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EQUIVARIANT IMMERSIONS
AND QUILLEN METRICS

JEAN-MICHEL BISMUT

Abstract

The purpose of this paper is to construct Quillen metrics on the equivari-
ant determinant of the cohomology of a holomorphic vector bundle with
respect to the action of a compact group G . We calculate the behaviour
of the equivariant Quillen metric by immersions, and thus extend a for-
mula of Bismut-Lebeau to the equivariant case.

Let i: Y —• X be an embedding of compact complex manifolds. Let η
be a holomorphic vector bundle on X, and let

(0.1) (ξ,υ):θ^ξm7ζm_ι^...^ξo^o

be a holomorphic chain complex of vector bundles on X, which, together
with a restriction map r : ξQ | γ -* η, provides a resolution of the sheaf

ijfγ(η).
Let λ(ζ), λ(η) be the complex lines which are the inverses of the de-

terminants of the cohomology of ξ, η, i.e.,

(0.2) λ(ζ) = (dctH(X,ξ))-', λ(η) = (det//(7, η))'\

Let G be a compact Lie group acting holomorphically on X and pre-
serving Y, whose action lifts holomorphically to (ζ9υ) and η. Let G
be the set of equivalence classes of complex irreducible representations of
G. Then we have the isotypical splittings

(0.3)

,ζ) = φHomG(W,H(X,ξ))®W,
wed
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Set

W = Θ det(HomG(^, H(X, {)) ® W),

(0.4) ™

An obvious extension of [22] shows that we have a canonical isomorphism
of direct sums of complex lines

(0.5) λG{η)*λG(ζ).

Let σ = ® ^ G £ < V € λ^ι(η)(S)λG(ζ) be the direct sum of nonzero sections,
which defines the canonical isomorphism (0.5).

Let hτx, hζ, hTY, hη be G-invariant Hermitian metrics on
TX, ξ, TY, η, respectively. By Hodge theory, one can construct
corresponding L2 metrics on the lines det(HomG(W, H(X, ζ)) ® W),
det(HomG(ίF, H{Y, η))®W), which we denote | | άtmom(j{w iH{

I \det{HomG(W,H(Y,η))®W)

If W e G, let ^(W^) be the corresponding character. Set

)

(0.6) 2 2

l θ δ d hG(η))= Z-^ l θ g(l \ det(HomG{W ,H(Y , ^ y

wed

By imitating the construction by Quillen of the Quillen metric [27], [11],
[13] on λ(ξ), λ(η), one can modify the symbols logfl l^m), log(| | ^ ( ,)

into new symbols log(|| l l^ j ) , log(|| ||^(^)), which we call equivariant

Quillen metrics on λG(ξ), λG(η). The modification involves an obvious
extension of the Ray-Singer analytic torsion [28] to the equivariant case.

Then the function g e G —• log(||σ||^-i( ) ( g α tξ\){g) is a central function
on G. The purpose of this paper is to give a formula for this function in
terms of local secondary invariants of the holomorphic Hermitian vector
bundles considered above, under natural assumptions on the metrics. This
generalizes earlier work by Bismut-Lebeau [15], where the case where G =
{1} was considered, to the equivariant setting.

Our assumptions are essentially the same as in [15]. Namely we suppose

that hτx is Kahler, and that hTY is the restriction of hτx to TY. Let

Nγ/χ be the normal bundle to Y in X, and let hNγιχ be the metric in-

duced by hτx^γ on Nγ/χ . Then we assume that the metrics hζ°, , hξm
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on ξ0, - - ,ξm verify assumption (A) of [5, Definition 1.5] with respect
to hNγι* , hη .

If g e G, set

Let i be the embedding Y —• X .

Let ΎdATX, hτx) be the Chern-Weil Todd form on X9 associated
• TX

to the holomorphic Hermitian connection on (TX, h ), which appears
in the Lefschetz formulas of Atiyah-Bott [1]. Other Chern-Weil forms
will be denoted in a similar way. In particular the form ch (ζ, h ) on
Xg is the Chern-Weil representative of the g-Chern character form of ξ
associated to hξ°, , hξm . Also we denote by ΊάATX), ch (f) the

o o

cohomology classes of Ίάg(TX, hτx), c\ig(ξ, hξ), .
In this paper, by an extension of [14], we first construct a current

Tg{ξ ,hξ) on Xg, such that

(0.8) —-TAζ, hξ) = Td~1(iVv/F, hNγ/χ)ch(η, hη)δv - c h (ξ,hξ).

Let ζ(θ, 5), 7/(0, s) be the real and imaginary parts of the Lerch series,
i.e.,

Let R(θ, x) be the power series introduced in [7]

(0.10)

Λ even

Let C(j) be the Riemann zeta function. Let R(x) be the Gillet-Soule
power series [20]

(0.11) R{χ)=

odd

Clearly

(0.12)
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Let Ύd(TY\ γ ,TX\Y , hτx] V) be the Bott-Chern class of forms on Yr
8 *g g S

associated to the exact sequence of holomoφhic Hermitian vector bundles
on Yσ , 0 — TY\ γ — TX\ Y — NY.y* -• 0, constructed in [11, §lf)],

such that

(0.13)
= i*gTdg(TX, hTX) -Tdg(TY, hTY)Tdg(NY/x, hN*<*).

Over Xg , TX\ x splits as a direct sum TX\ x = 0 TX\ θ

x , where

the θ e [0, 2π[ are distinct and locally constant, and g acts on TX\ θ

χ

by multiplication by eι . Set

(0.14) J

We use a similar notation for R (TY).

The main result of this paper is the following extension of [15, Theorem
0.1].

Theorem 0.1. For g e G, the following identity holds:
(0.15)

, hη)

- ί Ίdg(TX)Rg(TX)chg(ξ)+ f Ίdg(TY)Rg(TY)chg(η).
Jχg J γ

g

In fact [15, Theorem 0.1] is exactly our Theorem 0.1 with g = 1. The
formula of [15, Theorem 0.1] is an important step in the proof of Gillet
and Soule [21] of the Riemann-Roch Theorem in Arakelov geometry which
they had conjectured in [20]. In particular the genus R(x) was obtained
by Gillet and Soule [20] by a difficult calculation (with Zagier) of the
Ray-Singer holomorphic torsion of PΛ equipped with the Fubini-Study
metric. The genus R reappeared in an analytic construction of character-
istic classes in [6]. The calculations of [6] were then a key ingredient to
the proof of the final formula of [15].

In [23], Kόhler has calculated the equivariant analytic torsion of Pn

associated to an isometry of Fn having isolated fixed points. In [7] the
calculations of [6] were extended to the equivariant case. For isometries
with isolated fixed points, the calculation of [23] and [7] fit as well as [20]
and [6].
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Theorem 0.1 should be considered as a new block in the construction
of an Arakelov theory to be in an equivariant context.

Most of our techniques and arguments are taken from [15]. However,
there are certain complications, which we now describe.

1. Anomaly formulas for equivariant Quillen metrics

In [13], Bismut-Gillet-Soule have established anomaly for usual Quillen
metrics (here for G = {1}), which calculate the ratio of two such metrics
associated to two couples of metrics on TX, ξ and TY, η. In §1, we
extend this result in an equivariant context. We express the ratio in terms
of Bott-Chern classes evaluated on X or Yg. Then formula (0.15) is
easily seen to be compatible with these anomaly formulas.

2. Localization on X , Yg and finite propagation speed

In [ 15], a key point was the study of the supertrace of certain heat kernel
evaluated on the diagonal of Xx X as a function of two parameters u > 0,
T > 0. Here at a formal level the diagonal is replaced by the graph of g
in X x X .

As for the classical heat equation proofs of the Atiyah-Bott Lefschetz
formula [19], [9], [3], [2], this accounts for the localization of certain
supertraces on the fixed point set Xg. Also in [15], certain supertraces
localized on Y. Here the presence of g forces the localization on Yg .

In [15], the needed estimates were obtained by using a heavy functional
analytic machinery, which was used to prove that certain rescaled kernels
exhibit a decay faster than the polynomial decay on the diagonal in the di-
rections normal to Y in X . Here, there is the extra complication that not
only we have to show that nonfixed points do not contribute to the asymp-
totics, but also that the rescaled kernels also exhibit the right Gaussian
decay in the directions normal to I in I . Ultimately, the combination

o

of these two arguments explains the localization of the supertraces on Y .
In [15], finite propagation speed methods were used to prove that the

calculation of certain asymptotics was effectively local on X, i.e., that one
could replace X by a small ball. Here finite propagation speed is also used
to study certain heat kernels inside the considered small ball, to obtain the
required Gaussian decay.

Otherwise, the general outlook of the proof of Theorem 0.1 is very
similar to the proof of [15, Theorem 0.1]. We refer to the introduction
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of [15] for more details. As explained before, instead of [6], we use [7]
to evaluate a mysterious current Bg(TY, TX\ γ , hτxlγ) on Yg9 which is
responsible for the appearance of Rg in (0.15), instead of R in [15].

Because many arguments in the proofs are taken from [15], to avoid
duplicating the arguments of [15], we tried to refer as much as necessary
to [ 15], including sometimes for notation. However we give as many details
as needed, especially in the construction of local coordinate systems and
of local trivializations of certain vector bundles, and also for the Gaussian
estimates in directions which are normal to I in ί .

The organization of the paper, and even the organization of most of the
sections are deliberately related to [15].

In §1, we give a few algebraic preliminaries. In §2, we construct the
equivariant Quillen metrics, and prove the corresponding anomaly formu-
las. §3 describes the geometric setting of the G-equivariant immersion
problem. Let λG(ξ) be the equivariant determinant of the hypercohomol-
ogy of ξ. Then λG(ξ) and λG(ξ) are canonically isomorphic. In §4, we
extend a result of [15, §2], by comparing the Quillen metrics on λG(ξ) and
λG(ξ). §5 contains a construction of a closed form j8 on R* x R^ and a
contour Γ by extending [15, §3]. As in [15], Theorem 0.1 will be obtained
from the equality /Γ β = 0 by taking the boundary of Γ to infinity.

In §6, by extending [14], we construct the Bott-Chern current T (ξ, hξ).
§7 summarizes the results of [7].

In §8, we state seven intermediary results, the proofs of six of which
are deferred to §§9-13. We take advantage of the formal similarity of our
intermediary results to corresponding results in [15, §6] to adapt formally
the discussion of [15, §6] in our context, and we prove Theorem 0.1.

§§9-13 are devoted to the proofs of six of the intermediary results which
were alluded to before. These sections are an obvious extension of [15,
§§9-13] to the case of a nontrivial group G, but we still use the results of
[15] very much to establish our own results.

As in [15], we use the superconnection formalism of Quillen [26]. In
particular Ίrs is our notation for the supertrace, and [A, B] denotes the
supercommutator of A and B.

The results contained in this paper were announced in [10].

I. Algebraic preliminaries

Let

(1.1) ( F , d ) : 0 - V° ^ V1 - > . . . - > Vn

d d
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be a chain complex of finite dimensional complex vector spaces. Here

Let hv , , hv be Hermitian metrics on F°, , Vn respectively.

We equip V with the metric hv = 0 " = o h
v'.

Let G be a compact group. Let p : G —• End(F) be a representation of
G, with values in chain homomorphisms of V, which preserve the metric
hv . In particular, if g e G, then />(#) preserves the Fz 's.

Let G be the set of equivalence classes of complex irreducible rep-
resentations of G. An element of G is specified by a complex finite
dimensional vector space W together with an irreducible representation
pw:G-+End{W).

For W eG, set

(1.2) V^ = HomG(W, V^ttW, Vw = HomG(W, V)®W.

Then Vw = 0 " = o V^ . Let dw be the map induced by d on F^ . Then

(1.3) {Vw,dw):0^V^rV^...rv£->0

is a chain complex. Finally we have the isotypical splitting

(1.4) (v,d)= φ(vw,dw),
wed

and the decomposition (1.4) is orthogonal.
If £ is a complex finite dimensional representation space for G, let

χ(E) be the character of the representation. Put

i=0

(1.5)
ι=0

f=0

By (1.4), we get

(1.6) * ( r ) = Σ
wed

If A is a complex line, let λ~ι be the dual line. If £ is a finite dimen-
sional complex vector space, set

(1.7)
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Put
n f.

detK = 0(detF') ("" ,

(i

By

(l

8)

(1

9)

•4), we obtain

w

detF

i=0
n

/ON

09
i=0

= 6

For 0 < i < n , Vι

w is a vector subspace of V1. Let hVw be the induced

metric on V^ . Let || || d e t yi be the metric on det Vι

w induced by h w ,

and let II | |M, t F/χ-i be the dual metric on ( d e t F ^ ) " 1 . Let || | | H e t F be

the obvious tensor product metric on det Vw . Similarly let || || d e t v be

the metric on d e t F induced by hv . Then (1.9) is an isometry of line

bundles.

Put

(1.10) det(F, G) =

weG

Definition 1.1. We introduce the formal symbol

wed

For W e G, let σw e detF^, σw φ 0. Set σ = Θ^€g<V
det(F, G). Then by definition,

wed

Tautologically, (1.12) is an identity of characters on G. In particular

(1.13) log(IMlL(κ,G))0) = Σ

wed

In fact (1.13) just implies that

l L ) 0 ) = Σ log(HσJl

Of course, using the orthogonality of the χw's, knowing the formal

symbol log (|| || ̂ e t ( κ G)) is equivalent to knowing the metrics || | | d e t κ .
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Clearly

H(VW, dw) = HomG(W, H(V, d))®W,

(1.15) H(V9θ)=φH(VW9dw).

wed

For W e G, we define detH(W, dw) as in (1.8). Set

(1.16) det(i/(F, d), G) = φ detH(Vw, dw).

wed

By [22], [11, §la)], for ^ e G , w e have the canonical isomorphism of
complex lines

(1.17) detF^ ~ detH(Vw, dw).

From (1.17), we get

(1.18) det(F, G) ̂  det(//(F, d) , G).

Let || | | d e t / / ( F d ) be the metric on detH(Vw,dw) corresponding to

|| || d e t κ via the canonical isomorphism (1.17).

Definition 1.2. We introduce the formal symbol

(1-19) L W κ , , ) > G ) ^
wed

Tautologically, under the identification (1.18),

(1.20) L L

By an abuse of notation, we will call the formal symbol || \\άet,v>G) a
metric on det(F, G). In effect, it is a direct sum of metrics on det(F, G) =

Let d*, d*w be the adjoints of d , dw . Put

(1.21) D = d + Θ*, Dw = dw

Under the identification (1.4), we have

W€G

Set

(1.22) Λ: = kerZ>, Kw = keτDw.
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Then K, Kw inherit metrics hκ, hK]V from the metrics hv, hVw . By
Hodge theory,

(1.23) K~H(V,d), Kw~ H(VW, c^).

L e t I ldet//(κc»> I Idct/r^^) b e t h e m e t r i c s o n

detH(Vw, dw) induced by the metrics hκ , hKyv via the canonical iden-
tifications (1.23).

Set

(1.24) logfl \it{H{V,dhG)) =
,dhG)

wed

Tautologically, the symbol

,,.23)

is a character of
Let K1^ be the orthogonal space to AT in V. Let P be the orthogonal

projection operator from V on A:. Set P"1 = 1 - P. Then Z)2 acts as an
invertible operator on KL . Let (Z)2)"1 be the corresponding inverse.

Let Λ̂  be the number operator of V, i.e., Λ̂  acts on V1 by multipli-
cation by i.

In the sequel, if A e End(F), TrJΛ] denotes the supertrace of A [26].
Definition 1.3. For s e C, g e G, set

(1.26) θ(s)(g) = - T ,

Then g —• θ(^)(g) is a character of G.
Theorem 1.4. i w g e G, the following equality holds:

(1.27) log ^ =

I l
Clearly

(1.28) θ(s)(g) = -

Also when G acts trivially on V, (1.27) is the equality of [11, Proposition
1.5]. Using (1.25), (1.28), we get (1.27). q.e.d.

Let h'v , - , tiv be other (/-invariant metrics on V°, , Vn re-

spectively, and let hlV = φ" = o h'V be the corresponding metric on V.

Let || Hdet(κ,G) be the associated metric on det(V, G).
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Proposition 1.5. For any g e G,

(1.29) log

/ For g = 1, (1.29) is obvious. For a general g e G, (1.29)

follows by summation.

II. Equivariant Quillen metrics and their anomaly formulas

The purpose of this section is to construct the Quillen metrics on the
equivariant determinant of the cohomology of a holomorphic vector bun-
dle and to establish corresponding anomaly formulas. Thus we extend
the anomaly formulas of [11, Theorem 0.2] and [13, Theorem 1.23] in an
equivariant setting.

This section is organized as follows. In part a, we construct the equi-
variant Quillen metrics by a straightforward extension of [27], [13]. In
part b, we state our anomaly formula, the remainder of the section be-
ing devoted to the proof of this formula. In part c, we establish a simple
formula on Clifford algebras. Finally, part d contains our proof of the
anomaly formula, along the lines of [4], [9], [13].

a. Equivariant Quillen metrics. Let X be a compact complex manifold
of complex dimensions /. Let ξ be a holomorphic vector bundle on X.

Let G be a compact Lie group. We assume that G acts on X by
holomorphic diffeomorphisms, and that the action of G lifts to a linear
holomorphic action on ξ . Then G acts naturally on H(X, ξ).

Let E = 0 g i m I £ ' be the vector space of smooth sections of

dim*

A(T*{0Λ)X)®ζ=

o

on X. Let dx be the Dolbeault operator acting on E. Then

(2.1) H(E,dX)~H(X9ξ).

If g e G, s e E, let gs e E be given by

(2.2) gs(x) = gs(g~lχ).

Then G acts on (E, dx) by chain homomorphisms, and (2.1) is an iden-
tification of (/-spaces.
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T Y F
Let h , Λ be smooth (7-invariant Hermitian metrics on TX, ξ re-

T Y
spectively. Let dvχ be the volume element on X associated to h . Let

( , )A(T*{0'1)X)®£ be the Hermitian product on A(T*^°'ι^X)®ξ associated

to hτx,hζ.
If s, s' e E, set

dim X/ i \ dim X p

(2.3) (s, s)E = i^J Jχ(s,sf)MT.(o,l)
JχMT)χ)^dvχ.

Then ( , ) E is a G-invariant Hermitian product on E.

Let dx* be the formal adjoint of dx with respect to ( , ) E . Set

(2.4) DX = 8X + dX*.

If g e G, then

(2.5) [g,D*] = 0.

Set

(2.6) K X

By Hodge theory, we have

(2.7) K

Also by (2.5), G acts on K. Then (2.7) is an identification of G-spaces.

Clearly K inherits a (/-invariant metric from ( 9 ) E . Let hH(^x'^ be
the corresponding (/-invariant metric on H(X, ξ).

As in (1.15), we have the isotypical decomposition

(2.8) H(X, ξ) = φ HomG(^, H(X,

which is orthogonal with respect to
For W eG, set

(2.9)

Put

(2.10)

wed
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In the sequel λG(ξ) will be called the inverse of the equivariant determi-
nant of the cohomology of ξ. Then λG(ξ) is a direct sum of complex
lines.

Let I \λ ^ be the metric induced by hH("X'^ on λw(ξ), and set

(2.11)
••(/V»/

weG

The symbol | \\ ,^ will be called the (equivariant) L2 metric on λG(ξ).

Let KL be the orthogonal space to K in E. Then DX2 acts as an
invertible operator on KL . Let (Dx'2)~ι be the corresponding inverse.

Take g e G, and set

Then X is a compact complex totally geodesic submanifold of X.
Let N be the number operator of E, i.e., N acts by multiplication by

i on Eι. Then by the standard heat equation methods, we know that as
t -• 0, for any k e N,

(2.13) Ίrs[gNexp(-tDX'2] = ^ + .. . + a0 + fl1ί + + ̂ ^ + <>(ί*).

Definition 2.1. For g e G, 5 e C, Re(s) > /, set

(2.14) θX(g)(s) = -Trs[gN(DX2ysl

By (2.13), θx(g)(s) extends to a meromorphic function of s e C,
which is holomorphic at s = 0. In particular g -> (dθx/ds)(g)(0) is a
central function on G.

Definition 2.2. For g eG, set

(2.15) log(|| \\lGlξ))(g) = 108(1 IvoXs) "

The quantity exp{(-<90*/<9s)(£)(O)} is an extension of the Ray-Singer
analytic torsion [28] to the equivariant setting.

The symbol || \\λ ̂  will be called a Quillen metric on the equivari-
ant determinant λG(ξ). In effect the case where G = {1} was already
considered in [27], [11], [13].
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T X F
b. Anomaly formulas for equivariant Quillen metrics. Let V , V be

T Y F

the holomoφhic Hermitian connections on (TX,h ), (ξ, h ) respec-

tively, and let Rτx , Rξ be their curvatures.

Take g eG. Then

(2.16) TX ={U e TX\ γ , gU = U}.

Let Nx /x be the normal bundle to Xg in X. Then g acts on Nχ /χ .

Let e/<?1, , eιθq (0 < θ. < 2π) be the locally constant distinct eigen-

values of g acting on Nχ ,χ , and let Nx

ι ,x, , Nrf j X be the corre-

sponding eigenbundles. Then Nx ,x splits holomoφhically as

(2 17) N = Nθι Θ Θ Nθq

Also, we have the holomorphic splitting

(2.18)

Moreover the splitting (2.18) of TX\ γ is orthogonal with respect to
Λg

hTXl x*. Let hτx*, hNχX*IN , be the Hermitian metrics induced by hTX] x*

on TXσ , Nyι

 ly, . Then V ** induces the holomoφhic Hermitian
o gl

TY Λ/̂  1 T X θ N

c o n n e c t i o n s V g, Vγ /γ, o n ( 7 \ Y , h g ) , ( Λ ^ J / y , A V * ) . . . L e t
' Xg/X> v g ' ^ ' v Xg/X> >

RTXg, R χg/x , be their curvatures.
Definition 2.3. Let PXg be the vector space of smooth forms on X ,

o

which are the sums of forms of type {p, p). Let PXg'° be the subspace
y

of the ω e P g such that there exist smooth forms a, β on X with
_ o

If A is a (q, q) matrix, set

(2.19) Td(Λ) = det (—^—Γ 1 , e(Λ) = detμ) .

The genera associated to Td and e are called the Todd genus and the
Euler genus.
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Definition 2.4. Set
(2.20)

Ύdg(TX,h ) =

Td (=£•*)

j=\

TX*
2iπ

=π(?) (4
f-R ί l'Λl

b=0

b=0

Then the forms in (2.20) are closed forms on Xg, which lie in P «,

and their cohomology class does not depend on the G-invariant metrics
TXlχ* hξ We denote by Td(TX)Td^(ΓJΓ)..- , ch (̂< )̂ these co-x*, hς. We denote by Td^(ΓX), Tc

homology classes, which appear in the Lefschetz formulas of Atiyah-Bott

[1].
Let hlTX, h/ξ be another couple of (/-invariant metrics on TX, ξ . We

denote by a prime the objects which are just considered and attached to

hιτx,tiξ.
By [11, §lf)], there are uniquely defined classes Ύdg(TX, hτx, h'τx)

and chg{ξ, hξ, h'ξ) in Px*/Px*>° such that

(2.21)
, hTX,h'TX) =

H c h g ( £ , hξ, h'ξ) = , h'ζ) -

, h'TX)-Tdg(TX, hTX),

y £ , hξ).

The main result of this section extends the anomaly formulas of [11, The-
orem 0.2], [13, Theorem 1.23] to equivariant Quillen metrics.
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Theorem 2.5. Assume that the metrics hτx and h'τx areKάhler. Then
for any g eG,

(2.22)

Ύdg(TX, hT\ hfTX)chg(ξ, hζ)

J Tdg(TX,tiTX)dιg(ξ,hξ,h'ξ).

Proof. The rest of the section is devoted to the proof of Theorem 2.5.
c. Supertraces and Clifford algebras. Let E be a complex vector space

of dimension /, and hE be a Hermitian product on E.

Let c{ER) be the Clifford algebra of (ER9 h
E*). Recall that A(Έ*) is

a c(£R)-Clifford module. In fact if X e E, let X* e Έ* correspond to

X by the metric hE . If X e E, set

(2.23) c(X) = VΪX*Λ, c(X) = -VϊiΎ.

We extend the map Y ^ c(Y) by C-linearity.
If ^ € E n d ί ^ ) is antisymmetric, we identify A with the 2-form

X, Y eER-+(X,AY).

Let g be a linear isometry of (E,hE). If ^ - 1 is invertible,
(g + !)/(# - 1) G End(£) is skew-adjoint, and so it defines a 2-form
in Λ(££) which is of type (1, 1). Also g acts naturally on Λ(i?*).
Moreover

(2.24) TrfΊ[g] = detE(\-g),

and so T r ^ \g] vanishes if and only if g - 1 is noninvertible.
In the sequel, if a e Aewen(ER), exp(α) denotes the exponential of a

in Λ e v e n (£*) .
Assume first that g - 1 is invertible. Then

(2.25) πM

In view of (2.24), one verifies easily that the expression (2.25) extends by
continuity to an arbitrary unitary g.

Let F be a finite dimensional complex vector space. Let a £ Aoάά(FR)
<8>ER. If g - 1 is invertible, then

/-» " i / r x τ Λ ( J ? ) r Ί r l / < ? H 1

(2.26) Trs

{ ; [£]exp{-- (a, j—[

By the argument we just gave, this expression extends by continuity to an
arbitrary unitary g.
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Clearly a can be written in the form

(2.27) α = J V ® ei > a' e Λ ^ V R )> */ € £R
1

Let c(α) <E (Λ(F*)Θc(£))e v e n be given by

(2.28) c(a) = -Σ«c(ei)
1

Then gexp(c(α)) e (Λ(FR*)®End(Λ(F)))e v e n.
Theorem 2.6. The following equality holds:

(2.29) Tr^'Wp(c(α))] = T r ^ g j e x p {-» (α, | ± l β ) } .

/ Let e t , , e2l be an orthonormal basis of ER. We may and
will assume that on this basis, the matrix of g has diagonal blocks

l. 0<θj<2n.
θj) J

Then one verifies easily that the action of g on A(E ) is given by

„ / ίθΛ ίθλ \ m)Σθ

(2.30) g= Π ί c o s ί - ^ J + s i n ί - ^ J c ί ) ^ ) !

Also since in (2.28), the α''s are odd, we have

(2.31) exp(c(α))=

Also c{ex) c(e2n) is the only monomial in the c(e;)'s whose super-

trace on Λ(ϊΓ) is nonzero. Using (2.30), (2.31), we get

(2.32)

If g - 1 is invertible, i.e., if no θ. is equal to 0, from (2.32) we deduce

Trί(**Wp(c(α))] = Trf(r)[g]

( 2 3 3 ) T-r Λ c o s ( ^ / 2 ) 2,-1 Λ 2j\

Π h ^ Λ )
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Also

(2.34)
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/ cos(g,/2) 2,_, 2Λ

,11, y - ήHήjϊ)a Aa)

= exp -
V

2

Λα

Moreover the matrix of (g + l)/{g - 1) has diagonal blocks given by

° sin(θj/2)

0
L sin(0,./2)

Therefore

(2.35) 2j-ι A 2,

From (2.33)-(2.35), we get (2.29) when g - 1 is invertible. The general

case follows by continuity. Hence the proof of Theorem 2.6 is completed,

d. Proof of Theorem 2.5. Let c e [0, 1] -• (hξx, hξ

c) be a smooth fam-

ily of (/-invariant Hermitian metrics on TX, ξ such that for any c, hζx

is Kahler and also (hζx, hξ

Q) = (hτx, hξ), (Λ™, A{) = (Λ/Γ*, A/{). Let
|| || λ V̂ c be the corresponding equivariant Quillen metric on λG(ξ).

Let dx* be the adjoint of dx with respect to {hτ

c

x, h\). Then

(2.36) [5 , g] = 0, [θc , g] = 0.

Set

(2.3 /) D = ό H- o
v ' C C

Let *c be the Hodge star operator attached to Ajy . Set

(2.38) fl, __.;•£_,#-£
By an obvious analogue of (2.13), as t
pansion

0, we have an asymptotic ex-

(2.39)

7=-/

.
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Using Proposition 1.5, (2.39) and proceeding formally as in [13, Theo-
rem 1.18], we get

Assume first that hjχ = hτx = h'τx. Then since hτx is Kahler, we
may use the local index techniques of [9], [3], [2, Chapter 6] to find that

(2.41) MOjC = -fTdg(TX, hTX)Ίτ [,$)-• * £

Moreover by [11, § If)], we obtain

(2.42)

= c h , ( ί , Λ { , * * ) inPX*IPX*\

which together with (2.40) yields (2.22).

Assume now that h^c = hξ = hξ . Let ωc be the Kahler form of

hξx. Let Jτx be the complex structure of TRX. If *7, K € ΓR^Γ,

then ω c(l/, V) = (U, JTXV)τ^χ c . Set

(2.43) ώc = dωjdc.

To simplify our notation, in the sequel, we will not always write the sub-
script c explicitly. Then by proceeding as in the above references and in
[12, proof of Theorem 2.16], we find that

Let da, da be two odd Grassmann variables. In particular, da, da
•y

anticommute with the operator D . Set

(2.45) Lu = -uDx'2 - ^daDx - ^βda[Dx ,Q] + dadaQ.
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If a e C(da, da), let [a]dada £ C be the coefficient of dad a in the
expansion of α. Using (2.36), and proceeding formally as in [13, Theorem
1.20], we get

(2.46) ^uTrs[gQexp(-uDX>2)] = Ύτs[g cnp(Lu)]dada,

which together with (2.40) leads to that as u —> 0,

(2.47) Trs[gexp(Lu)]dada = MQ + d?(u).

As we saw in (2.23), A{T*{0'ι)X)®ξ is a c(TRX,hτ*x) Clifford mod-
ule. If U e TRX, let c(U) denote the corresponding Clifford action.

Let VΛ ( Γ X)®ζ be the connection induced by Vτx and V^ on

A{T*{0>ι)X)®ξ. Set

(2.48) Rfξ = Rξ + ± Tr[RTX].

Let K be the scalar curvature of {X, hτ*x).

Let eχ, , e2n be a locally defined smooth orthonormal basis of
(TRX, hτ*x). Recall that Jτx is the complex structure of TRX. By
[13, Theorem 1.21] (and keeping in mind that the operator D in [13]
coincides with \ίΪDx), we get

u ( MΓ^x)®ξ _ dacje,) 2

(2.49) dd

Let Tu(x, x') (x, x e X) be the smooth kernel associated to exp(LJ

with respect to dvx(x')/(2π)dimχ. Then

(2.50) Tr^expd,.)] = j Ίrs[gTu^x, x)]^β

Using normal geodesic coordinates to Xg in X, we may and will iden-

tify an ε-neighborhood of Xg in Nx /x R to an open neighborhood ^ ε

f X i Xof X in X.
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By standard estimates on heat kernels, one finds easily that there exist
c > 0, C > 0 such that for x e X\^ε, 0 < u < 1,

(2.51) \Tu(g-lχ,x)\<cexp(-C/u).

Let dvN be the natural volume element along the fibers of Nγ , γ D .
Nχgιχ

 xglχ»R

Let k(x, Z) ( X G I , z eNχ /X,R> \z\ < ε) b e defined by

(2.52) rft;^*, Z) = A:(JC , Z) dvχ (JC) ̂  (Z).

Then A:(x, 0) = 1.
Clearly

Tr

(2.53) = Lz)€NXg/x u^^^ Trs[gTu(g-\x, ^ Z ) , (x, v ^
| Z | < / ^

dvχ(x)dvN (z)
x k(x, v^

Of course, since we have used normal geodesic coordinates to I in I ,
if (x, Z) € iVj /Λr, then

(2.54) g-\x,Z) = (x,g-ιZ).

Now we calculate the asymptotic behavior of

uάimNχ*ι*Ίrs[gTu{g-\x, y/UZ), (x, y/UZ))] as u -. 0.

For this, we combine the methods of [9], where we gave a proof of the
Lefschetz formulas of Atiyah-Bott [1], with the methods of [4], where we
proved the local family index theorem for Dirac operators.

Take x e X . We assume that ex, , e2p form an orthonormal ba-

sis of TRX χ, and that e2p+ι, , e2l form an orthonormal basis of
Nxg/x,R,χ ιf z e Nxg/x,R,x>

1* Q{g*z,z) b e t h e Probability law on

^ ( [ 0 , 1], Nχ j x R χ) of the Brownian bridge s -+ ws, with wo = g~ιZ ,

wι = Z [8, Definition 2.6]. Then by proceeding as in [9, proof of Theo-



74 JEAN-MICHEL BISMUT

rems 4.9, 4.11], we get

lim / udimN^Trs[gTu(g-l(x, yfcZ), (x, y/UZ))]

dυN (Z)

(2π)

= (AΛ ™ * I [
\2πιJ \JN

(2.55)

Xg/xttx

\ f (RTXw,dw)
* Jo

i f f 1 -i >

+ -zidada\ I ώ(w, dw) - ώ(g Z, Z)
2 \Jo »

--dadaΊr^h ) —

2v/2

x Tr5

 Xg

dc

^ e x p l - c ( d a ( l - g l ) Z

2/

~l)ώ(ek,(l- g~l)Z)ek))
/ .

(-i-x exp I - ^ Ύτ[RTX] Ύr[gexp(-Rξ)]

uniformly on X .
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From Theorem 2.6 it follows that

75

(2.56) =TrΛ

 v

X-c\da{\-g x)

2/

ι

2/7+1

Uda(l-g

2/

2p+l

2p+l

Now the form ώ is ^-invariant. Therefore

)Z)ek

2/

(2.57) - - 1
2/

2p+l

which together with (2.56) gives

Tr,

(2.58)

gexp Ϋ \da{\ -g'

2/

2/>+l

~ιZ,Z)dada)

ι )Z)ek

dada

So by (2.55), (2.58), we obtain
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lim
u-*°J\Z\<ε/VU

(2.59)

dad ύ.

Z)
X k(x, y/ΰ

(2π)

+ -id ad a

1

I ώ(w, dw)
Jo

ί
uniformly on X . Clearly

(2.60) ω(w, •£{- ττx /Ίτx,-\on j \
J (h ) — - — dw ) .

oc I

ίmax

Using (2.60), we find that the right-hand side of (2.59) is given by

(2.61)

Jπi) /,xg/x

X I •=•
., rTx,, τx,-\dhτxy

-ibJΛΛ(hΛΛ)
oc

w, dw

χsιχ
b=0



EQUIVARIANT IMMERSIONS AND QUILLEN METRICS 77

By proceeding as in [9, Theorem 4.13], it is easily seen that (2.61) is equal
to
(2.62)

J b=0

So using (2.47), (2.50), (2.51), (2.53), (2.59)-(2.62), we get

x\\ — \-1τ7—-b(h^x)

-U=o

By (2.40), we have

(2.64)

which together with [11, §lf)] and (2.63) gives (2.22).
Hence the proof of Theorem 2.5 is completed.

III. Complex immersions, equivariant resolutions, and Quillen metrics

Let i : Y —• X be an embedding of a compact complex manifold, let
η be a holomorphic vector bundle on Y, and let (ξ, υ) be a complex of
holomorphic vector bundles on X, which provides a resolution of /̂  /.
Let G be a compact group acting holomorphically on the objects which
we just introduced. Let λG(ξ) and λG(η) be the equivariant determinants
of the cohomology of ξ and η.
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An obvious extension of [22] shows that λG(ξ) ~ λG{η). Let σ €
λG\η) <8>λG(ξ) be the canonical section inducing this identification. The

purpose of this paper is to calculate the Quillen norm of σ .
In this section we describe in more detail the objects considered above,

and make various simplifying assumptions on the considered metrics on
TX, ξ, TY, η, along the lines of assumption (A) of [5].

This section is organized as follows. Part a contains an introduction of
our basic geometric setting. In part b, we describe the canonical section σ .
In part c, we construct an equivariant Quillen metric on an intermediary
object λG(ξ). Finally, part d gives various assumptions on the metrics on
TX, ξ, TY9 η.

This section extends [15, §1] to an equivariant setting.

a. Complex immersions and resolutions. Let X be a compact connected

complex manifold of complex dimension /. Let Y = \j[ Yj be a finite

union of compact connected submanifolds of X such that Y- Π Y-> = 0

for \<j<j'<d. Let / be the embedding Y -> X. For 1 < j < d, let

/'. be the complex dimension of Y..

Let η be a holomorphic vector bundle on Y. Let

(3-D (^):θ-ίm; ; ^ 0

be a holomorphic chain complex of vector bundles on X. In the sequel,
we identify { with 0 ^ = o £* Let r be a holomorphic restriction map:

^oly-*'/-
We assume that (ζ, υ) provides a resolution of the sheaf iJ0γ{i\), i.e.,

we have the exact sequence of sheaves

(3.2) 0 - 0χ(ξm) 7 d?χ{ξm_x) - , . . . - > <?x(ξQ) -»/.^(i ,) -» 0.

Let NH e End({) be the number operator of ξ, i.e., Nff acts on ξk

by multiplication by k .
Let δχ, δγ be the Cech coboundary operators on X, Y. By definition

the cohomology groups H*(X, ζ.) (0 < / < m), H*(Y, η) are the co-
homology groups of the complexes (^(ί,-) ,(5^), (^yM, δY). Of course

^*(^^) = Θί=1^*(^^ly7.).
Let Λ^ be the operator acting on q cochains by multiplication by q .
We choose sign conventions, so that δxυ+vδx = 0, i.e., (#x(ξ) ,δx+v)

is a complex. We define the Z-grading on 0x{ζ) by Nδ - Nff9 so that
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δχ + υ increases the total degree by 1. Similarly, we define the Z-grading
on &γ(η) by Ns.

We extend r to a map from #x(ξ) into ij9Ύ{r\), with the convention
that it vanishes on ^ ( ί f ) for / > 0, and coincides with the given r for
i = 0.

Tautologically, r is a quasi-isomoφhism of Z-graded complexes, which
induces the canonical identification

(3.3) H*(ffχ(ξ) , δ χ + v ) ~ i / * ( 7 ,

Clearly
dim*

p=0

Let Ny be the operator defining the Z-grading of Λ(Γ* ( 0 ' 1 } ^) .

We can form the Z-graded tensor product Λ(Γ* (0' ι)X)®ξ. We define

the Z-grading on A(T*{0'ι)X)®ξ by the operator iV*<8>l - 1®Λ^, which

we also note N* - NH

Definition 3.1. For 0 < / ? < / , 0 < / < m, let E^ be the vector space

of smooth sections of Ap(T*{Oil)X)^ξi on X. Set

p—i even p-/ odd

Then E is exactly the set of smooth sections of Λ(Γ*(0>1)-Y)®ί on Z . It
is Z-graded by the operator N* - NH . Also E = E+® E_ describes the
corresponding Z2-grading of E.

The Dolbeault operator dx acts as an odd operator on E. Also v
acts on ξ as an odd operator. We extend v to an odd operator acting
on Λ(Γ* (0' ι)X)®ξ , with the convention that if a e Λ(Γ* (0' ι)X), / e ξ ,
then

(3.5) v

Then

(3.6) (9*

i.e., 5 X + v is a chain map on E.
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By [15, Proposition 1.5], there is a canonical identification of Z-graded
vector spaces

H\E, 8X + v) ~ H*φχ(ζ), δX + υ).

Let Ny be the operator defining the Z-grading on Λ ( Γ * ( 0 1 ) y ) . For

1 < j < d, 1 < q < I'j, let Fj be the set of smooth sections of
( O l )

ήf even ^ odd

(3.8) d

7 = 1

The operator Ny defines the Z-grading on Fj and F.

Let dY be the Dolbeault operator acting on F. Then

(3.9) H*(F,dY)^H*(Y,η).

By (3.3), (3.7), (3.9), we find that there is a canonical isomorphism of
Z-graded vector spaces

(3.10) H*{E, dX + υ) - / / * ( F , 5 r ) .

If aeA(T*{0>ι)X)\γ, / €^ | y , s e t

r(α®/) = 0 if/c^O,
( X ί i ) faβrf iffc = 0.

Now we recall a result in [15, Theorem 1.7].

Theorem 3.2. The map r: (E, dx + ι;) —> (JF, 9 y ) ώ α quasi-isomor-
phism of Z-graded complexes, and induces the canonical identification
H*(E, 8X + υ)~H*(Y,η).

b. Resolutions and group actions. Let G be a compact Lie group.
We assume that G acts on X by holomorphic diffeomorphisms, which
preserve Y. Also we assume that the action of G on X and Y lifts to a
holomorphic action on the chain complex {ξ9v) and on η , and that the
restriction map r : ξo\ γ -> η is G-equivariant.
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Then G acts naturally by chain maps on (^(ί,-), δx) (0 < i' < m),

(0x{ξ)9δ
x + υ ) 9 (&γ(η),δY) a n d o n ( E n d x ) 9 (E,dx + v ) , (F,dY).

Also the quasi-isomorphisms r : (&x(ξ),dx + v) -> (&γ{η),δ
γ) and

r: (E, dx + v) —• (F,dY) are G-equivariant. Therefore G acts on

H*(X,ξi) (0 < / < m), / f * ( ^ ( O , ^ + t;) ^ H*(E,ΘX + υ), and

H*(Y, η). Finally the canonical identification

(3.12) //*(£, 5* + v) - //*(F, 5 y )

is an identification of finite dimensional (/-spaces.
For given W e G, if λw , μ^ are complex lines, A = ®We$λw, and

W'then s e t

,=0

(3.13) A"1 =

wed wed

Now use the notation of § 1. Set

(3.14)

Then (3.12) induces the identification

(3.15) λG(ξ)~λG{η).

For 0 < i < m, consider the exact sequences of complexes

(3.16)

0

The objects appearing in (3.16) are Z-graded by the operators Nδ- NH,

and Ny - HH , so that the arrows in (3.16) are morphisms of Z-graded
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complexes. Then by [15, Proposition 1.8], the corresponding exact se-
quences in cohomology are isomorphic. So we write the second one in the
form

-> Hp'"i(Ei, 8X) - H*+\E., 8X + υ) - .

Clearly, G acts on the exact sequences (3.16), (3.17) by chain maps.
From (3.17), we get the canonical isomorphism

1 ' ' ' κx * * " 'det # p φ Ej:, 8 + w , G
p=-m

(3.18)

Ej,θ
Λ+v\ ,G

Using (3.18), we obtain the canonical isomorphism

(3.19) λG(ζ)~λG(ζ),

which together with (3.15) gives

(3.20) λG(ξ)~λG(ξ)^λG(η).

By (2.10), we have

(3.21) λJξ) =

wed

Similarly, we write

(3.22) λG(ξ) = 0 λw(ξ), λG(η) = 0 λw{η).

d wed

By (3.20), for W e G, the lines λ^(η) Θ λw(ξ), λ^{η)®λw(ξ)9

^w (ζ) ®λw{ξ) have canonical nonzero section σw, pw, τw. Clearly

(3.23) σw = pw ® τ
w.
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Set

wed

(3.24) P = Φ pw e λG (γi

Then from (3.21), (3.22), and using an obvious notation we obtain

(3.25) cr = /?<g>τ.

c. A Quillen metric on λG(ξ). Let hτx, hξ = θ™ 0 /^ be G-invariant
smooth Hermitian metrics on TX, £ = 0 * o ί \ and ΛΓ 1\ λ*7 be G-
invariant metrics on TY, η, respectively. By §2a, these metrics induce
equivariant Quillen metrics || | |A (<^)5 || | | λ ( , on λG(ζ.) (0 < i < m),

We now briefly explain how to construct an equivariant Quillen metric
|| || χ ^ on λG(ξ). Let dvχ be the volume element on X associated to

hτx . Let ( , ) A ( Γ (o.i)xφ« be the Hermitian product induced by AΓ X , Λ̂

on Λ(Γ* (0' 1 } X ) ^ . If 5, s e E, set
/ j \ dim X n

(3.26) (s,s) = i^J Jχ(s>s)Alτ*«>>»)&ξdυX'

This Hermitian product is (/-invariant.

Let v* be the adjoint of υ with respect to hξ. Then υ* acts as an
odd operator on A{T*{0'ι)X)®ξ. Let dx* be the formal adjoint of dx

with respect to ( , ) . Set

(3.27) K = {eeE, {dX + v)s = 0, (dX* + v*)s = 0}.

By Hodge theory, we have a canonical identification of Z-graded (/-spaces
H*(E, dx + v) ~ # . Let | |^ ^ be the equivariant metric on λG(ζ)

induced on λG(ζ) = (det(H(E, dx + υ), G))~ι by the restriction of the

L2 metric ( , ) on K.

Let A"1 be the orthogonal space to K in E. Then ( 5 * + v + 5** +

v*)2 acts as an invertible operator on A x . Let P, P x be the orthogonal

projection operators from E on K, A"1.
For g eG, s e C, Re(j) > dim X, set

(3.28) β£(s)(j) = - Tr5te(Λ^ - NH)[{8X +1; + 5** + 1 ; * ) 2 ] " ^ ] .
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The same arguments as in (2.14), (2.15) show that s -> θx(g)(s) extends
to a meromorphic function which is holomorphic at s = 0.

Definition 3.3. For g eG, set

(3.29) log(|| H ^ X s ) = log(| | ^ } ) ( ^ ) - ^ ( * ) ( 0 ) .

Then λG(ξ), λG(ξ), λG(η) are equipped with Quillen metrics. We
equip the inverses or the tensor products of such sums of lines with the
inverses or the tensor products of the corresponding Quillen metrics.

Tautologically, by (3.25), we get

(3.30) IN

The purpose of this paper is to calculate the central functions of g e G
which appear in (3.30).

By Theorem 2.5, once we know how to calculate (3.30) for one choice
of metrics hτx, ^ ° , , Λ{« , hτγ, h\ with hτx, hTY Kahler, we
also get a formula for (3.30) for arbitrary metrics h'τx , h'ζ°, , h'ξm ,
h , A , with h , h Kahler. This is why we are free to impose as
many restrictions as needed on the choice of these metrics.

d. Assumptions on the metric on TX, T Y ,ζ,η. O u r first b a s i c as-
sumption is that the (/-invariant metric hτx is Kahler. Also we assume
that hTY is the metric induced by hτx on TY.

Let ωτx, ωTY be the Kahler forms of {X,hτx)9 (Y,hTY). Then
ωτx, ωτγ are G-invariant (1,1) closed forms, and moreover

π i n TY .* TX

(3.31) ω = i ω .

Let Nγ,χ be the normal bundle to 7 in ί . On 7,we have the exact
sequence of holomorphic vector bundles

(3.32) 0 -* TY -> TX\ Y -> Nγ/χ -> 0.

Then, 7Ύ and 7\Y| y are G-bundles. Therefore Nγ.x is also a G-
bundle.

We identify Nγ/χ with the orthogonal bundle to TY in TX\ γ . Let

hNγ'x be the metric induced by hτxlγ on ΛΓy/jr. Then hNγ'x is G-
invariant.

For y e Y, let Hy(ξ,v) be the homology of the complex (£, υ)y . If
y € Y, w G ΓΛ^ , let duv(y) be the derivative of v at y in the direction
u in any given holomorphic trivialization of (ξ, υ) near y .
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Then using the local uniqueness of resolutions [29, Chapter IV], [17,
Theorem 8], the following results were proved in [5, §lb)].

• Hy(ξ,v) are the fibers of a holomorphic Z-graded vector bundle
H(ξ, v) on Y. The map duv(y) acts on H(ξ, v)y as a chain map, and
this action does not depend on the trivialization of (ξ, v) near y, and
only depends on the image z of U in Nγ,χ . From now on, we will
write dzv(y) instead of duv(y).

• Let π be the projection Nγjχ —• Y. Then over Nγ,χ, we have a
canonical identification of Z-graded chain complexes

(3.33) (π*H(ξ, v), dzυ) ~ {π{AN*Ylχ ® η), V=

Clearly, G acts on both complexes in (3.33) by holomorphic chain
maps. It is then easy to verify that the canonical identification (3.33)
is an identification of G-bundles.

By finite dimensional Hodge theory, we know that for any y eY, there
is a canonical isomorphism of Z-graded vector spaces

(3.34) H{ξ9υ)y~{feξy9υf = O9 v*f = 0}.

The identification (3.34) induces an identification of smooth G-vector
bundles on Y. The vector bundle H(ξ, υ) can then be considered as
a smooth Z-graded G-vector subbundle of ξ. Let A//^'υ) be the induced
metric on H(ξ, v). This metric is G-invariant.

Let hA{N*'χ)<*η be the metric induced by hNγιχ and hη on A{Nγ/χ)®η.
This metric is again (/-invariant.

Definition 3.4. We say that the metrics hξ°, , hl*m verify assump-
tion (A) with respect to hNγ/x , hη if the identification (3.33) also identifies
the metrics.

Proposition 3.5. There exist G-invariant metrics hξ°, , hξm on ξ0,

" " ' %m which verify assumption (A) with respect to hNγ/x, hη.
Proof. By [5, Proposition 1.6], there exist metrics h °, ••• , h m on

ξQ, 9ξm which verify assumption (A) with respect to the (/-invariant

metrics hNγ/x , hη . By averaging h'ζ°, , h'ξm with respect to the Haar

measure on G, we obtain G-invariant metrics hξ°, , h*m which have

the required property, q.e.d.

In the sequel, we assume that hξ°, , hξm verify assumption (A) with

respect to hNγ'x , hη .
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IV. The equivariant norm of the section τ

Here we give an extension of [15, Theorem 2.1].
Theorem 4.1. For any g e G, the following identity holds:

Proof. The proof of (4.1) follows the same lines as that of [15, The-
orem 2.1], except an essentially new argument which is an extension of
the curvature theorem of [11, Theorem 0.1] to the equivariant case for the
metrics || || λ ,ξ), in a trivial situation. For an arbitrary g e G, the same
local index techniques as in §2 show that as in [15], the "curvature" (which
here depends on g) vanishes.

Also one needs an extension of a result in [13, equation (2.23)] in an
equivariant context. However by splitting the considered finite dimen-
sional complex in its irreducible components as in §1, the result of [13,
equation (2.23)] can be used verbatim as in [15, §2].

Details, which are easy to fill, are left to the reader.

V. A contour integral

This section is the obvious extension of [15, §3].
Set

(5.1) Dx = dX + dX\ V = υ+υ*.

For u > 0, T > 0, set

(5.2) BuT = u(DX

Then the operators in (5.1), (5.2) act on the Z-graded vector space E. As
explained in the introduction, Tr5 is our notation for the supertrace.

In the sequel, g e G is fixed once and for all.
Theorem 5.1. Let βu τ be the l-form on R*+ x.R* :

βu,τ = V ^ <

Then βu τ is closed.
Proof Clearly g is an even operator which commutes with the oper-

ators dx , v, dx*, υ*, Ny 9 NH. The proof of Theorem 5.1 is then
formally identical to that of [15, Theorem 3.5].
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FIGURE 1

Take ε, A, T,0<ε<i<A<+oo, 1 < Γo < -foo. Let Γ =

be the oriented contour in R* x R+ indicated on Figure 1.

The contour Γ is made of the four oriented pieces T{,
cated above. For 1 < k < 4, set

(5.4) 7° = f β.
JTk

Theorem 5.2. The following identity holds:

A

Γ4 indi-

(5.5)

Proof. This follows from Theorem 5.1.
Remark 5.3. As in [15], we will prove Theorem 0.1 by making in suc-

cession A —• -hoc , Γo —• +oo , ε —> 0 in (5.5).

VI. A singular equivariant Bott-Chern current

In this section, we construct equivariant Bott-Chern currents associated
to the Hermitian chain complex ((ξ, υ)9 hξ). Namely if g e G, X =
{x e X, gx = x), and Y = Y n X , then we construct a current

Tg(ξ, hξ) on Xg9 which verifies equation (0.8). Our construction uses
results of [5]. Thus we extend [14] to the equivariant setting.

This section is organized as follows. Part a contains various short exact
sequences of holomorphic Hermitian vector bundles naturally associated
to the equivariant immersion problem. In part b, by the superconnection
formalism of Quillen [26], we construct equivariant Chern character su-
perconnection forms on X . In part c we use the results of [5] to establish



88 JEAN-MICHEL BISMUT

convergence results for these currents as a parameter u tends to +00. Fi-
nally in part d, by extending [14], we construct the Bott-Chern current
Tg(ζ,hξ).

This section is the obvious extension of [15, §4] to the equivariant con-
text.

a. Equivariant short exact sequences. Take g e G and set

(6 \) X = ίx G X QX = x\ Y = ίv G Y 2V = v\

Then Λf and y are compact complex manifolds and
5 o

(0.2) ϊg = I Π Λg.

Also since ^ is an isometry,

TXg = {UeTX\Xg, gU = U},

TYσ = {U eTY\γ , ^t/ = U],
8 *g

and so

(6.4) TY =TY\γ ΠTX \ γ .
8 Jg s Λg

In particular TX\ γ +TY\Y is a subbundle of TX\ γ . Let N be the

excess normal bundle

TX\γ
(6.5) ΛΓ =

We have the exact sequence of holomorphic Hermitian vector bundles
onYg

(6.6) E : 0 - TY\ γ ^TX\γ -> Nγ/χ\ γ -> 0.

Of course # acts on £* as a holomorphic parallel isometry.
Let E° be the subcomplex of E associated to the eigenvalue 1 of g,

and let EOy± be the direct sum of the subcomplexes of E associated to
eigenvalues of g distinct of 1. Then E splits holomorphically as

(6.7) E — E φE .

Let Nγ ,χ be the normal bundle to Y m X . Then E°, . E 0 ^ are

given by

(6.8) ft , β fi Yg

Ny I V ^ Ny ,y\y " > i V " + 0 .
£ ' gl g
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TX\

As explained before, the metric h γg induces metrics on all the vector
bundles appearing in (6.8). In particular, we see that X and Y intersect
orthogonally along Y , i.e., Nγ ίγ and TX\ γ are orthogonal in TX\ γ .

* gi S g g

Also we have the exact sequence
(6.9) F : 0 -> Nγ /χ θ Nγ /γ -> Nγ /χ -> N -> 0.

Again g acts on F. Using the same conventions as in (6.8), we get

F°:0-+Nγ/x ^Nγ/χ ^ 0 ^ 0 ,
(6.10) Q ί ± β

and also

(6.11) F = F°θFOt±.

Observe that

(6.12) E*-L=F° ±.

Over X , g acts on (ζ,υ)\X as a holomorphic unitary chain map.
I I

Let eιθχ, , eιθ«' (0 < θ1. < 2π) be the distinct locally constant eigen-
values of g. Then (ξ,υ)\χ splits holomorphically and metrically as a

Θ'
direct sum of complexes (ξ j, υ) on which # acts by multiplication by

b. The equivariant Chern character superconnection forms.
Definition 6.1. Let c h ^ , hξ), ch^({, hξ) be the closed differential

forms on Xg , i.e.,

(6-13)

Set

(6.14)
/odd

Then ξ = ξ+ θ ί_ is a Z2-graded vector bundle.

Let V< = φ ^ : 0 V ( ' / be the holomorphic Hermitian connection on {ξ,h?)

= θ?=o^' hξi) - Clearly F = υ + v* is a selfadjoint section of Endo d d(£).
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For u > 0, set

(6.15) Cu = V* + y/uV.

Then Cu is a (/-invariant superconnection [26] on the Z2-graded vector
bundle ξ. Since Cu is G-invariant, over X we have

(6.16) [Cu,g] = 0.

By definition [26], C 2 is the curvature of Cu. It is a smooth section of

{A(T^X)®End{ξ))™n . Let Φ be the map: a e A(T^Xg) -> (2/π)~ d e g α / 2 α

g

By the same arguments as in [26], the forms ΦTrJgexp(-C 2 )] over Λf

are closed, and their cohomology class does not depend on u. For u = 0,

the forms ΦTr 5[gexp(-C 2)] are standard equivariant Chern character

forms. As in [11, Theorem 1.9], we find that the forms ΦTrs[g exp(-C^)]

and ΦTr 5 [Λ^exp(-C w

2 )] lie in P**.
Theorem 6.2. For u>0, the following equality of forms holds on Xp :

(6.17) ^ 2 ^ 2

Proof. By (6.16), the proof of (6.17) is the same as that of [ 11, Theorem
1.15].

c. Convergence of equivariant superconnection forms. Let C (X ) be
the vector space of forms on X , which are continuous with continuous

first derivatives, and let || || cι,χ . be a natural norm on Cι(Xg). Here we

use the notation of Definition 2.4.

Theorem 6.3. There exists a constant C > 0 such that for any μ e

C\Xg), u>\,

)g
(6.18)

ί μΦττs[NHgeχp(-C2

u)]+ ί

<£
Proof The proof of this result is essentially identical to that of [5,

Theorems 5.1 and 5.4]. The only difference is that exp(-C2) is replaced



EQUIVARIANT IMMERSIONS AND QUILLEN METRICS 91

by g exp(-C^), but this does not introduce any difference in the analysis.

In effect, let vH{ξtV) = ®™=0V
H'{ξiV) be the holomorphic Hermitian

connection on (H(ξ, υ), hH{ζ'υ)) = Θ J I Q ^ K , υ), hH'ίξ'υ)). As we saw
in §3d, if z e Nγ/χ, then dzv acts on H(ξ, v). Let d*v be the adjoint
of dzv . If Z = z + z e Λ ŷ/ΛΓ R , set

(6.19) d z F = d z ? ; + d y .

By (3.33), there is C > 0 such that if / e H(ξ, υ), then

(6.20) \9zVf\2>C\Z\2

Nγ/χR\f\2.

Of course (3.33) gives an explicit description of H(ξ, υ), dzυ = \/-T/z ,

and by assumption (A), dzυ* = ->/-T/*.
Let 5 be the superconnection on π*H(ξ, υ), i.e.,

(6.21) 5 = π * V ^ ' v ) + a z F .

Recall that Nγ ,χ is a subbundle of Nγ,χ\ χ . Then by [5, Theorems 5.1

and 5.4], there exists C > 0 such that for μ e Cι(Xg), u > 1,

*»
-C,;)]- f μί ΦΊτs

JY. JNY ,r

[gcxp(-B2)]

(6.22)

^ e x p ( - C ^ ) ] - ί // ί ΦTrs[Λ^^exp(-52)]

C
-

Let VA^Nγ*/x8), VΛ(iv } be the holomorphic Hermitian connections on

A(Nγ ,χ ), A(N*). We still denote by NH the number operators of

Λ(Λ *̂ l γ ) , Λ(7V*). If Z = z + z G Nγ ι x R , z eiVy lx , set

(6.23) F'(Z) = v^T(/ z - i*z).

Let π ; be the projection NY /Y —• YQ . Let 5 ' be the superconnection

on π'*A(Ny ,χ ) , i.e.,

(6.24) B' = π ' * V Λ ( A W + K'(Z).
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Then using assumption (A), which guarantees that the canonical identifi-
cation (3.33) identifies the metrics, and also (6.8), we get
(6.25)

'

ΦΎr[gexp(-Bz)}

Λ ( Λ θ ) 2 ]= ΦΎrs[gexp(-Vxy" ')Δ] J ΦTr,[^expί-^lch^i/, hη),

ί Φττs[NHgexp(-B2))

f
x f ΦTrί[ΛΓ//exp(-5/2)]l ch^i/, h").

We have the trivial equalities:

(6.26) ΦTr,[ΛΓ i,?exp(-(VΛ(ί' ))2)]

~db
ΘJΪO ^ e ^

b=0

and also

(6.27)
/ ,

^Nv

2/π

b=0

by [25, Theorem 4.5], [5, Theorem 3.2]. From (6.22)-(6.27), we thus
arrive at (6.18).

Remark 6.4. As in [5, Theorem 3.2], one can also show that the con-
vergence in (6.18) takes place microlocally, and obtain corresponding es-
timates for corresponding microlocal semi-norms.
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d. Equivariant Bott-Chern currents. Now we imitate [14]. Let δγ be

the current of integration of Y .

Definition 6.5. For s e C, 0 < Rφ) < 1/2, let R (ξ, hξ)(s) be the
current on X :

1 Γ+°° 1

(6.28) = ϊ> u

η, hη)δYg] du.

By Theorem 6.3, the current Rg(ξ, hζ)(s) is well defined.

Definition 6.6. Let T(ξ,hξ) be the current on X , i.e.,
σ O

(6.29) Tg(ζ,hζ) = j-sRg(ζ,

One finds easily that Tg(ξ, hξ) is given by the formula

Tg(ξ, hξ) = f ΦTrs[NHg(exp(-C2

u) - exp(-C0

2))] —

(6.30) Λ V sl H yκ " ;J

η, hη)δYg) ^

Theorem 6.7. The current Tg(ξ, hξ) is a sum of currents of type (p, p).

Also

(6.31) ^Tg(ζ, hξ) = Td-l(Nγ/χ,h
N^)chg(η, hη)δYg-chg(ξ, hξ).

Proof It is clear that Tg(ξ, hξ) is a sum of currents of type (p, p).

Equation (6.31) follows from Theorems 6.2 and 6.3.

Remark 6.8. As in [14], one can show that the wave front set

{, A{)) of Tg(ζ,hξ) is included in N*YJX^.

VII. The analytic torsion forms of an equivariant short exact sequence

In this section, we describe the construction in [7] of analytic torsion
forms associated to a short exact sequence 0—> L —> M -> N —> 0 of
holomorphic Hermitian vector bundles equipped with a parallel isometry
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g. The construction of [7] extends the construction of [6] to an equivariant
situation. Also we describe the main result of [7], which is the evaluation of
these analytic torsion forms in terms of Bott-Chern classes and an additive
genus D(θ, x).

This section is organized as follows. In part a, we recall various results
on Clifford algebras. Part b gives a formula for the curvature 3B* of
the superconnection 3§u considered in [6], [7]. In part c, we construct
the generalized supertrace of £exp(-^ M

2 ) , which is a smooth differential
form on the considered manifold. In part d, we recall the results of [7] on
the asymptotics of these forms as u —• 0 and u —> +oo. Part e reviews
the construction given in [7] of analytic torsion forms. In part f, following
[7] we evaluate these forms in terms of Bott-Chern classes and the genus
D(θ, x). Finally part g contains a formula for D(θ, x) as a power series
in x, introduces the genus R(θ, x) already given in (0.10), and reviews
formulas of [7] for R(0, x).

This section is self-contained. It is the extension of [15, §5] to the
equivariant setting. In the sequel, its results will be applied to the exact
sequence 0 -> TYg -> TX\ γ -> Nγjχ\ γ - > 0 o n Yg.

a. Clifford algebras and complex vector spaces. Let V be a complex
Hermitian vector space of complex dimension k . Let V be the conjugate
vector space. If z e V, then z represents Z = z + z € VR, so that
|Z|2 = 2|z|2 . Let / € End(FR) be the complex structure of VR.

Let c(VR) be the Clifford algebra of VR, i.e., the algebra generated by 1,
U e VR, and the commutation relations UU' + U*U =-2{U, Uf). Then
Λ(F*)_and Λ(F*) and Clifford modules. Namely if X e V, X' e V, let
X* e V , X1* e V* correspond to X, Xf by the Hermitian product of
V. Set

c(X) = VΪX*Λ, c{X') = -V2iχ/,

c(X) = Vϊiχ, c(X') = -\Πx'* Λ .

Note that our conventions in (7.1) for c from the conventions in [15, §5a)]
(where our c{U) is c(JU) in [15]) and fit with the conventions in [7].

If U, Uf e F R ® R C , t h e n

c(U)c(U') + c{U')c{U) = -2(C/, U),

{U)(U') (U')(U) 2(U, U').

Also c(U), c{U) act as odd operators on A(F*)®A(K*). If U, ϋ' e
VR <s>R C, then
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(7.3) c{U)c{U') + c(U')c{U) = 0.

b. A formula for 38^ . Let B be a compact complex manifold. Let

(7.4) E:0^L^M-+N^0

be a short exact sequence of holomorphic vector bundles on B. Let
I, m, n be the dimensions of L, M, N respectively. We identify L with
a subbundle of M, and N with MjL. Let π be the projection M —• B.

Let ΛM be a Hermitian metric on M. Let ΛL be the induced metric on
L. By identifying TV to the orthogonal bundle to L in M, N inherits a
Hermitian metric hN . Let PL, PN be the orthogonal projection operators

from M on L, N. Let V L , V M
be the holomorphic Hermitian, , , p

connections on L, M, N, and let RL, i ? M , i?^ be their curvatures.
Then classically,

(7.5) V* =

Let °VΛ/ be the connection on M, i.e.,

(7.6) ° v " = VL Θ V*.

Set

(7.7) A = VM-\M.

Then A is 1-form on B with values in skew-adjoint endomorphisms of
M, which exchange L and N .

Let e
χ,

be an orthonormal base of N
R.

Definition 7.1. Let S e Endeven(Λ(7V*) ® Λ(ΛΓ*)) be given by

(7.8)

Let fχ,
basis of R

Definition 7.2. If Z e Λ/R, set

be a basis of TRB, and let / , , f2k be the dual

(7.9)
2fc

= - Σ fj Λ c(A(fj)PLZ).

Definition 7.3. If y e 5 , then /y (resp. /y) denotes the vector space

of smooth section of (A(M*)<8>A(N*))y (resp. (A(N*)®(N*))y), over the

fibre MR .
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Let RM"Ί be the obvious action of RN of A(N*). Then RMN"> acts

on A(M*)®A(N*) like l < | / l A ( Λ r ) .
Let ex, • • , e2m be an orthonormal basis of Λ/R.

Definition 7.4. For u > 0, let ^ u

2 e (Λ(Γgβ)®End(/))e v e n be given
by

V-Λ-, , 1,DMV Λ , u|P Z|
u ~~ 2

(7.10)

c. Generalized supertraces. Let rf^^, dυN be the volume forms on the

fibers MR, ΛfR. The smooth kernels on the fibers of MR will be calculated

with respect to the volume form dvM/(2π)άιmM .

For y e B, u > 0, let β£(Z, Z') ( Z , Z ' € MRy) be the smooth

kernel associated to exp ( -^ w
2 y ) . For the existence and uniqueness of

Qy
u{Z, Z1), we refer to [6, §4 a)]. Then

Qy
u(Z,Zf) e

By [7, Theorem 1.6], for u > 0, there exist C > 0, C' > 0, C" > 0
such that for y e B, Z , Z1 e MR y , then

£ Z ' ) | < Cexp ί- |

(7.11) V

Let g be a smooth section of End(M), which preserves L. Then g
acts naturally on L and TV.

We assume that g is an isometry of M, which is parallel with respect
to VM . Then g also acts as an isometry of L, iV, which is parallel with
respect to VL, V^. So g acts on the complex E.

Let eιθχ, , ez<9« (0 < θ. < 2π) be the locally constant distinct eigen-
values of g acting on L, M, N. Then £ splits holomorphically as an
orthogonal sum of complexes

(7.12) Eθj : 0 -> iΛ -> M*> -> JVβ> -> 0,

and ^ acts on ϋΛ by multiplication by eιθj. Moreover M^ inherits a

metric A^ y from the metric hM on M.
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Set

(7.13) E°'± =

Then E splits holomorphically and metrically as

(7.14) E = E°ΘE°'±.

Take y e Y. If s e Iy , let gs e Iy be given by

(7.15)

Then gexp(-^M

2) acts on Λ(Γ^B)<§>/, and the corresponding kernel is

given by gPu(g~ιZ, Z ' ) .

Clearly g acts on Λ(L ' *)(g)Λ(]V*)(g)Λ(Λ *̂) and so on

Λ(7£jϊ) ^ ( L 0 ' " 1 ' * ) ^ ^ * ) ^ ^ * ) . Also β ω ( Z , Z') acts on the same

bundle (it acts trivially on Λ(L ' '*)) . Therefore

gQu{g-ιZ,Z) e (Λ(7^5)^End(Λ(I°'J-'*)0Λ(F*)0Λ(7V*)))even.

Let ^ [ ^ ^ ^ ( g " ^ , Z')] G Λ(Γ^5) denote the corresponding supertrace.
By [7, equation (2.10)], which itself follows from (7.11), we find that

given u > 0, there exist C > 0, C' > 0 such that for y € B, Z €

(7.16) ^

Let Λfjy be the number operator of A(N*). Then Λ^ acts like l(δ)Λ^

on A(T$B)®A(I?9±'*)®A(N*)®A(N*).
In view of (7.16) and following [7, Definition 2.1], we now set the

following definition.
Definition 7.5. For u > 0, set

(7.17)

_ 1

The objects constructed in (7.17) are smooth forms on
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d. Convergence of generalized supertraces. If u e R+ —• ωu is a family
of smooth forms on B, we write that as u —• 0,

(7.18) ωM = ω 0 + ^(w)

if for any k e N, there is CΛ > 0 such that the norm of ωu - ωQ in

Ck(B) is dominated by Cku.

We define PB, PB'° as in Definition 2.3, by simply replacing X by

Now we recall a result of [7].

Theorem 7.6. For w > 0, the form ΦTr 5[^exp(-5^)] is closed, lies

in PB, and its cohomology class does not depend on u > 0. The forms

ΦTvs[NHgexp(-Bu)] also lie in P . Moreover

(7.19) A

as u -> 0,

(7 20)

as u -» +oo,

' ) ' ( ^ , hN)Ίάg(M,

(7-21) . j : _ Λ r . .
d p ( L , Λ Z - ) + ^ ( - = .

Proof The results stated in our theorem are proved in [7, Theorems
2.5, 3.2, and 5.3].

e. Generalized analytic torsion forms. Now we reproduce the construc-
tion given in [7, §6] of analytic torsion forms.

Remark 7.7. By using the techniques of §13 and proceeding as in [15,
§14], one can give a new proof of (7.21).

Definition 7.8. For 5 E C , 0 < Re(s) < \, let A(s) be the form on
B:

Λ(ί) = m

(7.22) j ^
dimiV , L , ,

2~Td^(L,Λ )}ί/«.

By (7.20), (7.21), one verifies that 5 —> Λ(s) extends to a function which
is holomorphic near 5 = 0.
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Definition 7.9. Set

(7.23) Bg{L9H9h
M) = ϊjj(0).

By [7, equation (6.3)], we have

B g ( L 9 M , h M ) = ί \ ^
Jo

+ Γ°° \φΎτs[NHgtxp(-B2

u)]
(7 24")

d i r n i V . . . .
τ d ^ L

+ Γ/(l)|τd^(M,AM)(Td;1)/(iV,A ;V)

The following result is proved in [7, Theorem 6.3].
Theorem 7.10. The form Bg(L9 M, A3*) /i« /π P 5 . Moreover,

5 9 Λ/ L Td JM,hM)
(7.25) MBf(t,v.*-). Mf(L.*')-^f-ϊ^.

f. Evaluation of the generalized analytic torsion forms. For u e C,
?7 E C, x e C, set
(7.26)

. . , (x-2η + Vx +4u \ . .ί-x + 2η
= 4 sinh — sinh -

In the sequel, θ e R, and x e C are such that \x\ < 2π if θ € 2πZ,
and |JC| < inffc€Z|(9 + 2kπ\ ii θ £ 2πZ. Then by [7, equation (6.6)], as
κ-> -hoo

(7.27) ^ X ( ^ , i θ , x ) = #

Definition 7.11. For s e C, 0 < Re(j) < \ , set

(7.28) C ( J , θ, JC) = = ^ r ί u~l °' X{u, iθ, -JC) rfw.

Then s -+ C(s, θ, x) extends to a holomorphic function near s = 0.
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Definition 7.12. For θ e R, x e C, \x\ < 2π if θ e 2πZ, and
|JC| < i n f ^ \θ + 2kπ\ if θ <£ 2πZ, put

(7.29) D(θ, x) = 0C(0, 0, x)/ds.

Then Z)(0, x) is a periodic function of θ with period 2π . Also D(θ, x)
is holomorphic in x on its domain of definitions.

For θ e R, we identify D(θ, x) with the corresponding additive genus.
Set

(7.30) D(θj , N°>, A**') = Tr[Z)(0., -I?" ' 7 /2/π)].

Then Z)(θ ;, N°J, A ^ ) lies in P^ and is closed.
Now we follow [7, Definition 6.7].
Definition 7.13. Set

(7.31) Dg(N, hN) = θ

The class of Td^(L, hL)Dg(N, hN) in pB/pB>° does not depend on

the metric hL = φhLJ , hN = (&hN J . We denote this class by

g ^
Let Td^(L, Af, hM) be the Bott-Chern class in pB/pB>° constructed

in [11, Theorem 1.29], such that

(7.32) ^^g(L, M, hM) = Tdg(M, hM)-Tdg(L, hL)Tdg(N, hN).

The following result is proved in [7, Theorem 6.8].
Theorem 7.14. The following equality holds:

Bg(L, M,hM) = - T d j V , hN)Ίάg{L, M, hM)

+ Tdg(L)Dg(N) inPB/PB'°.

g. Evaluation of the function D(θ, x).

Definition 7.15. F o r y e R , s e C , Re(s) > 1, set

(7.34) ζ{y,s) = Σ „* > Ί(y>s) = Σ „/
n=\ n=\

Then for a fixed y € R, both functions in (7.34) extend to a holomorphic
function of s for Re(s) < 1.

We now recall a result of [7, Theorem 7.2].
Theorem 7.16. For θ e R, c e C , \x\ < 2π if θ e 2πZ, and \x\ <

infA;€Z |0 + 2kπ\ if θ £ 2πZ, £>(0, x) w g/v̂ /ι by the convergent power
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series

(7.35)

n odd

Recall that the Hirzebruch polynomial A(x) is given by

( 7 3 6 ) **> = 5^2)'
Set

i i f0e2πZ,α(x,0)

= .4(x + iθ)/(x + iθ)

Definition 7.17. For θ e R, x e C, |x| < 2π if θ e 2πZ, and
|x| < inf^.^ \θ + 2kπ\ if ^ g 2πZ, set

(7.38) Λ ( 0 , J C ) = 0 ( 0 , * ) -
α

Again R(θ, x) is a periodic function of 0 with period 2π .
The following result was established in [7, Theorem 7.7],
Theorem 7.18. For θ e R, J C G C , |JC| < 2π if θ e 2πZ, and \x\ <

x) = Σ »• ( έ 7
(7 39) ""e^en

n odd

Now we recall the definition of the function R(x) by Gillet and Soule
[20]. Let ζ(s) = Σ^*i l/^5 be the Riemann zeta function.

Definition 7.19. F o r x e C , |JC| < 2π, set

(7.40) R(x) = Σ ( έ jf (-») + ̂ ( - « ) ) F
« odd

Clearly

(7.41) R(0,x) = R(x).
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Definition 7.20. For x e C, |JC| < 2π, set

(7.42) p(χ)= Σ 2 ^ - n ^ '
n>\

n odd

Finally, we recall results in [7, Theorems 7.8 and 7.11].
Theorem7.21. If θ e]-2π, 2π[\{0}, if x e C, |JC| <infkeZ\θ+2kπ\,

then

(7.43)
2r(t)-log(02)-log(l-/x/e)

x + iθ
Also for θeR,

( 7 4 4 )

VIII. A formula for

This section extends [15, §6] to the equivariant situation. Namely, we

give a formula for log(||/>||^-i( ^ (ξθ(s) 9 which combined with Theorem

4.1 implies Theorem 0.1. This formula is the main result of the paper.

To establish our main result, we proceed as in [15]. Namely we start

from the identity Yfk=ι /£ = 0 of Theorem 5.2. Then we state seven

intermediate results, the proofs of six of which are delayed to the next

sections. These results have a strong formal resemblance with the corre-

sponding results in [15]. We can thus formally import from [15] most of

the discussion on the asymptotics of the /Q's as A —• -hoc, TQ -+ + oo,

ε —• 0. This leads us very quickly to the proof of our main result.

This section is organized as follows. In part a, we state our main re-

sult. In part b, we introduce a rescaled metric on E. In part c, we state

our seven intermediate results. In part d, following [15, §6 d], we dis-

cuss very briefly the asymptotics of the /Q's. Part e gives a local formula

for log(| |^ | |^. ( l f ) β J β K ))(y) in terms of Tg{ξ, hξ) and Bg(TY\ Yg, TX\ Yg,

g gτx\
h γg). In part f, using the results of [7] which were recalled in §7, we
establish our main result.
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a. The main theorem. We now state the main result of this paper, whose
proof occupies §§8-13. It extends [15, Theorem 6.1].

Theorem 8.1. For g e G, the following equality holds:

χ

(8.1) +fγ τd-\Nγ/χ,h
N

- ί τdg(TX)Rg(Nγ/χ)chg(η)

(8.1') +Jγ

Ίd~g

l(NY/x> hN^)fdg(TY\Yg, TX\Yg, hTXl*g)chg(η, hη)

-1 Ίdg(TX)Rg(TX)chg(ξ) + J Ίdg(TY)Rg(TY)chg(η).

Proof. The remainder of the paper is devoted to the proof of Theorem
8.1.

b. A rescaled metric on E.

Definition 8.2. For T > 0, we denote by ( , ) τ the Hermitian prod-

uct on E associated with the metrics hτx, hξ°, hξι/T2, , hξm/T2m on

TX, ξ0, , ξm respectively. Set

(8.2) Kτ = {seE; (dX + v)s = 0\ {dX* + T2v*)s = 0}.

Let Pτ be the orthogonal projection operator from E on Kτ with
respect to the Hermitian product ( , ) τ .

In (3.27), we saw that for any T > 0, there is a canonical isomorphism
of Z-graded G-spaces,

(8.3) KT^H*(E,8X + v).

Let I | j ({) 7- be the equivariant metric on λG(ζ) inherited from the Her-

mitian product ( , ) τ restricted to Kτ. Clearly, with the notation of §3b,

we have

For T > 0, set

(8.4) Kτ = {seE;



104 JEAN-MICHEL BISMUT

Let Pτ be the orthogonal projection operator from E on Kτ with respect
to the Hermitian product ( , > = ( , )x on E. Then we have the simple
formula of [15, equation (6.5)]

(8.5) T~N"{dX + v + 8χm + T2v*)TN» = DX + TV.

From (8.5), we deduce that

(8.6) Pτ = T~N"PTT
NH.

The map s e Kτ -> T~N"s e Kτ is an isomorphism of Z-graded G-

spaces. We thus find that as a Z-graded (/-space, Kτ is also isomorphic

to H*(E, dx + v ) .

Set

(8.7) z/ = 5 y + 5 r .

For 1 < y < d, let D1^ be the restriction of Dγ to Y..

Let Q be the orthogonal projection operator from F on K1 — ker(Z>y)
with respect to the given Hermitian product on F .

c. Seven intermediate results. Recall that ωτx, ωTY are the Kahler
forms of X, Y. Since these forms are closed, they can be paired with
characteristic classes of vector bundles on Xg, Y respectively.

For 0 < i < m , 1 < < d, g e G, set

(8-8) *,«,) = T r f ^ ' % ] , Z ί ( , | r ; = T r ^ " ^ [ Λ

Then by the Lefschetz fixed point formula of Atiyah-Bott [1],

Xg{ξi)= f Tdg(TX)ch^),

(8.9) *'

χg(η\γ.)=l Tdg(TY)chg(η\γ_).
j , g

In the sequel, we will often use the notation

f dimYΎdg(TY)chg(η) = ΣdimYj f Ύάg(TYj)chg(η\ γ ),

(8.10) Yg j = ι Yjg

dimNγ/χ(η) = ̂ 2άimNYj/χχg(η\ γ).

In the sequel, g e G is fixed once and for all.
We now state in Theorems 8.3 to 8.9 seven intermediate results which

play an essential role in the proof of Theorem 8.1. The proofs of Theorems
8.4-8.9 are deferred to §§9-13.
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Theorem 8.3. As M - > 0 ,

V-NH)gexp(-u(Dx + V)2)}

[timXΊάg{TX)chg{ξ)

- Ίd'ίTX) c\{ξ) - Ύd(TX) ch'Aξ)]

(8.11)

ττs[NYgexp(-uDY'2)]
TY

+ f [dimyT<y7Ύ)-Td;(7Ύ)]ch,(ι/)

Proof. First we prove the second equality in (8.11). For / > 0, set
yTY _ }TYμ ^ e t ^TY ̂  ^TY ̂ e t ^ e s t a r 0 p e r a t 0 Γ S associated to the

metrics hTY , h]Y . Clearly, when acting on Λ(Γ*(0' {)Y) <S> η ,

(8.12) JY = t

and so

(8.13)
l-dimY

dt t

B y ( 2 . 3 8 ) , ( 2 . 3 9 ) , ( 2 . 4 4 ) , ( 2 . 6 3 ) , w e s e e t h a t a s M ^ O

TY
Tτs[(Nv-dimY)gexp(-uDY'2)] = X-j^

(8.14)

-j τdg(TY)chg(η)+d?(u).

Also using the McKean-Singer formula [24] and the Lefschetz formula of
Atiyah-Bott [1], we get

(8.15) Ύτs[gexp(-uDY'2)]=ί Tdg(TY)chg(η),

which together with (8.14) gives the second identity in (8.11).
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The proof of the first equality follows from the same line. It is left to
the reader.

Theorem 8.4. For any α0 > 0, there exists C > 0 such that for a > a0,
T> 1

|TrJΛ^exp(-c*(z/ + TV)2)} - λ-άimNγlχχg{η)\ < C/VT,

(8.16) I Trs[(NΪ - NH)gexp(-a(DX + TV)2)]

-Ύτs[Nygcxp(-aDY2)]\ < C/Vf.

Theorem 8.5. There exist c> 0, C > 0 such that for a > 1, T > 1,

(8 17) l T r J ( Λ Γ ? - ^ ) ^ e χ P ( - « ( ^ + : Γ F)2)]
- Tτs[(Ny - NH)gPτ]\ < exp(-Cα).

Theorem 8.6. There exist C > 0, γ e]0, 1], such that for u e]0, 1],

0 < T < \/u,

\Ίτs[NHgexp(-(uD

- ί
Xg

2x ΦTτs[NHgexp(-C2

τ2)]\ < C(u(\

Moreover, there exists a constant C' > 0 5wcΛ that for u e]0, 1], 0 < T <
1,

(8.19) \Ύτs[NHgcxp(-(uDχ^TV)2)]-Ύrs[NHgtxv(-(uDX)2)]\ < C'τ.

Consider the exact sequence of holomorphic Hermitian vector bundles
on Yg

(8.20) E : 0 -> TY\ Y -+ TX\ Y -> iVy/y| y ^ 0.

Clearly g e G acts as a parallel isometry on E. In the sequel, we use the
notation of §7 applied to this exact sequence. In particular for u > 0, we
will consider the operator 3S2 of Definition 7.4.

Theorem 8.7. For any T > 0, the following equality holds:

= ί ΦΎτs[NHgexp(-^22)]chg(η,hη).
Jγ

g

Theorem 8.8. There exist C > 0, δ e]0, 1] 5«c/ί that for « e]0, 1],
T> I,

(8.22) Trs
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Theorem 8.9. As T -• +00,

logί [I 1 (g) = dimNγ/χχg(η)log(T)
(8.23)

Remark 8.10. As in [15, Remark 6.10], one immediately verifies that
Theorems 8.4-8.8 are compatible with each other.

Besides, at a formal level, Theorems 8.3-8.9 can be obtained from [15,
Theorems 6.3-6.9] by introducing the operator g in the right place. This
will permit us to transfer formally the discussion in [15, §6] to our situa-
tion.

d. The asymptotics of the I® βs. We start from the equality in (5.5):

(8.24)
k=\

Because of the formal analogies with [15, §6] which were indicated before,
the discussion of the asymptotics of the /£'s as A —• +00, To —• +00,
ε —> 0 can be formally transferred from [15, §§6d and 6e]. Of course,
we use here the more general Theorems 8.3-8.9, instead of [15, Theorems
6.3-6.9].

Consider the forms on Y
o

A ( ΛΓ ίi ΎIX \
Sx l * ' v/ y j " /

7 ( -R^rix \ A ( -RNri*

= A —τ=— Π - —T-— + ιθi

( 8 ' 2 5 ) AΊN hN*>*)
d

db -Ί=^**]πί'-J
2i* I IX, e l ϊiπ

b=o

Let A (Nγ,χ), A1 (Nγ,χ) be the corresponding classes in Pγs/PYg'°.

Then

Td' N AL9 1
(8.26) ΨA~(NY/X, h YfX) = -*r(Nγ/χ) + ^dimTVy,^.

^ ^^
Ultimately, by proceeding as indicated, we obtain an extension of [15,

Theorem 6.16].
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Theorem 8.11. The following equality holds:

>hξ)

(8.27) fγ

I Ύdg(TY)^-(Nγ/χ)chg(η).) ^

2
e. A formula for log(\\pλ->{mXo{ζ)){g).

Theorem 8.12. For g e G, the following equality holds:

(8.28)

= - j Ύdg(TX,hTX)Tg(ξ,hξ)

Ίd-\Nγlχ,h
N*ι*)Ίdg{TY\Yg,TX\Yg,h

m*s)chg{η,hη)

- f Tdg(TY) (Dg-f(l)ψ) (Nγ/χ)chg(η).
Jγ

g \ AgJ

Proof. Since chg(η, hη) e PXg is closed, Theorem 8.12 follows from
Theorems 7.14 and 8.11.

f. Proof of Theorem 8.1. Equality (8.1) follows from (7.38) and Theo-

rem 8.12. Let / : Yg —> X be the obvious embedding. Then we have the

equalities in H*(Yg):

( 8 2 9 )
R

g(
Nγ,χ) = i\Rg{TX) - Rg(TY).

Using (6.31) and (8.29), we get

ί τdg(TY)Rg(Nγ/χ)chg(η)= ί τdg(TX)Rg(TX)chg(ζ)

(8.30) J r JX<

-J^τdg(TY)Rg(TY)chg(η).
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Then equality (8.1') follows from (8.1) and (8.30).
Hence the proof of Theorem 8.1 is completed.

IX. Proofs of Theorems 8.4 and 8.5

In this section, we give a proof of Theorems 8.4 and 8.5. This proof
relies essentially on the results of [15, §§8 and 9], where the corresponding
results were established when G is trivial.

Let L be a smooth G-invariant section of End(A{T*{0'ι)X)®ξ)eyen.

The section Lθ of End{A(T*{0'ι)Y)®η) was defined in [15, §8b]. Again,

L is (/-invariant.

First, we state the obvious analogues of [15, Theorems 8.2 and 8.3].
Theorem 9.1. For any a0 > 0, there is C > 0 such that for a > a0,

T> 1,

(9.1) \Tr[Lgexp(-a(DX + TV)2)]-Tr[Lθgexp(-aDY'2)]\<C/Vτ.

Theorem 9.2. There exist c> 0, C > 0 such that for a > 1, T > 1,

(9.2) \Tτ[Lgexp(-a(DX + TV)2)]-Ύv[LgPτ]\ < cexp(-Cα).

Remark 9.3. As in [15], Theorems 8.4 and 8.5 follow easily from The-
orems 9.1 and 9.2.

The proof of Theorems 9.1 and 9.2 is essentially the same as that of
[15, Theorems 8.2 and 8.3] given in [15, §§8 and 9].

Let V

Λ ( r ( 0 1 ) ^ be the connection induced by Vτx on K(T*{*Λ)X).
The first fundamental observation is that all the constructions of [15, §8]
are G-equivariant. In fact these constructions involve the following:

1. In [15, §8e], an identification of a neighborhood of Y in X with a
neighborhood of Y in Nγ ,χ R where Y is considered as the zero section
of Nγ,χ , by using geodesic coordinates normal to Y. Now since g e G
is an isometry which preserves Y, g preserves the geodesies which are
normal to Y. Of course under this identification, g acts linearly in the
fibers of Nγ,χ R .

2. In [15, §8f], an orthogonal splitting of Z-graded vector bundles ξ =
ξ+ φξ~ of ξ near Y, already considered in [5, §1]. In effect for y e Y,
let μ(y) be the smallest nonzero eigenvalue of V2(y). Since k e r F 2 | r

is a smooth vector bundle, μ has a positive lower bound 2b on Y. If
d (JC , Y) is small enough, b is not an eigenvalue of V (x). Then ξχ

(resp. ζ*) is the direct sum of the eigenspaces of V2(x) associated to the
eigenvalues which are smaller (resp. larger) than b. Since G acts on ξ as
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an isometry which preserves V , G also acts on ξ and ξ~ . Let V

be the connection on ξ± , which is the orthogonal projection of V on

ζ±. Set V^ = V^ Θ V^ . Then V^ is G-invariant.

3. In [15, §8g], a trivialization of A(T*{Oyl)X)®ζ along geodesies nor-

mal to Y, with respect to the connection VΛ ( Γ X)®1 + l®Vξ , which is

again G-invariant.

Now we use the notation of [15, §9]. Let E° (resp. F°) be the vec-

tor space of square integrable sections of A(T*^°'ι)X)<8>ξ over X (resp.

Λ(Γ*(O1)y)(g)?/ over Y). Then for any T > 0, the linear isometric em-

bedding Jτ of F° in E° defined in [15, Definition 9.4] is G-equivariant.

Set Eγ = JT(F°). Let E^9± be the orthogonal space to £° in E°

with respect to the Hermitian product (3.26) on E. It follows from

the previous considerations that for any T > 0, the orthogonal splitting

E° = Eτ®Eγ"L of E° considered in [15, Definition 9.4] is G-invariant,

i.e., G acts on E^ and £'^'"L.

Therefore the matrix of the unitary operator g with respect to the

splitting E° = EZ Θ E 0 ' ± is diagonal, and so it can be written in the form

(9.3) g --

and moreover

(9.4)

The proofs of Theorems 9.1 and 9.2 then proceed as in [15, §§9g and
9h].

X. The L2 metrics on λG(ξ) and λG(η)

For T > 1, let | |λ-i(f/)(g>j {ξ) τ be the metric on λG

ι(η)®λG(ξ) which

is associated to the L2 metrics | | λ , ,, | | -λ ,^ τ .

In this section, we will prove the following result.

Theorem 10.1. For g e G, as T -> +oo,

(10.1) log(|/>| A

2 - 1 ( ^^

Remark 10.2. Theorems 8.9 and 10.1 are equivalent.
Clearly

(10.3) H(Y, η) =

7=1
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Let hH{Y'η) be the metric on H(Y, η) induced by the Hermitian prod-

uct of F on ker(£>y) ~ H{Y, rj). Then the //(Y}, η\γγ* are mutually

orthogonal in H(Y, */) with respect to A ^ 7 ' ^ .

Let s e is be such that (5* + v)s = 0. Then Pτs represents the

cohomology class [s] e H(E, dx + υ) of s in # Γ - //(£, dx + v). In

the sequel, we will write PΓ[^] instead of P Γ s .
Also, we use the canonical identification of Theorem 3.2,

(10.4) H(E,8x + υ)~H(Y,η).

Then the splitting (10.3) of H(Y, >/) induces a corresponding splitting of

Take s e H(Yj, η\γ), / € / / ( ^ , η\Y) . Then by [15, Theorem 10.9],

as Γ-^ -foe,

(Pτ[s],Pτls'])τ = *(T-°0) if;//,

(10.5) = T~dimN^(([s], [s'])hmY,η) +^(1/VT)),

if 7 = / .

Let dimΛ^y/Λ: be the operator acting on H{Y., ι/|y_) by multiplication

by ά\mNγ/χ. Let h"{E'dX+v) be the L2 metric on //(£", dx + υ) associ-

ated to ( , ) τ , and let h^Y'η) be the corresponding metric on H(Y, η).

From (10.5), we deduce that

(10.6) log{h%{Y'η)/hH(Y'η)) = -dimNY/x\og(T)+0{l/y/T).

By definition,

(10.7) log(\p\2

λ-t(mλa{ξhT)(g) = -ττs[glog(h^Y'η)/hH{Y'η))].

By (10.6), (10.7), we see that as Γ ^ +00,

-» ZJ7V ~.\

(10.

Also

(10.9) Tr"11 -"'[gdimNy.x] = Σ,dimNγ,χχg(η\ „ ) = di1

which together with (10.8) gives (10.1). Hence the proof of Theorem 10.1
is completed.
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XI. The analysis of the two parameters operator gcxp(-(uDx + TV)2)
in the range u e]0, 1], T € [0, 1/w]

The purpose of this section is to prove Theorem 8.6. The main point of
Theorem 8.6 is the existence of C > 0, γ e]0, 1] such that if u e]0, 1],
Γ e [ 0 , 1/κ], then

Ίrs[NHgexp(-(uDx

5

(11.1)

- j Ύdg(TX, hTX)ΦTrs[NHgcxv(-C2

τ2)]

To establish Theorem 8.6, we essentially use the methods of [15, §11],
where Theorem 8.6 was established when G is trivial, combined with finite
propagation speed techniques. In effect, we use four main ideas, some of
which are taken from [15].

• A first simple idea is that the proof of (11.1) is local on X, and also
local near Xg.

• A second idea is to combine the rescaling techniques of Getzler [18]
with the splitting ξ = ξ+ φξ~ of ξ near Y, which was already considered
in [5, §1], [15, §8f] and §9, together with the fixed point techniques of [9],
[2].

• As in [15], functional analytic techniques play an important role
in handling the difficulties related to the splitting ξ = ξ* Θ ξ~ , in the
concentration of the local supertrace on Y as T —> +oo, which follows
from the invertibility of V2 on X\Y, and in the concentration of the
local supertrace on the fixed point set X as u —• 0, which ultimately
forces the concentration of the local supertrace on Y .

• While the concentration of the local supertrace on Y as T —> +oo
is controlled by the methods of [15, §11], the concentration of the local
supertrace on X , and ultimately on Y , is obtained by using finite prop-
agation speed techniques.

Ultimately, once the considered heat kernels are adequately rescaled, we
obtain a decay faster than the polynomial decay in the directions normal to
Y, because of the presence of a harmonic oscillator in a direction normal
to Y, and a Gaussian decay in the directions normal to Xg by finite
propagation speed. By slightly improving the estimates in [15], we also get
a Gaussian decay in the directions normal to Y.

The organization and the content of this section are much related to
[15, §11], to which the reader is referred when necessary. In part a, we
calculate the limit as u -• 0 of Tτs[NHg exp(-(uDx + TV)2)], and obtain
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the second easy half of Theorem 8.6. In part b, we show that the proof of

(11.1) can be localized near Y . Parts c and d contain a construction of a

coordinate system and a trivialization of Λ(Γ*(0' ι^X)®ξ near Y . In part

e, we perform a Getzler rescaling [18] on certain Clifford variables. In part

f, following [15, §1 lj], we briefly discuss the matrix structure of the new

rescaled operator Lu'τ° with respect to the splitting ξ = ξ+ ®ξ~ . In

part g, we obtain the key decay estimates on the rescaled kernel p \ ^ τ .

Finally part h contains our proof of the estimate (11.1).

At many intermediary stages of the proofs, we rely on the results of [ 15,

§11], which can be adapted without any change to the situation which is

considered here.

a. The limit as u-+0 ofΊτs[NHgexp(-(uDx + TV)2)].
Proposition 11.1. Let To e [0, +oo[. Then there exists C > 0 such

that for M G ] 0 , 1], Γ € [ 0 , Γ o],

Ίrs[NHgexp(-(uDX

(11.2)
- f ΊάiTX, hTX)Φτrs[NHgexp(-C2

τ2)] < Cu,

\Tτs[NHgexp(-(uDX + TV)2)]-Ίτs[NHgcxp(-(uDx)2)]\ < CT.

Proof. By proceeding as in [15, proof of Proposition 11.7] and §2, we

find easily that for T > 0, as u -> 0

Ύτs[NHgexp(-(uDX + TV)2)]

= ί Td (TX, hTX)ΦTrs[NHgexp(-C2

T2)] + (?(u).
Jxg

Since T only plays the role of a parameter, one obtains the existence of

C > 0 such that the first identity in (11.2) holds.

Also,

±;Trs[NHgexp(-(uDX + TV)2)]

= Έΰ Ύτs[NHgexp(-(uDX + TV)2 - b[uDX + TV, V])]b=Q

(11.3) ϋ b

= TIL Tτs[[V, NH]gexp(-(uDX + TV)2 + bV)]b=Q

= T^j- Ύτs[(v - v*)gexp(-(uDx + TV)2 + bV)]b=0.
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By using again the techniques of §2, one finds that for u -> 0, the right-
hand side of (11.3) converges boundedly for T <TQ. The second inequal-
ity in (11.2) follows.

b. Localization of the problem near Yg .

Definition 11.2. For u > 0, T > 0, let Pu τ(x,x') (x, x e M)

be the smooth kernel associated to the operator exp(-(wD + TV) ),

calculated with respect to dυχ(x')/{2π)άϊmX .
Then

( " 4)

Trs[NHgexp(-(uDX + TV)2)]

(2π)

X T X

Let d be the Riemann distance on (X, h ) .
Proposition 11.3. For any a > 0, there exist c > 0, C > 0 swc/z

for ue]0, 1 ] , Γ e [ 0 , l / w ] , x,x eX,

(\ 1 5Ϊ IP (x x')\ <

Proof Let Δ be the Laplace-Beltrami operator associated to hτx . For

ί > 0, let ^ ( x , x) be the smooth kernel associated to etA.
Consider now the differential equation in [15, equation (11.18)]. By

[15, equation (11.24)], for u e]0, 1], T < l/u, its solution is uniformly
bounded. Making use of Ito's formula as in [ 15, equation (11.20)], we find
that there exists c> 0 such that for u e]0, 1], T e [0, l/u], x, x' e X,
we have

(11.6) \PuT(x,x')\<cpu2(x,x').

Now classically, there exist c > 0, C' > 0 such that for u e]0, 1],

(11.7) Pu

2(x' •* ) — c e χ P ( ~ C / w ) J

which together with (11.6) gives (11.5). q.e.d.

Let a > 0 be the injectivity radius of (X, hτx). For x e X, b eR,,

let B (x, b) be the open ball of center x and radius b in X.

In the sequel, we take & e]0, <z/2].

Definition 11.4. For x0 e X, let P ^ Γ ( J C , x') (x, x e Bx(xQ, b)) be

the smooth kernel associated to the operator exp(-(wD* + TV)2) with

Dirichlet conditions on dBx(x0, Z?).
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Proposition 11.5. There exist c> 0, C > 0 such that for any x0 e X,

M€]0, 1], Γ € [ 0 , 1/M], x, x e Bx(x0, b/2), we have

(11.8) \\(PuT-P*oτ)(x,x')\\<cexp(-C/u2).

Proof. In [15, Proposition 11.10], this result was proved for x = x .
Our proposition can be proved by exactly following the method of [15] in
the general case. Details are left to the reader, q.e.d.

Let Ύ be an open neighborhood of X in X. Using Proposition
11.3, we find that there exist c > 0, C > 0 such that for u e]0, 1],
Γ € [ 0 ,

J(11.9)
Jx\τ

From (11.4), (11.9), we see that the proof of (8.18) is local near Xg.
Besides, by Proposition 11.5, the proof of (8.18) can be localized near any
arbitrary x e X, which by (11.9) can be taken in a neighborhood of Xg .

As in [15, §11], we will in fact work locally near Y, and so in our case,
near Y = Y n X , and the estimates obtained by a formal argument as
in [15, Remark 11.14] are near points close to X , but far from Y.

c. A rescaling of the coordinate ZQ e J V r , χ . In the sequel, if x € X,

Z e (TRX)χ, then ί e R -> xt = exp*(ίZ) e X denotes the geodesic in
X such that x0 = x, dx/dt\ / = 0 = Z . Similar notation will be used on
Y, Xg . Of course, we recall here that Xg is totally geodesic in X.

First we identify a neighborhood of Y in Xg with a neighborhood

of Y in Nγ ,χ R using geodesic coordinates normal to Y . Namely

for 0 < ε < a/2, and ε small enough, if y e Yg, Z e Nγ ,χ R ,

|Z | < ε, then we identify (y, Z) with exp^(Z), where yt = exp^(ίZ)
is the geodesic in X (which is also a geodesic in X) such that y0 — y,
dy/dt\ t=0 = Z . Along the geodesic y,, we trivialize Λ^ ,χ by parallel

transport with respect to V x*/x .
Also we identify a neighborhood of Xg in X with a neighborhood of

X in Nγ ,γ B using geodesic coordinates normal to I in I .
S Λg'Λ ) K *

Let y e Yσ, Z e Nγ /γ R v, Z' e Nγ IY u v. Recall that Z' G

Ny /Y Ό is identified with an element of iV l v n χK/-,- Then

Xg/X,R,y Xg/X,R,exvy

8(Z)

(y,Z9 Z1) —• exp^ χg.(Zι) identifies an open neighborhood of Y in

Nv ιγ D - Nv IY u Θ (iVF / r β ) | v with an open neighborhood of Yσ
r g ' Λ > κ rg/Λg>κ Λ g ' Λ > κ zg 8



116 JEAN-MICHEL BISMUT

In particular, if Z e Nγ /χ R y , then (y, Z) represents an element of

Let dvχ be the volume form on Xg with respect to hTXg. Let dυN

be the volume form on the fibres of (Nχ j χ , h V * ) .

Definition 11.6. Let βτ be the smooth function of T > 0, x e Xg

such that

dvχ (x)

For ε > 0 small enough, y e Yg, Z € Nγ j X R y , Z1 e Nx ^ > R > J

| Z | < β/2, | Z ' | < ε/2, let k{y, Z, Z1) be defined by

(11.11) dvχ(y,Z,Z') = k(y,Z,Z')dvχ(y,Z)dυN (Z').
^ gl

Then

(11.12)

Similarly, let fc'(y, Z') be defined by

(11.13) dvχ (y,z') = k'(y, z')dvγ (y)dvN (Z').
g g γglχg

In the sequel, ε e]0, a/2] is taken to be small enough so that the iden-
tifications considered above hold.

Theorem 11.7. There exists γ e]0, 1] such that for p e N, there is
Cp>0 such thatifue]O, 1], T e [1, 1/w], y0 € 1^, Zo e NY /x R^,

|Z0|<εΓ/2,

|Z|<ε/8

- C ^ I + IZQI) (M(1 + Γ ) ) .

Remark 11.8. Now we show how to derive (8.18) from Theorem 11.7.
By Proposition 11.1, we may restrict ourselves to the case where T is > 1.
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For ε > 0, let &β(Xg) be the set o f x e l such that dx(x, Xg) < ε.

Let %fε(Yg/Xg) denotes a corresponding open neighborhood of Yg in Xg.

Clearly

(11.15)

Ίτ\N sP (s~lχ x)λ

f
Jχg

- f τdg(TX,hTX)Φτrs[NHgexp(-C2

τi)]
Jχg

, Z))]

,( Z \ dvNY ιx (

V ' T,/ ( 2 π )

d i m

dvY (y)
Y

g

(2π) d i m y

Using Theorem 11.7, it is clear that the absolute value of the left-hand

side of (11.16) is dominated by C(u(l + T))y.

Also the contribution of the complement of an open neighborhood of

Y in We/4(X ) to the integral on the right-hand side of (11.4) can be
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estimated by applying formally Theorem 11.7 with Y = φ. From (11.9),
(11.14), (11.16), we obtain (8.18). Hence the proof of Theorem 8.6 is
completed.

d. A local coordinate system near Y and a trivialization of Λ(Γ*(0>1)^Γ)
<8>ξ. To establish Theorem 11.7, we will use an adequate coordinate system
near y0 e Yg .

If Z e (TιιX)v , we identify Z with expf*(Z) e Xg. Again we

trivialize Nχ /χ along the geodesic t -> tZ by parallel transport with

respect to V*V* . Then we identify (Z, Z') € ((TRXg) x Λ^ / j r > R ) y o =

(TRX) with exp* χg (Zf). Observe that since ΛΓ is totally geodesic

in X and g preserves the geodesies in X, the action of g near y0 in
the coordinates (Z, Z') is given by

(11.17) g(Z , Zf) = (Z , gZf).

Recall that the connection V̂  on ξ was already considered in §9.
We fix Zo e Nγ /χ > R |Z0| < e/2, and take Z e (r R ^) , \Z\ <

e/2. The curve t e [0, 1] -• Zo + ίZ lies in 5 ^ ( 0 , β). We identify

TXZQ+Z, A(T^l)X)Zo+z with Γ ^ Z Q , A ί r ί 0 ' 1 ^ (resp. ξz^z to

ξ z ) by parallel transport along the curve t e [0,1] -+ ZQ + tZ with

respect to the connections V , V ι ] (resp. Vς).

When Zo G Nγ /X R is allowed to vary, we identify TXZ ,

A ( r * ( o . i ) ^ w i t h V i y o , A ( r ( O > 1 ) ^ o (resp. ξ^ to ^ ) by paral-

lel transport with respect to Vτx, VΛ ( Γ X) (resp. V*) along the curve

te[O, l]^tZ0.
Let k"(Z) be the function defined on ByX'(Q, ε) such that for Z e

( ^ ^ Λ i z l / 2

(11.18) rf^ (Z) = k"{Z)dvτχ (Z).

Let H be the vector space of smooth sections of (A(T*{0>ι)X)®ξ)
y

TX

TΎ

spect to the metric h yo. Let γ be a smooth function defined on R with

TX
over (TRX) . Let Δ be the ordinary Laplacian on (TRX)y with re-

TΎ

spect to the metric h yo.
values in [0, 1] such that

(11.19)
= 0 f o r α > l .
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If Ze(TRX)yQ, set

(11.20) p(Z) = γ(2\Z\/e).

Then

= l if|Z|<β/4,
(1121)

= 0 i f | Z | > ε / 2 .

We now hx Zo e NY /χ R , |Z0| < ε/2. Recall that the considered

trivialization of Λ(Γ*(0>1)JiΓ)®{ depends explicitly on Zo . Therefore the

actions of Dx, and V on H depends on Z n . We will denote these

actions by D* and by F(Z0+.) respectively.
. *±

Recall that near Y, the vector bundles ξ were defined in §9. Let P
be the orthogonal projection operator from ξ on ξ± .

Now we follow [15, Definition 11.18].
Definition 11.9. For u > 0, T > 0, let L^f? , Λ/ '̂z° be the operators

( n 2 2 )

Ml

u'
Z° = -u{\ - p\z))— + p\Z)(uDX)2.

For |Z'| < ε, the volume element dυχ(Z') is well defined. For |Z0| <

ε/2, let P^°(Z,Z') {Z, Z' € (FR*)yo , |Z'| < ε/2) be the smooth

kernel associated to exp(-L^°) with respect to dvx(Z0 + Z')/(2π)dimX .
Using (11.17) and proceeding as in Proposition 11.5, we see that there

exist c > 0, C > 0 such that for u e]0, 1], Γ e [I, l/«], j>0 e Yg,
zo^NY/x,R- l z o l < 6 / 2 ' z e ^ v ^ > R > , 0 , | Z | < ε / 2 ,

< cexp(-C/w ).

Therefore, in the estimate (11.14), we may and will replace Pu τ by

e. Rescaling of the variable Z and the Clifford variables. For w > 0,
let FM be the linear map
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(11.24) h e HyQ -> Fuh e H v Fuh(Z) = h(Z/u).

For u > 0, Γ > 0, set

Π 1 9SΪ τ2Zo — p~ιτιzoi7 M2'Z° — F~l Ml'Z°F

Let Op be the set of scalar differential operators acting on smooth
functions on (TΏX)Λ, . As in [15, equation (11.51)], we find that

L2UZT>M2U'J° € (c(ΓRΛr)<§>Endί),0 ®Op.

L e t έ>,, , e2l,, ( e 2 / l + ι ,•••, e 2 r ) , e2r+ι ,••• , e2l b e o r t h o n o r m a l
b a s e s o f ( T R Y g ) y o , N Y g / X s J t y o , N X g / x R ^ r e s p e c t i v e l y . T h e n ev...,e2l

is an orthonormal basis of {TRX) . Let eι, ••• , e21 be the corresponding

dual basis of (T'X) .

Because X is totally geodesic, it is important to observe that under the
considered identification of (TΏX)7 with (TΏX)Λf , at Zn e N y l γ p

which represents an element of Xg , (^ , , e2/#ι) and (^2/"+i > ' *' » ̂ 2/)
are orthonormal bases of (TRXg)z and Nχ ,χ R y respectively.

Definition 11.10. For u > 0, Γ > 0, set*

(11.26) " V2

. v2eJ

 κ uT.

The operators cM r ( ^ . ) , 1 < j < 21" , act naturally on (A(T^Xg)<S>ξ)y .

Definition 11.11. For u > 0, T > 0, let

^ ; ? ° ' < ' ? € (End(A(^)(^)(8)c(iVV J r f R))y o ® Op

be obtained from LM ' r°, Λ/^'z° by replacing the Clifford variables c(e.),

1 < 7 < 2/" , by the operators cw Γ (e . ) , while leaving unchanged the c(e.)

(2/" + 1 < j < 21).

The complicated fact with respect to [15, § 11 i] is that the c{e})% 21" +
1 < J < 21, are not rescaled.

Let P M

3 f °(Z,Z') ( Z , Z r G ( ^ R ^ ) y o , | Z ; | < ε/2) be the smooth

kernel associated to exp(-L 3 ' z°) calculated with respect to

k"{yo,Zo)dυ{τχ) {Zf)/(2πfmX. Note that, at Z ' = 0 (representing

( y o , Z o ) ) , this last density coincides with dvχ/(2π)άimX. Here

PI[J°{Z,Z') lies in (End(Λ(ΓR^))Θc(Λ^ / j r > R)<g)End(ί)) v Moreover^
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acts naturally on (A(N*χ /x)®ξ)y as an element of (c(Nχ jχ R)®End(ί)) .

So gPfflz, Z') lies in (End(A(TRXg))^c(NXg/XR)iEnd(ζ))yo.
Now we use the notation of [15, equation (11.53)]. Namely

Pu'τ°(g~ιZ , Z) can be expanded in the form

Σ e*> Λ Λ e^ Me ... ie &θ!ι:y(g-ιZ, Z),
(11.27) \<ix< .<ip<2i" Jι Jq ' '

Q'ip;{g-ίZ9Z) e (c(NXg/χ ^End(ξ))yQ.

Set

i l l 28) [Ϊ;ί{g
e(c(NNg/χJί)®End(ξ))yo.

Since (c(Nγ / v Ώ)<S)End(ξ))Λf acts on (A(N*Y yir)®{),, , the supertrace of
α / > ^ o g i y o

the elements of this algebra is well defined.
The obvious extension of [15, Proposition 11.21] is as follows.
Proposition 11.12. If Z e Nχ ^χ R y , the following equality holds:

τ2dilNγg/Xg Trs[NHgP»f(g-lZ,Z)]k(y0, Z o , Z)

(11.29)

Proof Observe that since g preserves the geodesies and the relevant

connections on A(T*{0'ι)X)®ξ ~ (A(T*{0'ι)X)®ξ)yQ, g just acts as the

obvious constant linear map on (A(T*®'ι)X)®ξ)y . Since g acts like

the identity on A(T*{0'ι)Xg), we have g € c(Nχ /XtR)y Therefore the

rescaling of the Clifford variables in (11.26) has no effect on g. Equality

(11.29) is now a trivial consequence of [ 18], [ 15, Proposition 11.2]. q.e.d.
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By (11.29), we find that for Zo e Nγ /χ R ^ , \Z0\ < εT/2,

„
(*.*.*))]

(11-30) *k[yo> -ψ>Δ) t^N—

..dimΛ'

\Z\<ε/Su

dvN (Z)

Also by [9, Theorems 4.11-4.15], one finds easily that

dvN (Z)

(11.31)

Moreover, observe that there is C > 0 such that if Z € Nχ ,x R , then

(11.32) | # ~ ' Z - Z | 2 > C | Z | 2 .

In view of (11.16), (11.23), (11.29)—(11.32), Theorem 11.7 follows from
the following result.

Theorem 11.13. There exist γ e]0, 1], C > 0 such that for any m e
N , thereis C > 0, r e N SMCΛ ίΛαί/or u e ]0 , 1], Γ e [ 1 , l/u], y0 e Yg,
z o e Λ Γ y ^ , R , y o ' \ZQ\<eT/2, Z,Z'e(TRX)yo, \Z\, \Z'\<ε/Su,we
have

( Π 3 3 )

/ The remainder of the section is devoted to the proof of Theorem
11.13, which is similar to that of [15, equation (11.58)]. The essential
difference between these two proofs is that we need to obtain the bounding
function (1 + |Z| + |Z ; |)2 rexp(-C|Z - Z'|2) on the right-hand side of



EQUIVARIANT IMMERSIONS AND QUILLEN METRICS 123

(11.33), while in [15], only the case where Xg = X, Z = Z ' = 0 was
considered.

We briefly describe the main steps which are needed to obtain Theorem
11.13, referring to [15] when necessary.

f. The matrix structure of the operator Lw^° . As in [15, §llj], we

calculate the asymptotic expansion of the operator L^'^o / Γ as u —• 0.

The basic difference is that here, the operators c(e.), 21" + 1 < j < 2/,

are not rescaled, but this does not create any new difficulty. Also as in

[15], we must study the matrix structure of ύ ^ l τ with respect to the

splitting ξ = ξ+ Θξ~ . In particular, instead of [15, equation (11.60)], the

operator obtained by rescaling uT[Dx, V] is now

(n.34)

By [5, Proposition 3.5], as in [15, equation (11.64)], we know that if U e
TRY, then

(11.35) Pξ Vξ

uVPξ =0 onY.

T h e r e f o r e , for l<j<2Ϊ,

(11.36) Pξ~Vξ

eV(Z0/T + uZ)Pξ~ = 0{\ZJT + uZ\).

So at least formally, the situation is the same as in [15]. Finally the extra

term Σyl2/"+i w Γ Φ / ) v f V(ZJT + uZ) d o e s n o t introduce any extra

difficulty, because uT < 1.
g. A family ofSobolev spaces with weights. Set

(11.37) ^'<\τ;Xg)yo = Λ '(ΓRUo® Λ ί K/V»V

Let I be the set of smooth sections of Λ(Γ*ΛΓ ) ®A(N*r /γ)<8>ξv

over (TRX)yo, and I ( P i ? ) i > > o be the set smooth section of Λ^'^ΓgΛ^)
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As in [15, §11 k], we introduce a family of Sobolev spaces with weights,
which are strictly similar to the corresponding weights in [15, Definition
11.23]. The results contained in [15, Proposition 11.24, Theorem 11.30]
remain valid, essentially because the operator Lu j Γ

o / considered here has
the same structure as in [15].

h. Uniform estimates on the kernel P*'^T . Now we refine [15, Theo-
rem 11.31] in our context.

Theorem 11.14. There is C > 0 such that for m e N , m e N , there
exist c> 0, r e N such that for any u €]0, 1], T e[l, l/u], yoeYg,
z o € NYg/xg,R,y0> \zo\ < εT/2> Z Z e ( Γ Λ 0 > | Z | , \Z'\ < εT/6u,

we have

λ W

(1 + |Z O | Γ sup

(11.38) H ^ ' ,
W\<m

I a ' l
3,Z0/T(

σZ αZ

; | ) Γ< c{\ + \Z\ + |Z ; | ) Γ exp(-C|Z - z ' | 2 ) .

First we will prove (11.38) with C = 0. Then by using finite
propagation speed, we will get (11.38) with C > 0.

The proof starts in the same way as the proof of [15, Theorem 11.31].
In particular the inequality [15, equation (11.125)] is still valid.

Take p e N. Let j£ be the set of square integrable sections of

MKXg)y®A(N*Yg/χ)y®ξ°g over {Z e ( Γ R ^ , \Z\ < p + {}. We

equip J® with the Hermitian product

(11.39) s,seJ% -+(s,s)= ί (s,s')dvτx.

Let I I denote the obvious norm on J^ y . If A e &{Jp y ) , let \\A\\p ̂

be the corresponding norm of A with respect to | | .
In the sequel, the constants C > 0 may vary from line to line. They

are uniform in u e]0, 1], T e [1, l/u], p e N.
The obvious analogue of [15, equation (11.127)] (where only the case

\Z\ < 3/2 was considered) is that there is C > 0 such that for any p e N,

(11.40) \s\ < | i | t t, r > Z o,o> K,τ,zo,o £

Using the notation in [ 15, equation (11.128)], we obtain, for k,k',k", k'
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€ N ,

(11.41)

which together with Sobolev's inequalities implies that for k', k", k'" G
N ,

(11.42)

By (11.21), if \Z\ < ε/4u, then p{uZ) = 1. Using [15, equation
(11.130)] and (11.42), we find that if u e]0, 1], T € [1, 1/w], |Z0| <
εT/2, then

sup t/Z

(11-43)

Also if |Z 0 | < εΓ/2, \Z\ < inf{p + 1/4, ε/4u), then

(11.44)
Ύdx(Z0/T, Y) < Ίdx{ZJT Cp,

τdΛ(z0/τ,γ) = \z0\.
Clearly (11.43) is valid for k' = 0 . Using (11.43), (11.44), we see that
given k', k", k'" G N , there is C > 0, r G N such that for u G]0, 1],
T G [1, I ] , y 0 G 7 ? , Z o G NYt/XgtΛtyo, \Z0\ < εT/2, p G N , we have

(11.45)
sup \\z/Ak

zΆ^P3

uf
/T(Z,Z')\

|Z|,|Z'|<inf(p+l/4,ε/4u)

Using Sobolev's inequalities again, we deduce from (11.45) that given
m e N , m e N , there is c > 0, r e N such that if u e]0, 1], Γ e
[1,1/κ], 3 > o e r , , ZoeNYg/Xg9Rtyo, \Z0\<εT/2, Z, Zf e (TRX)yQ,

\Z\, \Zf\<ε/6u,then

(11.46) (1 + |ZO |)W sup a1'
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Now we will get the exponential factor exp(-C|Z - Z'|2) on the right-
hand side of (11.38) by using the finite propagation speed. Let M G R - >

k(u) e [0, 1] be a smooth even function such that

( 1 1 4 7 ) *(«) = <> for |M| < I,

= 1 for |M| > 1.

For q e R*+ , a e C, set

z+oo / _ / 2

(11.48) / ^ ^

First we prove an analogue of [15, Proposition 13.8].
Proposition 11.15. For any c> 0, m, m e N, there is C > 0, C' > 0

s u c h that f o r q > \ ,

(11.49) sup \a\m\K{

q

m'\a)\<Cexp(-C'q2).
aec q

\\ma\<c

Proof. Clearly the function t e R -+ k(t/q) vanishes for \t\ < q/2.
Also if a e C, I Ima\ < c, then

(11.50) |cos(ία)|<exp(cO.

Using (11.48) and integration by parts, we get (11.49). q.e.d.
Clearly K (a) is an even holomorphic function of a. Therefore, there

is a holomorphic function a e C —• K (a) such that

(11.51) Kq{a) = Kq(a2).

Definition 11.16. Given c > 0, set

(11.52) Vc = {λeC, Re(λ)>(Imλ)2/4c2-c2}.

Now we proceed as in [15, Proposition 13.10].
Proposition 11.17. For any c > 0, m, m e N, there exist C > 0,

C' > 0 s w c Λ that f o r q > l ,

(11.53) sup|αΓ|^m'}(α)| < Cexp(-cV).

Proof The set Fc is exactly the image of {λ e C, | Im λ\ < c} by the
ιp λ -• λ 2 . Oui
For c > 0 , set

map λ —> A2 . Our result now follows from Proposition 11.15. q.e.d.

( 1 1 5 4 ) ^ = { ^ C > Re(λ)<(lmλ)2/4c2-c2},

Γ = μ G C, Re(λ) = (lmλ)2/4c2 - c2}.
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By using an analogue of [15, Theorem 11.27], we find that if c > 0 is large
enough, then for « e ] 0 , l ] , T e [1, l/u], y0 e Yg9 Zo e Nγ jχ R ^ ,

|Z0| < εT/2, λ e Uc, the resolvent (λ - U^IT)~X exists, and extends to

a continuous linear operator from I"1 into I1 , and moreover, with the

notation of [15, §111],

\\(X-L3'ZQ/T)-1\\°'0 <C
155)

\\(λ-Ll'z/τ) llu>

From Proposition 11.17 and (11.55) it follows that

(11.56)
u T V Γ dX.

By (11.53), we see that given r £ N, there is a holomorphic function

K r(a) defined in a neighborhood of Vc and verifying the same estimates

as Kq(ά) in (11.53) such that

•dλ.

Thus

(11.58)

Using (11.58) and proceeding as in [15, equations (13.244)-( 13.247)]
instead of [15, (11.117)-(11.125)], we deduce that the kernel Kq(Li

u'
z?/τ)

(Z,Z')(Z,Z' € ( V ) y o ) of Kq(Li

u'
z°/τ) satisfies estimates similar to

(11.46), the essential difference being that because of (11.53), there is
an extra factor exp(-C^2). More precisely, there is C > 0 such that
for m,m' e N, there exist c > 0, r € N, for which given } E N ,
u e]0, 1], T e [1, l/u], y0 e Yg, Zo e NYJXg R H, \Z0\ < εT/2,

Z,Z' e (TvX)υ , \Z\, \Z'\ < ε/6u, we have

(11.59)
|ZOI sup

»Ί

dzadz'a

If t > q, then k(t/q) = 1. Also using the finite propagation speed

for solutions of hyperbolic equations for cos(syLu'^
τ) [16, §7.8],



128 JEAN-MICHEL BISMUT

[30, §4.4], we find that there is a fixed constant C' > 0 such that

(11.60) P^o/T(Z,Z') = k(j(Ll'^/T)(Z,Z') iί\Z-Z'\>C'q.

From (11.59), (11.60), it follows that there exist C > 0, C' > 0 for
which, given m, m e N, there is c > 0, r e N such that for ? e N ,
u €]0, 1], Γ € [1, 1/w], y0 € y g , Zo € NYg/XgJt>yo, \Z0\ < εT/2,

Z,Z' e ( V ) ^ , |Z|, |Z'| < e/6«, we have

)M

(1161)
|ZO|)M sup

|Z'|) 2 rexp(-Cί 2) if |Z -

which together with (11.46) thus gives (11.38).
The proof of Theorem 11.14 is completed.
i. Proof of Theorem 11.13. The analogues of [15, Proposition 11.34,

Theorem 11.36] hold for exactly the same reasons as in [15].
We use the same notation as in (11.41). By the analogue of [15, Theo-

rem 11.36] and by (11.40), we find that there exists C > 0 such that for
p e N , w e ] 0 , l ] , Γ € [ 1 , 1/M],

(11.62) \\exp(-Ll[Z/T)-exp(-Ll'^T)\\poo < CuT(l+\ZQ\)2l(l+pf.
To establish Theorem 11.13, we proceed as in [15, §11 p].
Let φ be a smooth function defined on (TRX)y with values in R+

and support in {Z e (TRX)yo, \Z\ < 1} such that

(11.63) I φ{Z)dvτχ{Z) = \.

Take β G]0, 1]. By Theorem 11.14, there exists c > 0 such that for
yoeYg, Z0GNYg/Xg<Ry<), \Z0\<εT/2, Z, Z' e ( 7 ^ , \Z\,\Z'\<

ε/Su, U,U' € (A(7lXg)®A(N*x/x)&ξ)yo, we have

/ ((p3

u'τ
o/τ - Pof/T)(z ~z,z'- z ' ) u , if)

(11.64) ATiW) '

z'l (z\ l (z'\
yi<P [jj ψι<t> \j) dυτx(Z)dvτχ(Z

\z'\f.
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On the other hand, by (11.62), we get

I " u T ~ 0 T ) \ ~~ » ~~ ' ' ^ /

(Π 65) X F " ( f ) F " ( f ) dυτx&dΏτx&)

By choosing β = (t/Γ)1/(2/+1), we deduce from (11.64), (11.65) that if Z o ,
Z , Z' are taken as before, then

\/(p3'Zo/τ _ pi'zo/τ\(γ 7'\TJ Tj'

< C\uT)xl(2M){\ + |Z0|)
2/+1(l + \Z\ + \Z'\f.

From (11.38), (11.66), it follows that under the assumptions of Theorem
11.13,

(11.67)

< " 1 ' l Γ ' l ' m ι y « p ( ~ | z - z T ) ( « r )
+ |Z| + |Z'|)f (_C ,2\

(1 + I Z o i ) " e x p l Γ z z ι ) { u

from which (11.33) follows. Hence the proof of Theorem 11.13 is com-
pleted.

This terminates the proof of Theorem 8.6.
Remark 11.18. It should be observed that in the estimates (11.33),

(11.38), (11.46), 11.59), 11.61), (11.66), if Z, Zf £ Nγ ιy R v , then the
g' ' ' ̂ 0

bounding factor (1 + |ZO|)~W can be replaced by a factor exp(-C/ ; |Z0 |2),
with C" > 0. In fact, for q e Vi\, we still define Kq(a) as in (11.48)-
(11.51). Set

(11.68) k'q{a) q

Using Proposition 11.17 and (11.68), we find that given c, C > 0, there
exist c , C' > 0 such that if for q > 1, a e Vc, Re(α) > C\q\2 , then

(11.69) \K'q(a)\<cexp(-C'\q\2).

By (11.68), we get

P^(Z,Z)

= κ{Ll ^τ)(z, z') + k'lZoy2(Ll'z/T)(z, z').
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By Proposition 11.15, and by proceeding as in the proof of Theorem

11.14, k^β{l}u[τo/T)(Z, Z') can be estimated as in (11.32), with the

extra bounding factor exp(-C|Z 0 | 2) (C > 0). Also by the finite propaga-

tion speed, and using the fact that Z , Z' e Nχ /χ R y and (11.53), the

same type of estimates can be proved for K'^z y2(Z, Z1). From (11.70),

we ultimately get the required estimate.

XII. The analysis of the kernel of gexp(-(uDx + TV/u)2)
for T positive as u tends to 0

The purpose of this section is to prove Theorem 8.7. Our method of
proof follows closely [15, §12], where the same result was proved in the
case where G is trivial.

As in § 11, part of the analysis is taken from [15]. However the geometry
of the situation is more difficult than in [15]. Also we use estimates already
established in § 11.

This section is organized as follows. In part a, we introduce our assump-
tions and notation. In part b, we show that the proof of Theorem 8.7 can
be localized near Y . In part c, we construct a coordinate system near

y0 € Y and a trivialization of A(T*®'^X)®ζ near yQ. In part d, we
replace X by (TRX)y . In part e, we rescale the coordinate Z e {TRX)y

and also certain Clifford variables. In part f, we calculate the asymptotics
as u -> 0 of the operator L \ ^ / U obtained from {uDx + TV/u)2 by such

a rescaling. As in [15, §12], the operator &2i appears in this process. In
part g, we establish uniform estimates on the rescaled heat kernels. Finally,
in part h, we prove Theorem 8.7.

a. Assumptions and notation. Consider the exact sequence of holomor-
phic Hermitian vector bundles over Y

(12.1) E : 0 -+ TY\ γ -+ TX\ γ -> Nγ/χ\ γ -> 0.

Then g acts naturally on each term of the exact sequence, by parallel
isometries.

In this section, we use the notation of §7 with respect to the exact se-

quence (12.1). In particular, for u > 0, &2 denotes the operator con-

structed in Definition 7.4, and (X(Z,Z') (y e YQ, Z, Z' e (TUX)V)

denotes the smooth kernel associated to exp(-&2'y) calculated with re-

spect to dυτχ(Zf)/(2π)άimX . Also we use the notation of §11.
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We have the identification of holomorphic Hermitian vector bundles

(12.2) Nγg/x = Nγg/xg^
Nxg/χ\γg'

Let P γg/χg, PNχg/χ\γg be the projection operators from Nγ ,χ on Nγ ,χ ,

Nχ j X \ γ . By (6.6)—(6.11) we have

\x0 - ] \ / i ' iyγ/χ\γg-
iyγg/x8>

^ ^ Ω Ω I
N I m TY ' — NiyY/X\ Yg ®

 l Λ\ Yg * iyYg/X'

Clearly, for u > 0, T > 0,

(12.4) L v

= fτrslNHgPuT/u(g-
lχ,x)]dV^X)

χ.Jx "' (2π) i m

In the whole section, the constant T > 0 will be fixed,
b. The problem is localizable near Yg .
Proposition 12.1. For any a > 0, there is c > 0, C > 0 swcA that for

u e]0, 1], x , χ ; G Λf, rfX(x, JC;) > α, we have

(12.5) | P M j Γ / M ( x , x ) | 2

/ For 0 < T < 1, this result is proved in Proposition 11.3. For a
general T, our proposition follows by a simple scaling argument.

Proposition 12.2. For any a > 0, ίAere exist c > 0, C > 0 swcΛ
x x

y
, dx(x, Y)>a or dx{x , 7 ) > α , u e ] 0 , 1],

(12.6) | P M Γ / M ( x , y ) |

Proo/ Since the operator exp(-(uDx -h TV/u)2) is selfadjoint and
positive, Pu τ,u(x, x') is also selfadjoint, and moreover

(12.7) 1^,7.,^, x ) | < \PU9τ,u{x9x)\l/2\Pu9τ,u^^x')\l/2'

Also by [15, Proposition 12.1], there is C > 0 such that if </*(JC , Y) > a,
for we]0, 1], then

(12.8) | P w Γ / M ( x , x ) |

Moreover, using Ito's formula as in [15, equations (12.11)-(12.15)], we
find that there exists C' > 0 such that for J C ' E J and W G ] 0 , 1 ] ,

(12.9) \PU9T/u(x\x)\<C/u2ώmX.
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From (12.7), (12.9), we get (12.6). Hence the proof of our proposition is
completed, q.e.d.

For ε > 0, let &e(Yg) be the open neighborhood of Y in X, which
we define as in Remark 11.8. By Propositions 12.1 and 12.2, there exist
c> 0, C > 0 such that for u e]0, 1],

By (12.4), (12.10) indicates that the proof of Theorem 8.7 can be localized
near Y .

For b > 0 small enough, the map (yQ, ZQ) e Nγ ,χ R , \ZQ\ < b —•

expy (Zo) G X is a diffeomorphism of an open neighborhood of Y in

Λ̂ y ^ R into a tubular neighborhood of Y in X. In the sequel we

assume that ε e]0, \].
If y0 G Yg9 Zo e Nγ/XtR \Z0\ < ε, we identify (y o ,Z o ) with

expy (Zo) € X . In particular, in the coordinates (yQ, Zo) ,

(12.11) g-l(y0,Z0) = (y0,g-lZ0).

Let fc(y0, Zo) be such that for |Z0| < ε ,

(12.12) dυx(y0,Z0) = k(y0, Z0)dvγ (yo)dv (Zo).

Then

(12.13) k(yo,O) = L

The main technical result of this section is as follows.
Theorem 12.3. For yoeY , Zo e Nγ ,χ R , we have

(12.14)

L & ' , A')
\ max

' )
t (2π)

For any p e N, /λere w c > 0, C > 0 swcA that for u e]0, 1], y0 € 1^,
l - £/8w, w^ have

(12.15)

Y /x R y f

mNX\^s[NHgPuT/u(g-\y0, uZ0),(y0, uZϋ))]\
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Proof. The remainder of the section is devoted to the proof of Theorem
12.3.

Remark 12.4. Clearly

(2πfmX Jγg\JZ<>

2dimΛv ,v
U g

j, / χ R

(12.16) V ' Λ ' "' Γ |zo|<£/8«

τ/u{g (yo,uZo),(yo,uZo))]

x k(y0, uZ0)dv (Zo) \ dυγ (y0).
γglχ

Using Theorem 12.3 and dominated convergence, we find that as u —• 0,
(12.17)

ί ~ι

JW..ΛYΛ S H U'T/U

I, Φτ^N^Q^g-'z^z,)]—^—}^^, h«).

By (12.4), (12.10), (12.17), we get

limTr U.
u-0 s h

(12.18) L

= / Φ T r J ^ g e x p ί - ^ ^ c h g { η , h " ) ,

which is exactly Theorem 8.7.
c. A local coordinate system and a trivialization of

Let a > 0 be the injectivity radius of (X, hTX). In the sequel, we take
ε e]0, inf(fl/2, b/2)]. We fix yQ € Yg. For Z e (T^X)^, |Z| < ε, we

identify Z with exp*(Z) € X. Let fc'(Z), |Z| < a be the function
defined by

(12.19) ί/t;Λ,(Z) = A:'(Z)ί/υrA.(Z).

Then jfe'(O) = 1. If |Z| < ε, we identify (TX)Z, A(T*{0'ι)X)z with

(TX), , Λ(Γ*(°5l)Λ0,, (resp. ξ7 with ί ) by parallel transport with re-

spect to the connections Vτx , VΛ ( Γ x^ (resp. V )̂ along the geodesic
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With respect to § 11 d, the main difference is that we do not need the
intermediate Zπ e Nγ ίγ B , which is here identically 0.

υ ig/Λg,κ,yQ

Let Γ z * , Y\ be the connection forms of the connections Vτx , V* in
the considered trivialization of TX, <̂ . As in [15, equation (12.23)], we
have

(12.20) T*Q = B , TT

Z

X = -(VTXfyQ(Z, -)+&{\Z\2).

If \Z\ < ε, [/ G (ΓRΛΓ)Z , then V^ denotes the standard differentiation

operator in the direction U acting on smooth sections of (Λ(Γ*(0> ι^X)®ξ)v
•M)

over (TnX)
Of course since g is an isometry, g acts linearly in the coordinates Z .

d. Replacing the manifold X by (TRX)y . We use the notation of

Definition 11.9.
Definition 12.5. Set

r 1 ' ^ r ! > 0 i ^ ^ n i / l . O

Let P 1 '£°/w(Z, Z1) {Z,Z' e {TτίX)v ) be the smooth kernel associated

to exp(-L^° / M ), which is calculated with respect to dυτχ(Zf)/(2π)άimX .

The same argument as in the proof of Proposition 11.5 shows that there

exists c > 0 such that for u e]0, 1], yQeYg, Z o e Nγ jχ R , |Z 0 | <

ε/8, we have

(12.22) W ' Γ / " 0 ? ° 2

 M ' Γ / W

< cexp(-C/w ).

From (12.22), it is clear that to prove Theorem 12.3, we only need to

show that for yQ e Yg , Zoe Nγ /χ R y ,

(12.23)

lim —

and that g iven p e N , t h e r e is c > 0 , C > 0 s u c h that f o r w e ] 0 , 1 ] ,

yθ€Yg' Z 0 e NYg/X,R,y0 ' lZθl ^ ε / 8 " ' W e h a V e

2 d t a Λ r ' |Tr f [^/ i ;^( ί -
1 «z 0 , z o )]|
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e. Rescaling of the variable Z and the Clifford variables. We still define
Fu as in (11.24). Set

2'Mo —j7~xτι^o p \f2'y° F~lMl'— F~lMl'y°F

Let (e{9 -" , e2l>) and let (e2lι+ι, , e2l) be orthonormal bases of

(TRYg) and Nγ ,χ R y respectively. Then (e{, , e2l) is an orthonor-

mal basis of (T*X)v .

Definition 12.6. For u > 0, 1 < i < 2Ϊ , set

(12.26) cM(^.) = v^e7' Λ lu - uiejV2.

For w > 0, Γ > 0, let L\'y£ju, M^y° be the operators obtained

from L2

u'
y^/u, M*'y° by replacing the Clifford variables c(^z) by cM(e )

for 1 < / < 2ΐ , while leaving unchanged the c{e$% (lΐ + 1 < i < 21).

Let PM

3'^°/M(Z, Z ;) ( Z , Z ' G (̂ RAΓ) ) be the smooth kernel associ-

ated to the operator exp(-LM '^ / M), which is calculated with respect to

dvτχ(Z')l{2πfmX . We can still expand P^y

T°/u(g~lZ , Z) as in (11.27),

the difference being that on the right-hand side of (11.27), /" is replaced by

/7,and NXg/χ by NYJX. We define [{Pl%){g'XZ, Z)] m a x e (c(NYg/χR)

<§> End(ί))v as in (1L28), /;/ being replaced by /'.

Also c(Nγ ,χ R)(8)End(<^) acts on (A(N*γ ,χ)<g>End(ξ))y , and so the

supertrace of elements in this algebra is well defined.
Now we extend [15, Proposition 12.9].
Proposition 12.7. The following equality holds:

^ ^ ^ ^ ^ - 1 ^ , uZ0)]

Proof Observe that since g acts as the identity on TY , applying the
Clifford rescaling on g does not change g. Our proposition is now a
trivial consequence of Getzler [18], [15, Proposition 11.2].

f. The asymptotics of the operator L3

u^/u as u -> 0. If U e (TRX)yQ,

let (τU)z e (TRX)Z ~ (TRX)y0

 b e t h e Parallel transport of U along

t e [0, 1] -> tZ with respect to V .
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As in [15, equation (12.34)],

r 2l> ( 2 \
+ p\uZ) \ - Σ K A -\ie\ (Vt V)(uZ)

" l V z 7
(12.28)

+ ΐJ(l-p2(uZ))pf
u y°

Let / be the embedding Y —» X . We will write that as u —> 0, M^>><0

converges to the differential operator Mo

 >y° if the smooth coefficients of

M\ 'y° converge to the coefficients of Mo '
y° together with their derivatives

uniformly over the compact sets of (TRX)y .

Theorem 12.8. Let M^y° be the operator

(12.29)

Then as u -> 0,

(12.30) λfl'y°^M*ty°.

Proof. The proof of our theorem is the same as that of [15, Theorem

12.10]. q.e.d.

In the sequel, we may and will assume that (e2/'+i» " ' > eim) a n c *
(e2 j , , e2l) are orthonormal bases of Nγ /γ R and Nγ/χ R re-

^ / ' ' y o ' ' * y o

spectively.
Recall that we use the convention of (7.1) instead of [15, §5 a] for the

definition of c.
Definition 12.9. Let S e End(Aey™(Nγ/x)®A(Nγ/χ))yQ be given by

(12.31) SΓ
2m+l
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Clearly S extends to an operator acting on (A(T^Y )®A(N*γ.x)

®A(Nγ.χ) <g> η)y . Also recall that by [15, equation (8.31)], ξ~\γ =

A{Nγ/χ) <g> η. Therefore S acts on (A(T£Yg)®A(N*γ/x)®ξ~) .

Let V± be the restriction of V to ξ* , and PTY , PNγ'x be the orthog-
onal projection operators TX\ γ —• TY, TX\ γ -> Nγ,χ . Now we prove
an extension of [15, Theorem 12.12].

Theorem 12.10. For yQ e Yg, Z e (TRX)yQ, as u->0,

(12.32)

Σ

Moreover, the following equalities hold:

Pri*VξVPξ~ =0,

(12.33)

- Pξ (VξV)Pξ+ [(V+)2]~lPξ+ (VξV)Pξ~).

Proof. As in [15, Theorem 12.12], we get (12.32) by Taylor expansion.
The first two equalities in (12.33) were already established in [15, The-

orem 12.12]. By [5, Proposition 3.5], [15, equation (11.64)], we know that
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if U e (TRY)yQ, then v\jV(y0) maps £~ into £+ . Also by [5, §§lc and

3j] or [15, Proposition 8.13 and equation (12.45)], if U G Nγ/χ R , then

The third equality in (12.33) follows from these considerations, and the
last two equalities in (12.33) were already established in [15, Theorem
12.12].

g. Uniform estimates on Pu'γ°<u • Here, we extend [15, Theorem 12.14].

Theorem 12.11. There is C > 0 such that for m e N, there exist

C > 0, r e N for which if u e]0, I], yQ e Yg, Z,Z' e Λ^/Λ-.R.V

\Z\,\Z'\<εβu,then

{\ + \P rs'rZ\) exp(-C|Z - Z I ).

Moreover, for M > 0, m e N, ίΛere exύίs C" > 0 5MCΛ ίΛαί for u e
]0, 1], yQe Yg, we have

(12.35) sup
dzadz'

/ We will assume that Γ G]0 , 1]. The general case will follow by
a scaling argument. Given uQ e]0, 1], the inequality (12.34) is trivial for
u>u0. Then (12.35) follows from Theorem 11.14 for Zo = 0.

Also we use inequalities (11.43) with Zo = 0 and T replaced by T/u.
Clearly if Z e Nγ ly w v , then

(12.36) -dX(uPNγ'xY, Z) < -dX(uZ, Y) + C\PNγ*ιγZ\.

Moreover, by construction,

(12.37) (T/u)dX(uPNγ'xZ, Y) = T\PNr/xZ\.

From (11.43), (12.36), (12.37), we deduce that given m e N, there exists
C' > 0 such that if u e]0, 1], y0 e Yg, Z, Z' e Λ Y ^ R , ^ , |Z|,

|Z'| <e/8«, then

(12.38) V + \PNr'xZ\)m\P3

u;
y

τ%(Z,Z')\

< c\\ + \p\'γz\)m(\ + \z\ + |z'|)2/,
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which together with (11.38) gives (12.34). Hence the proof of our theorem
is completed.

h. Proof of Theorem 12.3. Clearly g~ι(yQ, Z) = (y0, g'ιZ). Also if
Z e Nγ .χ, then

' 2 1 N 2 > c\pN*i**z\2

> C\P Y*'YZ\ .

Using Proposition 12.7, Theorem 12.11, and (12.39), we get (12.24).
The obvious analogue of [15, Theorem 12.16] still holds, for the same

reasons as in [15]. As in [15, equation (12.120)], we find that as u —> 0

(12.40) Pl

u £° -• Qy° exp(-( V*)? ) in the sense of distributions.

By the uniform bounds of Theorem 12.11, we deduce from (12.40) that
as u —> 0,

(12.41) " ^ ( ' ) β ? ( '
uniformly over compact set on (TΏX)Λ) x (TΏX)Λ, .

From Proposition 12.7 and (12.41), it follows that as u —> 0, for Zoe
NYg/X,R,y0>

(12.42) -, {-ifmY'{Ίτs[NHgQ?μg-ιZ0, Zo)]

xTr[gexp(-(V")Jo)]}max,

which is equivalent to (12.23).
The proof of Theorem 12.3 is completed.
Remark 12.12. If Z , Z' e Nγ l γ Ώ v , then

(12.43) 1 + I P ^ Z ' l < (1 + |P^ y ^Z|)(l + \Z - Z'|).

So (12.34) can be made symmetric in Z , Z ' . Also the same arguments
as in Remark 11.18 show that in Theorem 12.11, the weighting factor
(1 + \PNYi*Z\ym can be replaced by exp(-C"|P^/*Z| 2 ), with C" > 0.

XIII. The analysis of the kernel of gexp{-(uDx + TV)2)

in the range we]0, l ] , T > \ju

The purpose of this section is to prove Theorem 8.8. Note that for a
fixed u G]0, 1], inequality (8.22) follows from Theorem 8.4. So the whole
point of Theorem 8.8 is to get uniformity for u E]0, 1]. This section is
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the obvious extension of [15, §13] to the case of a nontrivial group G.
As in [15], we first show that the proof of Theorem 8.8 can be local-

ized on a tubular neighborhood of Y. Then as in [15], using the finite
propagation speed, we show that the proof of Theorem 8.8 is also local
on X. In our context, this allows us to localize the proof on an arbitrary
open neighborhood of a point in X , and ultimately to localize the proof
on an arbitrary open neighborhood of a point in Y . Once this reduc-
tion is done, we use the techniques of [15, §13] together with the finite
propagation speed, which allows us to establish the Gaussian decay of the
rescaled heat kernel in directions normal to X . This argument of finite
propagation speed is essentially related to which we did in §§11 and 12.

This section is organized as follows. In part a, we show that our problem
is localized globally near Y. Part b contains a reduction of the proof
of Theorem 8.8 to a local problem on X. We construct a holomorphic
function λ e C ^ Fu(λ) e C, and replace exp(-(uDx + TV/u)2) by
Fu({uDx + TV/u)2). Part c describes various properties of Fu(λ) as |λ| ->
-hoo.

Parts d and e construct a coordinate system and a trivialization of
A(Γ*(0>1)ΛΓ)Θί near a given y0 e Yg, and replace X by (TRX)y^ and

(uDx + TV/u)2 by an operator ^'/° acting on (TRX)y .

In part f, we rescale the coordinate ZQ e (TRX)y , and also use Get-

zler's rescaling on certain Clifford variables. The operator £fu '/° is then

changed to -S*3//0.
Parts g, h, i summarize very briefly the content of key subsections of

[15, §13], whose results can be used here almost without any change. Part
j establishes estimates on the kernel of Fu{2fu /°). Finally in part k we
prove Theorem 8.8.

Let us again insist on the fact that we use many results of [15, §13], and
that in particular part of the algebra and the functional analytic machine
were already developed in [15].

We use the notation of §§11 and 12.
a. The problem is localizable globally near Y. As in (12.4), we have

the formula

(13.1)
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Proposition 13.1. For any a > 0, there exist c > 0, C > 0 such that
for χ,χ' eX, dx(x, Y)>a or dx{x , Y)>a, and we]0, 1], T> 1,
the following inequality holds:

(13.2) |f>U i r / M(x,x') |

Proo/ As in (12.7), we have the inequalities

( 1 3 3 ) \Pu.T/«(X>X')\ Z \Pu,T,u(X>X)\l/2\Pu,T/u(X'>X')\l/2

Assume that dx\x, Y) > a. By [15, equations (13.3), (13.4)], there is
c> 0, C > 0 such that for u e]0, 1], T > 1,

(13.4) \Pu/Γ/u(x,x)\<cexp(-CT/u2).

Also, since Γ > 1,

( 1 3 5 ) \Pu,T,u(X> > X')\ ^ \Pu/VT,VT/u(X'>X')\-

Moreover by (12.9), there is C > 0 such that for any s €]0, 1], x e X,

(13.6) \PsJ/s(x',x')\<C/s2dimX.

From (13.5), (13.6), we deduce that

(13.7) \PuT/u(x',x')\<C(T/u2fmX,

which together with (13.3), (13.6) gives (13.2). Hence the proof of our
proposition is completed.

Remark 13.2. For ε > 0 small enough, we define the tubular neigh-
borhood %{Y) of Y in X as in Remark 11.8. By (13.2), we find that

(13.8) <cexp(-CΓ).

It is now clear that to prove Theorem 8.8, we only need to show that there
exist C > 0, δ e]0, 1] such that for u e]0, 1], T > 1, we have

(13.9)
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b. Finite propagation speed and localization. Take ε0 > 0 small enough
so that %ε (Y) is a tubular neighborhood of Y in X. Recall that a > 0

is the injectivity radius of (X, h ). Let & be the injectivity radius of

(Y,hτγ).
We fix ε e]0, inf(εo/2, a/2, b/2)]. Let a be a positive constant, whose

precise value will be determined in § 13 e.
Let / be a smooth even function defined on R with values in [0, 1],

such that

, n i m /(0 = l for | / |<α/2,
l l 3 1 U j = 0 i f | ί | > α .

Set

(13.11) g(t) = l-f(t).

Definition 13.3. If u e]0, 1], α G C, set

(13.12)

Gu(a) = / exp
J — oo

Then

(13.13) exp(-a2) = Fu(a) + Gu(a).

Since / is even, as in [15, §13 b], we see that Fu(a), Gu(a) are even

functions, which take real values on R. Moreover Fu and Gu lie in the

Schwartz space S(K), and so, as in [15], Fu{uDx + TV/u) and Gu{uDx +

TV/u) are trace class operators.
First we extend [15, Theorem 13.4].
Theorem 13.4. There exist c > 0, C > 0 such that for u e]0, 1],

T>\,

(13.14)

Proof. The proof of our theorem is essentially the same as that of [ 15,
Theorem 13.4]. Of course here we use the arguments of §9 instead of [15,
§§8 and 9]. In effect, we find that

NHgGu[uD +-V )\--dimNγ/χχ (η)Gu(0)
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\y)] - Trs[Nθ

HgGu(uDY)]
(13.15)

By [15, Proposition 8.4], Λ^ = 5 dim Nγ/χ . Since Gu(a) is an even func-

tion, it is a holomorphic function of a2. By an analogue of the McKean-

Singer formula [25], we obtain that for 1 < j < d,

(13.16) T

which together with (13.15) thus gives (13.14).
Remark 13.5. By (13.13), we get

(13.17) Fu(0) + Gu(0) = 1.

In view of Theorem 13.4 and (13.17), we see that to prove Theorem 8.8,
we only need to show that there exist C > 0, δ e]0, 1] such that for
«€]0, 1], T>\,

(13.18) Ίτs Ή**. (uDx + I - I dim Nγ/χχg(η)Fu(0)

Since /(/) vanishes for |/| > a,

(13.19) Fu(a) =

In particular

u(a) = J"1" exp {ity/ϊa) exp ί ̂ - J /(«

(13-20) ,w« / / s τ

- L,exp {"^2 iuD + -« ( )
Since / is even, (13.20) can be rewritten in the equivalent form

d ,

(13.21)

= / cos (
J-a/u \

tVΪ =L ..

Let Fu(uDx + TV/u)(x, x) (x, x e X) be the smooth kernel associ-

ated to Fu(uDx + TV/u) calculated with respect to dυx(x')/(2πfmX.
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By using general results on hyperbolic equations [16, §7.8], [30, §4.4],

we find that for t e R, x e X, h e (Λ(Γ*(0) ι)X)®ξ)x,

(13.22) suppcos (ty/2 uDx + ϊ-vΐ\ hδ{x} e Bx{x, uή.

F r o m ( 1 3 . 2 2 ) , w e c o n c l u d e t h a t i f x e X, x e X, a n d dx(x, x)>a,
t h e n

( 1 3 . 2 3 ) Fu(uDX + TV/u)(x,x') = 0,

and moreover, given x e X, Fu(uDx + TV/u)(x, •) only depends on the
restriction of uDx + TV/u to Bx(x, a).

Clearly

-v) (g-
lχ

u VJ {g x,

[
- ί~ jχχ 5 [HgFu

In view of (13.23), (13.24), we obtain

dvχ{x)

{2πfmX '

which thus indicates that the analysis needed in the proof of (13.18) lo-
calizes near Xg.

Recall that by (6.9), we have the exact sequence of holomorphic Her-
mitian vector bundles on Y

(13.26) F : 0 - Nγ ,„ Θ Nγ l γ -» Nγ ι y -> N -» 0.
gi g gi Igi

Moreover Nγ ly and TVy /γ are mutually orthogonal in Nγ l γ . As usual,
\g' g gi ιgi

we identify TV (as a smooth vector bundle) with the orthogonal bundle to

Nγ j X Θ TVy /γ in TVy ,χ . So now we have an identification of smooth

vector bundles

(13.27) ^Yg/x ~ ^Y

gl
χ

g

 φ ^Y

g/
Y Φ ^'

Take yQ e Yg . If Z o G ( ^ R ^ ) ^ , we write ZQ in the form

(13.28) ° ' , R ^^°' ^
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If y e Y, U e {TRY)y, recall that t e R -+ yt = expert/) e Y is

the geodesic in Y such that y0 = y, dyjdt\ t=0 = C/. If F e iVy/Λ, R ,

we still denote by F G N y / ^ R expr(C/) the parallel transport of V with
p

respect to VNγ'x along t e [0, 1] -^ yr e F.
For ε > 0 small enough, set

(13.29) K = {(yo>zo)£NYg/x,R> \PNγ'/yZ0\<ε,

We identify (y0, Zo) e ^ ε with exp* p , (P»rg/γZ)(PNγ/x

Let fc(y0, Zo) ((y 0 , Zo) € ^ / ; , ) R ) 5
0 k'(yo,z£) ((

be the smooth functions denned by

dυχ = k(y0, Z0)dvYt(y0)dvN^χ(Z0)

dvγ = k'(y0, Z'ϋ)dvγ (yo)dv (Z'o)

Then k(y0, 0) = 1, kf(y0, 0) = 1, and k' is the restriction of k to
Nγ ιγ R . Clearly,

γ

(13.31)

r

zoesYg/x,R

|/VyZ0|<ί/8«

x Tr

( AT uPN

y0, uPN^Z0 +In the sequel, we always assume that given ε > 0, a > 0 is chosen small

enough so that if x e X, dx{g~ιx, x) < a, then dx(x, Xg) < ε/16,

and if y e Y, dγ(g~ιy,y) < α , then dY(y, Yg) <ε/16.
We state the obvious extension of [15, Theorem 13.6].
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Let Fu(uDY)(y, y) be the smooth kernel associated to Fu(uDY), with

respect to the volume element dvγ(y)/(2π)άimY .
Theorem 13.6. // ε E ] 0 , inf(βo/2, a/2, b/2)}, a €]0, ε/S] are small

enough, there is C > 0 such that for any m e N, there is Cr > 0 for
which if u €]0, 1], T > 1, y0 e Yg, Zo = (Z, Z', Z) e Nγ/XRyQ,

\Z\<εy/T/Suf \Z'\<ε/&u, \Z\ <εy/T/&u, then
(13.32)

YeIX

Tr. NHSFU( UDX

+

< C'(l + | Λ ' ^ Z 0 | ) w e x p ( - C | Λ ^ Z 0 | 2 ) .

ΓAere exist C" > 0, J' e]0, 5] 5MCΛ ίΛαί wwί/er the same conditions as
before, we have

(13.33)

1 u V*

(2π)άimX jάimNγιχ

*Tr, K*/;

yQ,uP

- M
dimΛ^v dimN

γ/χ
π d i m Λ ŷ/A,

xΊτs[gFu(uDY)(g \y0,

2 (2π)

-0)' 0Ό' M /

d i m K

< C"/T*'.
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Proof. The remainder of this section is devoted to the proof of Theo-
rem 13.6.

Remark 13.7. We define the open tubular neighborhood ^ε(Y ) in X
as in Remark 11.8. From (13.30), (13.31) and Theorem 13.6, it is clear
that there exists C > 0 such that for u e]0, 1], T > 1,

dimNγ/χ r γ _, dvγ(y)
W Ύ r [ g F ( u D )(g y y ) ] f

...i,,,,/1"'1*^ ) i g y'y)\lπ)dimY

C

Applying Theorem 13.6 to the case where Y = φ yields

(13.35)

Using the finite propagation speed again, we obviously see that

(13.36) gFu(uDY)(g-iy,y) = 0 if dY(g'ly, y) > a.

If dγ{g~ιy,y)< a, then dY(y, Yg)<ε/\6 and so ye%SeβnY. There-

fore for 1 < j <d,

(13.37) / ττs[gFu(uDr^(g-ιy,y)]-^^?=Ίτs[gFu(uDr>)].
J%fεβnY (2π)

Finally, the same arguments as in (13.16) show that for 1 < j < d,

(13.38) τrs[gFu(uDYη] = χg(η\ Yj)Fu(0).

By (13.34)-( 13.38), we arrive at (13.18), and the proof of Theorem 8.8 is
completed.

c. The function Fu{a) as a function of a2 . The following result is
elementary and was proved in [15, Proposition 13.8].

Proposition 13.8. For c > 0, m e N , ra'eN, there is C > 0 such
that for ue]0, 1],

(13.39) sup \a\m\F^ml)(a)\ < C.
aec

\lma\<c
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Since Fu(a) is an even function of a, there exists a unique holomorphic

function Fu(a) such that

Fu(a) = Fu(a2).

Recall that for c > 0, F c c C was defined in Definition 11.16. The
next result was proved in [15, Proposition 13.10].

Proposition 13.9. For any c>0f m G N, m ' e N , there exists C > 0
such that for ue]0, 1].

(13.40) sup |#| \F \Ci)\ < C.

d. Λ« orthogonal splitting of TX and a connection on TX. Now we
follow [15, §13d]. In [15], near Y, a smooth orthogonal splitting

(13.41) TX= TX1 φTX2

is defined, which, on Y, restricts to the smooth splitting

(13.42) TX\γ = TYθNγ/χ.

By [ 15, Definition 13.11 ], the splitting (13.41) is obtained by parallel trans-
port along the geodesies normal to Y of the splitting (13.42), with respect
to the connection Vτx .

Also a connection °VTX = °VΓ*' Θ °V™2 on TX = TX1 Θ TX2 is
constructed in [15, §13d] by projecting orthogonally Vτx on TX1, TX2 .
For details, we refer to [15].

Let °v Λ ( r ( ° l )* } be the connection induced by °V™ on A(T*{0J)X).

e. A local coordinate system near y0 e Y and a trivialization of

A{T*{0'ι)X)®ξ. Take y0 e Yg, and recall that Yg is totally geodesic in

Y. So if Z " e (TRYg)yQ, then t-*yt = expJo(ίZ") e Yg is the geodesic

in Yg such that y\ , = 0 = y0, dy/dt\ , = 0 = Zn .

If Z " G ( Γ R r ) v , Z ' G Λ ί y / y R . we still denote by Z' G

ΛΓy / χ R eχpy (Z,, the parallel transport of Z'o along the curve / G [0, 1] —•

exp^ {tZ") with respect to the connection V V** e V V r e VN .

If y G 7 , Z G (TRY)y9 Z' G NY/X9Rty9 we still denote by Z ; G

^γ/x,R,eχpγ(Z) ^ e Parallel transport of Z' with respect to V ^ ^ along

the curve t e [0, 1] -
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Ultimately, if Zo e (TRX)y , \Z0\ < ε, we identify Zo with

t G [0, 3]-> tPTY*Z

PTY'Z0 + (

PTYZ +(t
r z,0 -t (i

0<t < 1;

ί-i)pVz0,

•_2)P^Z0,

1

2<

<

<

< 2

: 3 .

y
Let k"(Z0), Zo € (TRX)yo, \Z0\ < ε, k"\z'Q), Z'o e {TBtY)^ , \Z'Q\ <

ε be the functions defined by

(13.43) dvχ(ZQ) = k"(Z0)dvτχ(Z0), dvγ(Z'o) = k'"(Z'0)dvTY(Z^).

Then one easily verifies that if Zo e Nγ ,x R , Z^ e Λ̂ y , y R , then

(13.44) k"(Z0) = k(y0, Zo), k'"(Z'Q) = k\y0, Z^).

Take Z o e (ΓRΛΓ)yo. We identify (TX)Z<>, A(T*{O'ι)X)Zo (resp. ^ Z Q )

with TX,, , Λ(Γ* ( 0 > 1 )Z),, (resp. «*„ ) by parallel transport with respect
•M) " θ " θ

to the connection °VTX , o v Λ ( r { ° '" X ) (resp. V{) along the path

(13.45)

As in [15, §13e], we observe that for 2 < / < 3, the parallel transport
with respect to V coincides with the parallel transport with respect to
Vτx. Also note that for 2 < t < 3, this trivialization is essentially the
one we considered in §9.

If U G {TRX)yQ, Zo G {TRX)yQ, let °τU{Z0) be the parallel transport

of U along the curve (13.45) with respect to \ T X .
Let a G R -* y(α) G [0, 1] be a smooth function such that

(13.46) y(a)=ι for α ^2>
= 0 for α > 1.

Recall that b is the injectivity radius of (Y, hTY). Set

(13.47) ME/) = y(4|C/|/3ft).

Then

= 1 if |C/|<36/8,
= 0 i f | ί/ |>36/4.

Let βj, , e2m be an orthonormal basis of {TRY)y , and ATY be the

Euclidean Laplacian on (ΓR7) .
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Definition 13.10. Let L be the differential operator on (TRX)V ,

2m

(13.49) L = (1 - μ\PTYZo))ATY + μ2(PTYZo)Σv2oτeι(PTYZo).
1

Recall that by [15, equation (8.31)] ξ~ = (AN*x®η)v . Let ev,.x, ,
so I y o

e>, be an orthonormal basis of Λ^v/K D „ , and 5ΈEnd(Λ(Γ*( ' l ϊ f )^"), ,

be given by

/—r 2/

(13.50) 5 = ¥γ- Σ c(ei)d(ei)

2w+l

Let (a, b) eR2 -> κ(a, b) e[0, 1] be a smooth function such that

( 1 3 5 r ) «(,,*).i ; fWί | o i»ιs a i .

If Zj 6 ( 7 - , ^ , set

Then

m(γ \ _ i f \pτγγ I < 0/2 \PNγ/xy I < p/2

V " ; = 0 if IP^ZJ > 3ε/4 or \PNγ'xZQ\ > 3ε/4.

Let ^ ( ^ Q ) be the open neighborhood of y0 in X, given by

% ) = { Z G ( Γ R I ) V \PTYZ\<ε/2, \PN^Z\<ε/2}.

Clearly, there exists αo(ε) > 0 such that for y0 e Yg, ZQ e Nγ,χ R ,

|Z 0 | < ε/8, the open Riemannian ball BX(ZO, ao(ε)) in X is contained
in Wε{y0). In particular 0 < αo(β) < ε/2 < b/4.

Now we fix a e]0, αo(β)] small enough so that the conditions stated

after (13.31) are satisfied. Let ANγ/χ be the Laplacian on Nvlγ Ώ , and

recall that H is the vector space of smooth sections of (Λ( Γ*(0' x)X)®ξ)
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Definition 13.11. Let -S^1 '/0, Jt*'l* be the operators acting on H ,
u, i u, i yQ

(13.54)

J?ι'y° = (1 -φ2(Z )) | U (L \ ANγl*)

+ TPξSPξ~ +^\Pξ+

Let FU{&1\τ°)(Z0, Z'o) (Z o , ZQ e (TRX)y<t) be the smooth kernel asso-

ciated to F^JT0) , calculated with respect to dυτχ{Z'ϋ)l{2π)άimX . By

construction φ is equal to 1 on B (Z o , a). Using the finite propagation

speed, for Z o , Z'o e Nγ /x R y , \Z0\ < e/8, we have

F((uDX + TV/u)2){{yn, Zn), (ya, Z'))k"{Z')
(13.55) "U . A^° °' ^° °" °'

f. Rescaling of the variable Z o α«c? the Clifford variables. Clearly if

Z o = ( Z " , Z , Z ' , Z ) e (TRX)yo, then

( 13.5 6 ) + + ( + )

For w > 0, Γ > 0, let Gu τ be the linear map h € H^ -• Gu τh e

such that if Z o e (τ

R

x)yo»then

(13.57)

Set

Let ^ j , , e2// and ̂ 2 //+ 1, ,e2mbe orthonormal bases of (TRYg)

and Nγ ,γ R respectively. Then, as in § 12 f, ^ j , . . . , e 2 w is an orthonor-

mal basis of (TRY)y . Also e2m+ι, •• , e2l still denote an orthonormal
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basis of Nvlγ B . For 1 < / < 2/', we define c(e.) as in Definition

12.6.

Definition 13.12. Let -S^3 '/0, ^ ^ be the operators obtained from

-S*2 '/0, Jίll^ by replacing the Clifford variables c(et) by cM(^) for 1 <

i < 2/', while leaving unchanged the c(ez)'s for 2Ϊ + 1 < / < 2/.

Let ^ ( ^ 3 ' / 0 ) ( Z 0 , ZQ) ( Z O , Z'O e (TRX)yQ) be the smooth kernel as-

sociated to Fu(S?l^) with respect to dvTX{Z'Q)l(2ntmX .
Proposition 13.13. For u > 0, Γ > 0, yn € yα, Z n € Λ ŷ / y B v ,

\P ZΔ < 4-, \P Y/XZQ\ < £f-f-, we have

2 dim Nγ

m a x ]0, Z 0 ) ] m a x ] .

Proof. Since ^ preserves the geodesies in X and Y and also the
connections on the vector bundles considered before, it is clear that g
acts linearly in the coordinate Z o . Thus the proof of our proposition is
the same as the proof of [15, Proposition 13.17].

g. A formula for -S^3 '/0. The discussion in [15, §13h] applies with
minor modifications. The main difference is that the Clifford variables
c(ez), 21' + 1 < / < 2m, are not rescaled, while they are rescaled in
[15]. However this just introduces fewer diverging terms than in [15]. In
particular, the analogues of [15, Theorems 13.18 and 13.19] still hold.

h. The algebraic structure of -2^3'/0 as u -> 0. The analogue of [15,
§13i] still holds. It leads to another proof of our results in §12.

i. The matrix structure of the operator <5^3'/0 as T —• +oo. For a fixed

u > 0 , the analysis of the matrix structure of -Sζ3 '/0 as T -> +oo is the
same as in [15, §13j]. Of course the rescaling on the Clifford variables,
which depends on u > 0 , is different, but this does not introduce any
extra difficulty.
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We still define the function gu Γ ( Z ) , gu(U) as in [15, Definition
13.24].

The algebra A(T^Y) splits into

d i m y «
(13.60)

Then we introduce the obvious modifications of the system of norms
I \u/ΓyQj, j = - 1 , 0, 1 of [15, Definitions 13.25 and 13.26], with re-
spect to the splitting (13.60).

Thus [15, Theorem 13.27] still holds for essentially the same reasons as
in [15]. The same is true for [15, Theorems 13.30 and 13.31]. In particular
we choose To > 1 as in [15, Theorem 13.27].

j . Uniform estimate on the kernel of Fu(^Uyτ
0) We now establish an

extension of [15, Theorem 13.32].
Theorem 13.14. There exists C > 0 such that for any m e N, there

exists C' > 0 such that if ue]0, 1], T>To,yoeYg, Z o , Z^ e (TRX)yQ,

\PTYZ0\, \PTYZ'0\ < ε/4u, \PNγ'*Z0\ < ε-£, \PN^Zf^\ < εVT/4u, then

< C'(l + \PN^Z0\)-m(l + \PTYZ0\fcxp(-C\Z0 - Z'o\
2).

There exists C > 0 for which if m eN, there exists C' > 0 such that if
H , \a\<m, ue]0, 1], Γ > Γ 0 , y0 e Yg, Z o , Z^e (TRX)yQ, then

(13.62) dzadz'a

\Z0\fexp(-C\Z0-Z'0\
2).

Proof We briefly indicate the principle of the proof of Theorem 13.14.
The bounds in (13.61), (13.62) with C = 0 are easily obtained by pro-
ceeding as in [15, proof of Theorem 13.32]. To get the required C > 0,
we proceed as in the proof of Theorem 11.14.

Take q eN, and recall that / and g were defined in (13.10), (13.11).
Set

(13.63) Fuq{a) = /^"exp (ityίla) exp ί^-j f{ut)g (£j dt.
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Then there is a holomorphic function Fu q(ά) such that

(13.64) FuJa) = PuJa2)

As in Proposition 11.17,

(13.65) sup \amF^\a)\ < C e x p ( - c Y ) .

Using the finite propagation speed, we see that there is C" > 0 such that
if |Z 0 - Zόl > C"q, then

(13.66) Fu(^)(Z0,Z^) = FuJ^)(Z0,Zi),

which together with (13.65) and the same bounds as before yields (13.61),
(13.62).

The proof of Theorem 13.14 is completed.
Remark 13.15. By proceeding as in Remark 12.12, we find that (13.61)

and (13.62) are indeed symmetrical in Zo, Z^.
Clearly, if Zo e Nγ /XyRiy , then

(13.67) g-ιZ0 -Zo = g-lPN*^Z0 - PNχ^Z0.

So there is C > 0 such that

(13.68) \g-ιZ0 -Z0\
2>C\PN^Z0\

2.

Also if Zπ € Ny , γ p , then
g' ' ' -^o

(13.69) PTYZ0 = PTYPNχ*"ίZ0,

and so

(13.70) \PTYZ0\ < \p\ι*Z0\.

Finally if Zn e Nv .„ „ , then

(13.71) PNytiχtZ0 = PNγs'xs PN*ιχ Z o ,

and so

(13.72) | Λ " « Z 0 | < I P ^ Z J .

Equation (13.32) follows from Proposition 13.13, Theorem 13.14, and
(13.68)-(13.72).
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Let Ξ̂ ° be the analogue of the elliptic second order differential operator
considered in [ 15, Definition 13.40]. The minor difference from [ 15] is that
here, only the Clifford variables c(e.), 1 < i < 2Ϊ, are rescaled, while in
[15], the Clifford variables c(ez), 1 < i < 2m, were rescaled. Because
our Clifford rescaling introduces fewer diverging terms as in [15, §13], the
analogue of [15, Theorem 13.42] still holds, i.e., for u e]0, 1], T > TQ,

(13.73) \\F(^f3^°)-pψF(Ξy°)ψ {p\\0'°τ <C/Tl/4.

The obvious analogue of [15, Theorem 13.43] still holds.
Let Fu(Ξy

u°)(U9 U') {U,Uf e (TRY)yQ be the smooth kernel associated

to the operator Fu(Ξy

u°), calculated with respect to dvτγ{Uf)/(2π)άιmY .

Using Theorem 13.14, (13.73), and proceeding as in [15, §1 lp] or as in

§11 h, we find that there exists δ' e]0, \] such that if Z o e J V y ^ R } , is

taken as in Theorem 13.16, then

^
Ί*

By (13.61), (13.68)-( 13.72), (13.74), we get (13.75). The left-hand side of

inequality (13.74) < C/T6'12, which together with (13.43), (13.61) gives

the proof of (13.33) in Theorem 13.6 as in [15, §13q]. Hence the proof of

Theorem 13.6 is completed.
This concludes the proof of Theorem 8.8, and terminates the paper.
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