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CONNECTION PRESERVING ACTIONS OF
CONNECTED AND DISCRETE LIE GROUPS

EDWARD R. GOETZE

ABSTRACT. This paper examines connection preserving actions of a non-
compact semisimple Lie group G on a compact fiber bundle and connec-
tion preserving actions of a lattice Γ c G on a compact manifold. The
results rely on a new technique that increases the regularity of sections
of bundles naturally associated to the actions under consideration.

1. Introduction

Let M be a connected smooth ^-dimensional manifold, and H a sub-
group of GL(n, R). An //-structure on M is a reduction of the full frame
bundle over M to H. If we allow H to be a subgroup of GL(n, R) ( A : ),
the subgroup of fc-jets at 0 of diffeomorphisms of RΛ fixing 0, we can
extend the notion of an //-structure to include reductions of higher order
frame bundles to H. Given an //-structure P —> M, the automorphism
group of P, Aut(P), is the subgroup of DiflΓ(Af) consisting of the diffeo-
morphisms of M whose induced action on the frame bundle preserves P.
We wish to examine relationships between a Lie group G and manifolds
M with //-structures such that G c Aut(P). Also, we are interested in
the situation where, instead of a G action, we have only Γ c Aut(P),
Γ c G being a lattice subgroup. This case deals with the issue of the rigid-
ity of the action of a higher rank lattice, an area of much recent research.
The use of hyperbolic dynamical systems by Hurder in [7], and Katok and
Lewis in [9] and [10] has produced recent results.

If we assume M is a compact manifold and G preserves a volume
form on M, then the study of the ergodic theory of the action has been a
successful technique in answering some of these questions. In particular,
we mention Zimmer's work in [15] and [16] as examples of this technique.
One drawback of this approach, however, is that the use of ergodicity
provides measurable information which is often difficult to translate into
meaningful information of a higher regularity. This information, which
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typically is represented as a section of an associated bundle to a principal
bundle over M, is often defined only on an open dense subset of M.
Hence, an additional difficulty in applying these methods is the problem of
demonstrating that such a section has completeness properties rich enough
to imply useful geometric information, for example, the section is defined
on all of M. See [17] for a discussion.

In §2 of this paper, we develop a technique that under suitable hypothe-
ses allows one to improve the regularity of this information, e.g., to pass
from the measurable to the smooth. The approach we take is to combine
elements of the theory of hyperbolic dynamical systems and the ergodic
theory of the action, in the form of Zimmer's measurable superrigidity,
with geometric considerations to construct smooth sections of bundles nat-
urally associated to M. We prove

Theorem 2.19. Let X be a compact fiber bundle over Y with fibers F.
Let G be a connected semisimple Lie group of higher rank without com-
pact factors. Suppose G acts ergodίcally on X via bundle automorphisms
preserving a volume density and a Cr connection such that the fibers are
autoparallel If the algebraic hull of a : G x X —> SL(f), the derivative
cocycle in the fiber direction, equals SL(f), then, by possibly having to pass
to a finite algebraic cover of G, there exists an abelian subgroup A c G
such that the Oseledec decomposition of TF corresponding to A is paral-
lel, Cr regular, and everywhere defined on Fχ for almost every x e X. In
particular, there exists a Cr section of the full flag bundle over T(Fχ).

Although this result assumes the algebraic hull is SL(f), this assump-
tion is much stronger than necessary, and the proof can easily be adapted
to other situations. Theorem 2.20 describes a similar result for actions of
lattices on manifolds.

The existence of these sections is often too weak to provide meaningful
geometric results. To strengthen this information we can use either of two
methods described in this paper. The first of these methods, developed
in §3, is to employ C ( r s ) Superrigidity which is a generalization of Zim-
mer's topological superrigidity [14]. Where applicable, use of topological
or C ( r ' 5 ) superrigidity allows us to conclude that sections of an associ-
ated bundle over M come from sections of the corresponding principal
bundle over M. More specifically, if P —• M is a principal bundle H
bundle, and Ev = (P x V)/H is an associated bundle with Φ a sec-
tion of Ev —> M, then topological or C ( r ' ^ superrigidity ensures the
existence of a section φ of P —• M and an element υQ e V such that
φ(m) = [φ(m), vQ]. The essential point to note is that φ possesses the
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same regularity and completeness properties as Φ. C ( r ί ) superrigidity
extends topological superrigidity in that it holds in the case where one
makes more delicate regularity or completeness assumptions on Φ . See
the definition of C ( r ' 5 ) regularity below.

By exploiting the algebraic properties of H, this section of the principal
bundle P -> M can be used to provide much stronger information about
M, and we use such a section below to classify the possibilities for M
under certain conditions.

The second technique, developed with Renato Feres, is discussed in
§4.2. Here we analyze the local holonomy of the connection, and, if con-
ditions are appropriate, we conclude directly from this information that
our original sections have originated from sections of principal bundles.
In [5], Feres uses this technique to draw similar conclusions under more
general situations, illustrating the ability to generalize the techniques to
broader situations.

The motivation for the development of these techniques was to analyze
the following geometric problems. Suppose G is a higher rank noncom-
pact semisimple Lie group with Γ c G a lattice. Let Γ act ergodically
on a compact manifold M preserving a volume density and a connection.
Does this action place any restriction on the possibilities for MΊ More
generally, let I b e a fiber bundle over Y with compact fibers F. Suppose
G acts ergodically on X via bundle automorphisms preserving a volume
density and a smooth connection. Does the G action restrict the choices
for F? If Γ is cocompact, by inducing the action of Γ to G, we find
that determining the possibilities for F restricts the possibilities for M.

We use the methods described above to obtain the following results,
which are presented in §4.

Theorem 4.1. Let X, Y, F, and G be as described above, and assume
the fibers in X are autoparallel. Let L be the algebraic hull for the cocycle
a .

(i) If L is compact, then there exists a smooth Riemannian metric g
on F with respect to which F has a transitive group of isometries,
i.e.,

F^ Isom(F,g)
Isom(F, g)χ'

(ii) If L = SL(f), where f = dim(F), then F is a torus.

Theorem 4.4. Let Γ c G be an irreducible lattice in a higher rank
semisimple Lie group without compact factors. Suppose Γ acts ergodi-
cally on a compact n-dimensional manifold M preserving a volume and a
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smooth connection. Let α : Γ x ¥ - > SL(h) be the derivative cocycle with
measurable algebraic hull L.

(i) If L is compact, Γ acts isometrically on M preserving a smooth
Riemannian metric.

(ii) If L = SL(n), and π(Γ) c SL(n) contains a lattice, where π is
the superrigidity homomorphism, then M admits a torus as a finite
affine cover.

This last theorem is a generalization of the results presented in [6] where
we no longer require the rather restrictive assumption that the connection
has bounded parallel transport.

As a simple corollary to Theorem 4.4, we mention
Corollary 4.8. Suppose SL(n, Z), n > 3, acts ergodically on an n-

dimensional manifold M preserving a connection and a volume density.
Then M admits a torus as a finite affine cover.

Since the requirement that L = SL(f) is stronger than necessary in
Theorem 2.19, the same holds true for these results. There should be little
problem in adapting these results to hold when L is any noncompact
semisimple Lie group, regardless of its type, as long as the dimension of
L is comparable to the dimension of F . This point will be addressed in
future work.

We wish to thank Robert Zimmer and Renato Feres for their helpful
conversations and suggestions.

2. Improving the regularity of sections

Throughout this section and those that follow, we assume the reader is
familiar with the elements of Zimmer's measurable superrigidity as pre-
sented in [15] and [16].

2.1. Measurable superrigidity and the multiplicative ergodic theorem.

Let X be a compact fiber bundle over Y with fibers F, dim(X) = x,
dim(F) = / . Let G be a connected noncompact semisimple Lie group of
higher rank. Suppose G acts ergodically on X via bundle automorphisms
preserving a connection and a volume density. A bundle automorphism is
a diffeomorphism of X which factors to a diffeomorphism of Y. Natu-
rally associated to this situation are two cocycles:

β.GxY -> Όiff(F), a.GxX -+ G L ( x ) .

β describes the lift of the G action on Y to X, and a is the derivative
cocycle ( x = dim(Λ')). Since the G action maps fibers to fibers, a induces
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another natural cocycle

a:GxX^GL(f),

which describes how the G action maps tangent vectors in one fiber to
tangent vectors in another fiber. We let L be the algebraic hull of a .

We shall make extensive use of the following result.
Theorem 2.1 (Superrigidityfor cocycles[15]). Suppose G is a connect-

ed semisimple Lie group, R-rank(G) > 2, with no compact factors. Let X
be an irreducible ergodic G-space, H and algebraic R-group, and a: G x
X -> H a cocycle with algebraic hull L. If LR is noncompact and center
free, then α ~ π : G —• L.

Remark^2.1. If Z^ has a finite center Z , we apply the theorem to
LR/Z, and by lifting this homomorphism we obtain a homomorphism
from a finite algebraic cover of G into LR itself (Remark 6.2 [14]). This
point necessitates the inclusion of the "up to finite cover" phrases in most
of our results.

Remark 2.2. We may dispense with the assumption of irreducibility if,
instead, we assume every simple factor of G has higher rank.

Remark 2.3. If Γ c G is a lattice acting on X as above, then the
conclusion still holds, i.e., if a: Γ x X -* H is a cocycle, there exists
π: G -+ H such that a ~ π . See Theorem 9.4.14 in [15].

We will use this theorem in conjunction with some classical results from
ergodic theory.

Theorem 2.2. Let M be a compact smooth manifold, f : M -> M a
Cι diffeomorphism, and || || the norm of some Riemannian metric on M.
Let 38 be the σ-algebra ofBorel subsets of M and let Jί be the set of all
f-invariant probability measures on 38. Then there exists an f-invariant
set B £<% such that

(i) μ(B) = 1 for every μ e Jί,
(ii) there exists a measurable f-invariant function s : B -» Z + ,

(iii) there exist measurable f-invariant functions χ. : B —• R, for i =
1 , 2 , . . ,s,

(iv) there exists a measurable decomposition TM\B = EιφE2Θ--®Es

into f-invariant subbundles, and
(v) ifxeB, K €£,-(*) N {0}, 1 <i<s{x), then

lim -
n—•ioo γi

The objects are unique and independent of the choice of Riemannian metric.
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Proof. This is Oseledec's Multiplicative Ergodic Theorem (Theorem
10.4 in [13]). q.e.d.

The decomposition is called the Oseledec decomposition, the functions
{χt} are called the Lyapunov exponents, and B is called the set of regular
points.

If A consists of a family of commuting C1 diffeomorphisms, we can
choose the Oseledec decomposition to be common to all elements of A
on some conull set Λ. The Lyapunov exponents then become functions
Xf:>4->Fuiic(A,R).

We wish to combine superrigidity and the Multiplicative Ergodic The-
orem to yield information concerning the Lyapunov exponents in the di-
rection of the fibers in X. Let TF c TX consist of the subbundle of
vectors tangent to the fibers in X. Assuming L is not compact, super-
rigidity yields a measurable trivialization of TF = X xR^ such that the
G action becomes

g(x,V) = (gx,π(g)V),

where a ~ π : G —• SL(f). For an abelian subgroup A c G, let {χ^a)}
be the set of Lyapunov exponents corresponding to the Oseledec decom-
position

the tangent space through the fiber at x e X.
Proposition 2.3. The Lyapunov exponents for a e A are {log |Λf-|},

where at are the eigenvalues for π(a) e SL(f).
Proof See [6]. q.e.d.
We now assume the fibers in X are autoparallel with respect to the given

connection [11], i.e., we need to assume the restriction of the connection
to a fiber yields a connection. For a vector V € TFχ, let Pv denote
the parallel translation along the geodesic exp(tV), t e [0, 1], provided
that the geodesic is defined for all such t. Also, recall that χ+(a, Z) =

Lemma 2.4. There exist constants C and K such that if V e TFχ and
<K,then P V H < C .

Proof Let l(t) be a geodesic in F starting at x . By continuity of
the connection, for any V e TFχ, P^{V) is a continuous function in
/. Hence, by continuity of the norm on F, f(t) = \\Pnt)(V)\\ is also
continuous.

For a fixed C > 1, continuity of / implies for every x e F, there
exists a neighborhood U of x such that for any geodesic generated by
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V e TFχ , starting at x and staying in Ux , we have | | JP F | | < C . Using the
local diffeomorphic property of exp, there exists Kx such that for every
V e TFχ with | | F | | < Kχ9 exp(tV) lies in Ux for t e [0, 1]. For such
V, we thus have | | P F | | < C . Note that Kx varies continuously with x.
Using compactness of F we can choose a K > 0 such that K < Kχ for
every x e F . The lemma now follows, q.e.d.

By the usual arguments, the previous result is independent of our choice
of norm.

Proposition 2.5. Fix aeA and suppose x, y e A and l(t) = exp(ίZ)
for t e [0, 1] is a geodesic from x to y with χ+(a, Z) < 0.

(i) IfVe Fj(x), then Xj(a, P,(F)) < Xj(a, V).
(ii) If V e Fj(x) where χ.(a, V) is minimal then Pt{V) e Fj(y), i.e.,

Pι preserves the maximal contracting direction.
(iii) // χχ(a) < χ2{a) < < χf(a), then Pι preserves the flag Fχ c

Fχ Θ F2 C C Fχ Θ Θ Ff.

Proof. Since the G action preserves the connection, we have

Note that an o l(t) = an o exp(^Z) is a geodesic at an(x) in the direc-
tion Taχ(Z). Since χ+(a, Z) < 0, {\\Taχ(Z)\\}n>0 is bounded, and, in
fact, converges to 0. Thus, there exists N such that for every n > N,
| |Γα"(Z)| | < K, where K is as in the previous lemma. Therefore, there
exists C > 0 such that

| | ; ( ) | | | | < ( ) | | VΛ > 0.

Thus,

lim ilog| |Γα;oi>(F)| |< lim Uog{C\\Tan

χ{V)\\) = χ{a).
n—*oo n y n—>oo n J

This proves the first claim. The second statement follows as minimality
of χ assures us that equality is achieved, and that P7(K) e F.(y). The
third claim is deduced immediately from the first, q.e.d.

Remark 2.4. Without mention, we have made substantial use of our
assumption that the fibers are autoparallel. This assumption assures us
that parallel translation along a path in the fiber takes tangent vectors to
the fiber to tangent vectors to the fiber.

If l(ή = exp tZ is a geodesic and there exists aeA such that χ*(a, Z)
< 0, then call / a contracting geodesic for a.
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Using Fubini's theorem, there exists x e A such that AnFχ is conull
in F . We now fix such an x .

Proposition 2.6. Let R and T be the curvature and torsion tensors of
the connection on Fχ, and let X{ e Ft(x). Then

(i) (a) R(Xχ,X2)X3 = 0for
(b) R(XX, X2)X3 has Lyapunov exponent χλ + χ2 + χ3.

(ii) (a) T(Xl,X2) = 0,or
(b) T(Xχ, X2) has Lyapunov exponent χχ + χ2.

Proof. Let W = R(X{, X2)X3. We have

Hence,

= ]og{\\{R(TaH

χXι, Ta"χX2))(Tan

χX3)\\)

Thus,

(1) ^ x

Replacing a with b = a~ι, we obtain

(2) Hm i

and if W Φ 0, then

(3) ^ x

i

Combining (1) and (3) and using regularity of x e Λ yield

A similar argument works for T as well.
2.2. Construction of Cr sections. Throughout this subsection we as-

sume that the fibers F in the bundle X over Y are / dimensional ( / >
3), and that the algebraic hull L = SL(f, R). Using superrigidity, by
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passing to a finite (algebraic) cover of G, we may assume a ~ π : G -> L
is a surjection. If D is the set of diagonal matrices in SL(f, R), then we
may choose A c G such that π(A) = D. Thus the eigenvalues for π(a)
are just the elements along the diagonal. By Proposition 2.3, we have

Lemma 2.7. Let { χ j be the set ofLyapunov exponents corresponding
to the A action. Then the following hold:

(i) If x eA and TFχ = φF^x) is the Oseledec decomposition corre-
sponding to the A action, then dim(F/(x)) = 1 for all i.

(ii) If σ is a permutation on the set of f elements, then there exists
aeA such that

Xσ(l)(a) < Xσ(2)(a) < * * * < 0 < χσ{f)(ά).

Recall we have x e X such that Fχ Π Λ is conull in Fx. Since the
fibers are autoparallel, the connection on X yields one on Fχ. Let R
and T be the curvature and torsion of this connection.

Proposition 2.8. R = 0 and T = 0.
Proof L e t i , j , k £ { 1 , 2 , ••• , / } . I f R ( X . 9 X . ) X k φ 0 , t h e n χ . +

Xj + Xjc is a Lyapunov exponent, and hence, must be χι for some / e
{1, 2, , / } . Using Lemma 2.3, this corresponds to an algebraic rela-
tion among the a^s for every π(a) e D. In other words, we have that
aiajak ~ aι f°Γ a ^ diagonal matrices in SL(f). However, no such rela-
tion exists for all matrices in D. Thus, R(X(, Xj)Xk = 0 ^ 0 Γ a ^ ί j ' » ^
Hence, R = 0. A similar argument shows T = 0. q.e.d.

If x e A and TFX = 0 f = 1 F z ( x ) , let W.(x) = 0 J W j .(χ) be a hy-
perplane in TFχ (so Wj(x) has constant j-coordinate), and let Vj(x) =
QXΌB.(X) where exp is defined. Since R, T = 0, in some neighbor-
hood U of x we may assume that U is a flat affine space, and that exp
is the identity map. For x e Λ, let {X^x)} be a basis of TFχ with

Lemma 2.9. 2>ί JC € Λ Π U and suppose z £ VfflnAnU. Then

Fj(x) is parallel to Fj(z) for j ψ i .

Proof Pick aeA such that at > 1 and a is minimal. Then any
vector in Wχ{x) is contracting for α, and since a- is minimal, parallel
translation along any geodesic from x to z in V.(x) maps Fj(x) to
^ . ( z ) . However, the parallel translation in U is just ordinary translation,
and so Fj(x) is parallel to Fj(z).

Lemma 2.10. Suppose l(t) = exptX^x) is a geodesic in U from x
through z € Λ. Then Fj(x) is parallel to Fj(z) for all j =1,2,-~ , / .
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Proof. Pick k Φ i. Then l(ή lies in Vk(x), so by Lemma 2.9, Fj(x) is
parallel to F (z) for all j φk. It remains only to see ^ ( x ) is parallel to
Fk(z). However, we repeat the same argument using I Φ i,k (possible
since F is at least 3 dimensional), and conclude Fk(x) is parallel to
Fk(z). q.e.d.

We define a geodesic of the form l(t) = exptX^x) for x e Λ to be a
primary geodesic.

Remark 2.5. The upshot of this lemma is that if we can join two regular
points by a primary geodesic, then the entire decomposition is preserved.
If we can connect enough of the regular points together in this fashion
(enough, of course, meaning a conull set), we will have established that
the Oseledec decomposition is preserved by parallel translation. From
there, we simply define, via parallel translation, a decomposition on all
of Fχ , which is consistent with the Oseledec decomposition. Of course,
we need to demonstrate that we can join enough regular points via these
primary geodesies.

2.2.1. Ultraregular points. We now wish to establish the existence of a
conull set of regular points with some special properties.

Proposition 2.11. There exists a conull set Λo c Λ such that if x e Λo,
then almost every point of exp tXt(x) lies in AQ for all i = 1, 2, , /
and all t e R .

We begin the proof by noting that we need only show the proposition
holds in a neighborhood of every point. Throughout this section, then, we
fix an x e Fχ, and a neighborhood U of x which we may assume is a
flat affine space.

Lemma 2.12. Suppose x,y e UnA. If V.(x) Π V^y) Γ\U Φ 0, then
Vi(x) = Vi(y)forany / = 1 , 2 , -•- , / .

Proof P i c k a e A s u c h t h a t a{ < 1 . L e t z e V.(x) Π Vt(y) Π U.
Then there exist a geodesic lx(t) = exp(ίZj) with Zχ e Wt(x) joining
x to z , a geodesic I2(t) = exptZ2 with Z 2 e Wt(y) joining y to z ,
and a geodesic I3(t) — exptZ3 joining x to y. Since Z{ and Z 2 lie
in Wt(x) and Wt{y) respectively, both /^s are contracting for a. Hence
||Tan

χ(Zχ)||, ||Tan

y{Z2)\\ -> 0 exponentially as n -> oo. By the triangle
inequality, ||Tan

χ(Z3)|| —• 0 exponentially as n -> oo. Since W^x) con-
sists of vectors with exactly this property, Z 3 € Wt{x), and therefore,
Vi(x) = Vi(y). q.e.d.

A Lipschitz Function. We now wish to view Vχ : U Π Λ —» {Hyperplanes
in U }. Choose a fixed x0 € ί/ Π Λ and a basis for U at x 0 . Use this
basis to define a norm, so that for r > 0, 5Γ(JC) = {y | ||JC - y\\ < r} . Then
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there exists a > 0 such that Ba(x0) c U. Let Uo = Ba/4(x0).
Let L = exp tXχ (JC0) . Then L intersects Vχ (x) transversally for all

x G Ba(x0) if not, then L c Fj(x) and therefore x0 e Vχ(x) Π Fj(x0)
contradicting the previous lemma. For all x e Ba(x0), define G(x) to be
the intersection of Vχ (x) with L, and let θ(x) be the angle between L
and the plane Vx{x). Since L is transversal to Vχ(x), Θ(JC) > 0.

Lemma 2.13. There exists θ > 0 swcA ί/zαί θ(x) > θ for all x €
UonA.

/ Choose xn, x e U0Γ\A such that xn —• x. If θ(x π ) ŷ  θ(x),

then there exist e > 0 and a subsequence jcn such that xn —• x , but
|Θ(JCΠ ) - Θ(JC)| > 6 . Thus for large nk , F ^ ) n KJ(JC) Π U Φ 0 , con-
tradicting the previous lemma. So θ(x) is continuous on U0Π A, and
therefore, for θ > 0, θ " 1 (θ, π/2] is an open set in Uo Π Λ. By shrinking
£/0 if necessary, the lemma follows.

Proposition 2.14. G : Uo Π Λ —> L is Lipschitz. More specifically,

\G{x)-G{y)\<^\\x~y\\.

Proof. Let x, y e Uo Π Λ so that ||JC - y\\ = 6 < α/2. If x , ^ e L,
then |G(JC) - G(y)\ = \\x - y\\. So, we assume that x £ L. Let P be
the plane containing L and x , and for every z, let l(z) be the line of
intersection of Vχ{z) and P . Note, then, that θ(x) is less than the angle
between L and l(x) in P . Let 2?0 = t / o n P , a circle with radius a/4,
since L c P, and L is a diameter of Uo.

Since Vχ(x) and Fj(y) do not intersect in [/, l(x) and /(y) do not
intersect in Bo. Let /? be the intersection of the line perpendicular to
l(y) through x, and let r =\x - R\. So r < e .

Assume that all lines are defined on all of Rn . If l(x) and l(y) never
intersect, then

So assume l(x) and /(y) intersect at the point S. Let C be the point
of intersection of l(x) and the line perpendicular to l(y) through G(y),
and let γ = |C - G(y)|. Also, let D be the point on l(x) closest to G(y)
and let (J = \D - G(y)\.

Exploiting the similarity of the triangles SCG(y) and SxR yields

U e(\S-R\ + \R-G(y)\) ( \R-Gjy)\
~ \SR\ "H

(

\S-R\ ~ \S-R\ " H \S-R\
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Now,

\R - G(y)\ <\R-x\ + \\x - y\\ + \\y - G(y)\\ < a/2 + a/2 + 2a = 3a

by Lemma 2.15 below. Since R e Ba/4(x0) and S <£ Ba(x0), \S - R\ >
a/2. Thus,

<5<€

Finally, using the right triangle G(x)DG(y) we have

as claimed, q.e.d.
The proof shows that G is uniformly continuous on Uo Π Λ. Hence,

we can extend G to a continuous and Lipschitz function on all of Uo.
Lemma 2.15. In the notation from Proposition 2.14, \x - G(x)\ < 2a

for all xe C/onΛ.
Proof If l(x) and /(JC0) do not intersect in P, then l(x) and l(x0)

are parallel, and since L is perpendicular to Vχ (x0), the closest point on
l{x) to l{x0) is G(x). But \x - xo\ < a/4, so |JC0 - G{x)\ < a/4, and
therefore |JC - G(JC)| <\X- XO\ + |JC0 - G{x)\ < a/2.

Suppose now that l(x) and l(x0) intersect at S. Then \x0 - S\ >
a. Let A: be the line tangent to BQ through 5 such that if K is the
intersection of k and L, then G(x) lies on L between x0 and K. Let
J be the intersection of k and Bo. Since x0 is the center of Bo and k
is tangent to Bo, the triangles x0JK and xo/»S are both right triangles.
Note |χ0 — / | = α/4. Hence,

Thus,

\xo-J\

By similar triangles, we have

But,

1/4 ^ 1
3/4 3"
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and as G(x) lies on L between x0 and K, this implies |JC0 - G(x)\ < a,
from which we conclude

\x - G{x)\ <\x- xo\ + |JC0 - G(JC)| < a/4 + a < 2a,

which proves the lemma.
Theorem 2.16 (A type of Fubini theorem). Consider a Lipschitz func-

tion f : Rm -> Rn with m > n. If U is a Lebesgue measurable set,
then

[ Jnf(x)dJ?mχ= [

where Jϊ?n is n-dimensional Lebesgue measure, %fm is m-dimensional
Hausdorffmeasure, and Jnf{x) = \\/\nDf(x)\\ is the n-dimensional Jaco-
bian of f at x (this is well defined as Lipschitz functions are differentiate
almost everywhere [4, 3.1.6]).

Proof This is 3.2.11 from [4]. q.e.d.
By applying this theorem, we see that a type of Fubini's Theorem re-

sult holds, and we may conclude that almost every point on almost every
^i(y)Πί/0 lies in Λ.

Lemma 2.17. Let S c {1,2, , / } , Ws(x) = Γ\ieSW.(x), and
Vs(x) = exp Ws(x). Then the following hold:

(i) There exists a conull dense Λf c Λ such that if x e Λz then almost
every point in V.(x) lies in Ar

(ii) There exists a conull set A 5 c Λ such that if x e As then almost
every point of Vs(x) lies in As.

Proof The first statement has been proven above. To see the second
statement, assume that S = {/, j} . Note that each Vέ(x) is a hyperplane,
and that by Lemma 2.9, V.(x) Π Vj(x) are parallel hyperplanes of codimen-
sion 2 for all x. Hence, the usual Fubini's Theorem applies. Similarly,
for general S, the Fs(x) are also hyperplanes of higher codimension, and
so the usual Fubini's Theorem still holds.

Proof of Proposition 2.11. Let Λo = f]s As where

q.e.d.
Proposition 2.18. Fix x e AQ. Then there exists a conull set Aχ c Λo

such that for every y e Aχ there is a path consisting of broken primary
geodesies from x to y.

Proof Pick a neighborhood U of x, which we assume is a flat affine
space. Since x e Λo, the set Γj = {exptXχ(x)}teR Π Λo is conull in
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{exptXι(x)}i£R. By Lemma 2.10, if y e Γx, then X.(x) is parallel to

Xt{y) for all i, and therefore, exptX2(y) lies in the plane f|y=3 Vj{χ) f°Γ

all y G Γ j , ί € R. By Fubini's Theorem, the set

is conull in f|f=3 Vj(x) n U Further, for every z e Γ2 , Xt(x) is parallel
to Xt(z) for all /. By Fubini again,

is conull in f| f=4 ^(Λ:) Π C/. We can continue constructing these Γz's for
all i = 1, 2, , / . Let Aχ = Tf. Then Aχ is conull in U, and by
construction, there exists a broken primary geodesic from x to y for any

If V is another neighborhood of a flat affine space which intersects U,
then there exists y e AχΠV. Repeating the above argument for y, we
may conclude that Aχ is conull in U U V. The proposition now follows
since we can cover Fχ with a finite number of such neighborhoods.

2.2.2. Regularity of the Oseledec decomposition.
Theorem 2.19. Let X be a compact fiber bundle over Y with fibers F.

Let G be a connected semisimple Lie group of higher rank without com-
pact factors. Suppose G acts ergodically on X via bundle automorphisms
preserving a volume density and a Cr connection such that the fibers are
autoparallel If the algebraic hull of a': G x X -> SL(f), the derivative
cocycle in the fiber direction, equals SL(f), then, by possibly having to pass
to a finite algebraic cover of G, there exists an abelian subgroup A c G
such that the Oseledec decomposition of TF corresponding to A is paral-
lel Cr regular, and everywhere defined on Fχ for almost every x e X. In
particular, there exists a Cr section of the full flag bundle over T(Fχ).

Proof We follow the outline described in §2.2. By Proposition 2.18,
there exists a conull set of regular points such that any two may be con-
nected by a series of primary geodesies. By Lemma 2.10, the Oseledec
decomposition is preserved by parallel translation along this path. Note
that any path is homotopic to a path consisting of a series of primary
geodesies. (This is certainly true locally, so we need only cover our (com-
pact) path with a finite number of neighborhoods.) Since R = 0, parallel
translation along homotopic paths is identical. Hence, the Oseledec de-
composition is preserved by parallel translation along any path. Define
the decomposition to be parallel translation to points in the complement
of Λ . By construction, the decomposition is parallel, q.e.d.
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A similar result holds for certain actions of lattices on manifolds.
Theorem 2.20. Let G be as in Theorem 2.19. Suppose Γ c G is a

lattice acting on an f-dimensional manifold M preserving a volume den-
sity and a Cr connection. If the algebraic hull of the derivative cocycle
a: Γ x M -> SL(f) equals SL(f), and if π(Γ) c SL{f) contains a lat-
tice, where π : G -> SL(f) is the superrigidity homomorphism, then, by
possibly having to pass to afinte cover of Γ, the Oseledec decomposition on
M corresponding to an abelian subgroup A c Γ is parallel, Cr regular,
and everywhere defined. So, there exists a Cr section of the full flag bundle
over M.

Proof The proof follows exactly as in Theorem 2.19 once we have es-
tablished the existence of a suitable abelian subgroup, i.e., we need a result
comparable to Lemma 2.7. Since π(Γ) contains a lattice in SL(f), using
Lemma 3.2 in [6] and its preceding remarks, we complete the proof.

3. C ( r 5 ) Superrigidity

We will need to prove a generalization of Zimmefs topological super-
rigidity for the sequel. The difference between the results here and those
presented in [14] lies in the regularity of the sections under consideration.
In [14], Zimmer proves a result analogous to Theorem 3.4 for Cr sections.
The point here is to strengthen the geometric meaning of the previously
constructed sections, and these sections are not Cr regular.

3.1. Preliminaries. Let G be a semisimple Lie group acting on set
S. Then s G S is called a parabolic invariant if there exists a parabolic
subgroup Q c G such that Q fixes s. In particular, if G acts by au-
tomorphisms of a principal //-bundle P —> M, and V is an //-space
with Ev -> M the associated bundle, then a parabolic invariant section is
a section of Ev invariant under a parabolic subgroup of G.

Let P —• M be a principal //-bundle on which G acts via bundle auto-
morphisms. If π: G —• H is a homomorphism, then a section s: M —• P
is said to be totally π-simple if for g G G and m e M,

= g.s{m).π{g)~\

Here, of course, M and P are right G-spaces, and P is a left //-space.

Let X be a fiber bundle over Y with fibers F. For any function

φ: X -> M, and any neighborhood U c Y trivializing X, we have

φ \p-ι(ϋ): F xU -> M. Call φ : X -> M a C ( r '* } function if for any

such U, 0 | -i ( t / ) is CΓ as a function of Z7 and Cs as a function of U.
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Similarly, if P —> X is a principal //-bundle over X, F is an //-space,
and Φ : P —• V is an //-equivariant map, call Φ an H-equivariant C ( r ' 5 )

function if locally Φ is a C r function of F and a Cs function of Y.
Note that by //-equivariance, Φ is necessarily C°° as a function of H.

Although most of what follows will be valid for most (r, s), the most

interesting results follow when either r or s is measurable. Of particular

interest to us is the case where s is measurable. Let C^iS\x \EV) be the

set of C sections of the associated bundle Ev over X.

Proposition 3.1. There exists a natural bijective correspondence between

C{r's){X\Ev) and H-equivariant C ( r > 5 ) maps P -» V. Furthermore,

G-invariant elements of C ( r '^(X; Ev) correspond to H-equivariant G-

invariant C ( r ' 5 ) maps P —• V.
Proof The proof is standard noting the appropriate changes in regular-

ity. See [1], for example, q.e.d.
Let r e [0, oo] and s be measurable. Call a set U c X a C ( r > j )

generic set if £/ is conull in X and for almost every x e U, Fχ Π (7 is
open, dense in /^ , where Fχ is the fiber in X through the point x.

Now suppose G acts by automorphisms of a principal //-bundle P ->
X where // is an algebraic group. Assume that the G action on X is
ergodic. An algebraic subgroup L c // is called a C ( r ' 5 ) algebraic hull
for the G action on P if

(i) there exist a G-invariant C ( r ' 5 ) generic set U c X and a (?-

invariant C ( r > 5 ) section of EH/L \v^> U, and

(ii) the first assertion is false for any proper algebraic subgroup of L.

Proposition 3.2. Assume the situation described in the previous defini-
tion. Then the following hold:

(i) C ( r ' 5 ) algebraic hulls always exist.

(ii) Any two C ( r ' 5 ) algebraic hulls are conjugate in H.

(iii) If there exist a G-invariant C{r's)-generic U c X and a C ( r ' 5 )

section of EH,L\υ^ JJ, then Lχ contains a C ( r ' 5 ) hull.

The first and last statements follow from the descending chain condition
on algebraic subgroups. The second statement will require

Lemma 3.3. Let G be ergodic on X, and P —• X a principal H-bundle
on which G acts by bundle automorphisms. Let H be a real algebraic group
and let V be a quasi-algebraic H-space. Let φ be a G-invariant C ( r ' 5 )

section of Ev -* X, with Φ : P —> V the corresponding H-equivariant
G-invariant C ( r ' 5 ) map. Then there exist a G-invariant C ( r ' s ) generic
U c X and an H-orbit 0 cV such that φ(P \v)c0.
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Proof. Since Φ : P -> V is //-equivariant, factoring by the H action,
we obtain Φ : X -> H\V. The H action on V is quasi-algebraic and
therefore tame. As the G action on X is ergodic, Φ is constant on
U c X a conull set. By Fubini, for almost every x e U, Fχ n U is
conull in /^ . But then Φ \F is a C r function constant on the conull set

FχΠU cFχ. Hence FχΠU = Fχ for such x, and ί/ is C ( r ' 5 ) generic.

Proof of Proposition 3.2. Let £/• c X be two C ( r ' 5 ) generic (/-invariant
sets with L. C // algebraic subgroups and Φt: P \u^ H \L (/-invariant

//-equivariant C ( r ' 5 ) maps. Let Φ = (Φχ, Φ 2 ) : /> |^ ^ -> ///Lj x ///L2 .

(Note that t/j Π C/2 is a C ( r ' 5 ) generic set.) Apply Lemma 3.3 to Uγ Π ί72

to obtain a C ( r ' 5 ) generic set U c U{ Π U2 and a single H orbit <̂  c

.ff/Lj x H/L2 such that Φ(P \v)ctf. Note that the stabilizer of a point

in ///Lj xH/L2 under the H action takes the form hχLχK[x Γ)h2L2h2l

for some h{, h2 e H. Thus, we have Φ(P \v) —• 7/ |Λ L Λ -i n Λ L Λ - i . By

definition of C ( r ' 5 ) hull, hχLχK[x Π h2L2h2

ι contains Lj so that Lχ is
contained in a conjugate of L2 . Similarly, L2 is contained in a conjugate
of L j . Since the Lz's are algebraic subgroups, Lχ and L2 are actually
conjugate, q.e.d.

Let G act via principal bundle automorphisms on P(X, //) with C ( r ' 5 )

algebraic hull L. The G action is C ( r ' 5 ) complete if

(i) there exists a C ( r ' 5 ) generic set t/ such that for almost every x e

U, i ^ c C / , a n d

(ii) there exists a C ( r ' 5 ) section EH,L \O-> U.

Given a principal //-bundle P -> X, and F an //-space, a section 0
of /?F is said to be effective for P if H acts effectively on Φ(P) where
Φ : P -• V is the corresponding //-map to 0 . Suppose G acts ergodically
and C ( r ' j ) completely on P where /ί is an algebraic group and V is an
algebraic variety. Then a C{r's) section φ:X->Ev is C{r's)-G-effective
if it is effective for Pχ c P where Pj is a (/-invariant reduction to L c //,

the C ( Γ J ) algebraic hull.
We are now ready to state the main result of this section.
Theorem 3.4 ( C ( r ' 5 ) superrigidity). Let G be a connected semisimple

Lie group, R-rank(G) > 2, with G acting via bundle automorphisms on
P(X, //) , H an algebraic R-groupf V an R-variety on which H acts
algebraically, and G acting ergodically on X with respect to a probability
measure μ where supp(μ) = X. Assume the action is C ( Γ ) 5 ) complete. If
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there exists a G effective C ( r ' 5 ) parabolic invariant section ψ of Ev —> X,
then, by possibly passing to a finite cover of G, there exist

(i) a homomorphism π : G —• H,

(ii) υ0 e V, and

(iii) a totally π-simple C ( r ' 5 ) section s ofP-+X

such that ψ is the associated section (s, v0), i.e., ψ(x) = [s{x), v0].
Remark 3.1. (i) We can dispense with the completeness assumption;

however, the totally π-simple C ( r ' 5 ) section s will be defined only where
ψ is defined. So, in essence, the necessity of the completeness assumption
is simply to ensure that the section ψ exists.

(ii) Effectiveness of ψ will ensure that we can see enough of the C ( r ' 5 )

algebraic hull by looking at V. This is to avoid the obvious degeneracy
problems, e.g., if the C ( r ' 5 ) algebraic hull were in the kernel of the H
action on V. By passing to a suitable subquotient, we can still obtain re-
sults without the effectiveness assumption. Let Pχ c P be the (/-invariant
reduction to the C ( Γ ' 5 ) algebraic hull L, and let N c L be the maxi-
mal normal subgroup of L pointwise fixing Φ{P{). We can then obtain
a C(r'5)-(/-effective section of the V associated bundle to the principal
bundle Pχ /N, and apply the theorem to this new situation.

(iii) The hypothesis concerning the parabolic invariant section is the
key point in extending measurable superrigidity to topological and C ( r ' 5 )

superrigidity. The proofs of all versions of superrigidity depend on the
existence of parabolic invariance; however, in the measurable case, it is
always possible to deduce the existence of relevant parabolic invariant
sections. This is not the case in the situations of higher regularity, thus
the need for this additional assumption.

3.2. Proof of C ( r '5 ) superrigidity. By C ( r ' 5 ) completeness, we may
assume H is the C ( r > 5 ) algebraic hull. Let Q be the parabolic subgroup
such that ψ is β-invariant. Let B c Q be a minimal parabolic subgroup.
By Proposition 3.1, ψ corresponds to a β-invariant, //-equivariant C ( r ' 5 )

map Ψ : P -• V. If Ψo : X -• H\V is the induced map on H orbits,
then Ψ o is /^-invariant. Moore's Theorem implies B is ergodic on X
therefore, by Lemma 3.3, there exist a C ( r ' 5 ) generic set Xo c X and an
H orbit VQcV such that Ψ0(Λ:) e Vo for every x € XQ . We may assume

vo = v.
Let L be the measurable algebraic hull of the G action on P. Let R

be the measurable (7-invariant subbundle which is a measurable principal
L bundle. Then for almost every q e R, Ψ0{q) lies in a single L orbit,
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say %CV. Note that WQ c Vo and H.V/0 = Vo.

Now define F : P x G/B -> V so that F(p, g) = Ψ(g~ιp). Since Ψ
is 2?-invariant, F is indeed well defined. From the proof of measurable
superrigidity [15], we have

Proposition 3.5. By passing to a finite {algebraic) cover of G,
(i) there exists a regular homomorphism σ : G —• L, and

(ii) for almost every r e R, there exists a conjugate σr of σ in L,
such that for almost all r e R, F(r, g) = <τΓ(£).Ψ(r). Further, if Lχ is
the stabilizer in L of Wo, then σ : G -» L/Lγ is a surjection.

Next define Φ: P -> Func(G/B, V) as Φ(p)(g) = F(p, g) = Ψ(g~lp).
Proposition 3.5 implies that for almost every q e R, Φ(q): G/B -> Wo is
a regular surjective map. As B is parabolic, G/B is a complete variety,
and therefore WQ is Zariski closed in V. We also have

Proposition 3.6. There exists Φ o e Reg(G/B, H ô) swcλ that for almost
every q e R, Φ(q) € L.Φ 0 .

Proof Since Ψ is L-equivariant, so is the map Φ: R —• Reg(G/5, PF0).
Let Φ: L\R : X -^ L\Reg(G/5, ίΓ0) be the map on L orbits. Note that
Φ is ^-invariant since Ψ is 5-invariant. Since B is ergodic on I , Φ
must be constant on a conull set. q.e.d.

Let R{ = {q e R\ Ψ{q) e Wo and Φ(q) e L . Φ J . Then R{ is conull
in R, and if Pχ is the H saturation in P of Rχ, then P{ is conull in P
and for every p e P{9 Φ(p) is regular and Φ(p) e H.Φ0 c Reg(G/5, J^).

By Theorem 3.3.1 in [15], the H action on Reg(G/5, F) is tame,
so H.Φ0 is open in its closure in C{r's){G/B, V). If P2 = {p e P \
Φ(p) e H.Φ0}, then since Φ is 7/-equivariant C ( r ' 5 ) regular, P2 is C ( r ' 5 )

generic.

Let SP(V) be the space of closed subvarieties of V. Define %?\ P2-+

S"(V) so that 2F{p) = Φ{p){G/B). Then 3? is iί-equivariant and par-

tially G-invariant (i.e., if p, gp e P2, then 3?{p) = %?{gp)). Also,

Sr(P2) CH.WOC S"(V). If Hχ is the stabilizer of WQ in S*(V), then we

obtain an i/-equivariant, partially G-invariant C ( r ' 5 ) map P2 —• /////!.

This corresponds to a (/-invariant C ( r s ) section of ^ / ^ 1̂ -+ U, where

{7 = G.p(P2) (p: P —> X is the standard projection). Since H is the

C ( Γ ) 5 ) algebraic hull for the G action on P , H{ = H. So, // stabilizes

PΓ0 and as Wo is closed, we have

Thus, both // and L are transitive on V, and for every p e P2, Φ(p) :
G/B —• F is a regular surjection.
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To summarize, there is an //-equivariant C ( Γ ' 5 ) map Φ : P2 -> H.Φ0 c
Reg(G/5, V). However, we will need to know that p(P2) contains entire
fibers, not just open dense subsets of fibers.

Lemma 3.7. Let U = p{P2). If Fχf)U is conull in Fχ, then Fχ c U.
Proof. Note that V is complete and a transitive //-space, and can there-

fore be embedded as a closed orbit in a projective space via a representa-
tion of H, Let fQ e Fχ. Choose {pn}n>{ € P2 such that pn -+ p0 and
p(pf.) = yj.. Since Φ is continuous in the direction of F and H, and
G/B is compact, Φ(pn) —• Φ(p0) uniformly. As Φ(pπ) € / / . Φ o , we can
write Φ(pn) = hn.Φ0 for hn e H. By Lemma 6.3 in [14], ΛΛ is bounded
in PGL(n + 1), and therefore converges to Λo G PGL(n + 1). Since // is
algebraic, Λo lies in the image of H in PGL(n + /) . Hence we conclude
that Φ(/?o) = ho.Φo. q.e.d.

Since Φ o is surjective, and H is effective on V, the stabilizer of Φ o

in H is trivial, implying that Φ defines an //-equivariant C ( r ' 5 ) map
P2 -+ H and therefore a C ( r ' 5 ) section 5 of P2 ^ ί/ c I
(C/ = p(P2)) as follows: for m e t / , s(m) is the element of Pm such
that Φ(j(m)) = Φ o . We have Φ(p){ag) = Ψ(g~ιa~ιp) = Φ(a~ιp){g).
Thus, for every p e P2, the G orbit of Φ(/?) in Reg(G/5, F) is con-
tained in Φ{P), and therefore in H.Φ0 .

Using the proof of measurable superrigidity (or Lemma 3.5.2 from [15]),
we conclude that for each p e P2, there exists a homomorphism πp : G —•
H such that

= πp{g).Φ(p){e).

Define πm = π j ( m ) . Then, for all m e U, g e G,

Φ θ(#) = πm(^) Φθ(^)

For any a e G,

φo(sa) = πm(ga).Φ0(e) = πm(g)πm(a).Φ0{e) = πw(g).Φ 0(α).

So, for any g, a e G,

for any mχ, m2e U. Again, since Φ o is surjective and H is effective on
V 9 we have πm (g) = πm (g) for all such m p m 2 . Hence, there exists
π : G —> // such that π = π for all m e U .
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As Φ: P2 -+ H.Φ0 c Reg(G/J?, V) is injective on the fibers of P , we

need only show Φ(g.s(m).π(g)~ι) = Φ(s(gm)) to see that s is totally

π-simple. But,

Φ(g.s(m).π(g)~l)(a) = Ψ(a'lg.s(m).π(g)-{) = π(g).Ψ(a-ιg.s(m))

= π(g).Φ(s{m))(g~ιa) = π(g).Φ0{g~la)

= Φ0(α) = Φ(s(gm))(a).

Finally, it is routine to verify that ψ is the section associated to s and
Φ0(e)eV.

4. Geometric implications

The purpose of this section is to explore some of the geometric conse-
quences of our previous work.

4.1. Connection preserving actions on fiber bundles. Let X be a com-

pact fiber bundle over Y with fibers F. Let G act ergodically on X via
fiber bundle automorphisms preserving a smooth connection and a volume
density, where G is a connected semisimple Lie group of higher rank.
Also, assume that the fibers are autoparallel. Let β : G x Y —• DifF(i7),
a : G x X -+ GL(x), and a : G x X -+ GL(f) be the cocycles described
in §2.1. Let L be the algebraic hull of a .

Theorem 4.1. (i) If L is compact, then there exists a smooth Rieman-
nίan metric g on F with respect to which F has a transitive group of
isometries, i.e.,

_ Isom(F,g)

(ii) If L = SL(f), where f = dim(F), then F is a torus.
Remark 4.1. Since isometry groups of compact manifolds are rather

special (particularly when they are large in comparison to the manifold), as
are their closed subgroups, we have special restrictions on the possibilities
for F. In low dimensions, these possibilities are few and easy to calculate.
Examples not precluded by these results are also easy to construct.

4.1.1. Proof of Theorem 4.1.
L Compact. Compactness of L implies the existence of a measurable

invariant metric in the direction of the fibers. Equivalently, there exists a
^-invariant function Φ : Y -* {measurable Riemannian metrics on F} .
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Theorem 4.2. There exists a smooth invariant metric on F.
Proof. This is a main result of [2]. Note that this requires the fibers to

be autoparallel. q.e.d.
Thus, we have a cocycle β: GxY -• Όiff(G) and a /?-invariant func-

tion Φ: Y -» Met(F), the space of Riemannian metrics on F . Next, we
employ

Theorem 4.3. The Όiff(F) action on Met(F) is tame.
Proof. Theorem 7.4 of [3] gives a construction of a slice for the action

of Diff(iΓ) on Met(F). In particular, for every m e Met(F), there exists
a submanifold Sm of Met(F) such that there is a local cross section

defined on a neighborhood U of the identity coset such that the map
U x *Sm -> Met(F) is a homeomorphism onto a neighborhood of m,
(Diff(F)m being the stabilizer of m in Diff(F)). This is enough to ensure
that the action of Diff(F) on Met(F) is tame. See, for instance, 2.1.12
in [15]. q.e.d.

Applying the Cocycle Reduction Lemma 5.2.11 in [15], there exists
g e Met(F) such that β is equivalent to β': G x Y -> Όiff{F)g =
Isom(F, g). As G acts ergodically on X, it must act ergodically on
F (under the appropriate measurable trivialization of X = Y x F)\ there-
fore F has an ergodic group of isometries. Compactness of F allows us
to conclude that F therefore has a transitive group of isometries.

L Noncompact. Let P —> X be the principal SL(f) bundle over X.
Let V be the space of full flags on R Λ Theorem 2.19 establishes the
existence of a section Φ of the associated bundle Ev -> X. Note that
this section varies measurably in the Y direction on X, but is Cr regular
in the direction of F . Also, note that this is a parabolic invariant section,
with the parabolic subgroup being the stabilizer of the appropriate flag.
We apply C ( r ' 5 ) superrigidity to conclude that there exist a section φ
of P —• X with the same regularity as Φ, and v e V fixed by our
parabolic subgroup, such that Φ is associated to (φ, v). We now restrict
ourselves to some fiber Fχ with a conull set of regular points. Since Φ
is parallel, Cr regular, and defined on all of Fχ , so is φ, i.e., there exist
linearly independent parallel vector fields on Fχ . Since Γ Ξ O (for the
connection on Fχ), parallel vector fields are commuting. The commuting
vector fields now yield a locally free, transitive R^ action on Fχ , allowing
us to conclude F is homeomorphic to a torus.



CONNECTION PRESERVING ACTIONS OF LIE GROUPS 617

4.1.2. Examples. It is possible to construct examples of bundles whose
fibers F are any of those allowed by Theorem 4.1.

Example 4.1. Let /: G «-• H be the inclusion of G into H. It is
possible to choose H — SL{ή) with n large enough so that Ίf <z H
as a closed subgroup, and G and Tr commute. Let Γ be a cocompact
torsion-free irreducible lattice in H. If X = H/T, then X admit a G
action and a Ίf action that commute. If Y = X/Ύf, we have a G action
on Y that lifts to a G action on X. Ergodicity of G on X follows by
irreducibility of Γ (Moore's Ergodicity Theorem), and the existence of a
connection preserved by the G-action follows by reductiveness of X [11].

Example 4.2. The construction above can be generalized to show that
F can be the homogeneous space of any compact Lie group K. Repeat the
construction above, replacing Tr with any compact K c H commuting
with G. Thus, X = H/Γ and Y = X/K. Now choose F such that K
acts by diffeomorphisms on F, and form the associated fiber bundle EF

to X with fibers F, i.e.,

π X x F

The G-action on E will be connection preserving, inheriting this property
from the action of 6 on ί . Also, if K acts transitively on F, then the
G-action on E will be ergodic. Hence, by setting F = K/KQ, we obtain
any homogeneous space of any compact Lie group. Of course, the fiber
bundle which we obtain will generally be of a very large dimension, since
H itself is quite large. It is an interesting problem to determine, for a given
G, the possible types of fibers for a fiber bundle X of a given dimension.

We remark that this construction illustrates a fundamental difference
between actions of a connected Lie group on a fiber bundle considered in
Theorem 4.1 and actions of a lattice subgroup on a manifold considered
in Theorem 4.4. In the example just constructed, we were able to ex-
ploit properties of compact principal ΛΓ-bundles to obtain a fiber bundle
whose fiber admit a transitive group of isometries. The analogous con-
struction for the action of a lattice Γ on a manifold M would require a
homomorphism Γ -> Isom(M), which by ergodicity, must have nonfinite
image. Using the rigidity and arithmeticity theory of lattices in higher-
rank semisimple Lie groups, such a homomorphism is possible only if the
complexifications of G and Isom(Λf) have simple components which are
isomorphic; see [8] and [12]. Taking M = K, where K is any compact
Lie group, we see that this rarely possible.

4.2. Connection preserving actions of lattices. The following general-
izes results in [6].
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Theorem 4.4. Let Γ c G be an irreducible lattice in a higher-rank
semisimple Lie group without compact factors. Suppose Γ acts ergodi-
cally on a compact n-dimensional manifold M preserving a volume and a
smooth connection. Let a:T x M -> SL{ή) be the derivative cocycle with
measurable algebraic hull L.

(i) If L is compact, then Γ acts isometrically on M preserving a
smooth Riemannian metric.

(ii) If L = SL(n) and π(Γ) c SL(n) contains a lattice, where π is
the superrigidity homomorphism, then M admits a torus as a finite
affine cover.

4.2.1. Proof of Theorem 4.4. In the first case, where L is compact, the
proof follows as in Theorem 4.1. In the second case we employ Theo-
rem 2.20 to deduce the existence of a Cr section φ of the flag bundle
Ev associated to the principal SL{n) bundle P —• M. We wish to show
that modulo a finite subgroup, this decomposition comes from a smooth
framing. Let {ΛΓ.} be the measurable framing associated with this Cr

decomposition. If x is a regular point, and C is a loop at x, then let
Pc be parallel translation along the loop C. Thus

(4)

for some matrix H(C) = (if. ;(C)). Since the measurable framing is asso-
ciated to the Cr decomposition, we have ίf/;(C) is a diagonal matrix for
all C, i.e.,

(5) Pc(ΛΓi(jc)) = fΓw(C)ΛΓi(x).

Lemma 4.5. If γ e Γ such that x and γx are regular points, then

π(γ)H(γoC) = H(C)π(γ),

for any loop C at x, where π is the superrigidity homomorphism.
Proof. Using (5) and the fact that Γ preserves the connection, and

hence commutes with parallel translation, we obtain

γPc(Xi(x)) = Pc(γXi(x))

= Σte(γ9x)πik(r)P7θC(Xk(γx))
k

= Σ Φ, x)πik{γ)Hkl(γ o QXfrx),



CONNECTION PRESERVING ACTIONS OF LIE GROUPS 619

where e(γ,x) is an element in the (compact) center of SL(n)y and
π: Γ -> SL(n) is the homomorphism from superrigidity, and πr(γ) is
the (i,j) entry of the matrix π(γ).

On the other hand, we have

k

= ΣHik{C){yXk{x))
k

e(γ, x

= e(γ,x)YίHilc(C)πkl(γ)Xι(γx).

By equating and summing these two equations, we obtain the desired con-
clusion.

Proposition 4.6. H(C) = ±1.
Proof. Since the Γ action is ergodic and preserves a volume form, H(C)

must lie in SL(n). Additionally, from (5) it follows that H{C) is a
diagonal matrix. Hence, the proposition follows once we demonstrate
H(C) is a scalar matrix.

Using Lemma 4.5 and diagonality of H(C), we have

(6) πij(y)Hjj(γoC) = Hii(C)πij(γ).

for all γ eΓ such that x and yx are regular points. Since we can choose
a finite set {yt} of generators for Γ and an x such that {ytx} is regular
for all i, (6) holds for a fixed x and all γ. By Zariski density of π(Γ),
we have (6) holds for any matrix in SL{ή). By fixing j and varying /
with any matrix with a nonzero (/, j) term, we see that all entries HU(C)
are equal, q.e.d.

So, modulo a finite subgroup, we have established the decomposition
from a framing. Arguing as in [6], on some suitable covering, we actually
have a framing, and as in Theorem 4.1, we conclude M must be a torus,
thereby completing the proof of Theorem 4.4.

4.2.2. A few corollaries.
Corollary 4.7. Let T be a lattice in SL(n, R) acting ergodically on an

n-dimensional manifold M preserving a volume density and a connection.
Then the conclusion to Theorem 4.4 holds.
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Proof. If L is not compact, then from superrigidity, we know that π
must be a surjection with finite kernel, hence π(Γ) is a lattice. The result
now follows from Theorem 4.4.

Corollary 4.8. Suppose SL(n ,Z),n > 3, acts ergodically on an n-

dimensional manifold M preserving a connection and a volume density.

Then M admits a torus as a finite affine cover.

Proof. Since SL(n, Z) is a noncocompact lattice in SL(n, R), the first
case in Theorem 4.4 is not possible. That the second case holds follows
from Corollary 4.7.
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