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ON THE EXISTENCE OF CONVEX HYPERSURFACES
OF CONSTANT GAUSS CURVATURE

IN HYPERBOLIC SPACE

HAROLD ROSENBERG & JOEL SPRUCK

Introduction

In this paper we shall prove that a codimension-one embedded sub-
manifold Γ of 9 o o (H π + 1 ) is the asymptotic boundary of a complete em-
bedded ΛMiypersurface M of a hyperbolic (n + l)-space H π + 1 for any
K e ( - 1 , 0). By a ΛMiypersurface M, we mean the Gauss-Kronecker
curvature of M is the constant K (recall that K = Keχt - 1, where Keχt

is the extrinsic curvature of M, i.e., the determinant of the second fun-
damental form). Our approach is to construct the desired M as the limit
of ΛΓ-graphs over a fixed compact domain in a horosphere for appropri-
ate boundary data. Thus an important part of our study is an existence
theory for ΛMiypersurfaces which are graphs over a bounded domain in
a horosphere. This is accomplished by solving a Monge-Ampere equation
for the Gauss curvature using the recent work of [6].

In general, a codimension-two closed submanifold Γ of H Λ + 1 does not
bound a ΛΓ-hypersurface with K > -I. There are topological obstructions
for Γ to bound a hypersurface with K > - 1 (cf. [13]). For example, let
Γ be a smooth Jordan curve in H 3 , and assume Γ bounds a surface with
K > -I. Then the curvature of Γ never vanishes, so let n(x), X E Γ ,
be the unit principal normal to Γ. For x e Γ, let Γe (x) be the endpoint
of the geodesic starting at x, of length e , and with n(x) as tangent at
x. For e small, Γe is embedded and disjoint from Γ. Then the linking
number (mod 2) of Γ and Γe is zero [13]; so it is easy to construct Γ
which bound no surface with K > -I.

We will see that for Γ an embedded codimension-one submanifold of
a horosphere c H π + 1 , and K e ( - 1 , 0 ) , there exists a ΛMiypersurface
M with boundary dM = Γ.
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Let HΛ + 1 be represented by the upper half-space model:

H " + 1 = {(x, x n + ι ) eRn+ι \xeRn, x n + ι > 0 } ,

with the metric ds2 = (l/xl+ι)(dx2 + + dx2

n). Let P^ denote the
extended plane jtn+1 = 0, and denote by P(c), c > 0 the horosphere
Xn+l=C

Let P = P( l ) , and let Ω c P be a compact domain with dΩ = Γ a
C°° submanifold. Here are our main results.

Theorem 1. Let φ e C°°(Γ), and suppose the graph of φ extends to
a smooth graph M = {(x, xn+ι) : xn+ι = f(x), / e C°°(Ω), f=φ on
dΩ} with

KM= inf K{x)>-\.

Then for any K, - 1 < K < KM, there exists an extension f e C°°(Ω) of
φ to Ω whose graph is a K-hypersurface.

Corollary 1. For any K e ( - 1 , 0), there exists a smooth K-hypersur-
face M with dM = Γ M can be chosen a graph over Ω.

To prove this corollary, one applies Theorem 1 with φ = 0 on Ω the
horosphere P has curvature zero (extrinsic curvature one).

We remark that when dΩ is strictly convex, then the graph of φ over
φΩ has an extension to a smooth graph over Ω with curvature greater
than - 1 . Thus we have

Corollary 2. Let Ω strictly convex. Then the graph of φ extends to a
smooth graph over Ω with K constant, K sufficiently near — 1.

The technique of the proof of Theorem 1 is the continuity method
applied to the equation for the curvature of a graph over Ω. This is a
fully nonlinear equation of Monge-Ampere type, and the difficult part of
the proof is to obtain a priori C2+a bounds for solutions of the equation.
An interesting point here is the absence of any convexity hypothesis on
dΩ. The recent work in [8] and [6] is used here to deal with domains of
arbitrary geometry.

Using Theorem 1 as a tool, we construct, for any K e ( - 1 , 0), a K-
graph with given smooth asymptotic boundary. More precisely, we have

Theorem 2. Let Γ = dΩ c ^ ( H " * 1 ) be smooth. Then for any

K e ( - 1 , 0), Γ = d^M) for M an embedded K-hypersurface of H Λ + 1 .

Moreover, M can be represented as a graph xn+ι = f(x) over Ω with

u(x) = exp2/(x) e Cι'ι(Ω) and u = 0 on dΩ.
It is also of interest to consider the case of nonsmooth asymptotic

boundaries.
Theorem 3. Let Γ = dΩc a o o (H Λ + 1 ) . Assume the following:

a. For n = 2, Γ consists of a finite number of Jordan curves.
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b. For n > 2, every point of dΩ is a regular point for Laplaces equa-

tion.

Then the conclusions of Theorem 2 hold with u{x) e C°°(Ω) U C°(Ω).

Finally, it is a remarkable property of H 3 that for Γ a Jordan curve

in P{c) or P^ , all of the ΛΓ-surfaces which we can construct are in fact

unique. To make this precise, we say that a Jordan curve Γ in P^ is the

asymptotic homological boundary of a surface M in H 3 if for c > 0 suf-

ficiently small, MΠP(c) contains a connected component Γ(c) such that

Γ(c) converges to Γ as c -> 0 and Γ(c) is homologous to zero on M, i.e.,

there exists a compact submanifold M(c) of M and Γ(c) = dM(c). We

write Γ = d^M to mean that Γ is the asymptotic homological boundary

of M.

Theorem 4. Let Ω be a bounded simply connected domain in P(c),

respectively P^ with boundary a Jordan curve Γ. Then there are exactly

two embedded K-surfaces M in H with dM = Γ, respectively d^M = Γ

(in the ball model of H3). Each surface is a graph over one of the two

components of P^ — Γ. Moreover, if M is any immersed K-surface with

dM = Γ, respectively d^M = Γ, then M is embedded and thus is one of

the two graphical disks.

An outline of the paper is as follows. In §1 and §2, we derive, respec-

tively, the equation for the curvature of a graph over a domain in a horo-

sphere, and C +a bounds for smooth admissible solutions to this equation.

These estimates provide strong compactness estimates for A'-graphs and

the basis for our subsequent arguments. §3 contains a sketch of the proof

of Theorem 1 by using these estimates. In §4 we construct appropriate

approximating graphs xn=ι - f(x\ c) with boundaries in P(c), and ob-

tain sharp C 1 ' 1 estimates independent of c for u(x\ c) = exp2/(x; c)

as c tends to zero. We then pass to the limit to get Theorem 2. In §5

we prove Theorem 3 by an approximation process. Section 6 contains the

proof of Theorem 4 using foliation and comparison arguments. These are

based on the formula for the linearized operator associated to a A'-surface

in H 3 , and this formula and its consequent implications for stability of

if-surfaces is explained in the Appendix.

1. The equation for K

The hyperbolic distance from a point (xχ, , xn+ι) to the horosphere
p = {xnJtX = 1} is y = l n x π + 1 . Now suppose M is a graph h = f(x),
over a domain Ω c P , x = (x{, , xn , 1). We parametrize M by the
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coordinates x{, -- , xn and let f., f{ denote the usual partial derivatives

of/.
Proposition 1.1. The equation for K is:

(1.1) d e t ( 4 + If.f. + < Γ % ) = {K+ \)e-2nf{\ + e 2 / |V/ | 2 ) ( Λ + 2 ) / 2 .

Formula (1.1) is well known (see for example [1]).
Proof of Proposition 1.1. The proof is a long and tedious calculation.

We list the principal steps and let the courageous reader verify the state-
ments.

Let eλ, , en+ι be the standard basis of Rn+ι and let ey = xn+ι, dy

= xn+ιen+ι. One has the coordinate vector fields on M: X.. = e{ + f.dy ,
and the induced metric on M is given by

The Christoffel symbols of the hyperbolic metric are (let m = n + 1):

. _ ί 0 if i < m,
m'm~ I -l/xm if i = m,

, _ ί 0 if i Φ m, j' φ m, k φ m,
j ' k - \ -δjk/xm if i = m,

jj _ ί 0 i f ; < m, iφj,
J'm~\ -l/xm ifi = j<m.

Let V be the Riemannian connection of H π + 1 . Then

The upward pointing unit normal v to M is:

One then calculates the coefficients of the second fundamental form:

btJ = (VxXj, „) = l(ftJ + 2ftfj + e6-2fδu).

Then (1.1) results from

{K+l)detgij =
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2. C 2 + α A Priori Bounds

We shall consider an equation slightly more general than (1.1). Let Ω
be a smooth domain in Rn and consider the equation:

(2.1) ά*(fiJ + 2fifJ + eδiJ)=ψ{x,f,Vf) i n Ω ,

f=φ ondΩ,

where φ, ψ are smooth, and ψ0 = infΩ ψ > 0 for / e si (see (2.5)). The

choice ψ = (K+l)e-2nf(l+e2f\Vf\2){n+2)/2 with K+l =K(x, / ) + l >

60 > 0, corresponds to prescribed Gauss curvature K = A"(JC , / ) .

We assume ψ satisfies

(2.2) g{x,f,p) = ψ(x, f,P)l/n is convex in p.

In order for (2.1) to be elliptic, / must be "hyperbolic strictly locally
convex"; that is,

(2.3) {fij + 2fifj + e'2fδiJ}>0 inΩ.

We assume for the boundary data φ, the existence of a strict subsolution
/ of (2.1) (satisfying (2.3)):

( 2 4 ) detC£7 + 2L£j + e~2ίδij) >ψ(*>f>Vf) + δ0 in Ω,

/ =φ on dΩ

for some δ > 0, and define the class of admissible functions

si = {/ e C°°(Ω) satisfying (2.3), / = φ on dΩ,
( 2 ' 5 ) d e t ( 4 + 2^./y + e- 2 / ) > ̂ 0 and / > /}.

In deriving our estimates, it is much more convenient to work with

u — e2^. We observe that / satisfies (2.3) if and only if u satisfies

(2.6) {uu + 20u}>0.

Set ψ — e2φ, u = e2- > 0 and define

s/^= {u e C°°(Ω) satisfying (2.6), u = φ on dΩ,

^ ' ' det(w/; + 2 ί o ) > (2inf u)nψ0 = ψ0 and u > u > 0 in Ω}.

Note that / e si satisfies (2.1) if and only if u e si satisfies

(2.8) det(κ0. + 2^.) = 2nunψ(x, ±lnw, frVu/u)) = ψ(x, u, Vw).

Lemma 2.1. Let uesi . ΓΛ̂ /z u<u<h- |JC|2 wλere A w harmonic

in Ω, h = φ + \xγ on dΩ. Also, \Vu\ <C in Ω for a controlled constant

C.
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Proof. Observe that uestf implies that ϋ = u + \x\2 is convex, since
u = w.. + 2<J. . In particular ύ is subharmonic and thus u < h . This
shows that

u + \x\2 <ύ<h i n Ω .

Consequently, |Vfl| < C on dΩ. But for a convex function |Vδ| achieves
its maximum on dΩ and so |Vώ| < C in Ω. The lemma follows, q.e.d.

We turn next to second derivative estimates for w on 9Ω. Consider a
point 0 e dΩ and choose coordinates so that the positive xπ-axis is the
interior normal to dΩ at 0. Near 0, we can represent dΩ asa graph

(2.9) xn = p(x') = ±Σ Baβxaxβ + ό?(\x'\3),
a,β<n

where x = (xχ, , xn_x). If u€sf 9 then (u - u){x , p{x')) = 0 thus

(2.10) (u-u)aβ(0) = -(u-u)n(0)Baβ; a,β<n.

In particular for u € sf ,

(2.11) Kβ(0)\<C, a,β<n.

We need to establish, in addition, the strict tangential (hyperbolic) con-
vexity of u, i.e.,

(2.12) Σ(Uaβ+2δaβKξβ>Cθ>0'

By rotating coordinates, it suffices to show that

(2.13) κ π + 2 > c 0

for a controlled constant c0 > 0. This is easily proven directly as in [6],
and in factjve can transform to the case studied there. To see this, note
that M G J / implies that ύ = u + |JC|2 is locally (Euclidean) convex and
satisfies (recall Lemma 2.1)

detδ^. >ψ0 > 0 in Ω,

ύ =φ + |JC|2 on dΩ.

Moreover u = u + \x\2 is strictly locally convex, u < ύ in Ω, u = ύ
on 9Ω. This is exactly the classical Monge-Ampere case as studied in [6,
Proposition 2.1]. This gives

Proposition 2.2. There exists cQ = co(Ω, φ,u) so that (2.12) holds for

any u e $/ .
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Remark. Thus far we have not made use of condition (2.2), nor the
strictness of the subsolution, i.e. δ0 > 0 in (2.4). These conditions will be
utilized below to obtain an estimate for |wαΛ(0)|.

Set F(D2u) = {det{uij + 2δu))ι/n, and let L = Fijdidj denote the

linearized operator, i.e., Fιj = dF/duu . If u e j/^is a solution of (2.8),

then Fιj = g(x, u, Vu)blJ/n , where (έ'7} is the inverse of the positive
matrix {by} given in (2.6), and from (2.8) we have

Xln ( 1 , 1 Vί
; ^ χ l n u

Since g = g /2u, we see that g is convex in Vw. Set

(2.14) ^ = L-^a/-C0

with Co = max|9g/3w| > 0, the maximum taken over the compact set
(see Lemma (2.1)) x e Ω, \u\ + |Vκ| < C so that Co is a controlled
constant. ^

Lemma 2.3. Lei u es/ be a solution o/(2.8). ΓAen there is a controlled
positive constant e 1 so that

(2.15) 5 ? ( u - u ) < - e ι ( l V

Proo/ Consider w_ = u- e\x\2/2; for e > 0 small enough, {̂  .
2(5O} > 0 and

w/y + M v ) = det(M0- + (2 - e)δtJ)

> det(wί7 + 2ί l 7) -Ce in Ω

for a uniform constant C. Hence for e small enough,

(2.16) ( d e t ( ^ 7 + 2δij))ι/n > g(x, u, Vii) + β0

for a controlled constant e0 > 0.

Since F(D2u) is concave in D2u (see [3]),

F{D2w) < F(D2u) + L(tt/ - M) ,

and hence

(2.17) L(u-u) < - 6 0 - e J V 1 " + g(x, «, Vw) - g(x, M, VW).
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Using the convexity of g(-, , p) in p, we obtain

(2.18) g{x, u, Vu)-g(x,u, Vu) < C0(u - u) + gp(x, u, Vu)(u-u)r

Combining (2.17) and (2.18^ gives (2.15) (recall (2.14)).

Lemma 2.4. Let u e sf be a solution o/(2.8). Then \uan(G)\ < C,
a < n, for a controlled constant C.

Proof. In Ω Π Bσ(0), consider the barrier

(2.19) w = A(u-u) + B\x\2>0.

With T = da + padn ,the tangential boundary operator corresponding to
d/dxa, we have

T(u - u) = 0 on dΩ Π 5 σ (0),

\T(u-u)\<C onΩndBσ(0),

and
l ^ ( « - K ) l < c ( l + ^ f " ) inΩnBσ(0).

(To see this last inequality we use the formulas 3fui = tf(l),

J?T(u -u)= J?ua + PaJ?un + un{Lpa + gpipj + 2Fijpaiunj

and

Σ * - % = Σ ( * % - 2 F i n ) = \~sΈ~bi% -2Fin - τ&υ - 2Fin )
j j j

Choosing A > B > 1 in (2.19), by Lemma 2.3 we find that

&{w±T{u-u))<0 inΩΓΊ5σ(0)

and
w>\T(u-u)\ ond(ΩnBσ(0)).

Thus by the maximum principle,

w > ±T(u -u) in Ω Π Bσ(0)

and thus, in consequence of w(0) = T(u - u)(0) = 0,

or
|Mαπ(0)| <CχA + C2. q.e.d.

Corollary 2.5. Let u e stf" be a solution of (2.S). Then \unn(0)\ < C,
for a controlled constant C.
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Proof. Expanding the left-hand side of (2.8) in cofactors and using

Lemmas 2.4 and 2.1 (and 2.11) give Ann(unn + 2) < C at 0. By Proposi-

tion 2.2, Ann > CQ~1 and so - 2 < unn < C/CQ~1 . q.e.d.
We now have completed the proof of the a priori estimate

(2.20) Σk7l<C o

and we now complete the proof of the global second derivative bounds

(2.21)

Instead of carrying out the well-known argument we directly appeal to
the classical result by again utilizing ύ = u + |JC|2 , which satisfies

detύ u = ψ(x,ύ- \x\2, V(ύ - |x|2)) = η(x, ύ, V, ύ) in Ω.

We note that η is a smooth function of its arguments and that Σ |δ/, l ^
C + In on dΩ by (2.20). Appealing to [3], we obtain a global bound for
Σlfijyl a n ( * thus (2.21) is proven.

From (2.21) and the elliptic regularity theory for concave fully nonlinear
elliptic equations (see[2]), we finally obtain

Theorem 2.6. Let u e s/ be a solution 0/(2.8). Then IM|C2+α(5) <
C for controlled constants a e (0, 1) and C > 0, depending only on
Ω, ψ,u.

3. Existence

In this section we sketch a proof of the existence of a smooth admissible
solution f e sf to (2.1). As explained in §2, we study the equivalent
problem of finding a smooth solution u e s/ to (2.8).

Recall that from Lemma 2.1,

(3.1) |W| + | V M | < C for uesf".

Set

(3.2) M ^ ( . x , w, V M ) : J C G Ω , \U\ + |Vw| < c\

with C as in (3.1) and ψ as in (2.8). Consider the iterative increasing

sequence {uk}k>ι defined by the problems

fy + 25 z 7 ) = ψ(x, u'x, Vuk) + M(uk - uk~λ) in Ω ,

k

u =φ ondΩ,
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where uk e j/^and u° = u. Observe that if uk~x e sf', then by (3.1) and
(3.2),

k—\ k—\

ψ(x, u , Vw) - Mu < ψ(x, u, Vw) - Mu,
and so u is a strict subsolution to (3.3fc). Note also that uk~ι is a
subsolution to (3.3)^ . In fact,

(3.4) det(w', + 23^) > ψ(x, u , Vu), r = 1, , fc - 1.

The existence of a unique solution / e i to (3.3)^ follows in a
straightforward way from the continuity method and the estimates (The-
orem 2.6) of §2. We briefly sketch the argument. Set

ηk(x, w , Vw) = ψ(x, uk~l, Vw) + M(w - uk~l),

and consider the family of problems for w*, t e[0, 1]:

( 3 . 5 ) , ά t \ ( w i j + 2δij) = η \ x y w t , V w t ) , wt esrf, w = u ~ ,

where (recall u° = u)

η{x, tϋ, Vw) = < ' i ' ' ' ~
" +2J,,) + ίι/ , fe= 1.

By our choice of M,

f/^x, w , Vtu) < ^ ( x , κ> Vtϋ) -h M(tt; - M), k > 2.

Thus w is a strict subsolution of (3.5), VY e [0, 1] for A: > 2 and
W € (0, 1] for fc = 1. Starting from w° = u at t = 0 we solve (3.5),
using the Implicit Function Theorem for 0 < t < 2t0 (with t0 small enough
to insure {w* + 2δ.} > 0 in Ω). Then by the maximum principle, wt > u

so that wt G si . Apply Theorem 2.6 for t > t0 to obtain H '̂H^+α < C
independent of t. Therefore we can repeat the process and reach t = 1
in a finite number of steps. Thus we arrive at a sequence of solutions to
( 3 . 3 ) * : u° <u <"'<uk .

It follows that {uk}k>ι converges to some u e C 0 1 (Ω) with u > u.
We will in fact show that u is a smooth solution to (2.8) by establishing
the a priori estimates

(3.6) \\u ||C2Q/jjx < C, independent of k.

It suffices, as remarked earlier to derive an a priori

(3.7) \\u ||C2/φ < C, independent of A:
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2 k

from which (3.6) follows. In view of (3.1), we need only estimate \D u \

on Ω. We first estimate \D2uk\ on d Ω . Since each uk satisfies (3.4),

Proposition 2.2 applies. Therefore from the discussion of §2, it suffices

to estimate \uk

an\ < C 5 independent of k at any point 0 e dΩ. But

each u = uk satisfies (3.3)^ , and u is a strict subsolution so that Lemma

2.4 and the discussion preceding it apply (one easily checks that the nth

root of the right-hand side of (3.3) is convex in Vw). This yields bounds

independent of k for |w^n(0)| since we already have obtained uniform

C 1 estimates.
Thus the essential point is to obtain uniform bounds for \D2u | in Ω,

knowing that such an estimate holds on 9Ω. Set

with

u μ{\Vuk\2+4uk)/2, k o λ

M, = max eμ" }l (u,, + 2)

μ = 1 + sup sup f ζiξ.(x ,uk~l, V t / ) ,
* B|=l x€Ω PiPj '

where / = log{^(x, u~x, Vuk) + M{uk - uk~1)} . By (3.1) μ is well-
defined. As in the proof of (2.21) (see [3] or §4.3 of this paper) we easily
derive

with Cχ., i = 1, , 3 independent of k. Hence

M\ < M2

k_J2 + (Cf + 2C2

2 + 2C 3), k = 1, 2, • ,

and so
M\ < M2/2k + (2Cf + 4C2

2 + 4C3) < C.

This completes the proof of the smooth convergence.
Remark. 1. For the case of Gauss curvature, we can take M = 0 in

(3.3)^ , and the proof is somewhat simpler.
2. it is easy to see that we have found among the admissible solutions

u e si , the "smallest", that is the one closest to u.

4. Proof of Theorem 2

Let Γ c d^H"*1) be a smooth embedded codimension-one submani-

fold. We think of Γ c {JCΛ+1 = 0} C R Λ + 1 as Γ = dΩ, with Ω a smooth

domain in {xn+ι — 0}. Denote by P(c) the hyperplanes xn+ι = c, so

that P(c) is a horosphere of H π + 1 for c > 0. Let Γ(c), Ω(c) be the
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vertical translations of Γ and Ω to P{c). By Corollary 1, we know that
Γ(c) bounds a locally strictly convex graph y = f(x c) of constant Gauss
curvature K e ( - 1 , 0), where y = lnxπ + 1 is the signed distance to the
horosphere P ( l ) . Thus / satisfies

(4-1) = (K+ l)e-2nf(l +e2f\Vf\2)in+2)/2 in Ω(l),

/ = lnc ondΩ(l).

By setting as before u(x c) — e2f, then u — u(x c) is a solution of

det(iιy + 2^ .) = 2n(ί: + 1)(1 + \Vu\2/4u){n+2)/2 in

u = c2 onΓ(l) =

Our goal is to pass to the limit in (4.2) by obtaining sufficiently strong a

priori estimates for the family {u(x c)}0<c<ι > which are independent of

c. In fact we will show that IM|C2(Ω(1)) < C for a constant C independent

of c. Moreover for any compact subdomain Ω' of Ω(l), it then follows

from Evans' theorem [5] that

(4.3) \\u(x,c)\\C2+a{ςil)<C\

where a, C' are again independent of c. These estimates are strong
enough to pass to the limit as c —• 0 and obtain a solution u = u(x, 0) e
C2 + α(Ω( 1)) Π C 1 ' ι (Ω( 1)). With a little more effort, one could find the pre-
cise asymptotic behavior for u as in Lee-Melrose [10], but these estimates
are not essential here.

4.1. Comparison surfaces. In this section we construct lower and upper
radial comparison surfaces that will enable us to obtain estimates that are
uniform in c as c tends to zero.

Consider a radial function w(x) = w(r), r = |jc|. A simple computa-
tion gives

(4.4) w.j •

We will choose comparison functions w satisfying w" — wf/r >0. This

implies the eigenvalues of {w^Λ-lδ^} are wf/r+2 with multiplicity n-\

and w" + 2 with multiplicity 1. Thus

(4.5) det(w/;. + 2δu) = (w'/r + 2)n~ \w" + 2).
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Given δ > 0 set w(r,δ) = (-a + VR2 - r2)2 , where

(4.6) c = -a + \]R2 - δ2, R>a>0.

Then
in1 Ίn „

> 0 , it; + 2 = -

(note w" - t^ r/ r > 0) a n d s o

det(«;0. + 2δu) = (2a)"R2/(R2 - r

2f+2)/2.

On the other hand, (1 + \w'2/w){n+2)/2 = Rn+2/(R2 - r

2) ( / I + 2 ) / 2 . Thus the

graph y — f(x) (with w = xn+ι — e J) has constant Gauss curvature K,

if R, a are related by

(4.7) (K+l)Rn =

From (4.6) and (4.7), we see that

c + J(l+λ)c2+λδ2

 2/n

(4.8) a = V V

 λ

J , λ + 1 = 4(K + l ) " 2 / n > 0.

Lemma 4.1. L<tf 2?̂  (0) c Ω. ΓΛβn u>w(r,δ0) in ~Bδ (0).

Proof. For 0 < 5 < δ0 sufficiently small we have u > w(r9 δ) in

Bδ(0). Let δ* = sup{<5 e (0, δ0): u > w(r, δ) in Bδ(0)} . By continuity,
u > w(ry δ*) in 5 ^ ( 0 ) . Hence by the maximum principle, u > w in

Br(0). But w e also have u>c2 = w(r,δ) o n dBδ(0) for all δe(0,δ0).

Thus ί* = ^o a n ^ * e strict inequality holds.

Corollary 4.2. Let y e Ω wzϊΛ dist(y,<9Ω) = /?. ΓAβww > c2 +
2

, α(A')>0.
Proo/ From (4.7), (4.8) with δ = p, we have

J(l+λ)V c2

This implies for suitable a = a(K) > 0

(4.9) R-a>c+^P-.

Choosing y as the origin of our coordinates, we obtain u(y) >w(0,p) =

(R - a)1 >c2 + ap2 . q.e.d.
We turn our attention now to the construction of an upper barrier for

u. Assume that Ω satisfies a uniform exterior ball condition, that is, there
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exists δ = δ(Ω) such that for each point P € dΩ, ΩnΩBs(0) = {P} for
suitable choice of origin.

With δ now fixed, set

h(x) = h(r) = (c + A(r2 - δ2))1, δ < r < δ + e.

Then

h\r) = 4Λrc + 4A2r(r2 - δ2),2r(r2 δ2)±/z'2/λ = 4Λ V ,

*"(r) = (4Λc + 8^2r2) + 4^ 2(r 2 - δ1),

and so by (4.5),

det(Al7 + 2δu) = [2 + 4^c + 4^ 2(r 2 - 5 2 )]"" 1

• [(2 + 4Ac + 8^2r2) + 4^ 2(r 2

< 2Λ(1 + 2Ac + δeίi ί 2 ) 1 1 " 1 2(1

while

Thus h is a supersolution of (4.2) if

(4.10) (1 + 2Ac + 2 " 1

Choosing e = β^-ί"-2)/^"1) f0Γ θ = θ(δ, K) small enough insures that
(4.10) is satisfied for A > AQ large independent of c. Note that on
r = δ + e,

h = (c + Ae(2δ + e))2 > 4δ2θ2A2/{n~ι) > supu
Ω

for A>A0 large enough, independent of c.
Denote ΩA = Ωn{δ <r <δ + e{A)} and note that h > u on

2

Lemma 4.3. h>u on ΩA for A> AQ.
Proof. For A > 1 we have A > w on Ω^ - {P} . Decrease A contin-

uously. By construction h > u on dΩA - {P} \Ά > AQ and thus by the
maximum principle, h > u on ΩA\/A > Ao.

Corollary 4.4. Let y eΩ with d(y, dΩ) = ρ< e(A0). Then

Proof Let P e dΩ be such that \P -y\ = p, and let h,ΩA be the

supersolution constructed above. Then

u(y) < h(δ + p) = (c + ^ ( ( ί + p)2 - δ2))2
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We can now prove the important
Proposition 4.5. Let Ω satisfy a uniform exterior ball condition with

constant δ. Then\Vu\2/u <C in Ω, with C = C(δ, K) independent of
c.

Proof Let y e Ω with dist(}>, dΩ) = p > 0 . It suffices to assume

p < e . Set ύ = u + |JC - y\2 and note that ύ is convex since {ύ^} =

{uij + 2δij}>0. Hence

< ρ~\ sup ύ - u

Thus using Corollaries 4.2 and 4.4 (with p replaced by 2p) and Corollary
4.2 we have

4/?2)) = (4β - a)p

so that
2 2 2

By Corollary 4.2 we deduce

"(y) "" c2 + α(iQ/>2 "

Remark 4.6. For an arbitrary domain Ω which need not satisfy the
uniform exterior ball condition, from the above argument we obtain the
interior estimate

sup ^ L < c = C(dist(2), dQ), K).
D U

As a consequence,

(4.11) 2n(K+l)<det{uij + 2δij)<C onD,

where C depend only on dist(Z>, dΩ) and ΛΓ.
4.2. Second derivative estimates on d Ω . We show in this section that

\D2u\ < C on dΩ with C independent of c as c -> 0. Let 0 e dΩ,
and as usual choose coordinates with xn the interior normal to d Ω at
0 and with xι = (xχ, ••• , xn_χ) such that ^ = κaδaβ at 0 (recall
near 0 we represent 9Ω asa graph xn = p(x) with principal curvatures

*!>•••> Kn-l) T h e Π (Uaβ) + 2 ^ ) ( ° ) = ( 2 " Un(°KKP ' S ί l l C e 0 ^
wπ(0) < Cc and |ιcα| < C, we have

We must show
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Lemma 4.7. |wαAI(0)| < C independent of c.
Proof. Set

f(u, VM) = 2(K+ 1)1/Λ(1 + \Vu\2/4u){n+2)/2n.

Differentiating the equation F(D2u) = f with respect to xa gives

I-SXI < c/c

where J2?7 = Fljdtdj - f dt. Here we have used Proposition (4.5) to

estimate \fuua\ < C/c. Seίt T = da 4- /?αaΛ . Then

Hence,

^ ^ ) in5σ(0),

( 4 1 2 )

|ΓM| <C(c + σ) onΩΓ)dBσ(0),

with C independent of c, σ.

Set η = c2- e\x\2/2, 0 < e < 2. By the concavity of F,

F(η)<F(u) + L(η-u),

or

Choosing e = 1 - (A" + l ) 1 / n > 0 and using the convexity of /(•, VM) we
find

or

(4.13)

Consider in 5 σ ( 0 ) n Ω the barrier

= A{u-c2)

Then

Sfφ < -Ae (l + Σpti) +B(2ΣF" + Cσlc) '
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since fp = ^(1/c). We choose B = 2C/σ, A = Λ/C with A > C.
lThen φl>\Tu\ on a ( Ω n ^ ( 0 ) ) and

&(φ±Tu)<0 in Ωn 5,(0).

Hence the maximum principle gives φ > \Tu\ in Bσ(0), and since φ{0) —
Tu(0) = 0 we have

\dnTu(0)\<dn9(°)>

or

\uan(0)\ < Aun(0) < C

with C independent of c. q.e.d.
Returning to our equation

and expanding by cofactors we find

uniformly as c —• 0. As we saw earlier ^4ΛΛ > 1 for c sufficiently small,
0 < unn + 2 < C independent of c. Thus we have proved

Proposition 4.8. Σ \uij\ < C on dΩ independent of c as c —• 0.
4.3. Global second derivative bounds. Unfortunately, we must redo

the global maximum principle for D2u to make certain that we obtain an
estimate independent of c.

We rewrite (4.2) as

(4.14) F(D u) = f{u,Vu) inΩ(l)

with

F(D2u) =

/(«, V«)= Iog2 (K+ 1) +

Let

= max

where // > 0 will be chosen later.
If M is achieved on dΩ., we are done by Proposition 4.7. Thus we may

assume M is achieved at x0 £ Ω for a direction ξ = ex, and as before
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(M.(JC0)) is diagonal. Thus, μ\Vu\2/(2u) + log(«n + 2) has a maximum
at x0. Set λt = uH + 2 > 0 then at x0 there holds

(4.15) μ ί - J ^ - H + ^ i ) + ^ = 0 Vί,

(4.16) ϋ L^-u.. - liu.. + ]™Lu2 + u2. + T ukuΛ

Multiplying (4.16) by λι/λi and summing give
(4.17)

We now

(4.18)

differentiate (4.

Σ
14):

^ Uki 1 = J « W V*.

(4.19)

Note that

2 2 2

(Λ om V^ 1Q" >s, V^ "lii , V^ "if

From (4.18) it follows that

(4.21)

, M Π +4"«Ί1

while by (4.15) we obtain

,4.22,
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Combining (4.17), (4.19)-(4.22) and Proposition 4.5 gives the estimate
(4.23)

One easily checks, using Proposition 4.5, that fuu\ = ^ 0 ) , u{fup =

* ( l / κ ) , fu=S(l/u), E « , 4 = ^ ( 1 ) , / J V M | 2 = ^ ( 1 ) , / ^ > -c'/M.

Hence from (4.23) we obtain

Choosing μ = C + 1 yields a bound for λ{ and thus also a bound for M

independent of c. Therefore we have proved

Proposition 4.9. Σ\uij(χ> c)\<C in Ω(l) where C is independent

ofc.
Hence the proof of Theorem 2 is complete.

5. Proof of Theorem 3

In this section we remove the smoothness hypotheses of Theorem 3 by
an approximation process.

Proof of Theorem 3a. Let Ωk be a monotone increasing sequence of
smooth domains converging to Ω(l) in the sense of Hausdorff distance,
where as in the proof of Theorem 2, Ω(l) is the vertical translation of Ω
to P ( l ) . As in the proof of Theorem 2, there is a smooth solution uk of
(see (4.2))

( 5 Λ ) det(ιiy + M w ) = 2n(K + 1) ( l + ! ^ £ ) in Ω,,

2

We now recall from Remark 4.6 and in particular estimate (4.11) that
for any compact subdomain D of Ω( 1) there holds

(5.2) 2n{K+ 1) < det(κ* +δu) < C,+ δu)

where C depends only on dist(D, <9Ω. Recall also from Lemma 2.1 that

u < h = \x\ in Ω, ,
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where hk is harmonic in Ωk , hk = c2 + |x| 2 on dΩfc . Because of the

monotonicity of the Ω^, the hk are monotone increasing. Since also

uk > c2, the uk are uniformly bounded independent of c and k. Thus

in the two-dimensional case n = 2, we may appeal to a result of Heinz

[7] which implies that

(5.3) | | / | | C 2 ( D ) < C ,

where C depends only on dist(Z>, <9Ω(1)). Using the interior higher
regularity results of Evans and Krylov [9], [3], from (5.3) we obtain the
estimate

(5.4) \\uk\\C2+a{D)<C,

where again C depends only on dist(ί), <9Ω(1)). Thus a subsequence
of the uk converges to a C°° solution u = u(x,c) of (5.1), where the
convergence is locally in C 2 + α . Of course, u satisfies (5.3). The point in
question is whether u e C°(Ω(1)) and u = c2 on Γ. To show this, extend
h to be c2 + |x| 2 outside Ωk then hk is globally subharmonic and
uniformly bounded independent of k. Thus hk converges to a harmonic
function h in Ω(l). To show that h — φ = c2 + \x\2 we use a standard
barrier argument. Namely, for each x0 e Γ there is a superharmonic
function w with w(x0) = 0 and w > 0 in Ω(l) - {x0}. Given e > 0,
choose a neighborhood N of x0 so that φ(x) - φ(x0) < e in N. Now
choose λ (independent of k) so large that

sup h < λ inf w.
Γ-ΓUN Γ-ΓUN

Then by the maximum principle,

(5.5) hk < φ{x0) + e + λw on Ω(l),

and thus (5.1) shows that the h converge uniformly to h in Ω(l). It
follows that if we extend the uk to be C2 outside Ωk, then the uk

converge uniformly to w(x, c) in Ω(l). Finally, letting c tend to zero, we
can abstract a subsequence of the u(x, c) to obtain the required solution
u.

Proof of Theorem 3b. We modify the above argument by replacing
the two-dimensional Heinz interior second derivative estimate with one
valid in all dimensions; then the remainder of the argument is valid in all
dimensions.
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Let ηr

k , for r = 1, 2, be the unique admissible smooth solutions of

(5.6) det(^. +2^..) = 2 ^ ( ^ + 1 ) inΩ,,

η = c2 on Γk.

Then as in §2,
2 . I ̂  2 ̂  jk , ,2

c<η<η<n-\x\,
and //r, r = 1, 2, are uniformly locally Lipschitz (independent of c and
k) on compact subdomains of Ω(l). By assumption, every point of dΩ
is a regular point for Laplace's equation, and thus a barrier exists at each
point of dΩ. Therefore as in the proof of Theorem 3a, the hk converge
uniformly to A in Ω(l). Hence we may conclude that the r\k converge
uniformly to ηr in Ω(l). Moreover, the r\ are solutions in the viscosity
sense [4] of the limiting problems

det(w^ + Iδ ) = 2n~r(K +1) in Ω(l),
P 7 ) 2

η = c onaΩ(l),

and thus η2 > ηι in Ω(l). In particular, given D a fixed compact sub-
domain of Ω(l), we obtain

= * ' f f 2 ι\ = -' f( 2 - ι) 0

We now modify the calculations of §4.3 to show that

(5.8) \D2uk\<C onD

with C independent of k and c. To this end we choose ζ of the form
ζ = (ηl - uk - e)+, and note that ζ > η\ — ηι

k, and also that since

ζ < (hk - (\x\2 + c2))+ -> (A - (|x|2 + c2))+ , the support of ζ is contained
in a fixed compact subdomain of Ω(l) independent of k and c.

Using the concavity of F(D2u) (recall (4.14)) we have

F(D2η2

k) < F(D2uk) + FiJ(η2

k - w % >

and so at x0

(5.19) Σ|>,o^-^logf..l™"r

Let

M = max

where û > 0 will be chosen later, and ζ is as described.
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Clearly M is achieved at xQ e Ω for a direction ξ = e{, and as before

(uij(xo)) *s diagonal. Thus,

logζ + (μ/2)(\Vu\2 + 4M) 4- log(κn + 2)

has a maximum at xQ . Set λi = uH + 2 > 0 then at xQ there hold

(5.10) ζi/ζ + μUiλi + !ίm = o vi,

(5.11) k _ k + ^ Λ + / l 2 M I I +!ίiiα_ίii<o.

Multiplying (4.16) by Aj/λ,- and summing give

(5 12) z \

+^Σuk
k,i

We now differentiate (4.14):

(5.13)

= f«u\ + 2 4 , M i M π +Λ«π + / P I P , M Π +fPl

unv

Note that

uuj y* uUi . V^ u\n

From (5.13) it follows that

(5.16) μλχΣ
UjψL

k,i i

while by (5.10) we obtain

(5.17)
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and

(5.18)

1 » (>1 ' Λ l ί>l S

Combining (5.9), (5.12), and (5.14)-(5.18), gives the estimate

Since the support of ζ is fixed, the quantities fp^_χ, /M , / ^ , ^_, ζi, M.
are uniformly bounded on the support of ζ independent of k and c.
Thus multiplying (5.15) by ζ2 and choosing μ sufficiently large, we find
that M is uniformly bounded independent of k and c. Since ζ > e/2
on Z> for /c large, the interior estimate (5.8) is valid. This completes the
proof of Theorem 3b.

6. Uniqueness theorems

In this section we shall show that a Jordan curve Γ bounds exactly
two ΛΓ-surfaces, when Γ is on a horosphere or on P^, the asymptotic
boundary of H 3 (assuming - 1 < K < 0). Each of the AΓ-surfaces is an
embedded disk and is a graph in a horospherical coordinate system.

In general, a Jordan curve Γ in H 3 need not bound any AΓ-surface,
since there are topological obstructions [13]. Also Γ can bound immersed
(and embedded) ΛΓ-surfaces of higher genus. For example, let S be a
sphere in H 3 of curvature K (S is compact if K > 0, and is an equidis-
tant, noncompact, sphere if - 1 < K < 0). Let Cx, C2 be circles on S
that meet in two points, and let Nχ, N2 be small tubular neighborhoods
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of Cj, C2 on S. Let P be one of the components of N{nN2. Displace
N2 off Nχ near P, so the new N2 U N{ is topologically a torus minus
a disk, and let Γ be the (smoothed) boundary of N{ U N2. Before the
displacement of N2, the corresponding Γ (immersed into S) bounds the
immersed if-surface M (a torus minus a disk) in S. If - 1 < K < 0 any
small perturbation of the boundary values of a ΛΓ-surface comes from a
perturbation of the surface, so the embedded Γ = d(N{ U N2) bounds an
embedded ΛΓ-surface of genus one. One can also make this work when

Λ:>O.
Let the upper half-space of R 3, x3 > 0, model H 3 U i ^ , with P^

the extended plane x3 = 0. For c > 0, let P(c) denote the horosphere
x3 = c. We shall say a curve Γ in P^ is the asymptotic homological
boundary of a surface M in H 3 , if for c > 0 sufficiently small, MnP(c)
contains a connected component Γ(c) such that Γ(c) converges to Γ as
c -> 0, and Γ(c) is homologous to zero on M, i.e., there exists a compact
submanifold M(c) of M and Γ(c) = dM(c). We write Γ = d^M) for
the asymptotic homological boundary Γ of M. When we speak of graphs
we mean graphs in this coordinate system: x3 = f(xχ, x2).

Theorem 6.1. Let T be a Jordan curve in P^, and K a constant
between -1 and 0. There are exactly two embedded K-surfaces M in
H 3 with d^M — T. Each surface is an embedded disk and is a graph over
one of the components of P^-T. If M is any immersed K-surface in
H 3 with d^M = Γ, then M is embedded, and is hence one of the two
graphical disks.

Proof. The existence of one of the two such AΓ-surfaces follows imme-
diately from Theorem 3a. To obtain the second ίf-surface with boundary
Γ, we choose a horospherical coordinate system so that the other connected
component of P^ - Γ is bounded, and again apply Theorem 3a.

It remains to prove the uniqueness of embedded M, with d^M — Γ
and the embeddedness of an immersed such surface. First we establish
some properties of AΓ-surfaces in H 3 .

Lemma 6.2. Let Γ be a smooth Jordan curve embedded in the horo-
sphere P(c), c > 0. Let M be a compact K-surface in H 3 with dM = Γ.
Then x3>c on M, and M is transverse to P(c).

Proof Assume to the contrary, that M is not above the horosphere
P{c). Let p be a lowest point of M , so that JC3(/?) < c. First observe
that the mean curvature vector of M at p (denoted by H(M,p)) cannot
point up: for the vector H(P(x3(p)), p) points up and the curvature of
P(x3(p)) is zero, and therefore greater than K. So P(x3(p)) should be
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above M in a neighborhood of p if H(M,p) points up. Hence H(M, p)
must point down. Consider the hyperbolic plane L, tangent to M at p
and below M. M has more curvature than L, so M should be below L
in a neighborhood of p . This contradiction shows M is above JC3 = c.

Now suppose M is not transverse to P(c) at some point /? e Γ. Con-
sider vertical planes passing through p (vertical Euclidean planes are hy-
perbolic planes too) and their trace curves a on M on β on P(c). The
mean curvature vector of M at p is vertically upward, and each curve
a is tangent to the corresponding β at p , so the curvature of each a is
greater than or equal to the curvature of each β, which is one. The curva-
tures of the α-curves at p (as the vertical planes rotate about the vertical
line through p) are between the principal curvatures κχ and κ2 of M at
p, since they are normal sections of ¥ at p. We know K = κχκ2 - 1
and κχ > 0, κ2 > 0. Since # < 0, at least one of κχ, κ2 is less than one.
Since each normal curvature is of the form κχ cos2 θ + κ2 sin2 θ for some
θ, in any θ interval of length π, there is a normal curvature less than
one. Hence some a curve has curvature less than one, a contradiction.
This proves transversality and Lemma 6.2.

Lemma 6.3. Let Γ be a smooth Jordan curve in P(c), c > 0, and let Ω
&e the bounded domain in P(c) with boundary Γ. Then there is a unique
K-surface M embedded in H 3 , with 9 M = Γ, and whose mean curvature
vector points up, and M is a graph over Ω.

Proof. The existence of M has been proved in Corollary 1; it remains
to prove uniqueness.

Let Co and Cχ be circles in P(c) that bound an annulus A in P(c),
containing Γ in its interior. Let Ct, 0 < t < 1, be a smooth foliation of
A by Jordan curves such that, for some τ, Cτ = Γ.

Let Mo and Mχ be the equidistant spherical caps of curvature K such
that OM0 = C o , dMχ = Cx, and the mean curvature vectors of Mo, Afj
point up. Choose C o , Cχ so that Mo is below M and M is below Mχ.
This is easy to do by Lemma 6.2: once Mo is chosen below M, M t can be
chosen to be the image of a spherical cap containing MQ by a hyperbolic
isometry which is a homothety from a point on P ^ .

We now observe that there is a foliation F of the compact region
bounded by ^ U M o u ¥ p b y ^-surfaces Nt, 0 < t < 1, with 0 JV, = C,,
each Nt is a graph, and No = Mo, Nχ = Mχ. We obtain F as follows.
Start at Mo. By Corollary 1 and the Appendix, for t near 0, t > 0, Ct

bounds a ^-surface Nt (a graph), No = Mo, and Nt varies continuously
with t (for compact ίΓ-surfaces, K e ( - 1 , 0 ) , small variations of the
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boundary values come from variations of the surface). There are no non-
trivial Jacobi fields on any Nt, so they are pairwise disjoint and foliate a
neighborhood of Mo . By the compactness Theorem 2.6, the set of t for
which Nt exists is closed. Hence the foliation can be extended to t = 1.
It remains to prove Nχ = Mχ. There are several ways to see this. Nχ

is above P(c), so one can use the Alexandrov reflection technique with
vertical planes to prove Nχ has all the symmetries of its boundary, the
circle Cx. Hence Nχ is rotational. The details of this approach are in
[11]. Another way to prove Nχ = Mχ using a foliation, will be clear later.

Now using the foliation F we will prove M — Nτ, hence is unique. MQ

is disjoint from M and below M. As t increases from 0 to τ, t < τ,
no Mt can intersect M, otherwise, consider the smallest such t, Mχ is
on one side of M at an intersection point (necessarily interior to Mt and
M), and their mean curvature vectors are both pointing up at this point, so
they would be equal by the maximum principle. This is impossible since
dMt Φ dM, for t < τ . Thus M is above Nτ (maybe equal to it). Now
do the same argument starting with Mχ and letting t decrease from 1 to
τ . As before, we conclude Nτ is above M. Thus M = Nτ, and we have
proved Lemma 6.3.

Remarks. 1. Notice that the above argument can be used to give an-
other proof that Nχ= Mχ: foliate a region containing Mχ by equidistant
ϋΓ-spheres whose boundaries foliate an annulus on P(c) containing Cχ.
Then the above argument shows Nχ is a leaf of the foliation, hence equal
to Mχ.

2. The above proof also implies that a compact embedded AΓ-surface
M in H 3 whose boundary is a round circle is part of a sphere. After an
ambient isometry, one can assume C is contained in a horosphere P. If
the mean curvature vector of M points up, then M is part of a sphere as
explained in Lemma 6.3. It if points down, then let Pχ be a horosphere in
H 3 with Pχ Π P = C. Thus M points up with respect to Sχ in a suitable
system of horospherical coordinates.

3. We will see later that one need only assume M immersed in order
to conclude that M is spherical, that is, M being an immersed ΛΓ-surface
with dM in a horosphere implies that M is embedded.

Now we can prove the uniqueness part of Theorem 6.1. Assume first
that Γ c P ^ is a smooth Jordan curve, and Ω the bounded component
of {x3 = 0} with boundary Γ. Foliate an annulus A in P^ , by Jordan
curves Ct so that CQ and Cχ are circles, and Cτ = Γ for some τ, 0 < τ <
1. Let M be a ΛΓ-surface embedded in H 3 with 0 M = Γ, and the mean
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curvature vector of M points up. Let Mo and Mχ be equidistant K-
spheres in H 3 , with O^MQ = C o , dooMι = Cχ, and whose mean curvature
vectors point up. Choose C o , Cχ so that Mo is below M, and M is
below Mχ. We foliate the region between Mo and Mχ by ίT-surfaces
Nt, N0 = M0, Nχ = Mχ, each JV, a graph; and d^ΛΓ, = Ct, for 0 < t < 1.
Assuming such a foliation F exists, it follows, as in the proof of Lemma
6.3, that M — Nχ, hence is unique. As t goes from 0 to τ , t < τ , Nt

cannot touch M and is below M (a first point of contact of Nt and M
cannot be at infinity since this would oblige ΘNtΠdM Φ 0) . Similarly,
decreasing t from 1 to τ , we conclude Nτ is above M. Hence M = Nτ

as desired.

Now we construct the foliation F . For c > 0, let Ct(c) be the foliation
in P(c) obtained by vertical translation of Ct. As in the proof of Lemma
6.3, there is a foliation F(c), by compact if-surfaces Nt(c) ,0<t<
1, satisfying: Nt(c) is a graph, dNt(c) = Ct(c), and NQ(c)9 Nx(c) are
equidistant spherical caps that converge to Mo and Mχ respectively, as
c -> 0. By the compactness results of §4, each Nt(c) converges to a K-
surface graph Nt, as c —> 0 uniformly on compact sets. Clearly the Λ̂
are pairwise disjoint for tχ Φ t2 (otherwise Nt (c) Π Nt (c) φ 0 for some
c > 0), and they vary smoothly with t, hence they form a foliation F as
desired.

Now suppose Γ c S^ is a Jordan curve, not necessarily smooth. Let
Ct, 0 < t < 1, be a topological foliation of an annulus in P^, with
C o , Cj circles and Cτ = Γ for some τ . This foliation can be obtained
using a homeomorphism φ: P^ —• P^ , taking Γ to a circle and with 0
equal to the identity in two small disks, one in each connected component
of P^ - Γ. Then the preimage by φ of a foliation by circles in P^
will give theC,. For c > 0, let Ct(c) be a smooth foliation by Jordan
curves, 0 < t < 1, chosen so that Ct(c) -> C, as c —• 0. The foliation
C,(c) bounds a smooth foliation by AΓ-surfaces Nt(c), dNt(c) = Ct(c),
each iV,(c) a graph. This was proved in Lemma 6.3. By the compactness
results of §5, Nt(c) converges to a graph Nt, as c —• 0, diV, = C£. The
foliation Nt(c) converge to the foliation by Nt. As in the smooth case,
this implies that any ^-surface M with d^M = Γ and mean curvature
vector pointing up, is the leaf Nτ of this foliation.

Remark 6.4. We remark that there may exist an embedded Λ>surface
M with asymptotic boundary a circle Γ (not homologically) and M not
a graph. It is not hard to see that a rotational surface of this type does not
exist; one obtained by rotating a "drop-like" curve about an axis.
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Our argument fails since one cannot find an equidistant sphere below
such an M, and one above; the mean curvature vectors point in opposite
directions when one uses the foliation. One can still say something about
M : M is invariant by symmetry in the hyperbolic plane P with d^P = Γ.
Each component of M in H3 - P is a graph over a domain in P. We
refer the reader to [11] where this is proved for //-surfaces. The proof
uses Alexandrov reflection in hyperbolic planes "parallel" to P, and works
exactly the same way for ^-surfaces; the maximum principle is the basic
tool.

In fact, all the theorems of [11] that are proved using Alexandrov re-
flection apply verbatim for Λ>surfaces in H 3 . For example, if M is an
embedded AΓ-surface and d^M is one point, then M is a horosphere.
If d^M consists of two disjoint circles, then M is a rotational surface.
Similarly if d^M equals two points, M is rotational.

Finally, to compleie the proof of Theorem 6.1, we will show that when
d^M = Γ and M is an immersed ^-surface, then M is embedded.

Choose c > 0 so that MnP(c) contains an embedded curve Γ(c) and
Γ(c) = dN, N c M, N compact. By Lemma 6.2, we know that N is
above P(c) and is transverse to P(c) along Γ(c). Let S be a compact
sphere, sufficiently close to P{c), so that S is transverse to M, SnM is
a Jordan curve Γ, close to Γ(c), and Γ bounds a compact submanifold
N of M, N contained in the ball of H3 bounded by S. It suffices to
prove N is embedded. For notational convenience we will call Γ, N, by
Γ, N, for the rest of this proof.

Γ separates S into two connected components A and B. The idea
is to show that one can smooth, either ^UJV or B \J N, along Γ, to
obtain a smooth immersed compact surface of positive curvature. Then
by Hadamard's theorem, the surface is an embedded sphere.

Orient S and N so that their unit normal vectors ns and nN, point
to the convex side of each surface (so ns points into the ball bounded by
5). Let v be a unit vector field along Γ, that is tangent to M and points
into A9 and let P(x) be the plane generated by ns(x) and v(x). Denote
L(x) = Tχ{M) Π P(x). L(x) is one-dimensional since the tangent vector
Γ'(.x) to Γ at x, is orthogonal to P(x), and in Tχ(M). M is transverse
to S along Γ, so L(x) is never orthogonal to ns(x). Hence nN(x)
is never parallel to ns(x)(Tχ(N) is generated by Γ'(x) and L(x)). We
know nN(x) is orthogonal to Γ^x^and L(x) hence nN(x) has a positive
projection onto A or B and this is independent of x: (nN(x), I/(JC)) φ 0
for xeΓ.
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Suppose nN projects positively onto A. We claim that N U A can
be smoothed along Γ to have positive curvature. First observe that Γ is
a curve on (the convex) surface M, so its curvature vector Γ"(x) has a
positive scalar product with nN(x) for each x eΓ; i.e., Γ curves towards
the convex side of M. Hence, in a neighborhood of x, N U A is in the
half-space defined by Γ'(x), L(x) and nM(x). So the plane Γ'(.x), L(x)
is a local support plane for N U A, and iV U ̂  can be smoothed to be
locally convex.

Appendix: The linearized operator and stability

Let f:M^N be an immersion, M and N Riemannian manifolds,
M compact, and dM nonempty. Let exp denote the usual exponential
map of the normal bundle of M in N into N > and let n(x), x e M,
denote a unit normal vector field along M in N.

For u e CQ+OC(M) , - 1 < t < 1, we define f{t): M -• JV to be the maps
Λ: »-• expy(jc)(ίw(x)«(x)). For f near zero, /(ί) is an immersion.

Let AT be a (curvature) function and define J = J^: CQ+(X(M) —•

Ca{M) by

Jf(u){x) = | - (*(/,(*))).

/^ is the linearized operator of K at / associated to normal variations
given by n . It is also called the Jacobi operator, and elements of its kernel
are called the Jacobi fields. M (i.e., / : M —• N) is said to be stable when
the kernel is trivial.

Now suppose N = Nm+1 (c) is one of the simply connected space forms
R m + 1 , Sm+ι or H m + 1 (c = 0, + 1 , or - 1 ) , and M = Mm is of codimen-
sion one. Let 0 < r < m, and K = Sr+ι be the (r + 1) st symmetric
curvature function of M in N. Then we have an explicit formula for the
Jacobi operator (cf. [12], [13]):

J{u) = Lr(u) + (c(m - r)Sr + SxSr+x - (r + 2)Sr+2)u,

where lr(u) = dΐv(ΓrVw), Tr is the rth Newton tensor of the shape oper-

ator A of M in N, TQ = I, and Tr = SrI - ATr_{.

When the linear term has a negative coefficient (i.e., when c(m - r)Sr +
S{Sr+ι - (r + 2)SΓ + 2 < 0 on M), and when Lr is an elliptic operator,
the usual maximum principle implies that the kernel of / is trivial. For
example, this is always the case where c = - 1 and m = 2, with 0 <
S2 < 1 (these are convex surfaces in H 3 ) . The coefficient of u is 2HK =
S (_ l + S2) < 0 the direction of the normal to M is that for which the
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principal curvatures are positive, so Sx > 0. The same reasoning shows
M is stable when r = 1, m arbitrary, 0 < S2 < 1 and S3 > 0. In
particular, if any Sk, k > 3, is positive, then so is 5 3 [13]. In general,
however, there may be nontrivial Jacobi fields for S2 or Sm{r = m - 1).

When M is stable (and the linearized equation is elliptic), then small
variations of the boundary values of M come from small variations of
M. We now make this precise.

Assume / : Mm —• Nm+ι and let n be a normal vector field along M
in N. Consider N as isometrically immersed in some Euclidean space
R7, and let π: T -» N be the projection of a (small) tubular neighbor-
hood T of N in R7, for y e T, π(y) is the closest point of N to
y. Let γ0: dM -• JV c R7 be the restriction of / to dM, and for
γ e C2+a(dM, N), let h{y) : M -> R7 denote the harmonic extension of
y - y 0 to M.

For y in a neighborhood ί7 of γ0, U c C2+α(<9Λf, TV) and w E

CQ+ Q !(M) in a neighborhood F of zero, the map M —> R7, JC ι

h(γ)(x) + W(JC)Λ(Λ:) will be an immersion of M into Γ. We define

[/ x v _L> C

a(M), F(γ, iι) = ΛΓ(Λ(/ + h(γ) + un)).

F is C°° and

Suppose Jr is elliptic, and M has constant curvature c. Then Jf is a
Fredholm operator of index zero, so D2F(γ0, 0) is an isomorphism. By
the implicit function theorem, there is a neighborhood Uo c U of γ0 a
neighborhood F o c F of 0, and a smooth map u: UQ -+ Vo such that

Define H(γ) = π(/ + A(y) + iι(y) i) for y G Uo. Then ΛΓ(fΓ(y)) = c
and H{γ9) = π(/ + 0) = / , J5Γ(y)/βΛ/ = π ( / + y - γ0) = π(y) = y. Thus
the solutions of the equation K = c depend smoothly on the boundary
values.
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