics R% . K* via the canonical iden-
tifications (1.23).
Set

) 2 X(W)
(1.24) 10g(] | yex(rrv, 9y, 6)) = Z log(| |de‘H(Vw'aW))rk(W)'

weG
Tautologically, the symbol

2 2
(125 log (n | e ) S (n uzda,,(yw,aw)) x(W)
' ldetH(V ),G) wes | ldetH(VW,BW) k(W)
is a character of G.

Let K* be the orthogonal space to K in V. Let P be the orthogonal
projection operator from ¥ on K. Set PL =1—P. Then D? acts as an
invertible operator on K. Let (DZ)_1 be the corresponding inverse.

Let N be the number operator of V,ie., N actson V' by multipli-
cation by .

In the sequel, if 4 € End(V), Tr [4] denotes the supertrace of A4 [26].

Definition 1.3. For s€ C, g € G, set

(1.26) 6(s)(g) = — Tr,[gN(D*)~*P
Then g — 6(s)(g) is a character of G.
Theorem 1.4. For g € G, the following equality holds:

Iz
(1.27) log (—j“iw = (0)( ).

| 'detH(V,B),G)

1

1.

Proof. Clearly

)Pt x(W)
(1.28) 0(5)(8) = = D TrIN(Dy) " Py )y (8)-
weG
Also when G acts trivially on V', (1.27) is the equality of [11, Proposition
1.5]. Using (1.25), (1.28), we get (1.27). q.e.d.
0 n
Let #7 , ..., k'Y be other G-invariant metrics on V°, ... , V" re-

spectively, and let 4" = D, #"" be the corresponding metric on V.
Let | || ger . be the associated metric on det(V, G).
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Proposition 1.5. Forany g € G,

T ad
(1.29) log w (g) =Tr, [g log (_V)] :
I e 2.6, h

Proof. For g = 1, (1.29) is obvious. For a general g € G, (1.29)
follows by summation.

I1. Equivariant Quillen metrics and their anomaly formulas

The purpose of this section is to construct the Quillen metrics on the
equivariant determinant of the cohomology of a holomorphic vector bun-
dle and to establish corresponding anomaly formulas. Thus we extend
the anomaly formulas of [11, Theorem 0.2] and [13, Theorem 1.23] in an
equivariant setting.

This section is organized as follows. In part a, we construct the equi-
variant Quillen metrics by a straightforward extension of [27], [13]. In
part b, we state our anomaly formula, the remainder of the section be-
ing devoted to the proof of this formula. In part ¢, we establish a simple
formula on Clifford algebras. Finally, part d contains our proof of the
anomaly formula, along the lines of [4], [9], [13].

a. Equivariant Quillen metrics. Let X be a compact complex manifold
of complex dimensions /. Let £ be a holomorphic vector bundle on X .

Let G be a compact Lie group. We assume that G acts on X by
holomorphic difftomorphisms, and that the action of G lifts to a linear
holomorphic action on £. Then G acts naturally on H(X, &).

Let E =@,™* E' be the vector space of smooth sections of

AT VX))@ = d@A Oy e¢
on X.Let ° be the Dolbeault operator acting on E . Then
(2.1) H(E, 8"~ H(X, ¢&).
If ge G, se E,let gs € E be given by
(2.2) gs(x) = gs(g” ' x).

Then G actson (F, % ) by chain homomorphisms, and (2.1) is an iden-
tification of G-spaces.
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Let h7¥ , h* be smooth G-invariant Hermitian metrics on 7X , & re-
spectively. Let dv, be the volume element on X associated to hTX | Let

(,) AT D x) ¢ be the Hermitian product on A(T"(O’”X )® & associated

to K%, K.
If s,s' € E, set

1 dim X ,
(2.3) (s, ) = (%) /X (5, 5 ) g1 70 4V

Then (, ), isa G-invariant Hermitian product on E.
Let 8** be the formal adjoint of 8% with respect to ( , ), . Set

(2.4) p¥=5"+5™
If g € G, then

(2.5) g, D*1=0.
Set

(2.6) K =kerD”.
By Hodge theory, we have

(2.7) K~H(X,).

Also by (2.5), G acts on K. Then (2.7) is an identification of G-spaces.
Clearly K inherits a G-invariant metric from (, ). . Let RHX4) pe
the corresponding G-invariant metric on H(X, &).
As in (1.15), we have the isotypical decomposition

(2.8) H(X,&) = @ Homy(W, H(X, &)@ W,
weG

which is orthogonal with respect to REO

For W € G, set

(2.9) Ay (€) = (det(Homy(W , H(X , &))@ W)™
Put
(2.10) 368 = @ Ay ()

weG
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In the sequel A;(¢) will be called the inverse of the equivariant determi-
nant of the cohomology of . Then A;(¢) is a direct sum of complex
lines.

Let | | 2,©) be the metric induced by X9 on A (&), and set

(2.11) log(| |},) = 3 log(l liw(é))i((ul/l/;))'

weG

The symbol | |§W(¢) will be called the (equivariant) L, metric on 4;(&).

Let K be the orthogonal space to K in E. Then D*'? acts as an
invertible operator on K. Let (Dx,z)-1 be the corresponding inverse.
Take g € G, and set

(2.12) Xg={x€X,gx=x}.

Then X, is a compact complex totally geodesic submanifold of X .

Let N be the number operator of E,i.e., N acts by multiplication by
i on E'. Then by the standard heat equation methods, we know that as
t—0,forany k€N,

a
(2.13) Tr,[gNexp(—tD"?] = —t;—’ +otagagt+e+at+o(l).

Definition 2.1. For ge G, s € C, Re(s) >/, set
(2.14) 6% (g)(s) = - Tr,[gN(D***) ™).

By (2.13), GX(g)(s) extends to a meromorphic function of s € C,
which is holomorphic at s = 0. In particular g — (60X /0s5)(g)(0) is a
central function on G.

Definition 2.2. For g € G, set

86*(g)(s)

39 (0).

2 2
(2.15)  log(ll I} (&) =1og(l I} ))(8) -
The quantity exp{(—9 6* /0s)(g)(0)} is an extension of the Ray-Singer
analytic torsion [28] to the equivariant setting.
The symbol || || 160 will be called a Quillen metric on the equivari-

ant determinant A;(¢). In effect the case where G = {1} was already
considered in [27], [11], [13].
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b. Anomaly formulas for equivariant Quillen metrics. Let v*, v be
the holomorphic Hermitian connections on (7 X, hTX) , (&, hé) respec-

tively, and let RTX , R® be their curvatures.
Take g € G. Then

(2.16) TX,={UeTX|, , gU="U}
I 4

Let NXg /X be the normal bundle to X < in X. Then g acts on ng /X

Let % EERIN e'% (0< 8@ ;< 27) be the locally constant distinct eigen-
: 6

values of g acting on Ny ., and let Nf,' x> » Ny x be the corre-
g g

sponding eigenbundles. Then N, /X splits holomorphically as
4

] )
(2.17) ng/x=Nx;/x®‘“@NN‘;/x-
Also, we have the holomorphic splitting
(2.18) TX|xg=TXg€9ng/x-

Moreover the splitting (2.18) of TX is orthogonal with respect to
XB

TX N .. ..
Tk Let BT , h %V ... be the Hermitian metrics induced by BT
on TX g7 N;),' x> Then VTXl *: induces the holomorphic Hermitian
4
. TX No TX 0 N
connections V' "¢, ng/x’ ... on (TXg, h'"¢), (Nx;/x’ h Xs/X)... Let
N .
R™%: , R %/* ... be their curvatures.

Definition 2.3. Let P*¢ be the vector space of smooth forms on X_,

which are the sums of forms of type (p, p). Let P*:0 be the subspace
of the w € P%: such that there exist smooth forms a,B on X 2 with
w=0a+0p.

If A isa (q,q) matrix, set

(2.19) Td(A) = det( A _A> . e(A) = det(A).

The genera associated to Td and e are called the Todd genus and the
Euler genus.
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Definition 2.4. Set
(2.20)

q
TX Td\ [ -R w .
Td,(TX , h )—Td( o )||(? ( - e].),

Jj=1

TX
Td'g(TX,hTX)=—a—[ Td( —R )
R

o5

b

Then the forms in (2.20) are closed forms on X £ which lie in P%
and their cohomology class does not depend on the G-invariant metrics
pT Xk, , h°. We denote by ng(TX), Td;(TX), Sy chg(é) these co-
homology classes, which appear in the Lefschetz formulas of Atiyah-Bott
[1].

Let h'™¥ , k" be another couple of G-invariant metricson 7TX, &. We
denote by a prime the objects which are just considered and attached to
h/TX , h/f )

By [11, §1f)], there are uniquely defined classes ng(TX ,hTX s WX )
and ch (¢, h*, h*) in P¥¢/P*s* such that

fa Td (T, i, K™) = Td (TX, K™) = Td (T X, i),
(2.21)

00 ~ ' 1€

5o (E B H) = ch (&, 1) = ch (&, ).

The main result of this section extends the anomaly formulas of [11, The-
orem 0.2], [13, Theorem 1.23] to equivariant Quillen metrics.
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Theorem 2.5. Assume that the metrics h™* and h'™* are Kihler. Then
forany g €G,

”
X

(2.22) (P

+ / Td,(TX, K™ )ch, (&, i*, H°).
XX

Proof. The rest of the section is devoted to the proof of Theorem 2.5.

c. Supertraces and Clifford algebras. Let E be a complex vector space
of dimension /, and hE be a Hermitian product on E.

Let c(Ey) be the Clifford algebra of (Eg, hE‘). Recall that A(E") is
a ¢(Eg)-Clifford module. In fact if X € E, let X" € E' correspond to
X by the metric W If X e E, set

(2.23) c(X)=V2X'A, (X)=—-V2ix.

We extend the map Y — ¢(Y) by C-linearity.

If 4 € End(Eg) is antisymmetric, we identify 4 with the 2-form
X,YeEy— (X, AY).

Let g be a linear isometry of (FE, hE). If g — 1 is invertible,
(g +1)/(g = 1) € End(E) is skew-adjoint, and so it defines a 2-form
in A(El’;) which is of type (1,1). Also g acts naturally on AE).
Moreover

(2.24) T2 E )] = det? (1 - g),

and so Tr;\(E')[g] vanishes if and only if g — 1 is noninvertible.

In the sequel, if a € A®*"(Eg), exp(a) denotes the exponential of a
in A" (ER).

Assume first that g — 1 is invertible. Then

(225) A(E [g]e(g+l )/ (g— l) even(E;).

In view of (2.24), one venﬁes easily that the expression (2.25) extends by
continuity to an arbitrary unitary g.

Let F be a finite dimensional complex vector space. Let a € A“d(F;)
®Eg . If g—1 is invertible, then

(2.26) T g exp{-% <a, Z—fia> € AV ED).

By the argument we just gave, this expression extends by continuity to an
arbitrary unitary g.
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Clearly a can be written in the form

1

L .
(2.27) a=Y o ®e, o eA(F), ¢ €k,
1
Let c(a) € (A(F*)®c(E))™"™ be given by
(2.28) c(a) =~ d'cle)
1

Then gexp(c(a)) € (A(Fg)®End(A(E)))™™".
Theorem 2.6. The following equality holds:

229)  T*®)[gexp(c(a))] = T [glexp {—% <a, g—t—ia>} .

Proof. Let e, - , e, be an orthonormal basis of Ep. We may and
will assume that on this basis, the matrix of g has diagonal blocks

cos(Gj) —sin(Hj)
[sin(ej) cos(;) ] ’

Then one verifies easily that the action of g on A(E’) is given by

6, 6, (i/z)t";
(2.30) g= H (cos ( > ) + sin ( ) c(ezj 1)c(ezj)) e Lo

1<j<!

0§0j<27t.

Also since in (2.28), the o"’s are odd, we have

(2.31) exp(c(a)) = [] (l—ac(e ).

1<j<2/
Also c(e)---c(e,,) is the only monomial in the c(e j)’s whose super-
trace on A(E") is nonzero. Using (2.30), (2.31), we get

T*E) g exp(c(a))]

!
0. - \ @238,
232 10 (sm( )—cos (71) o lAazf)e -
1<j<!

CTOE e, ey
If g —1 isinvertible, i.e., if no 0. is equal to 0, from (2.32) we deduce

T g exp(c(a))] = T [g]
(2.33) < TI ( cos(6,/2) I /\aZj).

e sin(6,/2)
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Also
cos(f0./2) ,; ;
1<)t sin(6,/2)
(234 cos(6./2)
j 2j-1 , 2j
=exp| — Z —L—a ANa .
( o sm(Hj/Z) )
Moreover the matrix of (g + 1)/(g — 1) has diagonal blocks given by
cos(Bj/Z)
sin(6,/2)
—cos(0j/2)
sin(6,/2)
Therefore
| g+1 cos(0./2) 51 2
2.35 = <a, —-a> = i Aa™.
( ) 2 g-1 1;51 51n(0j/2)

From (2.33)-(2.35), we get (2.29) when g — 1 is invertible. The general
case follows by continuity. Hence the proof of Theorem 2.6 is completed.

d. Proof of Theorem 2.5. Let c € [0, 1] — (hCTX , hf) be a smooth fam-
ily of G-invariant Hermitian metrics on 7X , £ such that for any c, hCTX
is Kahler and also (bl %, h%) = (h™*, h%), (b7, h%) = (W'™*, h*). Let
Il 266)c be the corresponding equivariant Quillen metric on 4,($) .

Let HCX * be the adjoint of 8% with respect to (thx , hf). Then

(2.36) 0, g1=0, (8, gl=0.
Set
(2.37) DX =5"+3".

Let x. be the Hodge star operator attached to hCTX . Set

a0k
(2.38) Q. =—* 5<-(h) 5=

By an obvious analogue of (2.13), as ¢ — 0, we have an asymptotic ex-
pansion

0 .
(2.39) Tr,[gQ.exp(~tD) )] = Y M; /' +&().
j=—1
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Using Proposition 1.5, (2.39) and proceeding formally as in [13, Theo-
rem 1.18], we get

2
) 17 .
(2.40) = log —20:0 ) ()= M, ..
7,

Assume first that hCTX = h™ = KT | Then since h™¥ is Kihler, we
may use the local index techniques of [9], [3], [2, Chapter 6] to find that

_ TX & -1 _Rf
(241) M, = /Xdeg(TX,h )Tr[g(hc) chP(Zin :

Moreover by [11, §1f)], we obtain

! £-10h° -R
(2.42) B /0 T [g (he) 3 exp ( 2in

=ch (&, b, h) in PYsjP¥eo,

which together with (2.40) yields (2.22).

Assume now that hf = n =t Let w, be the Kahler form of
th X Let JTX be the complex structure of TeX. If U,V € TX,
then w, (U, V)= (U, JTXV)TRX,C. Set

(2.43) o, = dw,/dc.

To simplify our notation, in the sequel, we will not always write the sub-
script ¢ explicitly. Then by proceeding as in the above references and in
[12, proof of Theorem 2.16], we find that

Mj=0’ jS-z,

(2.44) _ 9] TX ¢
M_, —/Xg Eng(TX’ h™")ch, (&, h).

Let da, da be two odd Grassmann variables. In particular, da, da
anticommute with the operator D* . Set

(2.45) L, =-uD"?— \/g daD” - \/g da[D*, Q] + dadaQ.
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If o € C(da, da), let [a]d”da € C be the coefficient of dada in the
expansion of «. Using (2.36), and proceeding formally as in [13, Theorem
1.20], we get

(246)  SuTr,[gQexp(~uD" )] = Tr, g exp(L )",

which together with (2.40) leads to that as u — 0,
dada
(2.47) Tr[gexp(L,)] =M, +(u).

As we saw in (2.23), A(T*"VX)&¢ isa c(TgX, ") Clifford mod-
ule. If U € TgX, let c(U) denote the corresponding Clifford action.
AT*C Y Xy . . TX 3
Let V be the connection induced by V and V* on
AT OVXx)®&. Set

(2.48) R® = R* + 1 Tr(R™].

Let K be the scalar curvature of (X, hTeX ).

Let e,,---,e,, be a locally defined smooth orthonormal basis of
(TgX, hTeX ). Recall that J TX is the complex structure of T, X. By
[13, Theorem 1.21] (and keeping in mind that the operator D in [13]
coincides with \/—Z_DX) , we get

2

«0.nyge  dacle) dayv/—1
L= % (VA_(T e ;f/(f _ ;\/_ ae, , e, )c(ek))
(2.49) da4da (e, J* e;)— ‘/_dac(e v, a)(eA,J €j)
— % -— %c(ei)e(ej) ® Ré(ei s ej)'

Let T (x, x") (x, x" € X) be the smooth kernel associated to exp(L,)
with respect to dv,(x')/(2n)"™* . Then

_ dv,(x
@50)  Trgew(r,)]= [ TrleT,(s™'x, 012 a)
X (2m)
Using normal geodesic coordinates to X in X, we may and will iden-
tify an e-neighborhood of X, in N, IX.R to an open neighborhood %,
of X in X.
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By standard estimates on heat kernels, one finds easily that there exist
€¢20, C>0 such that for xe X\%,, O<u<1,

(2.51) IT,(g"'x, x)| < cexp(~C/u).
Let va be the natural volume element along the fibers of N, X R
Let k(x, Z) (xeX ZeN, X, /X, R |Z| < ¢) be defined by
(2.52) dvy(x,Z)=k(x, Z)dvy (x) a’v,,,)r /X(Z).
s g
Then k(x,0)=1.
Clearly
- dv,(x
[, TeteTis Oy
@53) = fuzen, " TR T, 67+, ViEZ), (3, Vi)
IZ|<€/\/_
dvy (x)dvy (2)
k(x, VuzZ) —= o L

(2n)dimX
Of course, since we have used normal geodesic coordinates to X o in X,
if (x,Z)eN, /x> then
8
(2.54) ¢ l'x,2)=(x,g"'2).

Now we calculate the asymptotic behavior of

w ™ Ve Tr [T (87" (x, VAZ), (x, VUZ))] as u — .

For this, we combine the methods of [9], where we gave a proof of the
Lefschetz formulas of Atiyah-Bott [1], with the methods of [4], where we
proved the local family index theorem for Dirac operators.

Take x € X,. We assume that e, -, e, form an orthonormal ba-
sis of Ty X , and that €py1s " > €y form an orthonormal basis of
Ny X R, If Z € Ny X /X, R, x> let Q(g_lz 2) be the probability law on

%([0 1], Ny JX.R, ,.) of the Brownian bridge s — w,, with w, =g~ 'z,
=27 [8, Deﬁnmon 2.6]. Then by proceeding as in [9, proof of Theo-
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rems 4.9, 4.11], we get

dim N.
u

lim %X TrlgT, (87 (x, VUZ), (x, VUZ))]

u=0J\z|<e/vu

vax /x(z)
xk(x, VUZ)—=-r——

1 ding 0 1 1 X
= (m> {/N E~e"'z.z)exp [5/0 (R w, dw)

Xg/X R, x

+ %idada(/ol w(w, dw) - a(g”'Z, Z))

1 _ TX —18hTX
- zdadaTr ((h ) 3¢ )

(2.55)
da & . k
_ﬁ\/—l/o (;waw(ek,dws)e /\)
da rx,—10h"™¥

ANy _
x Try, ¢ [g exp (%c(da(l -g l)Z

21
+dav=1)_ a(e., (1- g—l)Z)ek))]

2p+1

dvy, (Z)

XglX

1 —1y2
xcxp(— (1-g )ﬂ)m

(S]]

1

X exp

N

Tr[R”]) Tr[gexp(—R‘fn} ,

uniformly on X "
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From Theorem 2.6 it follows that

Tr, A( X/X){gexp[ (da(l—g VZ

2/
+dav=1)_ a(e,, (1 - g_l)Z)ek)J }

2p+1

=0, 1)

AN;OD)
(2.56) =Tr; "¢ [g]lexp [—g <da(l—g V4

2/
+dav=1)_ ale,, (1-g ' Z)e,,

2p+1
+1 2
EX " |da(1-g™YZ+dav=T 3 arle,, (1-g ")Z)e, >
&~ 2p+1
Now the form @ is g-invariant. Therefore
2
(2.57) 3 ale,, 87 Z)e Z wle,, Z)e,,
2p+1 2p+1

which together with (2.56) gives

A(N.(o,l))
Tr, ¢ {gexp[1 (da(l— l)Z

(2.58)

}dada

2/
+dav=1) (e, (1- g“)Z)ek)

2p+1

=(0,1)

= TrA( ¥ [ g]exp (2 wg 'z, Z)dadc'z) .

So by (2.55), (2.58), we obtain
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. dim N
lim u Xe

X Tr[gT, (g (x, VaZ), (x, VaZ))"®
u—0J\z|<e/vu

v Ny x (Z)

d
x k(x, VuZz) (

zn)dimX
_ (L) / 2 |exp [ L /‘<Rrxw dw)
“\27i Ny, x e 2 /o ’
1
(2.59) + Lidada / o(w, dw)
0

2
1 _ rx.—10hT¥
— =dadaTr ((h ) e )

2
1 TX
) Tr[R ])J

2\ dv (Z)
X €Xp (—-l(g— DZ| ) ( Nyg1x

2 2n)dimeg/x

A(N;“’/'X”) : e
xTrg "¢ [g]Tr[g exp(—R)]

uniformly on X ¢ - Clearly
1 1 TX
(2.60) / o(w, dw) =/ <w, J”(h”)“%dw>.
0 0 ac

Using (2.60), we find that the right-hand side of (2.59) is given by
(2.61)

dim X
(L "o / E%z.52)
27i ob | Jn

Xg/X

1 /! rx ., .Tx,,TX\-10hT%
X(E/O <(R =i W) w, dw
1 rx.—10h™% 1 TX
X exXp (_Eb Tr ((h ) 3¢ ) ~3 Tr[R 7]

dv, (2Z) -
xexp(-%ug—1>z|2)(2—NX‘L—dﬂ””s’*<1—g>} °*‘s‘¢’vé)} |

imN,
n)dlm Xg/x

b=0
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By proceeding as in [9, Theorem 4.13], it is easily seen that (2.61) is equal
to
(2.62)

0 R™% X, —10h™ %
{% [Td (— 2in —b(h"") oc

q Td RN;j/x ) hNaj max
abadll B £ N x ‘lu . ¢
<11~ ( s — b T g | | eh (€, V)

b=0

Jj=1

So using (2.47), (2.50), (2.51), (2.53), (2.59)~(2.62), we get

M, = lim Tr [g exp(L,)]
RTX

0 TX, _10hT%e
/6b[Td( 2in —b(h"") 6c)

e 1d [ RV W 1 0R"s :
— | - — XglX _ ]

]'[ . —— = b(h )T 8 ch, (&, V).

/= b=0

2in

By (2.40), we have

”2 1
(2.64) log (”"%) (g) =/ M, .dc,
, Mo,

” ” A6(8)

which together with [11, §1f)] and (2.63) gives (2.22).
Hence the proof of Theorem 2.5 is completed.

II1. Complex immersions, equivariant resolutions, and Quillen metrics

Let i : Y — X be an embedding of a compact complex manifold, let
n be a holomorphic vector bundle on Y, and let (£, v) be a complex of
holomorphic vector bundles on X, which provides a resolution of i 7.
Let G be a compact group acting holomorphically on the objects which
we just introduced. Let 4;(§) and A;(n) be the equivariant determinants
of the cohomology of ¢ and 7.
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An obvious extension of [22] shows that A;(§) ~ A,(n). Let o €

/lg'(n) ® A;(€) be the canonical section inducing this identification. The
purpose of this paper is to calculate the Quillen norm of o .

In this section we describe in more detail the objects considered above,
and make various simplifying assumptions on the considered metrics on
TX, ¢, TY, n, along the lines of assumption (A) of [5].

This section is organized as follows. Part a contains an introduction of
our basic geometric setting. In part b, we describe the canonical section o .
In part ¢, we construct an equivariant Quillen metric on an intermediary
object ZG(é) . Finally, part d gives various assumptions on the metrics on
TX, ¢, TY, 1.

This section extends [15, §1] to an equivariant setting.

a. Complex immersions and resolutions. Let X be a compact connected
complex manifold of complex dimension /. Let Y = U‘li YJ be a finite
union of compact connected submanifolds of X such that Y] N YJ =g
for 1<j<j <d.Let i betheembedding ¥ — X. For 1 <j<d,let
l;. be the complex dimension of Yj .

Let n be a holomorphic vector bundle on Y. Let

(3.1) (é,v):O—yémT...;,fo_,o

be a holomorphic chain complex of vector bundles on X . In the sequel,
we identify & with @Z’ZO ¢, . Let r be a holomorphic restriction map:
§0|y -n.

We assume that (¢, v) provides a resolution of the sheaf i,&,(n), i.e.,
we have the exact sequence of sheaves

(3.2) 0— ﬁx(ém) —U" ﬁX(ém—l) - '17 ﬁx(éo) 5 i*ﬁy(") - 0.

Let N, € End({) be the number operator of &, i.e., N, acts on &,
by multiplication by k.

Let d,, d, be the Cech coboundary operators on X, Y . By definition
the cohomology groups H" (X, ) 0<i<m), H*(Y, n) are the co-
homology groups of the complexes (@, (&;), dy), (Fy(n), 6y). Of course
H (Y, n) =@ H' (Y. nly).

Let N; be the operator acting on g cochains by multiplication by ¢ .

We choose sign conventions, so that d,v+vd, =0, i.e., (G4 (&), dy+v)
is a complex. We define the Z-grading on &, () by N; — Ny, so that
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dy + v increases the total degree by 1. Similarly, we define the Z-grading
on &,(n) by N;.

We extend r to a map from &, ({) into i &, (n), with the convention
that it vanishes on &, (¢;) for i > 0, and coincides with the given r for
i=0.

Tautologically, r is a quasi-isomorphism of Z-graded complexes, which
induces the canonical identification

d
(33)  H(G4Q), oy +v)=H (Y, n) =DH (Y, 1ly).
j=1

Clearly
dim X
AT Vx) = @ AT V).
p=0

Let N, be the operator defining the Z-grading of A(T**"VX).

We can form the Z-graded tensor product A(T*®VX)&&. We define
the Z-grading on A(T**"YX)&¢ by the operator N,’f &1 — 1&N,, , which
we also note N,’f - Ny.

Definition 3.1. For 0<p </, 0<i<m,let E,’.' be the vector space
of smooth sections of A?(T**Vx )®E; on X . Set

(34 E,= @ E, E.= @ E/, E=E,0E_.

p—i even p—i odd

Then E is exactly the set of smooth sections of A(T‘(O’ bx )®E on X . It
is Z-graded by the operator Nf,r — Ny . Also E=E_& E_ describes the
corresponding Z,-grading of E.

The Dolbeault operator 8% acts as an odd operator on E. Also v
acts on ¢ as an odd operator. We extend v to an odd operator acting
on A(T*®VX)&¢&, with the convention that if o« € A(T*"VX), feé&,
then

(3.5) v(a®f) = (-1)**%aduv f.
Then
(3.6) 0% +v)’ =0,

i.e., % +v is a chain map on E.



80 JEAN-MICHEL BISMUT

By [15, Proposition 1.5], there is a canonical identification of Z-graded
vector spaces

3 H'(E;, 0") =~ H'(X, §),
H'(E, 8" +v) ~ H'(6,(¢), 6 +v).

Let N,f be the operator defining the Z-grading on A( T*(O’”Y). For

1<j<d,1<gq¢< l;., let Fj" be the set of smooth sections of

AT Vy)énly on Y;. Set
J

_ q _ q —
F}’+_ ®F}’ F}y_—®F}’ F}—F}y*‘@F.‘j’—’
q even q odd

(3.8) d
F,=F, ., F=FoF.
Jj=1

The operator N,’,' defines the Z-grading on F; and F.
Let 87 be the Dolbeault operator acting on F. Then

(3.9) H'(F,8~H(Y,n).

By (3.3), (3.7), (3.9), we find that there is a canonical isomorphism of
Z-graded vector spaces

(3.10) H'(E,8" +v)~H'(F,d").
If a€ A(T‘(O’I)XN Y> fe€ ékIY , set

ra®f)=0 ifk#0,

(3.11) faerf ifk=0.

Now we recall a result in [15, Theorem 1.7].

Theorem 3.2. The map r: (E, a* + v) = (F, 5y) is a quasi-isomor-
phism of Z-graded complexes, and induces the canonical identification
H*(E, 8% +v)~H* (Y, n).

b. Resolutions and group actions. Let G be a compact Lie group.
We assume that G acts on X by holomorphic difftomorphisms, which
preserve Y . Also we assume that the action of G on X and Y liftstoa
holomorphic action on the chain complex (¢, v) and on 7, and that the
restriction map r: ¢y, — n is G-equivariant.
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Then G acts naturally by chain maps on (&,(¢,), ¥ ) (0<i<m),
(@4 (&), 6" +v), (@, (n),6") and on (E,, §%), (E, 6% +v), (F, 8").
Also the quasi-isomorphisms r : (&, (&), * +v) - Gy > 67) and
r: (E, % + v) — (F, 5Y) are G-equivariant. Therefore G acts on
H'(X,&) (0<i<m), H(G),  +v) ~ H'(E, 5" +v), and
H*(Y, n). Finally the canonical identification

(3.12) H'(E, 8" +v)~H"(F,8")

is an identification gf finite dimensional G-spaces.
For given W € G, if Ay, u, are complex lines, A = P
= @WGE”W , then set

(3.13) Tl=@,  Aeu=P i, ou,.

weG weG

WGE)'W’ and

Now use the notation of §1. Set

Ag(E) = (det(H' (X, &), G) ™',

m

1 _ 2 _(—1)"’
(3.14) () g( ()

16(&) = (det(H'(E, 8" +v), G)™",
Ag(n) = (det(H (Y, 1), G)) ™.
Then (3.12) induces the identification
(3.15) (&) = Ag(n).
For 0 < i < m, consider the exact sequences of complexes
0| @ x¢). 6 | - D). 6" +v
J<i—1 J<i

— (@,(&), 67) -0,

;X X
0-»(@ E;,d +v) —»( E;,d +v)
j<i=1 J<i

- (E;, 8%) > 0.
The objects appearing in (3.16) are Z-graded by the operators N; — Ny,
and N,’f — H,;, so that the arrows in (3.16) are morphisms of Z-graded

(3.16)
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complexes. Then by [15, Proposition 1.8], the corresponding exact se-
quences in cohomology are isomorphic. So we write the second one in the
form

— H’ ~H (PE,;, 0" +v
(317) (j<l 1 ) (]<l

—~ H"ME - HNE,;, 8" +v) -

Clearly, G acts on the exact sequences (3.16), (3.17) by chain maps.
From (3.17), we get the canonical isomorphism

p=—m Jj<i—1

(-1)
®det | H” @Ej,a'xﬂ) e
j<i

Using (3.18), we obtain the canonical isomorphism

-1
/
g€y = @ det( (@Ej,5X+v),G)

(3.18)

p+i+l

(3.19) Ag(&) = A5(6),

which together with (3.15) gives

(3.20) (&) = Ag(&) = A(n).
By (2.10), we have
(3.21) A6(&) = D 4y (&)
weG
Similarly, we write

(3.22) =P i, igm =P rn(n).

weG weG

By (3.20), for W € G, the lines 4;'(n) ® A,,(&), 4, (1) ® 1,(&),
/1;,,' (§) ® 4;,(§) have canonical nonzero section gy, , p, , T, . Clearly

(3.23) O = Py ® Ty
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Set
o=@ oy eig (@A),
weG
(3.24) p=@ py iz (meige),
weG
1= @1y €d5 ©)®450).
weG
Then from (3.21), (3.22), and using an obvious notation we obtain
(3.25) c=poT

c. A Quillen metric on 15(&). Let K™, B = D, K be G-invariant
smooth Hermitian metrics on TX, & = @&, and WY, K" be G-
invariant metrics on 7Y, n, respectively. By §2a, these metrics induce
equivariant Quillen metrics || ||AG@, I “10('7) on 4;(¢,) (0<i<m,
Ag(m).

We now b~rieﬂy explain how to construct an equivariant Quillen metric
Il ige) On 45(¢). Let dv, be the volume element on X associated to

RT* Let () A(T-©-D)ge D€ the Hermitian product induced by W, K
on A(T"®VX)&&. If 5,5 € E, set

, 1 dim X ,
(3.26) (s,s)= (ﬂ) /X(s s SINTO)pe dvy.
This Hermitian product is G-invariant.
Let v* be the adjoint of v with respect to h*. Then v* acts as an
odd operator on A(T*®'VX)&&. Let ** be the formal adjoint of 8%
with respect to ( , ). Set

(3.27) K={ecE, 8 +v)s=0, @ +v")s=0}.

By Hodge theory, we have a canonical identification of Z-graded G-spaces
H*(E, 9% +v) ~ K. Let | |1G(¢) be the equivariant metric on ZG(é)
induced on iG(é) = (det(H(E, % + v), G))_1 by the restriction of the
L, metric (, ) on K.

Let K be the orthogonal space to K in E. Then (8% +v +38*" +
v*)2 acts as an invertible operator on K L. Let P, P* be the orthogonal
projection operators from E on K, K L.

For ge G, s C, Re(s) >dim X, set

(328) 6} (g)(s) = —Tr,[g(Ny — NI(@" +v+8"" +v")'I"P7].
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The same arguments as in (2.14), (2.15) show that s — 9? (g)(s) extends
to a meromorphic function which is holomorphic at s =0.
Definition 3.3. For g € G, set
5X
(3.29) tog(l 112 (&) = 108(1 2. )(8) ~ =%-(£)(0).
. 15 25(8) Bs

Then 4;(¢), iG(é) , Ag(n) are equipped with Quillen metrics. We
equip the inverses or the tensor products of such sums of lines with the
inverses or the tensor products of the corresponding Quillen metrics.

Tautologically, by (3.25), we get

(3.30) ol ey = 1Pz et @l Tl @eage

The purpose of this paper is to calculate the central functions of g € G
which appear in (3.30).

By Theorem 2.5, once we know how to calculate (3.30) for one choice
of metrics ™%, h%, ... h* K™Y K", with h™*  ATY Kihler, we
also get a formula for (3.30) for arbitrary metrics nTx , h'c", SRR R ,
RTY ", with 2’7 B'TY Kahler. This is why we are free to impose as
many restrictions as needed on the choice of these metrics.

d. Assumptions on the metric on TX,TY , &, n. Our first basic as-
sumption is that the G-invariant metric A’* is Kihler. Also we assume
that A”Y is the metric induced by K™ on TY.

Let o', " be the Kahler forms of (X, A"*), (Y, h""). Then

o™, " are G-invariant (1, 1) closed forms, and moreover

TY

(3.31) o =i"o™.

Let N, /X be the normal bundle to Y in X. On Y, we have the exact
sequence of holomorphic vector bundles

(3.32) 0— TY—»TX[Y—+NY/X—>0.

Then, TY and TX|, are G-bundles. Therefore Ny/ x 1is also a G-
bundle.
We identify Ny x with the orthogonal bundle to TY in TX|,. Let

h™Mix be the metric induced by A™X v on NY/ x- Then Wvix s G-
invariant.

For yeY, let Hy(é , V) be the homology of the complex (&, v)y If
yeY, ueTX,, let 5,u(y) be the derivative of v at y in the direction
u in any given holomorphic trivialization of (¢, v) near y.
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Then using the local uniqueness of resolutions [29, Chapter IV], [17,
Theorem 8], the following results were proved in [5, §1b)].

. Hy (€, v) are the fibers of a holomorphic Z-graded vector bundle
H(¢,v) on Y. The map d,v(y) actson H(¢, v)y as a chain map, and
this action does not depend on the trivialization of (£, v) near y, and
only depends on the image z of U in Ny/ X,y From now on, we will
write 9,v(y) instead of 3,v(y).

 Let 7 be the projection Ny, — Y. Then over Ny, , we have a
canonical identification of Z-graded chain complexes

(3.33) (R"H(E, v), 8,0) = (n"(ANy x ® 1), V=Ti,).

Clearly, G acts on both complexes in (3.33) by holomorphic chain
maps. It is then easy to verify that the canonical identification (3.33)
is an identification of G-bundles.

By finite dimensional Hodge theory, we know that for any y € Y, there
is a canonical isomorphism of Z-graded vector spaces

(3.34) H¢E,v),~{fe, vf=0, v"f=0}

The identification (3.34) induces an identification of smooth G-vector
bundles on Y. The vector bundle H(¢, v) can then be considered as
a smooth Z-graded G-vector subbundle of &. Let h©?) be the induced
metric on H(&, v). This metric is G-invariant.

Let A*Mx)®" be the metric induced by #"* and A" on A(N;,/ x)®n.
This metric is again G-invariant.

Definition 3.4. We say that the metrics h% s, hom verify assump-
tion (A) with respect to R™Mix | B if the identification (3.33) also identifies
the metrics.

Proposition 3.5. There exist G-invariant metrics ho s, hm on &>
-+, &, which verify assumption (A) with respect to x| gt
Proof. By [5, Proposition 1.6], there exist metrics &, --- , h*» on

&> -+ » &, which verify assumption (A) with respect to the G-invariant
metrics h™rix , h". By averaging % s, h*m with respect to the Haar

measure on G, we obtain G-invariant metrics ho AEREE h* which have
the required property. q.e.d.
In the sequel, we assume that Ko s, Bom verify assumption (A) with

respect to A™vx | b,
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IV. The equivariant norm of the section 7

Here we give an extension of [15, Theorem 2.1].
Theorem 4.1. For any g € G, the following identity holds:

2
(4.1) 108("‘5”16-1(§)®;_G(5))(g) =0.

Proof. The proof of (4.1) follows the same lines as that of [15, The-
orem 2.1], except an essentially new argument which is an extension of
the curvature theorem of [11, Theorem 0.1] to the equivariant case for the
metrics || || 160 in a trivial situation. For an arbitrary g € G, the same
local index techniques as in §2 show that as in [15], the “curvature” (which
here depends on g) vanishes.

Also one needs an extension of a result in [13, equation (2.23)] in an
equivariant context. However by splitting the considered finite dimen-
sional complex in its irreducible components as in §1, the result of [13,
equation (2.23)] can be used verbatim as in [15, §2].

Details, which are easy to fill, are left to the reader.

V. A contour integral

This section is the obvious extension of [15, §3].

Set
(5.1) DX =5+, v=v+v"
For u>0, T >0, set
X
(5.2) B, ;=u(D +TV).

Then the operators in (5.1), (5.2) act on the Z-graded vector space E . As
explained in the introduction, Tr; is our notation for the supertrace.

In the sequel, g € G is fixed once and for all.

Theorem 5.1. Let f, ;. be the 1-form on R, xR :

d
s Bu.r = “ZTLINy = Ny)gexp(-B; 1))
(5-3) dT N 2
——TTrs[ ngxp(—Bu’T)].

Then B, ; is closed.
Proof. Clearly g is an even operator which commutes with the oper-

ators 8%, v, 8, v*, N,’f, N, . The proof of Theorem 5.1 is then
formally identical to that of [15, Theorem 3.5].
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Take ¢, A, T,0<e<1<A<+00, 1 <T;<+oo. Let le'e,A’To
be the oriented contour in R’ x R indicated on Figure 1.

The contour I' is made of the four oriented pieces I';, --- ,T', indi-
cated above. For 1 <k <4, set

(5.4) D= /r k B.

Theorem 5.2. The following identity holds:
4
(5.5) Y I =0.
1
Proof. This follows from Theorem 5.1.
Remark 5.3. As in [15], we will prove Theorem 0.1 by making in suc-
cession 4 — +oo, T — +oo0, € — 0 in (5.5).

VI. A singular equivariant Bott-Chern current

In this section, we construct equivariant Bott-Chern currents associated
to the Hermitian chain complex ((£, v), hc). Namely if g e G, X . =
{x € X, gx = x}, and Y, = YnX,, then we construct a current

Tg(é , hc) on X, which verifies equation (0.8). Our construction uses
results of [5]. Thus we extend [14] to the equivariant setting.

This section is organized as follows. Part a contains various short exact
sequences of holomorphic Hermitian vector bundles naturally associated
to the equivariant immersion problem. In part b, by the superconnection
formalism of Quillen [26], we construct equivariant Chern character su-
perconnection forms on X ¢ - In part ¢ we use the results of [5] to establish
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convergence results for these currents as a parameter # tends to +oo. Fi-
nally in part d, by extending [14], we construct the Bott-Chern current

T (&, k).

This section is the obvious extension of [15, §4] to the equivariant con-
text.

a. Equivariant short exact sequences. Take g € G and set

(6.1) Xg={xeX, gx=x}, Yg={er, gy =y}
Then X < and Yg are compact complex manifolds and

(6.2) Y =YnNX,.

Also since g is an isometry,

TX,={Ue TX|Xg, gU =U},

6.3

(6.3) TYg:{UeTY|Y,gU=U},
14

and so

(6.4) TYg =TY| Y, n TXg| Y,

In particular TX g| y +TY|, isasubbundle of TX|, . Let N be the
k-4 4 4
excess normal bundle
TX|,
8

(6.5) N= .
TXly +TY]y

We have the exact sequence of holomorphic Hermitian vector bundles
on Yg

(6.6) E;O—»TYIYX—>TX|Y‘—) Y/leg—yo.

Of course g acts on E as a holomorphic parallel isometry.

Let E° be the subcomplex of E associated to the eigenvalue 1 of g,
and let E®'* be the direct sum of the subcomplexes of E associated to
eigenvalues of g distinct of 1. Then E splits holomorphically as

(6.7) E=E'9E"".
Let N, be the normal bundle to Y. in X . Then Eo, E%% are
Y /X, g g
given by
0 -
E :0- TYg — TXglyg _’NY,,/X, -0,

(65 E* 05N N N-o
VT Ny gy 7 xg/xlyg—’ - U
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As explained before, the metric A"™% induces metrics on all the vector
bundles appearing in (6.8). In particular, we see that X o and Y intersect
orthogonally along Y, i.e., N, and TX |, areorthogonalin TX|, .
g Yg/ Y 4 Yg Ys
Also we have the exact sequence

(6.9) F:0= Ny x Ny =Ny x> N0,

Again g acts on F. Using the same conventions as in (6.8), we get

F 10— Ny jy = Ny xly = N =0,
and also
(6.11) F=F'oF"*
Observe that
(6.12) E>* =F%*.

Over X ¢ & actson (&,v)|X g asa holomorphic unitary chain map.

Let eio{ sty eia;, (0< 0} < 2m) be the distinct locally constant eigen-
values of g. Then (¢, v)|, splits holomorphically and metrically as a
14

direct sum of complexes (60;' , ) on which g acts by multiplication by
b. The equivariant Chern character superconnection forms.
Definition 6.1. Let ch (¢, 4%), ch (&, h°) be the closed differential

forms on Xg , L.e.,

m

i ¢
ch, (&, K*) =D (~1)"ch (&, h"),

(6.13) )
ch (¢, h*) = ;(—l)iichg(éi, h*).
Set
(6.14) =P =

i even i odd

Then £ =¢, ®¢_ isa Z,-graded vector bundle.
Let V° =®;”=0 V% be the holomorphic Hermitian connection on (¢, hc)
=@, (&, h%). Clearly ¥ = v+v" is a selfadjoint section of End®¥(¢).
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For u > 0, set
(6.15) C, =V + VuV.

Then C, is a G-invariant superconnection [26] on the Z,-graded vector
bundle ¢. Since C, is G-invariant, over X g We have

(6.16) [C,, g]=0.

By definition [26], Cf is the curvature of C,. It is a smooth section of
(A(TgX)® End(£))™" . Let ® be themap: a € A(TyX,) — (2in)” ***/%a
€ AN(TeX g) -

By the same arguments as in [26], the forms ® Tr [g exp(—Cj )] over X 2
are closed, and their cohomology class does not depend on «. For u =0,
the forms ®Tr [g exp(—C,f)] are standard equivariant Chern character
forms. Asin [11, Theorem 1.9], we find that the forms ®Tr[g exp(—le)]
and <I>Trs[Nngxp(—C3)] lie in P¥s.

Theorem 6.2. For u > 0, the following equality of forms holds on X i

0 2 00 2
(6.17) %(I)Trs[g exp(—=C,)] = 2—1.;4) Tr [Ny g exp(—C,)].

Proof. By (6.16), the proof of (6.17) is the same as that of [11, Theorem
1.15].

c. Convergence of equivariant superconnection forms. Let C l(X g) be
the vector space of forms on X g9 which are continuous with continuous

first derivatives, and let || || (X.) be a natural norm on C'(X ) - Here we
4

use the notation of Definition 2.4.

Theorem 6.3. There exists a constant C > 0 such that for any u €
cl(x,), ux1,
(6.18)

/X ;td>Trs[gexp(—C3)]—/Y qu;l(Ny/X, hN”X)Chg('?,h")

4

c
< —ﬁ"ﬂllcl(xg) P

/X uCDTrS[Nngxp(—Cj)]+/Y u(Td;l)/(NY/X, hN”")chg(ﬂ, h"

g

C
< W”ﬂ”c'(xg)-

Proof. The proof of this result is essentially identical to that of [5,
Theorems 5.1 and 5.4]. The only difference is that exp(—C:) is replaced
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by g exp(—Cj ), but this does not introduce any difference in the analysis.
In effect, let vi¢v _ ®;10 \val € be the holomorphic Hermitian

connection on (H(&, v), K¢ ") = @;’;O(Hi(f, v), hHi(c’")). As we saw
in §3d, if z € N}'/x , then 9,v acts on H(¢, v). Let 8;1) be the adjoint
of 0,v.If Z=2z+2Z€ Ny g, set

(6.19) 8,V =0,u+0,v".
By (3.33), there is C > 0 such that if fe€ H(£, v), then
2
(6.20) 0,V 1" 2 Cizly, T

Of course (3.33) gives an exp11c1t description of H(¢, v), 0,v =V -1i,
and by assumption (A), 0, vt = —\/—liz .
Let B be the superconnection on zn° H(&, v), i.e.,

(6.21) B=n"v"®" 1o,V
Recall that N, X, is a subbundle of N Y/ Ny x| X, . Then by [5, Theorems 5.1
and 5.4}, there exists C > 0 such that for u € C](Xg) , u>1,

[ wotetgexn-cli- [ u[ Tt igexn(-5)
X Y, SNy

g

C
< _“#“c'(x )2
(6.22) v

/ udTr [N, gexp(— ]—/ /y/x PTr [N,gexp(—B )]‘

< V—I;Hﬂncl(xg)'

Let v l VA7) pe the holomorphic Hermitian connections on
A(NY /X ), A(N ). We still denote by N, the number operators of
A 4

ANy 5 ), AN If Z=z+2€Ny p g, Z€ Ny )y, set
g'"g
(6.23) V'(Z)=v=1(i, - i}).

Let n' be the projection N, v,/x, Y Let B’ be the superconnection
on 7' A( Y/X) ie.,

’

(6.24) B = a"v*Mx) L v'(2).



92 JEAN-MICHEL BISMUT

Then using assumption (A), which guarantees that the canonical identifi-
cation (3.33) identifies the metrics, and also (6.8), we get
(6.25)

OTr,[g exp(—B’)]

N,
YglXg

= o Tr,[gexp(-v "V )] /N N ®Tr,[g exp(~B)]ch, (n, A7),
Yg 8

/ ®Tr,[N,, g exp(—B)]
Nygixg
- {@Trs[NHg exp(—(V*V )]
x [ oTrlgexn(-B")1+ @ Tr g exp(~(v"")?)
N.

YglXg

x /N QTrs[NHexp(—Blz)]} ch, (1, k"),

YelXg

We have the trivial equalities:
1 N
ANy, Td\™" [ -Rx
@ Tr,[g exp(~(V ))]-Eo(e) ( 5o +10j),
J

(626)  @Tr N, gexp(~(v V)]

0.
o Td\ ' [ =RYvix
=-25 [H (T) ( i +10j+b)] ,
0/#0 b=0

and also
” _1 (=R
(DTrs[g CXp(—B )] =Td T s
(6.27) Mrerxe
) _pNrx
@ Tr [N, exp(-B”)] = —;’—b Td™! (—Rzl;—’ + b)
Ny, ixg b=0

by [25, Theorem 4.5], [5, Theorem 3.2]. From (6.22)-(6.27), we thus
arrive at (6.18).

Remark 6.4. As in [5, Theorem 3.2], one can also show that the con-
vergence in (6.18) takes place microlocally, and obtain corresponding es-
timates for corresponding microlocal semi-norms.
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d. Equivariant Bott-Chern currents. Now we imitate [14]. Let J, be
the current of integration of Yg . *

Definition 6.5. For s € C, 0 < Re(s) < 1/2, let R, (£, h°)(s) be the
current on X "

R, (&, K)(s)
1

(6.28) =5 /0 ! [dJTrS[Nngxp(—Cj)]

+(Td,"Y Ny, B") chy(n, B")3y | du.

By Theorem 6.3, the current R g(é , hé)(s) is well defined.
Definition 6.6. Let Tg(é , h{) be the current on X iy ie.,

(6.29) T, K) = 2R (&, K)(0).

One finds easily that Tg(é , hﬁ) is given by the formula
1
2 du
7@ K = [ TN, g(exp(~C]) - exp(~Co)1

+00 )
(6.30) + /] (® T, [Ny exp(-C})]

+(Tdy ") (N, » KN7)ch (1, h")éyg) %
~ T () {ch (&, k) + (Td, ") (Ny,, h”wx)(syg}.

Theorem 6.7. The current T, (¢, h:) is a sum of currents of type (p, p).
Also
00 -1 N.
(631) 3-T,(&, h®) = Td; ' (Ny,» h™%) ch, (1, h")s, —ch, (&, ).
Proof. 1t is clear that Tg(?,‘, hc) is a sum of currents of type (p, p).
Equation (6.31) follows from Theorems 6.2 and 6.3.
Remark 6.8. As in [14], one can show that the wave front set

WE(T, (&, b)) of T,(¢, h°) is included in Ny .
g'7"g’

VII. The analytic torsion forms of an equivariant short exact sequence

In this section, we describe the construction in [7] of analytic torsion
forms associated to a short exact sequence 0 - L - M — N — 0 of
holomorphic Hermitian vector bundles equipped with a parallel isometry
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g . The construction of [7] extends the construction of [6] to an equivariant
situation. Also we describe the main result of [7], which is the evaluation of
these analytic torsion forms in terms of Bott-Chern classes and an additive
genus D(6, x).

This section is organized as follows. In part a, we recall various results
on Clifford algebras. Part b gives a formula for the curvature ﬂ: of
the superconnection %, considered in [6], [7]. In part ¢, we construct
the generalized supertrace of g exp(—%uz) , which is a smooth differential
“form on the considered manifold. In part d, we recall the results of [7] on
the asymptotics of these forms as ¥ — 0 and u — +oo. Part e reviews
the construction given in [7] of analytic torsion forms. In part f, following
[7] we evaluate these forms in terms of Bott-Chern classes and the genus
D(@, x). Finally part g contains a formula for D(8, x) as a power series
in x, introduces the genus R(6, x) already given in (0.10), and reviews
formulas of [7] for R(A, x).

This section is self-contained. It is the extension of [15, §5] to the
equivariant setting. In the sequel, its results will be applied to the exact
sequence 0 — 7Y, — TX| y, ™ y/x| v, = OonY,.

a. Clifford algebras and complex vector spaces. Let V be a complex
Hermitian vector space of complex dimension k. Let ¥ be the conjugate
vector space. If z € V', then z represents Z = z + Z € Vg so that
|Z|2 = 2|z|2 . Let J € End(}}) be the complex structure of V.

Let c(Vg) be the Clifford algebra of V4, i.e., the algebra generated by 1,
U € V4, and the commutation relations U U'+U'U= -2(U, U') . Then
A(V") and A(V") and Clifford modules. Namely if X e V, X' €V, let
X* eV, X" € V* correspond to X, X' by the Hermitian product of
V. Set

c(X)=V2X'A,  o(X)=-V2iy,

7.1
D eX)=V2i,, éX)=-V2X"A.

Note that our conventions in (7.1) for ¢ from the conventions in [15, §5a)]
(where our ¢(U) is é(JU) in [15]) and fit with the conventions in [7].
If U, U' € ¥y ®,C, then

c(U)e(U") + ¢(Ue(U) = =2(U, Uy,

(71.2) , , ,
UYEU') + &(Ue(U) = —2(U, U').

Also ¢(U), é(U) act as odd operators on A(V )®A(V*). If U, U’ €
Vk ®g C, then
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(7.3) c(U)e(U") + &(U"e(U) = 0.
b. A formula for ﬁ’uz . Let B be a compact complex manifold. Let
(7.4) E:0-L-M->N->0

be a short exact sequence of holomorphic vector bundles on B. Let
[, m, n be the dimensions of L, M, N respectively. We identify L with
a subbundle of M, and N with M/L. Let n be the projection M — B.

Let h™ be a Hermitian metricon M . Let A" be the induced metric on
L. By identifying N to the orthogonal bundle to L in M, N inherits a
Hermitian metric 4" . Let P* , P" bethe orthogonal projection operators
from M on L, N. Let vt , VM, vV be the holomorphic Hermitian
connections on L, M, N, and let RE s RM , RY be their curvatures.
Then classically,

(1.5) vi=pPiv™, v¥=p"V"
Let °V™ be the connection on M , 1.€.,

(7.6) 09 = vr e vV

Set

(1.7) A=v"_09M

Then A is I-form on B with values in skew-adjoint endomorphisms of
M , which exchange L and N.

Let e, --- , e,, be an orthonormal base of Ny .
Definition 7.1. Let S € End®(A(N") ® A(N™)) be given by
\/_—1 2n R
(7.8) §="5- > cle)ée)).
1
Let f,,---, f, be abasis of TyB, and let 7t ,f2k be the dual

basis of TgB.
Definition 7.2. If Z € Mg, set

%
(1.9) HAP"Z) == I Ae(A(f)P"Z).
1
Definition 7.3. If y € B, then I, (resp. Jy) denotes the vector space

of smooth section of (A(M )SA(N "), (resp. (A(W*)Q?(N*))y) , over the
fibre My .
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Let R*™") be the obvious action of R" of A(N*). Then RMY ) acts
on A(M")®A(N*) like 1R

Let e, --- , e,, bean orthonormal basis of M.

Definition 7.4. For u > 0, let B € (A(T3B)®End(J))™"™" be given
by

2m 2 N2
B = —% (ve, + %(RMY, e[)) + M
(7.10) 1
+ VS + V2o 4Pt Z) + LT R + RAYO,
V2 2

c. Generalized supertraces. Let dv,,, dv, be the volume forms on the
fibers M, Ng. The smooth kernels on the fibers of My will be calculated
with respect to the volume form dv,,/ (2n)dimM .

For ye B, u>0,let Q)(Z,Z') (Z,Z' € My ,) be the smooth

kernel associated to exp(—@f’y ). For the existence and uniqueness of
QN(Z,Z'), we refer to [6, §4 a)]. Then
Q,(Z, Z") € (AM(TgB)®End(A(N")SA(N")))>"".

By [7, Theorem 1.6], for u > 0, there exist C >0, C' >0, C" >0

such that for ye B, Z,Z' € Mg ,, then
L 2

1QU(Z, Z') < Cexp (-ﬂzgﬂ +C(IP*Z) + 1P Z)
(7.11)
_ C//(|PNZ|2 + IPNzllz)) )

Let g be a smooth section of End(M), which preserves L. Then g
acts naturally on L and N.

We assume that g is an isometry of M , which is parallel with respect
to VM . Then g also acts as an isometry of L, N, which is parallel with
respect to vt s vV . So g acts on the complex E.

Let &% y e, e'% (0<0 ; < 27) be the locally constant distinct eigen-
values of g actingon L, M, N. Then E splits holomorphically as an
orthogonal sum of complexes

(7.12) E%:0-L% oMY o N% S0,

and g acts on E® by multiplication by "% . Moreover M% inherits a
5,

metric #*” from the metric #* on M.
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Set

(7.13) E"t = E".

6,#0
Then E splits holomorphically and metrically as
(7.14) E=E'¢E""
Take ye Y. If s €l let gsel, be given by

(7.15) gs(Z) = gs(g~' Z).

Then ge:xp(—ﬂu2 ) acts on A(TgB)&®I, and the corresponding kernel is
givenby gP(¢7'Z,2").
Clearly g acts on AZ” " )®AN)®AN®) and so on

A(T3B) @A ")RAN)& (N ). Also Q(Z,Z') acts on the same

bundle (it acts trivially on A(L b )) . Therefore

20,(87'Z, Z) € (MT3B)@ End(A(L" " )OAN )RA(N")))™".
Let Trs[gQu(g_IZ , ZN] e A( TRB) denote the corresponding supertrace.
By [7, equation (2.10)], which itself follows from (7.11), we find that
glven u > 0, there exist C > 0, C' > 0 such that for y € B, Z €
MYy ®Ng
(7.16) 10(s”'Z, Z)| < Cexp(~C'|Z).

Let N, be the number operator of A(N"). Then Ny, acts like 1&N,,

on A(T; B)®A(_0 T HRAN)RANT).
In view of (7.16) and following [7, Definition 2.1], we now set the
following definition.

Definition 7.5. For u > 0, set

Tr,[g exp(—B.)]

=/ Tr[20,(¢ ' Z, Z)] dVyp0. 1 gn0(Z)
R eNg

(2n)dimM°’J‘+dim N®’

(7.17) )
Tr [N, g exp(—By)]

- dv,e L o(Z)
_ T 1 7 MY LN
_/,,o.¢@No rINy8Q,(8 Z, )](zn)dimMo“"HiimNO'

R R

The objects constructed in (7.17) are smooth forms on B.
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d. Convergence of generalized supertraces. If u € R, — w, is a family
of smooth forms on B, we write that as u — 0,

(7.18) w, = w,+7(u)
if for any k € N, there is C, > 0 such that the norm of w, — @, in
Ck(B) is dominated by C,u.

We define P?, P2-% as in Definition 2.3, by simply replacing X 2 by
B

Now we recall a result of [7].
Theorem 7.6. For u > 0, the form ®Tr [g exp(—Bi)] is closed, lies

in P?, and its cohomology class does not depend on u > 0. The forms
®Tr [N,g exp(—Bz)] also lie in P® . Moreover

0 2,, 00 Ny P NE
(7.19) 5;<I>Trs[gexp(—$u)] = m¢Trs Tgexp( Z, )} ;
as u—0,

2 M, -1 N
O Tr[gexp(-F,)] = ng(M, h )Td, (N,h )+ (u),

OTr, [N, g exp(-F,)] = —(Td; ') (N, k") Td, (M, i) + & (u);

as u — +oo,

(7.20)

2 L 1

®Tr[gexp(—-F,)] = Td, (L, h)+@ (ﬁ) )
dim N L 1

3 Td, (L, h)+@ <ﬁ> .

Proof. The results stated in our theorem are proved in [7, Theorems
2.5, 3.2, and 5.3].

e. Generalized analytic torsion forms. Now we reproduce the construc-
tion given in [7, §6] of analytic torsion forms.

Remark 7.7. By using the techniques of §13 and proceeding as in [15,
§14], one can give a new proof of (7.21).

Definition 7.8. For s € C, 0 < Re(s) < 1, let A(s) be the form on
B:

(7.21)

®Tr,[N, g exp(—F,)] =

+00
A(s) = %s) /0 W {DTr,[N, g exp(—-B)]
dim N
)
By (7.20), (7.21), one verifies that s — A(s) extends to a function which
is holomorphic near s = 0.

(7.22)

L
Td, (L, h")} du.
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Definition 7.9. Set

M 0A
(7.23) Bg(L, H,h")= E(O).

By [7, equation (6.3)], we have
1
B,(L, M, ") = [ (®Tr,[N, g oxp(~])]
0
+Td (M, h")(Td;") (N, h" }—

+/| oc>{<I)Trs[Nngxp(—Bu)]
dimN du
BLLLE TRIN’ )} :
+T(1) {ng(M, Wy (1d; 'y (N, h")

dim N
T
The following result is proved in [7, Theorem 6.3].
Theorem 7.10. The form B L, M, hM) lies in P® . Moreover,

(7.24)

Td,(L, h )}

Td, (M, h™
aaB(LMh ) = Td(L,hL)—g(—N).
2in & Td, (N, h")

f. Evaluation of the generalized analytic torsion forms. For u € C,
neC, xeC, set
(7.26)

o(u,n, x)

(7.25)

= 4sinh

(x—2n+\/x2+4u> sinh (—x+2n+\/x2+4u)
4 4 )

In the sequel, # € R, and x € C are such that |x| < 2z if 6 € 2nZ,
and |x| < inf, , |0 + 2kn| if 6 ¢ 272Z. Then by [7, equation (6.6)], as
U — +00

00 /0x . _ 1
(7.27) -a—(u, 10,x)—ﬁ<\/a).
Definition 7.11. For s € C, 0 < Re(s) < 1, set
+o00
(7.28) Cs, 0, x) = -1—/ ' “9"/8"(u i6, —x)du.
I'(s) Jo

Then s — C(s, 6, x) extends to a holomorphic function near s =0.
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Definition 7.12. For 6§ € R, x € C, |x| < 2n if § € 2nZ, and
|x| < inf, |0 + 2kn| if 6 ¢ 27Z, put

(7.29) D(, x)=dC(0, 0, x)/ds.

Then D(6, x) is a periodic function of § with period 2z . Also D(0, x)
is holomorphic in x on its domain of definitions.
For 6 € R, we identify D(6, x) with the corresponding additive genus.
Set

(7.30) D, N, k") =TrD(9,, -R"" j2in)).

0;
Then D(6;, N%  p¥ ') lies in P? and is closed.
Now we follow [7, Definition 6.7].
Definition 7.13. Set

N 9. ,N%
(7.31) D,(N,h")=)"D(6;, N7, h"").

The class of Td (L, hL)Dg(N, hN) in PB/PB’0 does not depend on

. L LY N Nbi .

the metric h~ = @h~", h" = @h" . We denote this class by
Td,(L)D,(N).

Let Td, (L, M, hM) be the Bott-Chern class in P® /PB’O constructed
in [11, Theorem 1.29], such that

00 ~, M M L N

(7.32) deg(L, M,h")= Td, (M, h™)-Td, (L, h")Td (N, h).

The following result is proved in [7, Theorem 6.8].

Theorem 7.14. The following equality holds:

B,(L, M, h")=-Td ' (N, h")Td,(L, M, K"

7.33
(7.33) +Td,(L)D,(N) in P?/P"°.

g
g. Evaluation of the function D(6, x).
Definition 7.15. For ye R, s € C, Re(s) > 1, set

+00

(134 t0,9=Y LW 5=y )
n=1 n=1

Then for a fixed y € R, both functions in (7.34) extend to a holomorphic
function of s for Re(s) < 1.

We now recall a result of [7, Theorem 7.2].

Theorem 7.16. For 6 e R, x € C, |x| < 2n if 0 € 2nZ, and |x| <
inf, ., |0 + 2kn| if 0 ¢ 2nZ, D(0, x) is given by the convergent power
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series

DO,x)=Y i (( 1)+Z )n(e 2(;9—3”(0,—;1))%

n>0
(7.35)

n even

+3 (( Z ) £, -n) 26{(0 —n))x—'

n>1
n odd

Recall that the Hirzebruch polynomial ff(x) is given by

~ . x/2
Set
(7.37 a(x, 0) = A(x) if 6 € 277,

= A(x +i0)/(x + i0) if 0 ¢ 2nZ.

Definition 7.17. For § ¢ R, x € C, |x| < 2rn if § € 2nZ, and
|x| < infy _, |6 + 2kn| if 6 & 27Z, set

(7.38) R(0,x)=D(8, x) - r’(l)aaéax(e, x).

Again R(6, x) is a periodic function of 6 with period 27 .

The following result was established in [7, Theorem 7.7].

Theorem 7.18. For 6 ¢ R, x € C, |x| < 2rm if 0 € 2nZ, and |x| <
inf, _, |0 +2kn| if 0 ¢ 2nZ, we have

RO, x) =3 i (Z 10, —n) 2a @, —n))x—,

n>0
n éven

+y (Z -{(6, - 2‘95(0, —n)) 2

n>1
n odd

Now we recall the definition of the function R(x) by Gillet and Soulé
[20]. Let {(s) = 3,2 1/n’ be the Riemann zeta function.
Definition 7.19. For x € C, |x| < 2n, set

(7.40) =Y (Z =L(- 28C(— ))

n>1
n odd

(7.39)

Clearly
(7.41) R(0, x) = R(x).
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Definition 7.20. For x € C, |x| < 2x, set

(7.42) p(x)= Y 2/ (=m>r.
n>1 )
n odd

Finally, we recall results in [7, Theorems 7.8 and 7.11].

Theorem 7.21. If 0 €]-2x, 2n[\ {0}, if x € C, |x| <inf,, |0+2km],
then
log(1 + 6/2km)

R, x) = R(x+10)+12m

(7.43)

+ 2r'(1) - log(O ) — log(1 — zx/B)
X+ i0
Also for 8 € R,

21311

R(6,0)=1,0),

2I°(1) — log(6%)
i0 '

(7.44)

R(8,0) = p(if) +

VIIL. A formula for log(||p||§5u(,,)®;c(¢))(g)

This section extends [15, §6] to the equivariant situation. Namely, we
give a formula for log(]| p||/21 Nl é))( g) , which combined with Theorem
4.1 implies Theorem 0.1. ThlS formula is the main result of the paper.

To establish our main result, we proceed as in [15]. Namely we start
from the identity Z:=| I,? = 0 of Theorem 5.2. Then we state seven
intermediate results, the proofs of six of which are delayed to the next
sections. These results have a strong formal resemblance with the corre-
sponding results in [15]. We can thus formally import from [15] most of
the discussion on the asymptotics of the I(’; sas A — +oo, Ty — +oo,
¢ — 0. This leads us very quickly to the proof of our main resulit.

This section is organized as follows. In part a, we state our main re-
sult. In part b, we introduce a rescaled metric on E. In part c, we state
our seven intermediate results. In part d, following [15, §6 d], we dis-
cuss very briefly the asymptotics of the I('; ’s. Part e gives a local formula

2 . &
for log(||p||151(")®16(¢))(g) in terms of Tg(ﬁ, h*) and Bg(TY| Y, TX| Y,

n"x ¢). In part f, using the results of [7] which were recalled in §7, we
establish our main result.
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a. The main theorem. We now state the main result of this paper, whose
proof occupies §§8-13. It extends [15, Theorem 6.1].
Theorem 8.1. For g € G, the following equality holds:

1081015 p01,0)(8) = — [ Ta(TX AT (€. H)

r)ch, (n, A"

-1 N, 1
(8.1) +/Yg Td, ' (Ny x» KT (TY, , TXIy b

— [ Td (TX)R (Ny,y)ch,(n),

10B(1PI 01, 0)8) = = [ Ta,(TX HTHT € H)

TX|,

@1) A T8 Wy BTG T, T AT ey, )
4

- /X Td (T X)R,(TX)ch, (&) + /Y Td (TY)R,(TY)ch, ().

Proof. The remainder of the paper is devoted to the proof of Theorem
8.1.

b. A rescaled metric on E .

Definition 8.2. For 7 > 0, we denote by ( , ), the Hermitian prod-
ucton E associated with the metrics A%, h% | 4% / T, h'f"'/ T*" on
TX,¢,), -, ¢, respectively. Set

(8.2) Ky={s€E; (8" +v)s=0; 8 + T ")s=0}.

Let P, be the orthogonal projection operator from E on K, with
respect to the Hermitian product ( , ), .

In (3.27), we saw that for any 7 > O, there is a canonical isomorphism
of Z-graded G-spaces,

(8.3) K2 H'(E, 5" +wv).
Let | |; ), r be the equivariant metric on (&) inherited from the Her-
mitian product ( , ), restricted to K. Clearly, with the notation of §3b,

we have
K, =K; P =P,

For T > 0, set
(8.4) K,={seE; (D" +TV)s=0}.

| |iG(¢),1 =| |16(é)'
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Let ﬁr be the orthogonal projection operator from E on I?T with respect
to the Hermitian product ( , ) =(, ), on E. Then we have the simple
formula of [15, equation (6.5)]

(8.5) T V(X v +85 +TNT" = D" + TV.
From (8.5), we deduce that
(8.6) Po=1"ep T,

The map s € K, — T Vug ¢ I?T is an isomorphism of Z-graded G-
spaces. We thus find that as a Z-graded G-space, K is also isomorphic
to H*(E, 8% +v).

Set
(8.7) D' =5"+a4".
For 1<j<d,let DY/ be the restriction of DY to Y]

Let Q be the orthogonal projection operator from F on K' = ker(Dy)
with respect to the given Hermitian product on F .

c. Seven intermediate results. Recall that o’ , 'Y are the Kibhler
forms of X, Y. Since these forms are closed, they can be paired with
characteristic classes of vector bundles on X g7 Yg respectively.

For 0<i<m, 1<j<d, geG, set
88) 2@ =T"Ve, gl =Th ")

Then by the Lefschetz fixed point formula of Atiyah-Bott [1],
1) = [ Ta,(TX)ehy (&),
4

(8.9)
xnly) = [ Ta,(T¥yeh (i)

In the sequel, we will often use the notation
d
[ m Y Ta,(TY) ey (n) = 3 dim, [ Taurrenaly).
(8.10) ° =
d
dim Ny, (1) = Y S dim Ny 2, (1] y )-
1

In the sequel, g € G is fixed once and for all.

We now state in Theorems 8.3 to 8.9 seven intermediate results which
play an essential role in the proof of Theorem 8.1. The proofs of Theorems
8.4-8.9 are deferred to §§9-13.



EQUIVARIANT IMMERSIONS AND QUILLEN METRICS 105
Theorem 8.3. As u — 0,
X X 2
Tr, (N} — Ny)g exp(—u(D™ + ¥)?)]

1 TX
_ ;/X c‘;_ang(TX)chg(s’,‘)
+ /X [dim X Td, (T X) ch, (&)

- Td’g(TX) ch, (&) — Td, (T X) chi ()]

(8.11) +O(u),
Tr [N;’g exp(—uDY’?')]
/—Td TY)chg(n)

+/Y [dimY Td(TY) - Td(TY)]ch,(n)

+(u).
Proof. First we prove the second equality in (8.11). For ¢ > 0, set

h,T Y= hTY/t. Let +' 7, *,TY be the star operators associated to the

metrics h’Y, ht" . Clearly, when acting on A(T*(O’ 1)Y) ®n,

TY —dimY TY N}
- -t 1m* ™

(8.12)
and so

TY Y .
TY _13*' _ NV —dimY
(8.13) () 5 = .

By (2.38), (2.39), (2.44), (2.63), we see that as u — 0

Tr [(N, —dimY)gexp(-u / —-— Td (TY)ch,(n)
(8.14)
- /Y Td,(TY) ch, (1) + & (u).

4

Also using the McKean-Singer formula [24] and the Lefschetz formula of
Atiyah-Bott [1], we get

(8.15) Tr,[g exp(—uD""?)] = /Y Td,(TY)ch, (1),

which together with (8.14) gives the second identity in (8.11).
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The proof of the first equality follows from the same line. It is left to
the reader.

Theorem 8.4. Forany o, > 0, there exists C > 0 such that for o > o,
T>1

| Tx, [N, g exp(—a(D* + TV))] - 1

2
(8.16) |Tr,[(N) — Ny)g exp(—a(D* + TV))]
—Tr,[N, gexp(—aD"?)]| < C/VT.
Theorem 8.5. There exist ¢ >0, C >0 such that for a>1, T > 1,
| Tr,[(N)y — Ny)gexp(—a(D* + TV)%)
— Tr,[(Ny — Ny)gP]| < exp(—Ca).

Theorem 8.6. There exist C > 0, y €]0, 1], such that for u €10, 1],
0<T<1/u,

| Tr,[Ny, g exp(—(uD* + TV)%)]
_/ Td,(TX,h"™) x ®Tr,[N, g exp(~Cia)]| < Cu(1 + T))).
X

g

dim Ny, 1, (n)] < C/VT,

(8.17)

(8.18)

Moreover, there exists a constant C' > 0 such that for u€l0,1], 0< T <
1 »
X 2 X2 /

(8.19) | Tr [N, gexp(—(uD” +TV)")]-Tr[Nygexp(—(uD"))]| < CT.

Consider the exact sequence of holomorphic Hermitian vector bundles
on Yg
(8.20) E:0-TY|, - TX|, — Y/X|Y—’O'

4 -4 4

Clearly g € G acts as a parallel isometry on E . In the sequel, we use the
notation of §7 applied to this exact sequence. In particular for u > 0, we

will consider the operator ﬂuz of Definition 7.4.
Theorem 8.7. For any T > 0, the following equality holds :

) x T 2
,I,I_I,I})Trs [Nngxp (— (uD + ;V) )}
=/Y ®Tr, [N, exp(-B)Ich, (n, h").
I4

Theorem 8.8. There exist C > 0, é €]0, 1] such that for u €]0, 1],
T>1,

(8.21)

(8.22)

T )\ 1. C
Tr, [Nngxp (— (uDX + ;V) )] - §dlmNY/XXg('7) < =1
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Theorem 89. As T — +oo,

1 ? .
log (M (8) = dim Ny, x,(n) log(T)

(8.23) I3,

2
- IOg(lpIAE‘(”)@;;‘,G({))(g) +¢&(1/T).

Remark 8.10. As in [15, Remark 6.10], one immediately verifies that
Theorems 8.4-8.8 are compatible with each other.

Besides, at a formal level, Theorems 8.3-8.9 can be obtained from [15,
Theorems 6.3-6.9] by introducing the operator g in the right place. This
will permit us to transfer formally the discussion in [15, §6] to our situa-
tion.

d. The asymptotics of the I,? ’s. We start from the equality in (5.5):

4
(8.24) Y I =0.
k=1
Because of the formal analogies with [15, §6] which were indicated before,
the discussion of the asymptotics of the I,(:’s as A — +oo, Ty — +o0,
¢ — 0 can be formally transferred from [15, §§6d and 6e]. Of course,
we use here the more general Theorems 8.3-8.9, instead of [15, Theorems
6.3-6.9].
Consider the forms on Yg

N,
ANy, M)

N -~ N
~| —R"vx A [ -R"'vx
=A - I I - ——+1i0.],
( 2in ) 0,40 e ( 2in 1)

825) .
Ay (Ny,x, B7%)
N° ~ N
o |~ —RM A[-RYx
=25 A(—zm +b)H€( i +10j+b)] )
9,#0 b=0

Let Eg(NY/X), /f'g(Ny/X) be the corresponding classes in PYe/PYS’O.
Then

Td, Nyx 1.
(8.26) ﬁ;(NY/X,h ) = =£(Ny)x) + 5 dim Ny .

NN

Ultimately, by proceeding as indicated, we obtain an extension of [15,
Theorem 6.16].
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Theorem 8.11. The following equality holds:

tog(ll 12 1 ye, (&) = / Td,(TX, K™)T, (&, i)

LT X0y,
(8.27) —/YBg(TYI v TXly, b "s)chy(n, h")

Y
+ r“(1)/y ng(TY)ATg(NY/X) ch, (7).
4 4

e. A formula for log(llpfc_l(,’)mc(é))(g).
Theorem 8.12. For g € G, the following equality holds:
(8.28)

Log (1|11 1y, ¢)(€)
_/ Td,(TX, K", (&, KY)

/ Td, ' Ny, K0TUTY ], L T, B ) ey (n, AT

[Td (TY) (D -T( Aé) (Ny,x) ch(n).

Proof. Since ch,(n, h") € P*s is closed, Theorem 8.12 follows from
Theorems 7.14 and 8.11.

f. Proof of Theorem 8.1. Equality (8.1) follows from (7.38) and Theo-
rem 8.12. Let i g Yg - X 2 be the obvious embedding. Then we have the
equalities in H'(Y,):

5.29) Td,(TY) = zg Td,(TX)/Td,(Ny,,).
R,(Nyy) = i;R (TX) ~ R(TY).

Using (6.31) and (8.29), we get

| Td,(TY)R(Ny; ) chy(n) = /X Td,(TX)R,(TX)ch, ()
(8.30) " * *

_ /Y Td,(TY)R,(TY)ch,(n).
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Then equality (8.1') follows from (8.1) and (8.30).
Hence the proof of Theorem 8.1 is completed.

IX. Proofs of Theorems 8.4 and 8.5

In this section, we give a proof of Theorems 8.4 and 8.5. This proof
relies essentially on the results of [15, §§8 and 9], where the corresponding
results were established when G is trivial.

Let L be a smooth G-invariant section of End(A(T"®Vx)&&)™™.
The section L? of End(A(T*®VY)&#) was defined in [15, §8b]. Again,
L? is G-invariant.

First, we state the obvious analogues of [15, Theorems 8.2 and 8.3].

Theorem 9.1. For any o, > 0, there is C > 0 such that for a > o,
T>1,

(9.1)  |Tr{Lgexp(—a(D* + TV)})] - Tr[L’ g exp(—aD? %)) < C/VT.
Theorem 9.2. There exist ¢ >0, C >0 such that for a >1, T>1,
(9.2) | Tr{Lg exp(—a(DX + TV)2)] - Tr[LgﬁTll < cexp(—Ca).

Remark 9.3. Asin [15], Theorems 8.4 and 8.5 follow easily from The-
orems 9.1 and 9.2.

The proof of Theorems 9.1 and 9.2 is essentially the same as that of
[15, Theorems 8.2 and 8.3] given in [15, §§8 and 9].

Let VA(T.(O’”X ) be the connection induced by V¥ on A(T*(O‘])X ).
The first fundamental observation is that all the constructions of [15, §8]
are G-equivariant. In fact these constructions involve the following:

1. In [15, §8e], an identification of a neighborhood of Y in X with a
neighborhood of Y in N, /X R where Y is considered as the zero section
of N, /X by using geodesic coordinates normal to Y. Now since g € G
is an isometry which preserves Y, g preserves the geodesics which are
normal to Y. Of course under this identification, g acts linearly in the
fibers of NY/X,R.

2. In [15, §8f], an orthogonal splitting of Z-graded vector bundles & =
E* @& of & near Y, already considered in [5, §1]. In effect for y € Y,
let u(y) be the smallest nonzero eigenvalue of Vz(y). Since ker V2 |y
is a smooth vector bundle, u has a positive lower bound 2b on Y. If
a* (x, Y) is small enough, b is not an eigenvalue of Vz(x). Then &
(resp. é;) is the direct sum of the eigenspaces of Vz(x) associated to the
eigenvalues which are smaller (resp. larger) than b. Since G actson ¢ as
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an isometry which preserves V2, G also acts on & and & . Let 6‘5*
be the connection on ¢*, which is the orthogonal projection of V° on
{i. Set V¢ = €7é+ ®V* . Then V* is G-invariant.

3. In [15, §8g], a trivialization of A( 0Dy )®& along geodesics nor-
mal to Y, with respect to the connection VA(T‘(O’ I)X)®l +1&6V¢ , which is
again G-invariant.

Now we use the notation of [15, §9]. Let E° (resp. F 0) be the vec-
tor space of square integrable sections of A(T*(O’ Dx )Y®E over X (resp.
A(T'(O’I)Y)an over Y). Then for any T > 0, the linear isometric em-
bedding J. of F % in E® defined in [15, Definition 9.4] is G-equivariant.
Set Eg = JT(FO). Let Eg’L be the orthogonal space to EOT in E°
with respect to the Hermitian product (3.26) on E. It follows from
the previous considerations that for any 7" > 0, the orthogonal splitting
E°= Eg ® Eg’l of E° considered in [15, Definition 9.4] is G-invariant,
i.e., G acts on Eg and Eg’L.

Therefore the matrix of the unitary operator g with respect to the
splitting E° = Eg eBEOT’ L s diagonal, and so it can be written in the form
_ |8, O }

and moreover

(9.4) 8. 1Jr = Jr8.

The proofs of Theorems 9.1 and 9.2 then proceed as in [15, §§9g and
9h].

X. The L, metrics on 1;(¢) and A.(n)

For T > 1, let | |/1 i@ r be the metric on 4, ( )®/~IG(€) which
is associated to the L metrics | | 2 or || 3@,

In this section, we w1ll prove the followmg result
Theorem 10.1. For g€ G,as T — +,

(10.1) log(lpll neiy@,r)(8) = dim Ny, x (1) log(T) + &(1/T).

Remark 10.2. Theorems 8.9 and 10.1 are equivalent.
Clearly

(10.3) H(Y,n) = @H Ay ).
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Let A" be the metric on H (Y, n) induced by the Hermitian prod-

uct of F on ker(DY) ~ H(Y, 7). Then the H(Y;, n|, )’s are mutually
J

orthogonal in H(Y , ) with respect to A7

Let s € E be such that (8% + v)s = 0. Then P_s represents the
cohomology class [s] € H(E, 8% +v) of s in K, ~ H(E, 5% +v). In
the sequel, we will write P.[s] instead of Ps.

Also, we use the canonical identification of Theorem 3.2,

(10.4) H(E,d" +v)~H(Y,n).

Then the splitting (10.3) of H(Y, n) induces a corresponding splitting of
H(E, 8" +v).
Take s € H(Y;, nly), s’ € H(Y;, 1|y ). Then by [15, Theorem 10.9],
J J
as T — 400,
(Prls], Prls )y =&(T7%) if j#,
(10.5) = 7~ ™M (51, [s'D) yaor.m + EUNT)),
if j=j.
Let dim N, /X be the operator acting on H (Yj , M|y ) by multiplication
J
by dim N, . Let h;'(E’ax“’) be the L, metricon H(E, 8% +v) associ-
J

atedto (, ), ,andlet h;’ (¥.1) be the corresponding metric on H(Y , 7).
From (10.5), we deduce that

(10.6) log(hy "™ k™) = — dim Ny, log(T) + @(1/VT).

By definition,

(10.7) log(|p|§(_;,(")®zc o.2)(8) = — Tr,[g log(11T 1 1Y 1))

By (10.6), (10.7), we see that as T — 40,
(10.8) 108015 g, 7)(8) = ToF" g dim Ny T1og(T) + ()
Also

(10.9) T (g dim N /X]—Zdlm v ixke(ly) = dim Ny (n),

which together with (10.8) gives (10.1). Hence the proof of Theorem 10.1
is completed.
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XI. The analysis of the two parameters operator g exp(—(uDX + TV)Z)
in the range u €]0, 1], T € [0, 1/u]

The purpose of this section is to prove Theorem 8.6. The main point of
Theorem 8.6 is the existence of C >0, y €]0, 1] such that if u €]0, 1],
T €[0, 1/u], then

Tr,[Ny g exp(—(uD" + TV)")]

(11.1)
—/ Td (TX, R™*)®Tr [N, g exp(—C22)]| < C(u(1 + T))'.
X

14

To establish Theorem 8.6, we essentially use the methods of [15, §11],
where Theorem 8.6 was established when G is trivial, combined with finite
propagation speed techniques. In effect, we use four main ideas, some of
which are taken from [15].

e A first simple idea is that the proof of (11.1) is local on X, and also
local near X g

¢ A second idea is to combine the rescaling techniques of Getzler [18]
with the splitting & = ¢" @&~ of & near Y, which was already considered
in [5, §1], [15, §8f] and §9, together with the fixed point techniques of [9],
[2].

e As in [15], functional analytic techniques play an important role
in handling the difficulties related to the splitting & = &* @ &7, in the
concentration of the local supertrace on Y as T — +oo, which follows
from the invertibility of v on X \Y, and in the concentration of the
local supertrace on the fixed point set X g A U — 0, which ultimately
forces the concentration of the local supertrace on Yg .

e While the concentration of the local supertrace on Y as 7 — +o0
is controlled by the methods of [15, §11], the concentration of the local
supertrace on X g7 and ultimately on Y, is obtained by using finite prop-
agation speed techniques.

Ultimately, once the considered heat kernels are adequately rescaled, we
obtain a decay faster than the polynomial decay in the directions normal to
Y , because of the presence of a harmonic oscillator in a direction normal
to Y, and a Gaussian decay in the directions normal to X B by finite
propagation speed. By slightly improving the estimates in [15], we also get
a Gaussian decay in the directions normal to Y .

The organization and the content of this section are much related to
[15, §11], to which the reader is referred when necessary. In part a, we
calculate the limitas u — 0 of Tr [N,g exp(—(uDX + TV)Z)] , and obtain
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the second easy half of Theorem 8.6. In part b, we show that the proof of
(11.1) can be localized near Y, . Parts c and d contain a construction of a

coordinate system and a trivialization of A(T*(o’ Dx )®E near Y, . In part
¢, we perform a Getzler rescaling [18] on certain Clifford variables. In part
f, following [15, §11j], we briefly discuss the matrix structure of the new
rescaled operator Lz:?/ T with respect to the splitting & = ¢ @&~ . In

part g, we obtain the key decay estimates on the rescaled kernel P: ,’?0/ T
Finally part h contains our proof of the estimate (11.1).

At many intermediary stages of the proofs, we rely on the results of [15,
§11], which can be adapted without any change to the situation which is
considered here.

a. The limitas u— 0 of Tr[N,g exp(—(uD* + TV)").

Proposition 11.1. Let T, € [0, +oo[. Then there exists C > 0 such
that for u €]0, 1], T € [0, T;],

Tr,[N, g exp(—uD* + TV)%)]

11.2
(11.2) —/Xng(TX,hTX)QTrS[Nngxp(—C;z)] <Cu,

|Tt, [N, g exp(~(uD* + TV)*)] - Tr,[N, g exp(—(uD™))]| < CT.

Proof. By proceeding as in [15, proof of Proposition 11.7] and §2, we
find easily that for T >0,as u — 0

Tr,[N,, g exp(—(uD* + TV)?)]
- / Td(TX , h"*)®Tr, [N, g exp(~Cpa)] + & ().
Xg

Since T only plays the role of a parameter, one obtains the existence of
C > 0 such that the first identity in (11.2) holds.

Also,
aa—TTrS[NHg exp(—(uD* + TV)%)]
0 X 2 X
= %Trs[NHg exp(—(uD” + TV)" = bluD” + TV, V]],_o
(11.3)

= T;_b Tr [V, Nylgexp(—(uD”™ + TV)? +bV)],_

= Taa_b Tr,[(v—v")g exp(—(uD* + TV)’ +bV)],_y-
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By using again the techniques of §2, one finds that for u — 0, the right-
hand side of (11.3) converges boundedly for T < T,. The second inequal-
ity in (11.2) follows.

b. Localization of the problem near Y,.

Definition 11.2. For u > 0, T > 0, let P, ;(x,x') (x,x € M)
be the smooth kernel associated to the operator exp(—(uDX + TV)Z) R

calculated with respect to dv,(x')/(2m)"™* .
Then

Tr [Ny, g exp(—(uD* + TV)))]

(11.4) de(x)

-1
= /XTrs[NHgPu,T(g x, x)] (2n)dimX'

Let 4% be the Riemann distance on (X, Ty,
Proposition 11.3. For any o > 0, there exist ¢ >0, C > 0 such that
for u€l0, 1], T€[0, 1/u], x,x € X, d*(x, x") > a, we have

(11.5) P, 1(x, x')| < cexp(~C/u’).

Proof. Let A be the Laplace-Beltrami operator associated to h™* . For
t>0,let p(x,x') be the smooth kernel associated to €.

Consider now the differential equation in [15, equation (11.18)]. By
[15, equation (11.24)], for u €]0, 1], T < 1/u, its solution is uniformly
bounded. Making use of Ito’s formula as in [15, equation (11.20)], we find
that there exists ¢ > 0 such that for u €]0, 1], T €[0, 1/u], x,x € X,
we have

(11.6) |P, r(x, x| < cppalx, x).

Now classically, there exist ¢ > 0, C' > 0 such that for u €]0, 1],
x,xeX,d¥x,x)>a,

(11.7) pp(x, x)<¢ exp(—C’/uz) ,
which together with (11.6) gives (11.5). q.e.d.

Let a > 0 be the injectivity radius of (X, hTX) .For xe X, beR,,
let BX (x, b) be the open ball of center x and radius b in X.

In the sequel, we take b €]0, a/2].

Definition 11.4. For x, € X, let P,°,(x, x) (x, x" € B¥(x,y, b)) be
the smooth kernel associated to the operator exp(—(uDX + TV)z) with
Dirichlet conditions on 8B* (%o, b).
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Proposition 11.5.  There exist ¢ >0, C >0 such that for any x, € X,
u€l0, 1], Te[0, 1/ul, x, x' € B¥(x,, b/2), we have

(11.8) (P, 7~ PPp)(x, x| < cexp(~C/u).

Proof. In [15, Proposition 11.10], this result was proved for x = x’.
Our proposition can be proved by exactly following the method of [15] in
the general case. Details are left to the reader. q.e.d.

Let 77 be an open neighborhood of X B in X. Using Proposition
11.3, we find that there exist ¢ > 0, C > 0 such that for u €]0, 1],

dvy(x)

T €[0, 1/u],
Tr [N,gP ! — —
X\ rs[ Hg u’T(g X, x)] (2n)dimX S Cexp u2 .

From (11.4), (11.9), we see that the proof of (8.18) is local near X, -
Besides, by Proposition 11.5, the proof of (8.18) can be localized near any
arbitrary x € X, which by (11.9) can be taken in a neighborhood of X -
Asin [15, §11], we will in fact work locally near Y, and so in our case,
near Yg = Y N X,, and the estimates obtained by a formal argument as
in [15, Remark 11.14] are near points close to X > but far from Y.
C. A rescaling of the coordinate Z, € NYg /X, - In the sequel, if x € X,

(11.9)

Z € (TgX),,then teR - x, = expf(tZ ) € X denotes the geodesic in
X such that x, = x, dx/dt|,_, = Z . Similar notation will be used on
Y, X ¢ Of course, we recall here that X 2 is totally geodesic in X .

First we identify a neighborhood of Y, in X ¢ with a neighborhood
of Yg in N},g /X, R using geodesic coordinates normal to Yg . Namely

for 0 < &€ < a/2, and ¢ small enough, if y € Yg, Z € NYg/Xg’R‘y’
|Z| < &, then we identify (y, Z) with expfg(Z) , where y, = expfg(tZ)
is the geodesic in X 2 (which is also a geodesic in X) such that y, =y,
dy/dt|,_, = Z . Along the geodesic y,, we trivialize N X, /X by parallel
transport with respect to v Ve

Also we identify a neighborhood of X, in X with a neighborhood of

X g 1N N X,/x,r USIng geodesic coordinates normal to X g In X.

! !
Let y € Yg, Z € Nyg/xg,k,y, Z € ng/x,n,y- Recall that Z' €

ng /X R,y 18 identified with an element of ng xR, ewt(Z)" Then

v, Z,Z') - exp:( S5 )(Z ) identifies an open neighborhood of Y, in
y . .

NYg/X,R ~ NYg/Xg,R ® (ng/x,n)| v, with an open neighborhood of Y,

in X.
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In particular, if Z € Ny /X R,p? then (y, Z) represents an element of
& g’

X,

Let dv, be the volume form on X, with respect to A" . Let dvy p
g g

be the volume form on the fibres of (N, /x> hN"x/") .
k4

Definition 11.6. Let B, be the smooth function of T > 0, x € X,
such that

deg(x) TX 2 max
(11.10) BT(X)W = {ng(TX, h )d)Trs[NHg CXD(—CTZ)]} .
For & > 0 small enough, y € Yg, Z € NYX/Xg,R’y, Z' e NXg/X,R,y’
\Z| < e/2, |Z'| <e/2,let k(y, Z, Z') be defined by

(1L11)  dvy(v, 2,2 =k(y, Z, Z')dvy (v, Z)dvy_ (Z)).

Then
(11.12) k(y,Z,0)=1.
Similarly, let k'(y, Z') be defined by
(11.13) dvy (v, ZHh=k(, Z')d'uyg(y) vayg/Xg VA)

In the sequel, ¢ €]0, a/2] is taken to be small enough so that the iden-
tifications considered above hold.

Theorem 11.7. There exists y €]0, 1] such that for p € N, there is
¢,>0 such that if u€)0,1], T€[l, 1/u], y, € Y,, Z, € NYg/Xg,R,yo’
|Zy| < &T/2, then

: /
T2 dim Nye/xg ZeN

Xg/X R, (g, Z/T)
1Z]<e/8

L Z
Tr, [NHgPu,T (g (yo, = Z) :

)
(11.14) xk(yo,%’z>(‘:—:;v—;‘ig—g%—ﬂr<yo’%) }'

<C,(1+Zy) P (u(1 + T))".

Remark 11.8. Now we show how to derive (8.18) from Theorem 11.7.
By Proposition 11.1, we may restrict ourselves to the case where T is > 1.
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For ¢ > 0, let Z (X ;) be the set of x € X such that dx(x X,) <e.

Let Z (Y /X,) denotes a corresponding open neighborhood of Y, in X, -
Clearly

(11.15)
_ dv,(x)
Tr v, x)]—X 2L
/t%/s( X) [ T(g )](zn)dlmX
TX 2
—/ ng(TX,h )P Tr [Ny, g exp(—Ci2)]
Xe
=/ {/ZeNXZ/X_RTrS[NHgPu’T(g_l(x,Z), (x, Z))]
Xg 1Z|<e/8
o Z) stz | e
x k(x, Z)———8* —B(x)y —E— .
(2n)dlmNXg/X T (zn)dlm,\’!
Also
(11.16)

/?/ Y./x {/ zeng/x‘nTrs[NHgPu,T(g_l(x, Z), (x,2))]

o2(YelXg) |Z|<e/8

dv d
x k(x, Z)——2e_(7) _ ﬂr(x)} Fon )

dim N

(2 ) XglX (27t)dim,\’x
), 7 ot |
= S dmN. Z,EN, ZEN
Y, TZd‘mNYg/Xg Iozeoé’i/;;z,n Iezége//xs.n
- z, z,
xTr, |NygP, (& |V, T’Z AV z
dvy
Z
“o0 Xz/* Zo0
xk(y’ T’Z> (2 )dlmNX/X ( T)

x K (y ﬁ) g 20| 400,0)
’ T (27[)dlmNY /Xg (2n)dlmyg
Using Theorem 11.7, it is clear that the absolute value of the left-hand
side of (11.16) is dominated by C(u(1 + T))".
Also the contribution of the complement of an open neighborhood of

Y, in %, /4(X,) to the integral on the right-hand side of (11.4) can be
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estimated by applying formally Theorem 11.7 with Y = ¢. From (11.9),
(11.14), (11.16), we obtain (8.18). Hence the proof of Theorem 8.6 is
completed.

d. A local coordinate system near Y, and a trivialization of ATV x)
®¢& . To establish Theorem 11.7, we will use an adequate coordinate system
near y, € Yg .

If Z € (TgX,), , we identify Z with exp;};@(Z) € X,. Again we
trivialize N X, /X along the geodesic ¢t — tZ by parallel transport with

respect to vV%/x | Then we identify (Z,Z') e ((TRXg) X Ny /X R)yo =
e
. X
(TgX )y0 with expexp;(: z
in X and g preserves the geodesics in X, the action of g near y, in
the coordinates (Z, Z') is given by

(11.17) gZz.,ZY=(Z, gZ".

)(Z ’). Observe that since X 2 is totally geodesic

Recall that the connection V° on ¢ was already considered in §9.
We fix Z, € NYg/Xg»R»yo’ |Zy| < &/2, and take Z € (TRX)yO, |1Z| <
¢/2. The curve t € [0, 1] — Z, + tZ lies in B;X(O, ¢). We identify
*(0, . *(0,
TXy 7> ATOVX), , with TX, , ATOVX), (resp. &, ., to
ézo) by parallel transport along the curve ¢t € [0, 1] — Z, + (Z with
=(0,1) ~

respect to the connections vTX R yAMTTX) (resp. Vt).

When Z;, € NYx /X, R is allowed to vary, we identify TX o

(0, 1) . «(0,1)

AT X)Zo with TXyo, AT X)y0 (resp. {Zo to éyo) by paral-

«(0,1)
gAT ) (

lel transport with respect to vTX , resp. 6‘) along the curve

tel0, 1] - tZ,.
Let k"(Z) be the function defined on B): *:(0, &) such that for Z €

(11.18) dvy (Z) = k"(Z)dvTXg(Z).

Let Hy0 be the vector space of smooth sections of (A(T*(O’ Dx )®é)y
0
over (TpX), . Let A™* be the ordinary Laplacian on (TgX),, with re-

spect to the metric A7 *» . Let y be a smooth function defined on R with
values in [0, 1] such that

y@)=1 fora<1/2,

(11.19)
=0 fora>1.
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If Z ¢ (TRX)yO , set
(11.20) P(Z) = y(2|Z]/e).
Then

Z)y=1 if|Z|<e¢/4,
(11.21) p(Z) ' 1Z| < e/

=0 if|Z]|>¢/2.
We now fix Z; € NYg /X, R,y > |Zy| < &/2. Recall that the considered

trivialization of A( 70Ny )®& depends explicitly on Z, . Therefore the
actions of D* ,and V on Hy0 depends on Z;. We will denote these
actions by Dgo and by V(Z,+.) respectively.
+

Recall that near Y , the vector bundles fi were defined in §9. Let P*
be the orthogonal projection operator from ¢ on éi .

Now we follow [15, Definition 11.18].

Definition 11.9. For u >0, T >0, let L:‘:?’ , M,f % be the operators

Ll,zﬂ_1 ZZ —uPATX T2P¢+
L7 =(1-p"(2)) +T°P;

2
bs 2
(11.22) +p2(Z)(uDZO+TV(ZO+Z)) ,
1,2, 2 2 AT* 2 X2
M, =-u(l-p(Z)——+p(Z)uD")".
For |Z'| < ¢, the volume element dv X(Z') is well defined. For |Z)| <
g/2,let P,'7(Z,Z') (Z,Z' € (TeX),, 1Z'| < &/2) be the smooth

kernel associated to exp(—LLi?) with respect to de(ZO+Z')/ (27z)di"’X .
Using (11.17) and proceeding as in Proposition 11.5, we see that there
exist ¢ > 0, C > 0 such that for u €]0, 1], T €[1, 1/u], y, € Y,

Zye Ny x mo 120l <8/2, Z €Ny 1y p s, 121 <2/2,

- ,Z -1
P, (870, 24, Z), (v, 24, Z)) - P, (87 Z, 2))

(11.23) 5
<cexp(-C/u’).

Therefore, in the estimate (11.14), we may and will replace P, , by
1,2,
Pu,T .
e. Rescaling of the variable Z and the Clifford variables. For u > 0,
let F, be the linear map
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(11.24) he H, — Fhe H , Fh(Z)=h(Z/u).
For u>0, T >0, set
2 E-EMLLR. MR MR,

Let Op be the set of scalar differential operators acting on smooth

functions on (TRX)y0 . As in [15, equation (11.51)], we find that

2,2, 2022

0
Lu,T’ u, T €

(c(TgX)® Endg), ® Op.

Let €, sy (Ey st s €yu), st 5 €y be orthonormal
bases of (TRYg)yO,Nyg/Xg,R’yO, NXX/X)R,yO respectively. Then e,,...,e,,
is an orthonormal basis of (T X )yo .Lete', ..., e be the corresponding
dual basis of (TgX )y,

Because X B is totally geodesic, it is important to observe that under the
considered identification of (T X) z, with (TpX )yo ,at Z, € Nyg IX, R,y
which represents an element of Xg, (€5, eyn) and (eyn s+, €y)
are orthonormal bases of (T,X g)z0 and N X /X R,y respectively.

Definition 11.10. For u >0, T >0, set

V2e’ u .

¢, T(ej)=TA_Tles 1<j<2l,
s 2
(l 1.26) \/fej uT . / . "
C“’T(ef):_—ﬁ/\_ﬁl"j’ 21 +1$]S21 .

The operators ¢, r(e;), 1< j < 21", act naturally on (A(TeX,)®0)
Definition 11.11. For u >0, T >0, let

3,Z 3,2 * a -
Lu,T05 Mu,r° € (End(A(TRXg)®€)®c(NXE/X,R))yo ® Op

be obtained from Li:?" , Mj 2o by replacing the Clifford variables c(ej) ,

1 < j<2l”, by the operators ¢, r(e;) , while leaving unchanged the c(e;)
QI"+1<j<2.

The complicated fact with respect to [15, §11 i] is that the c(e ;)’s, 20" +
1 < j < 2l, are not rescaled.

Let P.'7(Z,2') (2,2 € (TgX),,» 1Z] < €/2) be the smooth
kernel associated to exp(—LiZ?") calculated with respect to
k' (v Zo)dv(TX)yo(Z')/(27t)d'mX. Note that, at Z' = 0 (representing
dim X

Yo ©

(¥o» Zy)), this last density coincides with dv,/(2n) Here
3,Z . . . .
P;’7°(Z,Z') liesin (End(A(TRXg))®c(NXg/X,R)® End(é))yo. Moreover g

u,
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acts naturally on (AN x)8C), asan element of (c(Ny ,y g)®End(2)), .

So gP, T°(Z Z') lies in (End(A(Tg X, 2))®Cc(Ny X, R)®End(€))y0
Now we use the notation of [15 equatlon (11.53)]. Namely
P: ”?"(g'lZ , Z) can be expanded in the form

3,Z -
P17z, 2)

= Z A AEPA i, i, ®Q,J.l'::ij"(g-lz , 2Z),
(11.27) 15[]<...<ipS21u J1 Jq 14
1<) << <"

Q0 7(e7'Z, 2) € (c(Ny x )@ End()), .
Set

P Z, 2™ =0,y (872, Z)

(11.28) -
€ (c(Ny, x W)@ End(?), .

Since (C(ng /N,R)® End('f))y0 acts on (A(W—} / X)®é)y0 , the supertrace of
the elements of this algebra is well defined. )
The obvious extension of [15 Proposition 11.21] is as follows.
Proposition 11.12. If Z € N, X R,y , the following equality holds:

1
2Ny

max
_, .adimX 1 ¢g'z z
= (=) WTTS [N,,g [P < Py u):, ]

Proof. Observe that since g preserves the geodesics and the relevant
connections on A(T” *0.1) X)®E ~ (A(T*(O’I)X )®é)y0, g Just acts as the

obvious constant linear map on (A( 70V )®é)y0 . Since g acts like

. . (0, 1)
the identity on A(T X,), we have g € c(N X,/ X,R)y0 . Therefore the

rescaling of the Clifford variables in (11.26) has no effect on g. Equality
(11.29) is now a trivial consequence of [18], [15, Proposition 11.2]. g.e.d.

Tr,[N,gP, (8" Z, Z)k(vy. Zy» Z)
(11.29)
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By (11.29), we find that for Z, € N, /X, R,y, |Z,| < eT/2,
4 g’

1 1,27 (-1 Z,
T2Em Ny /ZEng/x.n_yoTrs [NHgP,,,TO (g (yoa —f,Z )
R zizess
Z
(o 77))
dv (Z)
Zy Ny 1x
(11.30) Xk(J’O,T,Z)W
. dim X
=(=1) "¢ ZENx x ryp
|Z|<e/8u
% Tr [N [P3,ZO/T( —lZ Z)]max] ng/x(Z)
sUVg8LE, 1 8 £ (zn)dimeg/x'
Also by [9, Theorems 4.11-4.15], one finds easily that
. dim X 3,2,/T, -1 max dUng/x(Z)
0" [ TN str (e 2 2™ g
(11.31) ZENy /x (2m) /

%)

Moreover, observe that there is C > 0 such that if Z € N /X.R> then
/X,

(11.32) g7'z -zP > )z
In view of (11.16), (11.23), (11.29)-(11.32), Theorem 11.7 follows from
the following result.

Theorem 11.13. There exist y €]0, 1], C > 0 such that for any m €
N, thereis C >0, r € N such that for u€l0, 1], T €[l, 1/u], y, € Y,,
Zy€ Ny jx_moy, 2ol <€T/2, Z, Z'e (TgX),,. 121, |Z'| < e/8u, we
have

[ AL P A A

(11.33) e+ IZI4 12

- (L+1Z,)™
Proof. The remainder of the section is devoted to the proof of Theorem
11.13, which is similar to that of [15, equation (11.58)]. The essential

difference between these two proofs is that we need to obtain the bounding
function (1 + |Z| + |Z'])* exp(~C|Z — Z'|*) on the right-hand side of

exp(~C|Z — Z'P)(u(1 + T))'.
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(11.33), while in [15], only the case where X, = X, Z = Z' = 0 was
considered.

We briefly describe the main steps which are needed to obtain Theorem
11.13, referring to [15] when necessary.

f. The matrix structure of the operator L °/ T Asin [15, §11j], we
J

calculate the asymptotic expansion of the operator L °/ T as u—0.

The basic difference is that here, the operators c(e;), 21 +1<j<2,
are not rescaled, but this does not create any new difficulty. Also as in
[15], we must study the matrix structure of L3 Z"/ with respect to the

splitting £ = &© @ ¢~ . In particular, instead of [15, equation (11.60)], the
operator obtained by rescaling uT[DX , V] is now

Z
TZ( /\——1 )Vi]V(?o+uZ)
21/1
i u'T Zy
(11.34) + ) (e/\ —— ej)v V(T uZ

j=2l'+1
0
+ Z uTc(ej)VejV <T + uZ) .

Jj=21"+1
By [5, Proposition 3.5], as in [15, equation (11.64)], we know that if U €
TRY , then
(11.35) PP V,VPt =0 onY.
Therefore, for 1 < j <2/,
(11.36) P VEV(Z) /T +uZ)P* =&(Z,/T +uZ)).

So at least formally, the situation is the same as in [15]. Finally the extra
term 251:21// N uTc(ej)VijV(Zo/T + uZ) does not introduce any extra
difficulty, because u7 <1.

g. A family of Sobolev spaces with weights. Set

(11.37) A(p’q)(T;Xg)yo ‘—‘AP(T];Y) ®Aq( Ny /x,., Ry,

Let Iy0 be the set of smooth sections of A(TRX ), ®A(N X,/ X)®§
over (T X ) , and I(p Doy be the set smooth section of INS 9 (TRX g)

SAN X /X5 )®é over (T X)
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As in [15, §11 k], we introduce a family of Sobolev spaces with weights,
which are strictly similar to the corresponding weights in [15, Definition
11.23]. The results contained in [15, Proposmon 11.24, Theorem 11.30]
remain valid, essentially because the operator L °/ T considered here has
the same structure as in [15].

h. Uniform estimates on the kernel P, 3 f°/ T Now we refine [15, Theo-
rem 11.31] in our context.

Theorem 11.14. There is C > 0 such that for m e N, m' € N, there
exist ¢ >0, r € N such that for any u €]0,1], T €[1, 1/u], y, € Y,

Zy € Ny x my, |20l <6772, Z, Z' e (TeX),,» 1ZI, |Z'| < eT/6u,
we have
la+a’|
(1+1Zy)" sup |———P 7" (2,2)
(11.38) lal<m' |0Z%0Z™

o' |<m’
<c(1+]Z|+1Z) exp(~C|Z - Z').

Proof. First we will prove (11.38) with C = 0. Then by using finite
propagation speed, we will get (11.38) with C > 0.

The proof starts in the same way as the proof of [15, Theorem 11.31].
In particular the inequality [15, equation (11.125)] is still valid.

Take p € N. Let J;:), Yo be the set of square integrable sections of

A(TRXg))’o®A(NYg/Xg)yo®¢}'0 over {Z € T X lZl sp+ 2} We

equip JI?, Yo with the Hermitian product
(11.39) s,s €’ (s, s)= (s, s)dv
. , S ., s,8) = Zi<rris2 , S TX

Let | | denote the obvious norm on J .If A€ ,?(J ), let ||A||p’oo
be the corresponding norm of A4 with respcct to || .

In the sequel, the constants C > 0 may vary from line to line. They
are uniform in » €10, 1], T €[1, 1/u], p € N.

The obvious analogue of [15, equation (11.127)] (where only the case
|Z| < 3/2 was considered) is that there is C > 0 such that forany p e N,
s€ J; Dy’

2"

Using the notation in [15, equation (11.128)], we obtain, for k, k', k", k"



EQUIVARIANT IMMERSIONS AND QUILLEN METRICS 125

eN,

k k' k" 3,Z,,T\ k"
(11 41) ”A Au,T,ZO/TA exD(_Lu’TO )A “p,oo
<C"(1+1Zh* (1 +p)",

n

which together with Sobolev’s inequalities implies that for k', k", k"' €
N,

kl kll k”l 3,Z./T ’
sup |Au,T,Zo/TAZ Az Pu,TO/ (Z,2)]
|Z|<p+1/4
(11.42) |Z'[<p+1/4

<C(1+|Z))"(1+p)*.

By (11.21), if |Z| < ¢/4u, then p(uZ) = 1. Using [15, equation
(11.130)] and (11.42), we find that if u €]0, 1], T € [1, 1/u], |Zy| <
eT /2, then

sup  |(TdX(Z,/T +uz, Y))* A AL P> 217z, 2
1z],12"|< ’
(11.43)  inf(p+4, £)
<c+1Z) (1 +p)".

Also if |Z)| <eT/2, |Z| <inf(p + 1/4, &/4u), then
Td*(Z,/T, Y) < Td*(Z)/T +uZ, Y) + Cp,
Td*(Z,/T, Y) = |Z,).

Clearly (11.43) is valid for k' = 0. Using (11.43), (11.44), we see that
given k', k", k" € N, thereis C > 0, r € N such that for u €]0, 1],

Tell,l], y € Y,, ZOGNYg/Xg,R,yO’ |Z,| <eT/2, p € N, we have

(11.44)

K K" K" 53,2,)T ’
sup 112, Ay Ay P2 2Tz, 2

(11.45) 1Z],12' | <inf(p+1/4,/4u)
< C(1+1Z,)* (1 +p)".
Using Sobolev’s inequalities again, we deduce from (11.45) that given
m e N, m € N, thereis ¢ >0, r € N such that if u €]0,1], T €
!
(1, 1/ul, yo € Yy, Zy € Ny iy g,y > 12l <eT/2, Z, Z" € (TgX),
|Z|,|Z'| < e/6u, then

1
laf+]e’|

(11.46)  (1+]Z,))" sup 32/T(z. 2 < c1+|Z|+1Z').

laj<m’ |80Z%0Z" " *T

lo'|<m’



126 JEAN-MICHEL BISMUT

Now we will get the exponential factor exp(—C|Z — Z '|2 ) on the right-
hand side of (11.38) by using the finite propagation speed. Let u € R —
k(u) € [0, 1] be a smooth even function such that

k(u)y=0 for |u| <},

(11.47)
=1 for|ul>1.
For ge R}, aeC, set
+o0 _ 2
(11.48) K,(a) = 2/0 cos(tV2a) exp (-ZL) k (é) %.

First we prove an analogue of [15, Proposition 13.8].
Proposition 11.15. Forany ¢ >0, m, m' € N, thereis C >0, C' >0
such that for ¢ > 1,

(11.49) sup jal™ K™ (@)] < Cexp(~C'q).
|I:1§1|50

Proof. Clearly the function ¢t € R — k(t/q) vanishes for |¢| < g/2.
Also if a € C, |Ima| < ¢, then

(11.50) | cos(ta)| < exp(ct).

Using (11.48) and integration by parts, we get (11.49). q.e.d.
Clearly K (a) is an even holomorphic function of a. Therefore, there

is a holomorphic function a € C - K ,(@) such that

(11.51) K,(a) =K (a").
Definition 11.16. Given ¢ > 0, set
(11.52) V.={1€C, Re(d) > (ImA)’/4c’ - c*}.

Now we proceed as in [15, Proposition 13.10].
Proposition 11.17. Forany ¢ >0, m, m' € N, there exist C > 0,
C' > 0 such that for ¢ > 1,

(11.53) sgg |a|m|I?;ml)(a)| < Cexp(—-C'q%).
a <

Proof. The set V, is exactly the image of {4 € C, |ImA| < c} by the

map A — A%. Our result now follows from Proposition 11.15. q.e.d.
For ¢ > 0, set

U ={AeC, Re(A) < (ImA)*/4c* - ¢*},

(11.54) S
. ={leC, Re(d) = (ImA)’/ac’ - }.
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By using an analogue of [15, Theorem 11.27], we find that if ¢ > 0 is large

enough, then for u €]0, 1], T € [1, 1/u], y, € Y Z, € NY/X Ry,

|Zy| <eT/2, A€ U,, the resolvent (4 — L3 Z°/ T) ! exists, and extends to
a continuous linear operator from Iyo 1nto Iy0 , and moreover, with the
notation of [15, §11 1],

3,Z2,/T.-1,0,0
LLss 16— Ly 2 w7 2, < C
(11.33) A L”o/T‘1 L <C(+]A
I( ) < O+ AP

From Proposition 11.17 and (11.55) it follows that

3.2/T) _ 1 I?q(/l)

———dA.
u, T 21 r l—LJ’?’/Td
(4 u,

(11.56) K, (L

By (11.53), we see that given r € N, there is a holomorphic function

K, ,(a) defined in a neighborhood of V, and verifying the same estimates

as K (a) in (11.53) such that

(11.57) K@) - 1) =K, (a).
Thus

= r3.2Ty _ ] ﬂ
(11.58) K,(L, 7 )-—27”/ (- L3 Z/T) da.

Using (11.58) and proceeding as in [15, equations (13. 244) -(13.247)]
instead of [15, (11.117)~(11.125)], we deduce that the kernel K, (L, 7'")
(Z2,2'VZ2,Z € (TgX),,) of K (L, L>%/T) satisfies estimates similar to
(11.46), the essential difference bemg that because of (11.53), there is
an extra factor exp(—qu). More precisely, there is C > 0 such that

for m, m' € N, there exist ¢ > 0, r € N, for which given ¢ € N,
u €0, 1], T € [l,1/ul, v, € Y,, Zy € N 1Z,| < eT)2,

Y, /X, R,y
Z,Z' e (TRX)yO, |Z|,|Z'| < e/6u, we have

la]+|a|
~  .3,Z/T ’
(1+1Z,)" sup |——K (L7 ) (Z,Z)
laj<m' |8Z%0Z'
(11.59) lej<m

<c(1+12]+12')) exp(-Cq’).
If t > g, then k(t/q) = 1. Also using the finite propagation speed

for solutions of hyperbolic equations for cos(s L3 Z°/ T) [16, §7.8],
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[30, §4.4], we find that there is a fixed constant C' > 0 such that
(11.60) PPNz, Z)=K,WLyP"NZ,2Z) if12-2'|>C.

u, T
From (11.59), (11.60), it follows that there exist C > 0, C' > 0 for
which, given m, m' € N, there is ¢ > 0, r € N such that for g € N,
ueld, 1], T ell,1/ul, yo € Yy, Zy € Ny n,s 2] < eT/2,

Z,Z' ¢ (TgX),, » 1ZI, 1Z'| < e/6u, we have

lal+a'|
(1+1Z)" sup |——=P (2, 2)
(11.61) lal<m’ 827027
la’|<m
<c(1+Z]+|Z')" exp(-Cq’) if1Z-2Z'|>C'q,

which together with (11.46) thus gives (11.38).

The proof of Theorem 11.14 is completed.

i. Proof of Theorem 11.13. The analogues of [15, Proposition 11.34,
Theorem 11.36] hold for exactly the same reasons as in [15].

We use the same notation as in (11.41). By the analogue of [15, Theo-
rem 11.36] and by (11.40), we find that there exists C > 0 such that for
peN, uel0,1], Tell, 1/u],

(11.62)  |lexp(~L) 7'")—exp(~L)’ < CuT(1+]Z,)* (1+p).

To establish Theorem 11.13, we proceed asin [15, §11 p].
Let ¢ be a smooth function defined on (T X )y0 with values in R

and support in {Z € (TRX)y0 , |Z| < 1} such that

(11.63) /(p(Z)dUTX(Z) = 1.

Take B €10, 1]. By Theorem 11.14, there exists ¢ > 0 such that for
WEY,, Z, eNY/X Ry, |Z|<sT/2 Z, Z’e(TRX)yO, 1Z],1Z'| <

£/8u, U,U ¢ (A(Ty )®A( x /X)®é)y , we have

3, Z/T
Ny, 0o

'«Pﬁ,’f” Pz, 2, U)

_/ ( u,’To _P(;-" Zo/T)(Z Z Z Z)U U)
(11.64) (ToX), X (ToX),,

1 Z\ 1 Z' ~ <

<cp(1+1Z|+1Z')*.
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On the other hand, by (11.62), we get

/(T B ((P3 ,Zy/T P3 ZO/T)(Z _Z,7 -7, U)
X

(11.65) y 7;2_[(0 (%) ;;71‘/' (%) dv,(Z)dv,(Z))

ul
cp(l +1Z)" 1z +1Z2' )Y

2/+1

By choosing # = (uT)"/**"), we deduce from (11.64), (11.65) that if Z,,
Z, Z' are taken as before, then
Py 2T - Pyl Tz, 20, U]

S C/(u )l/(21+l)( + lZol)21+1(1 + |Z| + |ZI|)21'

From (11.38), (11.66), it follows that under the assumptions of Theorem
11.13,

(11.66)

(7" =P 7Nz, Z)

(11.67) c(1+1Z|+1Z') C ) !

/2(21+1)

< exp (—— z-7 ) (uT) ,
(1+Z,H)™ | |

from which (11.33) follows. Hence the proof of Theorem 11.13 is com-
pleted.

This terminates the proof of Theorem 8.6.

Remark 11.18. It should be observed that in the estimates (11.33),
(11.38), (11.46), 11.59), 11.61), (11.66), if Z, Z' € N, X R,y then the

—-m

bounding factor (1+|Z;|) ™ can be replaced by a factor exp(— C’ |ZO|2) ,
with C” > 0. In fact, for g € R: , we still define K (a) as in (11.48)-
(11.51). Set

(11.68) K,(a) = exp(-a) - K (a).

Using Proposition 11.17 and (11.68), we find that given ¢, C > 0, there
exist ¢, C' >0 such thatif for g>1, ae V., Re(a) > C|q|2 , then

(11.69) 1K, (@) < ' exp(—C'la]’).
By (11.68), we get

3,Z,/T
P”°/ z,2)

(11.70) )
= Kzl 7?2 2 + Kig oL 702, 2
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By Proposition 11.15, and by proceeding as in the proof of Theorem

11.14, I?lzol/z(Lz:?"/T)(Z ,Z') can be estimated as in (11.32), with the

extra bounding factor exp(—C IZOIZ) (C > 0). Also by the finite propaga-
tion speed, and using the fact that Z, Z' € N,, /xRy, 20d (11.53), the
o/ X,R,

same type of estimates can be proved for I?IIZOI /z(Z , Z'). From (11.70),
we ultimately get the required estimate.

XII. The analysis of the kernel of g exp(—(uDX +7TV/ u)2)
for T positive as u tends to 0

The purpose of this section is to prove Theorem 8.7. Our method of
proof follows closely [15, §12], where the same result was proved in the
case where G is trivial.

Asin §11, part of the analysis is taken from [15]. However the geometry
of the situation is more difficult than in [15]. Also we use estimates already
established in §11.

This section is organized as follows. In part a, we introduce our assump-
tions and notation. In part b, we show that the proof of Theorem 8.7 can

be localized near Yg . In part ¢, we construct a coordinate system near

Yy € Y, and a trivialization of AT OV X)&E near Yo- In part d, we

replace X by (TpX )Yo . In part e, we rescale the coordinate Z € (TxX )yo
and also certain Clifford variables. In part f, we calculate the asymptotics

as u — 0 of the operator Lz‘?/u obtained from (uDX +TV/ u)2 by such

a rescaling. As in [15, §12], the operator %’Tzz appears in this process. In
part g, we establish uniform estimates on the rescaled heat kernels. Finally,
in part h, we prove Theorem 8.7.

a. Assumptions and notation. Consider the exact sequence of holomor-
phic Hermitian vector bundles over Y,

(12.1) E:0—-TY[y, = TX|y — Nyxly —0.
14 14 &

Then g acts naturally on each term of the exact sequence, by parallel
isometries.

In this section, we use the notation of §7 with respect to the exact se-
quence (12.1). In particular, for u > 0, ﬂuz denotes the operator con-
structed in Definition 7.4, and Q)(Z,Z") (v € Y,, Z,Z' € (TzX),)
denotes the smooth kernel associated to exp(—@uz’y ) calculated with re-
spect to dvTX(Z')/(Zn)dimX. Also we use the notation of §11.
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We have the identification of holomorphic Hermitian vector bundles
12.2 N. = &N .
( ) Y, /X Y, /X, Xg/Xl Y,

Let PNYg/Xg s PNXg/X| Y be the pI'OjCCtiOIl operators from N on N ,
Y. /X Y, /X,
ng/xwg . By (6.6)—(6.11) we have

0, L
[ Xo

0 0,L
Ny/Xl Y, > TXI vy, = NYE/X.

TX ;, =N =N,

0

Ny /x|
X, /X Y/XY Y /X, °
(12.3) o by, = Nyx,

Clearly, for u>0, T >0,

Tr, [Nygexp (- (uu" + %v)z)}

_ dvy(x)
=//;,Trs[NHgPu,T/u(g x,X)](Zn/)Ym.

In the whole section, the constant 7 > 0 will be fixed.

b. The problem is localizable near Yg.

Proposition 12.1. For any a >0, thereis ¢ >0, C > 0 such that for
u€lo, 1], x,x' € X, d*(x, x') > a, we have

(12.5) 1P, 7/(x, X))| < cexp(~C/ud).

Proof. For 0 < T <1, this result is proved in Proposition 11.3. For a
general T, our proposition follows by a simple scaling argument.

Proposition 12.2. For any a > 0, there exist ¢ >0, C > 0 such that
for x, X' eXx, d¥(x,Y)>a or d*(x',Y)>a, u€lo, 1],

(12.6) |Pu,T/u(x, x| < cexp(—C/uz).

(12.4)

Proof. Since the operator exp(—(uDX + TV/u)2 ) is selfadjoint and
positive, P, . /u(x , x') is also selfadjoint, and moreover

1/2| 1/2

(12.7) 1Py (65 X SR 1,6, IR, 16 X))

Also by [15, Proposition 12.1], there is C > 0 such that if d*(x, Y) > o,
for u €]0, 1], then

(12.8) |Pu’T/u(x, x)| < cexp(—C/uz).

Moreover, using Ito’s formula as in [15, equations (12.11)-(12.15)], we
find that there exists C’ > 0 such that for x’ € X and u €10, 1],

(12.9) 1P, rulx’, x) < C' M™Y.
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From (12.7), (12.9), we get (12.6). Hence the proof of our proposition is
completed. q.e.d.
For ¢ > 0, let Z,(Y, g) be the open neighborhood of Yg in X, which
we define as in Remark 11.8. By Propositions 12.1 and 12.2, there exist
dvy(x)

¢ >0, C >0 such that for u €]0, 1],
/ Tr [N, gP, T/u(g_lx, X)—"gmx| < cexp <:2£) .
X\Z,5(Y,) ’ (2m) u
By (12.4), (12.10) indicates that the proof of Theorem 8.7 can be localized

near Yg.
For b > 0 small enough, the map (y,, Z;) € N, IXR |Zy| < b —
/X,

(12.10)

exp;f) (Z,) € X is a diffeomorphism of an open neighborhood of Yg in
N, JX.R into a tubular neighborhood of Yg in X. In the sequel we
X,

assume that ¢ €]0, 3].

If y, € Y,, Z, € N, |Z,| < &, we identify (y,, Z,) with

X,R,y,°
exp}’}; (Zy)eX.In partich/ar, inyothe coordinates (y,, Z,),
(12.11) & s Zo) = 09, &' Zy).

Let k(y,, Z;) be such that for |Z| < e,

(12.12) dvy(yy, Zy) = k(yy, Zo)dvyg(yo)vayg/x(Zo).
Then

(12.13) k(yy,0) = 1.

The main technical result of this section is as follows.
Theorem 12.3. For y,€7Y,, Z; € N},g//‘,,n’y0 , we have

2dimN,

. -1
l%WTrS[NHgPu,T/u(g (yo’ uZo)a (y()s uZo))]

(12.14) max
1 -1 n

= W(DTFS[NHE,’ (& Zy, Zy)lch,(n, h )} .

For any p € N, thereis ¢ >0, C >0 such that for u €10, 1], y, € Yg,

Z,¢€ NYg/X,R,yO . 1Z,| < &/8u, we have

2dim N, -1
W T[Ny g Py (87 (g, UZy)s (g, uZp)))

12.1
(12.15) exp(—C[P"s* Z, ).

< c
= (l 4 IPNyg/xg Z()I)p
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Proof. The remainder of the section is devoted to the proof of Theorem
12.3.
Remark 12.4. Clearly

-1 dv,(x)
/% . )TrS[NHgP,,,T/,,(g X, x)]“(Zn";dimx
e/8\ g

_ l. / /Z 2 4m Ny
(zn)dlmx Y OENYg/X,R.yO

(12.16) QPP ™

X Tr [Ny 8P, 7,8 (Vg> uZy), (V> uZy))]

x k(yy, uZ,) vaY ,X(Zo)} dvyg(yo).

Using Theorem 12.3 and dominated convergence, we find that as u — 0,
(12.17)

-1 dv,(x)

Tr [N, gP, x, x)]—%X_—=

/%/s(yg) s[ Hg u,T/u(g )](zn)dnmX
. vaY /X(ZO) "
— OTr [N Z,, Z,)]—=%—— 7 ch _(n, .
/Yg /}ng/X s[ HgQTZ(g 0 0)] (27‘[)dlm NYg/X g(" )

By (12.4), (12.10), (12.17), we get

2
. x T
H%Trs [Nngxp (— (uD + ;V) )]

(12.18)
=/Y ¢Trs[Nngxp(—$iz)]chg(n,h”),

which is exactly Theorem 8.7.

c. A local coordinate system and a trivialization of A(T*(O’”X )RE .
Let a > 0 be the injectivity radius of (X, nTx ). In the sequel, we take
¢ €0, inf(a/2, b/2)]. We fix y, € Y,. For Z € (TRX)yo’ |IZ| < &, we
identify Z with exp}’}; (Z) € X. Let k'(Z), |Z| < a be the function
defined by

(12.19) dv(Z) = K (Z)dv,,(Z).

Then k'(0) = 1. If |Z| < &, we identify (TX),, A(T"*"X), with

(TX )yo s A(T‘(O’I)X )y0 (resp. ¢, with éyo) by parallel transport with re-

=(0,1) ~ .
spect to the connections \vakd , vATTD (resp. Vf) along the geodesic
te[0,1]1-1tZ.
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With respect to §11 d, the main difference is that we do not need the
intermediate Z, € N,, X R,y which is here identically 0.
g/tg %Yo

Let I“;X , l"fz be the connection forms of the connections V' *, V* in
the considered trivialization of T.X, ¢. As in [15, equation (12.23)], we
have

TX\2

5 (Z, ) +E(Z]).

(12.20) r:= B, , r* = %(v
If |Z| <e, Ue (TgX),, then V, denotes the standard differentiation

operator in the direction U acting on smooth sections of (A( 70Dy )®é)y

over (TpX )Po . ’
Of course since g is an isometry, g acts linearly in the coordinates Z .
d. Replacing the manifold X by (TgX )yo’ We use the notation of

Definition 11.9.
Definition 12.5. Set

(12.21) L% — !0 M =m0

u,T/u u,T/u’ u u

Let P (2,2 (2,2 € (TgX),,) be the smooth kernel associated

u,T/u
to exp(—L;:’;?/u) , which is calculated with respect to dv,.,(Z')/(2n)*™*.

The same argument as in the proof of Proposition 11.5 shows that there
exists ¢ > 0 such that for u €]0, 1], y, € Yg, Z, € NYg/X,R,yo y 12y <
¢/8, we have

1Py 1u(8 002 Z)s 0 Z)K'(Z9) — Ph 30 (87' 2y Z)]
< cexp(—=C/u’).

From (12.22), it is clear that to prove Theorem 12.3, we only need to
show that for y, € Yg , Zy € N,,g/X’R,y0 ,
(12.23)

(12.22)

. 1 2dim N, 1,y -1
am (2m)dimX NI NG &P, 1.8 UZy, uZy)]

l -1 7 max
=m{®Trs[N,,ngT%(g Zy, Zg)lch, (n, K")}™,

and that given p € N, there is ¢ > 0, C > 0 such that for u €]0, 1],

Yo€Y,, Zy¢€ N},g/l\,,R’y0 s 1Zy| < &/8u, we have

2dim N, 1, -1
u o ”x/X|Trs[NHgPu,;‘}u(g uzy, Z,)l

(12.24) N ) .
< cexp(~CIPM % Zy) /(1 + |PMerse Z)))P.
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e. Rescaling of the variable Z and the Clifford variables. We still define
F, asin (11.24). Set

2,u 1,y 2,y -1 1,y
(12.25) L, 7= F,/ Lu Tk M, =F, M,"F,
Let (e,,---, e, ) and let (ey,,, - ,e,) be orthonormal bases of
(TRYg)y0 and NYg /X R,y respectively. Then (e, --- , €,;) is an orthonor-

mal basis of (T X )y0
Definition 12.6. For u >0, 1 <i<?2l', set

(12.26) c,(e) =V2e' A fu—ui, V2.

For u >0, T > 0, let Li’yT"/u, M>*% be the operators obtained

u
from Li:’;i’/u, le Yo by replacing the Clifford variables c(e;) by c,(e,)

for 1 <i<2l', while leaving unchanged the c(e,)’s (2/'+ 1< i <2l).

Let P: TZ,Z") (Z,Z € (TyX ),,) be the smooth kernel associ-

ated to the operator exp(—Li’}}’/u), which is calculated with respect to
dvTX(Z')/(Zn)dimX We can still expand P3 ;‘}u(g_lZ ,Z) asin (11.27),

the difference being that on the rlght-hand side of (1 1.27), 1" is replaced by
I'yand N, X by N, X We define [(P, T/u)(g 'Z ., 2)1™e(c (NYK/X,R)
®End(§))y0 as in (11 28), [" being replaced by /’.

Also C(Nyg/x,n)® End(¢) acts on (A(W;g/x)é) End(¢)), . and so the
supertrace of elements in this algebra is well defined.

Now we extend [15, Proposition 12.9].

Proposition 12.7. The following equality holds:

(12.27) u* N T [Ny g Py (87 uZ, uZ,)]
° 3,
= (i )“‘“‘YgTr[ Ny glP, 3.8 2y, ZI™.

Proof. Observe that since g acts as the identity on TYg , applying the
Clifford rescaling on g does not change g. Our proposition is now a
trivial consequence of Getzler [18], [15 Proposition 11.2].

f. The asymptotics of the operator Lu T s u—0. If Ue(TxX )yo ,
let (tU), € (TgX), ~ (TgX )y0 be the parallel transport of U along

t € [0, 1] — tZ with respect to v
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As in [15, equation (12.34)],

L% =M%

u,T/u
T2 [, WP
+ P (uz) {; 3 (er A _71(%) (erl_V)(uZ)

1

20'+1

(12.28)
+T Z \/_ (vu, V)(uZ)+ V (uZ)}

T? 2 £t
+ 7(1 - p (uZ))P,
Let i, be the embedding ¥, — X . We will write thatas u — 0, M: Yo

converges to the differential operator MO3 'Y if the smooth coefficients of

M 3 Yo converge to the coefficients of Mo3 Yo together with their derivatives
uniformly over the compact sets of (TxX) Ys

Theorem 12.8. Let Mg Yo be the operator

3 1 & 1 TX\2 2
Myt =->3 (vel +5(5(V' ), Z e.)>
1

(12.29)
+1 ((vf)io + —;—Tr[(V”)Z]yO) .

Thenas u— 0,

(12.30) M7 - M

u

Proof. The proof of our theorem is the same as that of [15, Theorem
12.10]. q.e.d.

In the sequel, we may and will assume that (ey ,, ' ,e,,) and
(92m+_1 ,+++ , €y) are orthonormal bases of Ny ,y g, and Ny, g, re-
spectively.

Recall that we use the convention of (7.1) instead of [15, §5 a] for the
definition of ¢.
Definition 12.9. Let S € End(A®"(NV, ¥x)OA(Ny, X)) be given by

(12.31) =Y - Z c(e;)é(e;).

2m+1
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Clearly S extends to an operator acting on (A(Tg Yg)®A(]TI;,/ x)
®A(N. /x) ® n) . Also recall that by [15 equation (8.31)], & |, =
A(NY/X)®17 Therefore S acts on (A( )®A( Y/X)®€ )

Let V* be the restriction of V to é , and PTY | pMux pe the orthog-
onal projection operators 7X|, —» TY, TX|, — Ny/ x - Now we prove

an extension of [15, Theorem 12.12].
Theorem 12.10. For y,€Y,, Z € (TRX)yO, as u—0,

1 2/’ ; 2 :
2> (e /\—Tiei) (Vo V)(UZ)
1

2/
1 K3 | ad
= SV Vo) + Y€ AVLVE, V()
1

+ lé’(|u2|2 +ud)
(12.32) u

2 cle) e 2 cle) ¢
> 5 VeV (4Z) = > ~5 (Ve Vo) +E(uZ),
20'+1 20'+1

1 1 1
SV wz)? = 5V )t + 50(uz)),
u u u

1 - ~ o - 1 2
il wz)’ = ((v'fZV )(vg) + Eﬁ(|uZ|)2) :
Moreover, the following equalities hold :

P* '*VfVPé_ =0,

Pr Ze INyA V(yO)Pé =P Y \/_ 4P z)P*
i=1

& 2 cle;) ¢ e e
(1233 F > 3 VeV o) | P =P SP

i=20"+1
N, 2
~r 2, |PMvxZ
@ o= E 2
V=P (VP
— P (VP T H P (V) P,
Proof. Asin [15, Theorem 12.12], we get (12.32) by Taylor expansion.

The first two equalities in (12.33) were already established in [15, The-
orem 12.12]. By [5, Proposition 3.5], [15, equation (11.64)], we know that
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if U € (TzY), , then V%,V (v,) maps &, into & . Also by [5, §§1c and
3j] or [15, Proposition 8.13 and equation (12.45)],1f U € NY/X R.y,’ then

PV V()P = V=1e(U)/V2.

The third equality in (12.33) follows from these considerations, and the
last two equalities in (12.33) were already established in [15, Theorem
12.12].
g. Uniform estimates on Pu ;‘}u Here, we extend [15, Theorem 12.14].
Theorem 12.11. There is C > 0 such that for m € N, there exist
C' >0, reN for which if u €)0,1], y 0 €Y, ZZeNY/XRy

|Z|,|Z'| < &/8u, then

3, /
(12.34) P, 75(Z, Z)]

C'(1+[PYz))™" (1 + [P Z)) exp(~-C|Z - Z'))

Moreover, for M > 0, m' € N, there exists C" > 0 such that for u €
10, 1], y, € Y,, we have

glal+la| o .
(12.35) sup —— P, T/u(Z Z) <C.
Z,Z'€(Ty, X),, 0Z2%0Z™
1Z),1Z'|1<M
lal, lo'|<m'’

Proof. We will assume that T €]0, 1]. The general case will follow by
a scaling argument. Given u, €]0, 1], the inequality (12.34) is trivial for
u > u,. Then (12.35) follows from Theorem 11.14 for Z, =0.

Also we use inequalities (11.43) with Z, =0 and T replaced by T'/u.
Clearly if Z € N, X R,y , then

(12.36) ;d WPY Y, 7)< gdx(uZ, Y)+ ClPMr Z).
Moreover, by construction,

(12.37) (T/wd* WPz, v)=T|P""*Z|

From (11.43), (12.36), (12.37), we deduce that given m € N, there exists
C' > 0 such that if u €]0, 11, y, € Y, Z,Z' € Ny jy p, > |ZI,
|Z'| < &/8u, then

a23g  OF1P Mz PR (2, 2]

<C'(1+ Pz (1 +|Z|+1Z')Y
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which together with (11.38) gives (12.34). Hence the proof of our theorem
is completed.
h. Proof of Theorem 12.3. Clearly g"(yo, Z) = (y,, g7 '2). Also if

ZeN h
€ Yg/X,t en
-1 2 -1 N 2 N 2
Z-Z|° = — )P XX Z* > C|P Xel¥
(12.39) lg I"=1(g YP XX Z|" > C|P /" Z|

> C|PMerr z)

Using Proposition 12.7, Theorem 12.11, and (12.39), we get (12.24).
The obvious analogue of [15, Theorem 12.16] still holds, for the same

reasons as in [15]. As in [15, equation (12.120)], we find that as u — 0

(12.40) P: T Q;"z exp(—(V")f,O) in the sense of distributions.

By the uniform bounds of Theorem 12.11, we deduce from (12.40) that
as u—0,

3 2
P1Z,2Z') - @NZ, Z') exp(~(V"), )

12.41
( ) uniformly over compact set on (T X )y0 x (TgX) Yo'

From Proposition 12.7 and (12.41), it follows that as u — 0, for Z; €
N.

Y /X,R,y,>
2dim N. 1, -1
w e Tr [N, g P, (87 uZ,y, uZy)]
..dimY, -
(12.42) = (=)™ {Tr [N, Q2 (87" Z,, Z,)]

x Tr{g exp(—(V")) )I}™,

which is equivalent to (12.23).
The proof of Theorem 12.3 is completed.
Remark 12.12. If Z,Z' €N, /X R,y, » then

(12.43) 1+ [PMZ'| <1+ | PM*Z)(1 +1Z - Z')).
So (12.34) can be made symmetric in Z, Z'. Also the same arguments

as in Remark 11.18 show that in Theorem 12.11, the weighting factor
(1+|PMxZ|)™ can be replaced by exp(—C”|P"*Z|*), with C" > 0.

XIII. The analysis of the kernel of g exp(—(uDX + TV)2)
in the range u# €]0, 1], T > 1/u

The purpose of this section is to prove Theorem 8.8. Note that for a
fixed u €]0, 1], inequality (8.22) follows from Theorem 8.4. So the whole
point of Theorem 8.8 is to get uniformity for u €]0, 1]. This section is
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the obvious extension of [15, §13] to the case of a nontrivial group G.

As in [15], we first show that the proof of Theorem 8.8 can be local-
ized on a tubular neighborhood of Y. Then as in [15], using the finite
propagation speed, we show that the proof of Theorem 8.8 is also local
on X . In our context, this allows us to localize the proof on an arbitrary
open neighborhood of a point in X > and ultimately to localize the proof
on an arbitrary open neighborhood of a point in Yg. Once this reduc-
tion is done, we use the techniques of [15, §13] together with the finite
propagation speed, which allows us to establish the Gaussian decay of the
rescaled heat kernel in directions normal to X g This argument of finite
propagation speed is essentially related to which we did in §§11 and 12.

This section is organized as follows. In part a, we show that our problem
is localized globally near Y. Part b contains a reduction of the proof
of Theorem 8.8 to a local problem on X . We construct a holomorphic
function 4 € C — F (1) € C, and replace exp(—(uDX + TV/u)Z) by
F ((uD* + TV /u)®). Part ¢ describes various properties of F, (1) as |4| —
+00.

Parts d and e construct a coordinate system and a trivialization of
A(T*(O’”X )®¢ near a given y, € Y, , and replace X by (TeX )y0 , and

(uDX +TV/ u)2 by an operator ,‘i’;' ’Ty° acting on (TpX )y .

In part f, we rescale the coordinate Z; € (TpX )y0 , and also use Get-
zler’s rescaling on certain Clifford variables. The operator .S’;‘” ’Ty" is then
changed to .20

Parts g, h, i summarize very briefly the content of key subsections of
[15, §13], whose results can be used here almost without any change. Part
J establishes estimates on the kernel of ﬁu(.i’;j %) . Finally in part k we
prove Theorem 8.8.

Let us again insist on the fact that we use many results of [15, §13], and
that in particular part of the algebra and the functional analytic machine
were already developed in [15].

We use the notation of §§11 and 12.

a. The problem is localizable globally near Y . As in (12.4), we have

the formula
2
Tr, [Nhgexp (— (uDX + %V) )]

(13.1)
- /X Tr [N, 8P, 7ju(8' %, X))

dvy(x)
(zn)dimX °
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Proposition 13.1. For any a > 0, there exist ¢ >0, C > 0 such that
for x,x'eXx, d*(x,Y)>a or d*(x',Y)>a,and u€l0,1], T>1,
the following inequality holds :

(13.2) P, 7%, X)) < cexp(—CT).

Proof. As in (12.7), we have the inequalities

1/2 / 2
(13.3) 1Py s XN SR, 1, )PP, 1, X2,

Assume that d*(x, Y) > a. By [15, equations (13.3), (13.4)], there is
¢>0, C>0 such that for u€]0,1], T>1,

(13.4) IP, (%, X)| < cexp(~CT/u’).
Also, since 7T > 1,
(13.5) 1Py X XD <P (X X

Moreover by (12.9), there is C > 0 such that for any s €]0, 1], x' € X,

(13.6) P, 1,5, X < C/s* Y
From (13.5), (13.6), we deduce that
(13.7) 1P, X, X)) < C(T /)™,

which together with (13.3), (13.6) gives (13.2). Hence the proof of our
proposition is completed.

Remark 13.2. For ¢ > 0 small enough, we define the tubular neigh-
borhood Z,(Y) of Y in X asin Remark 11.8. By (13.2), we find that

dvy(x)

< cexp(—CT).

-1
| TeINgEP e x 2)
X\Z,(Y)

It is now clear that to prove Theorem 8.8, we only need to show that there
exist C >0, 6 €]0, 1] such that for u €]0, 1], T > 1, we have

dv,(x) 1 ..
(an)ydimX — 5 dim Ny X, (1)

-1
| TrINgE, 787 5 20
Z,(Y)

<<

T°

(13.9)
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b. Finite propagation speed and localization. Take ¢, > 0 small enough
so that ?/BO(Y) is a tubular neighborhood of Y in X . Recall that a > 0
is the injectivity radius of (X, hTX). Let b be the injectivity radius of
(Y, h'™).

We fix ¢ €]0, inf(¢)/2, a/2, b/2)]. Let a be a positive constant, whose
precise value will be determined in §13 e.

Let f be a smooth even function defined on R with values in [0, 1],
such that
f(t)y=1 for|t| <a/2,

(13.10) =0 if|t|>a.

Set

(13.11) gt)=1- f(1).
Definition 13.3. If u €]0, 1], ae C, set

F (a) = /+oo exp (it\/fa) exp (%) f(ut)i ,

(13.12) _:O , ‘f;
G,(a) = /_ exp (it\/ia) exp (%) g(ut)\/Tt_n.

Then

(13.13) exp(—a’) = F,(a) + G, (a).

Since f is even, as in [15, §13 b], we see that F,(a), G, (a) are even
functions, which take real values on R. Moreover F, and G, lie in the
Schwartz space S(R), and so, as in [15], Fu(uDX +TV/u) and Gu(uDX+
TV/u) are trace class operators.

First we extend [15, Theorem 13.4].

Theorem 13.4. There exist ¢ > 0, C > 0 such that for u €10, 1],
T>1,

T 1 ..
Tr, [NHgGu (uDX+;V)] —idlmNY/XXg(”)Gu(O)

c C
<—exp(-—=]).
VT xp( u2)

Proof. The proof of our theorem is essentially the same as that of [15,
Theorem 13.4]. Of course here we use the arguments of §9 instead of [15,
888 and 9]. In effect, we find that

(13.14)
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T
Tr, [NHgGu (uDX + ;V)] - Trs[NZgGu(uDY)]

< _c_u_exp <i>
ST\ )

By [15, Proposition 8.4], NZ = %dim NY/ x - Since G, (a) is an even func-

(13.15)

tion, it is a holomorphic function of a. By an analogue of the McKean-
Singer formula [25], we obtain that for 1 < j <d,

(13.16) Tr,[gG, (uD")] = x,(n] v,)0,(0),

which together with (13.15) thus gives (13.14).
Remark 13.5. By (13.13), we get

(13.17) F,(0)+G,(0)=

In view of Theorem 13.4 and (13.17), we see that to prove Theorem 8.8,
we only need to show that there exist C > 0, é €]0, 1] such that for
uelo,1], T>1,

(13.18) |Tr, [ Ny, gF, (uDX+%V)]—%dimNY/Xxg( F, (0’ %

Since f(¢) vanishes for |tf| > «a,

(13.19) F,(a)= /a/u exp (zt\/_a) exp( 2t )f(ut)\/._

—afu

In particular

F, (uD* + ZV)
u

- // “ exp (m/i (uu" + %V)) exp ( ) flun S5 J—

Since f is even, (13.20) can be rewritten in the equivalent form

(13.20)

F, (uD® + —T—V)
u

alu \/_ tz
= cos | tvV2 ) exp f ut)
/—a/u < ( V2
Let Fu(uDX +TV/u)(x, x') (x,x € X) be the smooth kernel associ-
ated to F (uD* + TV /u) calculated with respect to dv,(x")/ 2n)4mX

(13.21)
uDX + %V
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By using general results on hyperbolic equations [16, §7.8], [30, §4.4],
we find that for 1€ R, x € X, h e (AT "V x)&¢)

x?

(13.22) supp cos (t\/f

uD* + %VD hdy,y € B (x, ut).

From (13.22), we conclude that if x € X, x' € X, and dX(x, x> a,
then

(13.23) F,uD* + TV/u)(x, x') =0,

and moreover, given x € X , Fu(uDX + TV /u)(x, ) only depends on the

restriction of uD* + TV/u to BX(x , Q).
Clearly

T
Tr, [NHgFu <uDX + EV)]

= //;Trs [NHgFu (uDX + %V) (g"'x, x)] (%7%‘:%‘

(13.24)

In view of (13.23), (13.24), we obtain

Tr, [NHgFu (uDX + ZV)] =/ Tr, | N,gF,
u xeX,dX(g_'x,x)SQ

x T -1 dv,(x)
il /4 — X\
X (uD + ) (g x, x)] (273X
which thus indicates that the analysis needed in the proof of (13.18) lo-
calizes near X -
Recall that by (6.9), we have the exact sequence of holomorphic Her-
mitian vector bundles on Yg

(13.25)

(13.26) F:0—-Ny,x ®Ny y >Ny y— N0
8l g g 4
M N, N. i .
oreover Y,/X, and Y,/ are mutually orthogonal in NY, /x As usual,

we identify N (as a smooth vector bundle) with the orthogonal bundle to
N, x, @ N, Y in N, /X So now we have an identification of smooth
4 & ) 4 4

vector bundles
(13.27) Ny ;x =Ny x, ® Ny ;y N,
Take y,€Y,.If Z; € (TRX)yo , we write Z, in the form
2,=2"+2+2'+72,2"¢ (TrYy),, »
, ~ o~
Ze(Nyg/Xg’R)yo,Z eN(Yg/Y’R)yO, Z € (Ny), .

Yo

(13.28)
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If ye Y, Ue (TjY),, recall that 1 € R — y, = exp, (tU) € Y is

the geodesic in Y such that y, =y, dy/dt|,_,=U.If V € Ny/x R,y

we still denote by V € NY/ X R, exp! (U) the parallel transport of V' with
» T MRy

respect to Vv/x along 1€[0,1]—y €Y.
For & > 0 small enough, set

(13.29) %, = {(v, Zy) € Ny x x: \PMerz < e, |PYXZ,| < g},

We identify (y,, Z,) € %, with exp;‘;py (PNyg/YZ)(PNY/XZ) )
Yo

Let k(yo’ Zo) ((yo, Zo) € Nyg/X,R) > k’(yo» Z(;) ((yo, Z(I)) € Nyg/y,n)
be the smooth functions defined by

de = k(yoa Zo)dvyx(yo)vay /X(Zo) s

(13.30) S ,
dvy =K' (v, Zg)dvy (v)dvy  (Zy).

Then k(y,,0) = 1, k'(y,,0) = 1, and k' is the restriction of k to
N},g /YR Clearly,

(13.31)
T -1 dv,(x)
Tr [N F (uDX+—V) x,x]—"’—.—
/’4/3(1’3) s | VHEL Yy y (g ) (27)5m X
{ 2 4m Ny
= _—( 2m)am X /Yg / 20Ny m TEm Ny

|P"Ye!Y Z)|<e/8u
|PMYIX Z)| <eV/T /8u

- uPMixz
x Tr, [NHgFu (uDX+%V) (g ! (yo,uPN"g/YZO + TQ) ,

N,
N. uP Y/XZO
(yoy uP YS/YZO + —'\/-?—

uP"vxZ,

)
In the sequel, we always assume that given ¢ > 0, o > 0 is chosen small

enough so that if x € X, dx(g_lx, x) < a, then dX(x, X,) < ¢/l6,

andif yeY, dY(g'ly, y) < a, then dY(y, Y,)< e/16.
We state the obvious extension of [15, Theorem 13.6].

x k (yo , uPN’(!/'Z0 +
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Let F,(uD")(y, »') be the smooth kernel associated to F,(uD"), with
respect to the volume element dv, (y)/(27)*™" .

Theorem 13.6. If ¢ €]0, inf(ey/2, a/2, b/2)], a €]0, &/8] are small
enough, there is C > 0 such that for any m € N, there is C' > 0 for
which if u €0,11, T2 1, yg€Y,, Z,=(2,Z',Z) € Ny jy n -
|Z| < evT/8u, |Z'| <e/8u, |Z| < evT/8u, then
(13.32)

u2 dim NYg X

Tam N, Tr,

x T
NHgFu <llD + ";V)

N,
-1 % uP™vxZ
LUP " Z 4 ———=19 |

N,
N uPvxz
(y‘” il —‘ﬁ—)”

< C'(1+ [P Zy|) " exp(—CIPVs7 Z, ).
There exist C" > 0, &' €10, 11 such that under the same conditions as
before, we have

(13.33)
1 L2 4m Ny

(zn)dlmx lem NY/X

N
x T 1 N uP”vix7Z
x Tr; [NHgFu (uD + ;V) (g (Vo> uP %" Z + _ﬁ__o) >

N,
N uP’vixyzZ
(y"’ S T))]

x k (yo, uP™errzZ, 4 \/LTPN"/XZO)

N, 2\ 4i
_ im Ny exp(-LP VX Zol )dlmNy/X 1
ndlmNy/X 2 (2n)dimY

x Tr,[gF,(uD") (g™ (vy, uP™/* Z)), (v, uP™/ Z,))]

x k' (vy, uP"" Z;)

<c"IT’.
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Proof. The remainder of this section is devoted to the proof of Theo-
rem 13.6.

Remark 13.7. We define the open tubular neighborhood ?/e(Yg) in X
as in Remark 11.8. From (13.30), (13.31) and Theorem 13.6, it is clear
that there exists C > 0 such that for ¥ €]0, 1], T>1,

T -1 dvy(y)
Tr[N gF (uDX+—V> x,x]#
[%/8(};) H u ' u (g ) (zn)dlmX
dim N, _ dv,(y)
(13.34) ___M/ Tr [gF. (uD")(g" 'y, y)1—xP)
<<
<o
Applying Theorem 13.6 to the case where Y = ¢ yields
T _ dv,(x
/ Tr, [NHgFu (uD" + ;V) (g 'x, x)] —Xdin"n—)i
(13.35) X\Z,15(Y,) (2m)
< £
S
Using the finite propagation speed again, we obviously see that
(13.36) gF,uD")(g 'y, y) =0 ifd (g7'y,») >0

If dY(g_ly,y) < a, then dY(y, Y,) < e/16 andso y € ?/e/snY. There-
fore for 1 <j<d,

_ d .
(1330 [ ToleF,@p")e "y, M2 = Tr (g F, D)
/81 (2m) m
Finally, the same arguments as in (13.16) show that for 1 < j<d,

(13.38) Tr,[gF,(uD"™)] = 1,(l y )F, (0).

By (13.34)-(13.38), we arrive at (13.18), and the proof of Theorem 8.8 is
completed.

. The function F,(a) as a function of a’. The following result is
elementary and was proved in [15, Proposition 13.8].

Proposition 13.8. For ¢ >0, me N, m' € N, there is C > 0 such
that for u €0, 1],

(13.39) sup jal™|E™(a)| < C.
a

IIma|<c
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Since F,(a) is an even function of a, there exists a unique holomorphic
function F,(a) such that

F(a) = F (a).

Recall that for ¢ > 0, ¥, ¢ C was defined in Definition 11.16. The
next result was proved in [15, Proposition 13.10].

Proposition 13.9. Forany ¢ >0, me N, m' € N, there exists C >0
such that for u €]0, 1].

(13.40) sup ™| FE™(a)] < C.

d. An orthogonal splitting of TX and a connection on TX . Now we
follow [15, §13d]. In [15], near Y, a smooth orthogonal splitting

(13.41) TX=TX'&TX
is defined, which, on Y, restricts to the smooth splitting
(13.42) TX|y=TY & Nyx.

By [15, Definition 13.11], the splitting (13.41) is obtained by parallel trans-
port along the geodesics normal to Y of the splitting (13.42), with respect
to the connection V% .

Also a connection V¥ = '%9TX g 0yT™: on TX = TX'© TX? is
constructed in [15, §13d] by projecting orthogonally vi® on TX', TX 2
For details, we refer to [15].

*(0,1) *
Let °v*7 X pe the connection induced by O9T* on AT .1y ).
e. A local coordinate system near y, € Y, and a trivialization of

ATV X)&E . Take Yy € Y, , and recall that Y, is totally geodesic in
Y. Soif Z" € (TyY,), , then t -y, = expyY0 (tZ") € ¥, is the geodesic
in Y, suchthat y|,_=y,, dy/dt|_,=2".

If 2" e (Ty¥,),. Z; € Ny, g,,» We still denote by Z; €
NY, /X R, exp!. (2") the parallel transport of Z(', along the curve ¢t € [0, 1] —

exP;;(tZ ") with respect to the connection VA vV o vl
If yeY, Z e (TyY),, Z' € Ny, x g,y We still denote by A=
NY/ X,R,exp! (Z) the parallel transport of Z' with respect to vix along

the curve ¢t € [0, 1] — exp;'(tZ).
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Ultimately, if Z, € (TgX ) » 1Zyl < e, we identify Z, with

exp” (PMrz)eX.

ex
pe ) (P"x z)

Let k"( o) Zy € (TgX), , |
¢ be the functlons defined by

P! z)

Z, <e, kK"(2y), 2, € (TRY), , 1Z,| <

n

(13.43) dvy(Z,) = k"(Z,)dv 4 (Z,), dvy(Zy) = k" (Zy)dvry(Z,).

Then one easily verifies that if Z, € N},g/)(,k,y0 , Z €N, YRy, then
" n / / ’
(13.44) k (Zo) = k(yo, Z())’ k (Zo) =k (y()a Z())-

Take Z, € (TgX), . We identify (TX), , A(T*(O")X)Zo (resp. &)

with TX , NT” *(0. l)X ) (resp. éyo) by parallel transport with respect

«(0,1)
, OVA(T X) (

to the connection *v’* resp. 65) along the path

tel0,31-tP ez, 0<t<l1;
(13.45) Pz + (- 1)PMrz,, 1<1<2;
Pz +(-2PMrz,, 2<t<3.
As in [15, §13e], we observe that for 2 < ¢ < 3, the parallel transport
with respect to O9TX coincides with the parallel transport with respect to
v7¥ | Also note that for 2 < ¢ < 3, this trivialization is essentially the

one we considered in §9.

If Ue(TeX )y0 » Zy € (TeX )y0 ,let %tU (Z,) be the parallel transport
of U along the curve (13.45) with respect to 07X

Let a € R — y(a) € [0, 1] be a smooth function such that

1
(13.46) y(a) =1 fora<f,

=0 forag

Recall that b is the injectivity radius of (Y, A""). Set

(13.47) u(U) = y(4|U|/3b).
Then
uU)=1 if U/ <3b/8,
(13.48) —0 if |U| > 3b/4.
Let e, --- , e,, be an orthonormal basis of (TRY)y0 , and ATY be the

Euclidean Laplacian on (TRY)yo
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Definition 13.10. Let L be the differential operator on (T X )y0 ,
(13.49)  L=(1-4 (P Zz)A™" +2(P" Z,) Zvow (P""Zy)

Recall that by [15, equation (8.31)] éy_o= (AN;,/X®n)yo. Let ey, s s

e, bean orthonormal basis of Ny, y g Yo and S€End(A(T**x )®{_)y0
be given by

s
(13.50) S=—2112ce ée

2m+1

Let (a, b) € R’ - x(a, b) € [0, 1] be a smooth function such that

x(a,b)=1 1f|a|<2, Ib] < 4

(13.51) =0 iflal>3or|b > 3.

If VANS (TRX)y0 , set

(13.52) 0(Zy) = k(IPT Z,|/e, 1PV Z)|[e).

Then

0(Z) =1 if [PTYZ| <e/2, Pz <e/2,

13.53
(13.53) =0 if [PV Z,| > 3¢/4 or |PYx Z,| > 3¢ /4.

Let Z,(y,) be the open neighborhood of y, in X, given by
TY Nyx
V,(0) ={Z € (TeX), , |PT"Z| <22, |P"*Z| <e/2}.

Clearly, there exists ay(¢) > 0 such that for y, € Y,, Z, ¢ NY/ X.R.y,
|Z,| < &/8, the open Riemannian ball B¥ (Z,, ao(s)) in X is contained
in Z,(y,) - In particular 0 < o (¢) < e/2 < b/4.

Now we fix a €]0, a,(¢)] small enough so that the conditions stated
after (13.31) are satisfied. Let AMix be the Laplacian on Ny/ X.R.y,° and

recall that H is the vector space of smooth sections of (A(T"(0 1)X )&E )
over (TgX )
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Definition 13.11. Let .%,';°, .#, "2 be the operators acting on H,
(13.54)

2
aZ‘l Y()_(l_ ( 0)) (%_(L_'_AN}'/X)

2 N 2
_ _ " P _
1P st Dt P4l
u? 2
2 x T 2
+9(Z,) (uD +;V(ZO)> :
2

AL —(1- (pz(zo))_uz_(L + ANY/X) + q)z(Zo)(uDX)z.

u

Let F,(Z'20)(Z,, Zy) (Zy Zy € (TyX),,) be the smooth kernel asso-
ciated to I?u(.?;l’ ’Ty") , calculated with respect to dvTX(Z(')) / (27z)di"‘X . By

construction ¢2 is equal to 1 on B (Z,, o). Using the finite propagation
!
speed, for Z, Z, € N},g/x,k,y0 » 12yl < /8, we have

~ ;N2
E (D" + TV (e, Zo)» s Zg)k" (Zg)
= F(Z 7)o Zy)» 09 Zp)).-
f. Rescaling of the variable Z, and the Clifford variables. Clearly if
_ (Zr/, Z, AR Z)e (TRX)y0 , then

PTYZ ’ " -
(13.56) — S0y ‘/— phmz £ *Z +§(Z+Z).

(13.55)

For u>0, T >0,let Gu’T be the linear map 4 € Hy0 — Gu,Th € Hy0
such that if Z) € (TpX )y0 , then

PT"Z T n
(13.57) Gu,Th(Zo)zh( u O+-u—P Zy| -

Set
(13.58) £ =G,'.2'"1G, ., M P=G' #4"G,

u,

Lete,, - , ey and‘eZI,+l , ', €, beorthonormal bas‘es of (TRY&,)},o

and N, /YR,y respectively. Then, asin §12f, e,...,e,, isan orthonor-
/YR,

mal basis of (TRY)yO’ Also e,, .., - , e, still denote an orthonormal



152 JEAN-MICHEL BISMUT

basis of NY/X,R’yO. For 1 < i < 2l', we define c(e;) as in Definition

12.6.
Definition 13.12. Let .? 3.0 3 Y 7° be the operators obtained from

_5’;2 e, /luz 70 by replacing the Chtford variables c(e;) by c,(e;) for 1 <
i < 2/', while leaving unchanged the c(e,;)’s for 20 +1<i<2l.

Let F (33 P NZy, Zy) (Zy, Zy € (TgX),,) be the smooth kernel as-

sociated to Fu(.‘i’f, 2%) with respect to dv( 6)/(27t)dimx

Proposition 13.13. For u >0, T >0, y,€7Y,, Z, € Ny/X R,y

IPTYZ,| < &, |PMxZ| < &L, we have

8u’ 8u ’

u2 dim Nyg/x
T

x T
_Tdim—Ny/x r NHgFu (uD +;V)

g (g_l (yo, uP™s 2y + P N’“Zo> ’
(1359) <y0, uPNYs'”Zo+ \/LTPNY/XZO)>]

" TY U _N
x k (uP Zy+ =P Y/Xzo>

= (=)™ Tr [N, gl F () 20) (87 24, Z)I™ 1.

Proof. Since g preserves the geodesics in X and Y and also the
connections on the vector bundles considered before, it is clear that g
acts linearly in the coordinate Z;. Thus the proof of our proposition is
the same as the proof of [15, Proposition 13.17].

g. A formula for .243}0 The discussion in [15, §13h] applies with
minor modifications. The main difference is that the Clifford variables
c(e;), 2I' +1 < i < 2m, are not rescaled, while they are rescaled in
[15]. However this just introduces fewer diverging terms than in [15]. In
particular, the analogues of [15, Theorems 13.18 and 13.19] still hold.

h. The algebraic structure of .‘Zf ’73"’ as u — 0. The analogue of [15,
§13i] still holds. It leads to another proof of our results in §12.

i. The matrix structure of the operator .,S’f 2 as T — +oo. For a fixed

u > 0, the analysis of the matrix structure of .?;3 ’;" as T — +oo is the
same as in [15, §13j]. Of course the rescaling on the Clifford variables,
which depends on u > 0, is different, but this does not introduce any
extra difficulty.
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We still define the function 8,.rZ), g,(U) as in [15, Definition
13.24].
The algebra A(TRY,) splits into

ding
* r *
(13.60) ANTRY,) = @ N (TgY)).
0

Then we introduce the obvious modifications of the system of norms
| |u’T,y0,j, j=-1,0,1 of [15, Definitions 13.25 and 13.26], with re-
spect to the splitting (13.60).

Thus [15, Theorem 13.27] still holds for essentially the same reasons as
in [15]. The same is true for [15, Theorems 13.30 and 13.31]. In particular
we choose T, > 1 asin [15, Theorem 13.27].

j. Uniform estimate on the kernel of fu(i’u% ’Ty“) . We now establish an
extension of [15, Theorem 13.32].

Theorem 13.14. There exists C > 0 such that for any m € N, there
exists C' >0 suchthatif u €10, 11, T2 Ty, yy € Yy, Z,, Zy € (TeX), .

\PTYZ,|, |PTYZ}| < e/4u, |PMixZ)| < &I, |PMxZ,| < eV/T/4u, then
~ 3,
F (2, 7)(Zy, Zy)]

(13.61) ,
< C'(1+|PMrZy )" (1 + |PTY Z,))" exp(—C|Z, — Z, ).

There exists C > 0 for which if m' € N, there exists C' > 0 such that if
laf, lo'|<m', u€l0,1], T>T,, y,€Y,, Z,, Zy € (TgX),, . then
a|al+|a’|
(13.62) YAV A
< C'(1+1Z,)" exp(~C|Zy - Z, ).

~ 3, ’
E(Z, )2y, Zy)

Proof. We briefly indicate the principle of the proof of Theorem 13.14.
The bounds in (13.61), (13.62) with C = 0 are easily obtained by pro-
ceeding as in [15, proof of Theorem 13.32]. To get the required C > 0,
we proceed as in the proof of Theorem 11.14.

Take g € N, and recall that f and g were defined in (13.10), (13.11).
Set

(13.63) Fu,q(a) = /+Oo exp (it\/fa) exp (—Tt2> f(ut)g <2> dt.

—00
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Then there is a holomorphic function Fu’ q(a) such that

(13.64) F, (@=F, (a).

u,

As in Proposition 11.17,

(13.65) sup a"E")(a)| < Cexp(~C' ).
a c

Using the finite propagation speed, we see that there is C” > 0 such that
if |Z,~Z,| > C"q, then

~

(13.66) E(Z )2y, Zy) = F, (£)7)(Zy, Zp),

u q

which together with (13.65) and the same bounds as before yields (13.61),
(13.62).

The proof of Theorem 13.14 is completed.

Remark 13.15. By proceeding as in Remark 12.12, we find that (13.61)
and (13.62) are indeed symmetrical in Z;, Z,.

Clearly, if Z, € Nyg JX.R,y, then

(13.67) g '2,-27,=g 'Penz, — Prirz, .
So there is C > 0 such that

(13.68) 187"z, - Z,/* > C|PMer Z, .
Alsoif Z € N},g/X’R’y0 , then

(13.69) Pz, =P PMrrz,,
and so

(13.70) 1P Z,) < |PMeir z,.
Finally if Z, € NYg /X R.y, then

(13.71) PMexez = pMixe pMixz
and so

(13.72) |PMrervez | < |PMxz,|.

Equation (13.32) follows from Proposition 13.13, Theorem 13.14, and
(13.68)-(13.72).
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Let EZO be the analogue of the elliptic second order differential operator
considered in [15, Definition 13.40]. The minor difference from [15] is that
here, only the Clifford variables c(e;), 1 <i< 20", are rescaled, while in
[15], the Clifford variables c(e;), 1 < i < 2m, were rescaled. Because
our Clifford rescaling introduces fewer diverging terms as in [15, §13], the
analogue of [15, Theorem 13.42] still holds, i.e., for © €10, 1], T > T,,

(13.73) IE(Z ) - pwE 0w ' pl0S , <c/T'*

u;Ty.Vo

The obvious analogue of [15, Theorem 13.43] still holds.

Let F,(E0) U, U") (U,U'€ (TRY),, be the smooth kernel associated
to the operator F,(E°), calculated with respect to dvTY(U N/ (@2m)imY
Using Theorem 13.14, (13.73), and proceeding as in [15, §11p] or as in

§11 h, we find that there exists &’ €]0, 1] such that if Z, € N, XLR is
taken as in Theorem 13.16, then

1

Q)m u(“73 )8 B Zy,Zy)

_exp(=|P Mixgz, | )

N,,g
dim Y/X(Zn')dlm Y " u

(13.74) ('y°)(g P wz , P

/XZo)q
T

L Ca+1zyh™!
—_— T&’

By (13.61), (13.68)-(13.72), (13.74), we get (13.75). The left-hand side of
inequality (13.74) < C/T°/*, which together with (13.43), (13.61) gives
the proof of (13.33) in Theorem 13.6 as in [15, §13q]. Hence the proof of

Theorem 13.6 is completed.
This concludes the proof of Theorem 8.8, and terminates the paper.
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