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HYPERBOLIC MANIFOLDS WITH
NEGATIVELY CURVED EXOTIC TRIANGULATIONS

IN DIMENSION SIX

PEDRO ONTANEDA

0. Introduction

In this article we construct, given ε > 0, closed real hyperbolic man-
ifolds of dimension 6 with exotic (smoothable) triangulations admitting
Riemannian metrics with sectional curvatures in the interval ( - 1 , - ε ,
- 1 + ε ) .

A fundamental problem in geometry and topology is the following.
0.1. When are two homotopically equivalent manifolds diffeomorphic,

PL homeomorphic, or homeomorphic?
When both manifolds in (0.1) are closed, hyperbolic, and of dimension

greater than 2, Mostow's rigidity theorem states that they are isometric, in
particular diffeomorphic. When both manifolds have strictly negative cur-
vature, results of Eells and Sampson [4], Hartman [7], and Al'ber [1] show
that if / : Mχ —• M2 is a homotopy equivalence, then it is homotopic to
a unique harmonic map. Lawson and Yau conjectured that this harmonic
map is always a diffeomorphism (see problem 12 Yau [13], which asks for
proof of (0.1), differentiably, for strictly negative curved manifolds). Far-
rell and Jones [5] gave counterexamples to this conjecture by proving the
following. If M is a real hyperbolic manifold and Σ is an exotic sphere,
then given ε > 0, M has a finite covering M such that the connected
sum M#Σ is not diffeomorphic to M and admits a Riemannian metric
with all sectional curvatures in the interval ( - 1 — e , - l + β ) . Because
there are exotic spheres only in dimensions 7 and up this does not give
counterexamples to Lawson-Yau conjecture in dimension less than 7. The
constructions here give counterexamples in dimension 6. Explicitly, we
have the following theorem, that is a consequence of Theorem (3.1) and
construction (3.2).

0.2. Theorem. There are closed real hyperbolic manifolds M of dimen-
sion 6 such that the following holds. Given ε > 0, M has a finite cover
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M that supports an exotic (smoothable) PL structure that admits a Rie-
mannian metric with sectional curvatures in the interval (— 1 - ε, -1 + ε).

These manifolds are the ones that appear at the end of [11] for the real
hyperbolic case.

Also, in [6] Farrell and Jones proved that (0.1) holds topologically when
one manifold is nonpositively curved and has dimension greater than 4.
And, again by [5], (0.1) does not hold, diffeomorphically, for dimensions
greater than 6. Then it is natural to ask if (0.1) holds PL homeomorphically
for nonpositively curved manifolds. (Note that [5] does not answer this
because connected sum with spheres does not change PL structures). In §4
we show that, in general, this is not the case (for dimensions greater than
5). In fact, we obtain the following

0.3. Corollary. For n>6, there are closed nonpositively curved mani-
folds of dimension n that support exotic {smoothable) PL structures admit-
ting Riemannian metrics with nonpositive sectional curvatures.

These manifolds are simply the product of the manifolds in (0.2) with
the m-torus.

Here is a short outline of the paper. First, in § 1, we show how to change
(concordance classes of) triangulations (modulo some closed subset) by
cutting along a hypersurface and gluing back with a twist. Then, in §3,
we take this hypersurface to be totally geodesic and search for one with a
large tubular neighborhood width, so that we can use the same method as
[5] (see §2) to provide this exotic triangulation with a Riemannian metric
with sectional curvatures in (-1 - ε, - 1 + ε).

1. Triangulation lemmas

Recall that if M is a PL manifold and C c M, a closed subset (assume
m = dimM > 6 or dim Λf > 5 and dM c C) then there is a one-to-one
correspondence between H3(M, C; Z2) (this is Cech cohomology) and
the set of concordance classes of PL structures on M that agree with the
given one on a neighborhood of C. We can choose this correspondence
to be such that it sends the given PL structure to 0. Next we sketch how
this correspondence is given (see [8]).

Denote by τ 0 the given PL structure on M. Also denote by ^ T O P and
BPL the stable classifying spaces for TOP and PL microbundle structures
and TOP /PL —• B'pL —• Bτop the fibration we obtain from the canonical
map BpL —> Z?TOP . Let τ be another PL structure on M that agrees with
τ0 on a neighborhood of C . Then there is an n such that T X E " is
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concordant to a PL structure θ, that makes M xRn a PL microbundle
(trivial over a neighborhood of C) over Mχ . This gives a correspon-
dence between concordance classes of PL structures on M that agree with
τ 0 on a neighborhood of C and TOP /PL{ε(M) relC), the set of stable
concordance classes (rel C) of PL microbundle structures of the trivial
bundle ε{M) over Mχ (see [8, p. 176]). But TOP /PL(ε(M) rel C) is
also in correspondence with Lift(/relC, Fo), the set of vertical homo-
topy classes of liftings of / to B'PL, where / : Λf —• BτθF classifies ε(M)
and Fo: {neighborhood of C} - B'PL is a given lifting of /|neighborhoodof c
(it classifies ^neighborhood of c ) . But ε(M) is a trivial bundle so that we
can choose / to be a constant map (and Fo also constant because our
PL microbundle structures are trivial over a neighborhood of C), hence
TOP /PL{ε(M) rel C) is in correspondence with [M, C TOP /PL], the
set of homotopy classes of maps from M to TOP /PL that send a neigh-
borhood of C to a previously fixed point. But TOP /PL is an Eilenberg-
MacLane space of type (3, Z 2 ) , so that [M, C; TOP/PL] is in corre-
spondence with H3(M, C; Z 2 ) . Note that this correspondence depends
on which PL structure we are sending to zero in H3(M, C; Z2) and is
also completely determined by this choice.

Given a concordance class of triangulations [τ] denote by c[τ] = cτ e

H3(M, C; Z2) the corresponding cohomology class, and also given a co-
homology class c write [τc] = [τ]c for the corresponding concordance
class of triangulations.

We have the following lemma.

1.1. Lemma. Let p: M -• M be a covering, C c M closed, and m =

dimM > 6 {or dimM > 5 and dM c C). Suppose M as a PL structure

τ 0 and denote by τ 0 the pullback p*τ0 of τ 0 and make these two trian-

gulations correspond to zero in H3(M, p~\C) Z2) am/ H3(M,C;Z2)

respectively. Then [ τ ] p V = [/?*τc] /or all c e H3(M, C; Z 2 ) . Equivalently,

cp*τ = p*cτ for every PL structure τ on M.

Note that if Tj and τ 2 are concordant PL structures on M, then /?*Tj

and p*τ2 are also concordant.
Proo/ Let τ be a PL structure on M (rel C) . If θ is a PL structure

that makes MxRn (for some ή) a PL microbundle over Mτ concordant

(relC) to τ x Rn , then p*0 is a PL structure that makes M x Rn a

PL microbundle over M~ concordant (relp^C) to p*τ x Rn, where
τ o

p = {p, I d r ) . If Λ: M -» TOP /PL c 5^ L classifies 0, then hp classifies
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p*θ. So, pulling back PL structures gives a map [M, C; TOP /PL] -•
[M,p~ι(C); TOP /PL] given by h ^ hp. This completes the proof of
the lemma.

Now, given a PL manifold M, we show how to change PL structures
by cutting along a closed hypersurface N of M and gluing back with a
twist.

Denote by Mχ the CAT (= PL or DIFF) manifold obtained by
cutting along TV and identifying by χ the two copies of N we get, where
N is a CAT closed hypersurface and χ: N -> N is a CAT isomorphism.
In what follows we assume that the relative set is nice enough (for example,
deformation retract of a subcomplex) so that we replace Cech cohomology
by singular cohomology.

1.2. Lemma. Let M be a PL orientable n-manifold, n > 6, N a
closed PL hypersurface with a tubular neighbourhood g: W =pL N x
[-1, 1] of N in M, where g(N) = N x {0}, and J c N open with
7 compact. Then for every c e H3(M, M\J\ Z 2 ), there is a PL isomor-
phism χ: N —• TV, such that Mχ {that is, its PL structure) corresponds to
c (by the correspondence that sends the given PL structure to 0) and χ is
the identity outside a compact neighborhood of J.

Note that / is not open in M but g~~ι(J x (-δ, δ)) is, where δ < 1,
and (M, M\g~\j x (-δ,δ))) is a deformation retract of (M, M\J).

Proof Denote by τ 0 the given PL structure on M and make it cor-
respond to 0 G H3(M, M\J; Z 2 ) . Now, τc (a PL structure that cor-
responds to c) is a PL structure on W that agrees with τ 0 outside
g~ι(J x (-δ, <$)). In particular they agree on g~\(N\J) x [-1, 1]),
so that Wr is a PL product there because Wτ is. By the s-cobordism
theorem and the fact that the torsion of a homeomorphism is zero, we
have that there is a PL homeomorphism h: (W, τc) —• N x [-1, 1], such
that

kg Ux{-l}U({ΛΓ\F}x[-l, 1]) = ^ΛΓx{-l}U({ΛΓ\K}x[-l , 1]) '

where 7 c F c F c J V , F i s compact, and V is open. Let / =
(h~lg)\σ-ιίλr^fλXλ. Then we see that M v corresponds to τ (here to obtain

S K™ x i 1 j) X c

Mχ we are cutting along g~ι{N x {1}) c W), for we can define a PL
homeomorphism H: M —> M by

c *•

\x, X€M\W.

Note that χ\N\V = W^\K This completes the proof of Lemma 1.2.
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1.3. Remark. Note that if τ is smoothable, then, using now the dif-
ferentiable s-cobordism theorem, we can choose χ to be smooth.

2. Geometric Lemma

Let M be a differentiable manifold and consider metrics A on M x
/ , where / = [1,2] satisfying (recall that the tangent space at a point
(x, t) eM xl is isomorphic to TχM Θ R(d/dt)\t).

2.1. (a) For any v e TχM, A(v , d/dt) = 0.
(b) A{d/dt,d/dt) = 1.

Equivalently, A = St + dt , where St is a metric on M depending on t.

2.2. Lemma. Let M be compact and A = St + dt2 a metric on M x I

satisfying (2.1). Then given ε > 0 there is an L such that for a> L all

the sectional curvatures of Aa lie in (-1 - ε, - 1 + ε), where Aa is the

metric on M x I given by Aa(x, t) = cosh2(αί)5'ί + α 2 rfί2 .
The proof is the same as the proof of Lemma 3.5 of [5]. Just replace the

function sinh by cosh and the (m - 1) sphere by any compact manifold.

3. Construction of the examples

First we proof the following theorem.
3.1. Theorem. Consider the following data. For each k = 1, 2, 3,

we have closed hyperbolic manifolds M0(k), M{(k), M2(k), M3(k) such
that the following hold.

(a) dimM0(λ:) = 6, dimM1(fc) = 5, dimM2{k) = 3, dimM3(A:) = 3.
(b) M2(k) c Mχ(k) c M0(k) and M3(k) c M0(k). All the inclusions

are totally geodesic.
(c) M2(k) and M3(k) intersect at one point transversally.
(d) For each k there is a finite covering map p{k): M0(k) -> MQ(l)

such that pik^M^k)) = Mt(l), for i = 0, 1,2, 3.
(e) Mχ{k) has a tubular neighborhood in M0(k) of width r(k) and

r(k) —• oo as k —> o o .
Then, given ε > 0, there is a K such that all M0(k), k > K, have

exotic (smoothable) triangulations admitting Riemannian metrics with all
sectional curvatures in the interval ( - l - ε , - l + ε ) .

Proof Denote by σ(k) the triangulation on M0(k) induced by the

hyperbolic structure and make it correspond to zero in H3(M0(k), Z 2 ) .

Also, denote by g(k) the restriction of the hyperbolic metric on M0(k) to
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the totally geodesic submanifold Mχ(k). Then the tubular neighborhood

of width r(k) of Mχ(k) in MQ(k) is isometric to Mχ(k) x [-r(k), r(k)]

with metric, at a point (x,t), given by (cosh2 t)g(k) + dt2 (note that

hyperbolic w-space B.n is isometric to H"" 1 x l with ijietric (cosh2 t)g +

dt2 , where g is the hyperbolic metric on B.n~ι).

Take now a tubular neighborhood W{k) of MΊ(k) in Mχ(k). We

can suppose that p(fc)l^(fc): ^(fc) -» W(l) is a covering. Let the open set

U(k) be such that U(k) is a compact tubular neighborhood of M2(k) x {2}
in W{k)x(0, 3).

Consider the cohomology class c{k) e H3(W(k) x (0, 3) , W(k) x
3(0, 3)\C7(fc); Z2) s #3(FF(fc) x (0, 3), FF(fc) x (0, 3)\Af2(A:) x {2}; Z2)

dual to Λ/2(fc) x {2} c FF(Jfc) x (0, 3).
Denote by τ(fc) the triangulation, modulo the complement of U(k),

on W(/r) x (0, 3) corresponding to c(k).
Let f(k): W(k) —> ίΓ(fc) be the PL isomorphism corresponding to c(fc)

given by Lemma (1.2), so that the triangulation of (W(k) x (0, 3))^/^,
obtained by identifying {x, 2) e W(k) x (0,2] with (f(k){x), 2) e
W(k) x [2, 3), corresponds to c(k) (it is concordant to τ(k)).

3.1.1. We have the following claims.
(!) (P(k)\w{k)xld{Oi3)rc(l) = c(k) and τ(fc) = ( p ( f c ) r

(2) We can choose f(k) such that it covers / ( I ) .
(3) We can suppose τ(Λ:) to be smoothable and /(/:) a diffeomorphism.
(4) We can take f(k) to be the identity outside a neighborhood V(k)

of Λ/2(]fc), with Vjk) c ^ ( J t ) compact.
Proofs of the claims. (3) is true because in dimension 6 there is no

obstruction for a PL structure to be smooth so that we can suppose f(k)
smooth (see Remark (1.3)). (4) follows from the fact that τ(k) and σ(k)
coincide outside U(k) (see proof of Lemma (1.2)). (1) is true because
(p\w^)~ι(M2(l)) = M2(k) (the pullback of the dual of a cycle is the dual
of the inverse image (to see this just consider a sufficiently fine triangulation
and its dual cell decomposition and pull back everything)). The second
part of (1) follows from Lemma (1.1). For (2) note that the triangulation
of (W(k) x (0, 3))f(k) is τ(k) = (p(k)\w{k) x Id ( 0 3 ) ) * τ ( l ) , and if f(k)
covers / (I) then (W(k) x (0, 3))f(k) covers (^(1) x (0, 3)) / ( 1 ) by a PL
covering. Hence we can take as f(k) a lifting of / (I) (indeed, we could
have defined f(k) in this way). This completes the proof of the claims.

Consider the metric A(\) on W{\) x [1, 2] defined by

* + dt2,
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where δ is a smooth real function such that 0 < δ(t) < I, δ(\) = 0,
δ{2) = 1 and is constant near 1,2.

For ε > 0 let L be the constant given by Lemma (2.2), so that all

sectional curvatures of A( 1 )α lie in (-1 - ε , - 1 +ε), for α > L. Note that,

because /(I) is the identity outside V(l), we have that ^4(1) = 2
() ()

outside F(l) x [1, 2] and then also A(l)a = (cosh2(α0)#(l) + a2dt2

outside F(l) x [1, 2]. Note that we cannot apply Lemma (2.2) directly
because W(\) x [1, 2] is not compact, but we can apply the lemma to
Λfj(l) x [1, 2] because we can extend A(\) to it. Define now a metric
B(\) on W(k)x(09 3)) / ( 1 ) (thatis W(k)x(09 3) withtriangulation τ(l))

\ # ( 1 ) + Λ 2 * e ( 0 , l ] U [ 2 , 3 ) .

Note that this metric is well defined since both definitions coincide on a
neighborhood of t = 1, 2.

Thus (W(l)x(O, 3))^(1) admits Riemannian metrics (the metric 5(1 )Q

for α > L) with all sectional curvatures in (— 1 — ε, — 1 + ε). Remark that
5 ( l ) α = (cosh2(α0)s(l)+α;2dί2 outside a compact subset of H^(l)x(0, 3)
containing M 2(l) x {2} .

Also, by defining i?(ik) = p(k)*B(l), we have that (W(k) x (0, 3))/(/k)

(i.e., W(k)x (0, 3) with triangulation τ(/c)) admits Riemannian metrics
(the metrics 5(/c)α for a > L) with all sectional curvatures in (-1 -
e, - 1 + β). Note that we also have B(k)a = {cosh2(at))g(k) + α2rfί2

outside a compact subset of W(k) x (0, 3) containing M2(k) x {2} . We
try now to fit these models (i.e., (W(k) x (0, 3 ) ) ^ with the metrics
B(k)a) on the MQ(k), for large enough k.

Let K be such that r(k) > 3L for k > K (use hypothesis (e) here).
We prove that MQ(k) has exotic triangulations with Riemannian metrics
with sectional curvatures in the interval ( - l - ε , - l + ε ) .

Because of (e) of the statement of the theorem, Mχ(k) c M0(k) has
a tubular neighborhood of width r(k) isometric to Mχ x \-r(k), r(k)]
with metric (cosh2(t))g(k) + dt2. In what follows we make no distinction
between the tubular neighborhood and Mχ(k) x [-r(k), r(k)].

Consider

h(k): W(k) x (0, 3) -> W(k) x (0, 3L) tW{k) x (-r(k),r(k))

cMχ(k)x(-r(k),r(k))cM0(k)

given by (x, t) •-> (x, Lt).
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Note that h(k) is an isometry, where we are considering W(k) x (0, 3)
with metric cosh2 (Lt)g(k) + L1 dt2, and W(k) x (0, 3L) with metric
induced by the hyperbolic metric on MQ(k).

Because the triangulation (h(k)~ι)*τ(k) coincides with σ(k) outside a
compact in W{k) x (0, 3L), we can extend it to all MQ(k) by defining
it to be σ(k) outside W(k) x (0, 3L). Call this triangulation on M0(k),
τ(k). This (smoothable) trangulation corresponds to the cohomology class
c(k) e H3(M0{k), M0(k)\M2(k) x {2L}; Z2) dual to M2{k) x {2L} c

k 0 2

W(k) x (0, 3L) c Af^fc) x (-r(λ ), r(fc)) c M0(k) (the correspondence
between PL structures and the third cohomology group is natural for re-
strictions to open sets; see [8, p. 195]. Define also a metric B(k), com-
patible with τ{k), on MQ(k) to be (h(k)~ι)*B(k)L on W(k) x (0, 3L)
and the hyperbolic metric outside W{k) x (0, 3L). Note that all sectional
curvatures of B(k) lie in (— 1 — ε, — 1 + ε) (all sectional curvatures are
- 1 outside a compact subset of W(k) x (0, 3L)).

So, given ε > 0, there is a AT such that for k > K, τ(k) is a
triangulation on M0(k) that admits the Riemannian metric B(k) with
all sectional curvatures in the interval (-1 - β, - 1 + e) and τ(k) cor-
responds (by the correspondence that sends σ(k) to zero) to c(k) e
H3(M0(k), M0(k)\M2(k) x {2L} Z2) dual to M2{k) x {2L} .

But c(fc) is not zero in H3(MQ(k) Z 2 ) . That is, if

i3: /ί3(M0(fc), M0(k)\M2(k) x {2L} Z2) -> i/3(M0(/c) Z2)

is the inclusion, then i3(c(k)) is not zero because M2(k) x {2L} is ho-
mologous to M2(k) and it intersects M3(k) tranversally at one point (by
hypothesis (c)). This means that σ(k) and τ(k) are nonconcordant.

Finally we have to prove that τ(k) is indeed not equivalent to σ(k).
So suppose / : (MQ(k), τ(k)) -> (M0(A:), σ(k)) is a PL homeomor-

phism. We have two cases:

3.1.2. First case. Suppose / is homotopic to the identity. Let Ht,

0 < t < 1, HQ = / , Hj = Id be a homotopy between / and the iden-

tity. Then the map 77: Afo(ife) x [0, 1] -+ M0(k) x [0, 1], defined by

Ή{x, t) = {Ht(x)9 t) is homotopic to Id^r (A:)x[o, i]» a n d because it is al-

ready a homeomorphism on 9(Λ/0(/c) x [0, 1]), we may apply (1.6.1) of

[6] to get a homotopy (which is constant on d(M0(k) x [0, 1])) of Ή to

a homeomorphism H: M0(A:) x [0, 1] —> MQ(k) x [0, 1].

Since Hχ =Id, Ho = f, and σ(fc) and τ(fc) are nonconcordant, by

pulling back the triangulation σ(k) x / of M0(k) x [0, 1] using H, we

obtain a concordance between τ(fc) and σ(k), a contradiction.
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3.1.3. Second case. By the Mostow rigidity theorem, every homeo-
morphism from a compact hyperbolic manifold to itself is homotopic to
a diffeomorphism, so that we have f ~ g, where g: (M0(k), σ(k)) —>
(M0(k), σ(k)) is a diffeomorphism. Then the second case follows by ap-
plying the first case to g~lf ~ I d M ( A : ) . This completes the proof of
Theorem (3.1).

Remark. The reason that Theorem (3.1) does not work for dimension
5 is that the triangulation Lemma (1.2) holds only for dimensions 6 and
above. This is because the s-cobordism theorem is not true for dimension
5, so that we do not know if triangulations on ¥ x [0, 1], modulo the
boundary, are products, where M4 is a 4-manifold. Also, in Theorem
(3.1) we need dimension less than 7 to ensure that the triangulations we
obtain are smoothable.

3.2. We construct now, for every n > 4, manifolds M.(k), i =
0 , 1 , 2 , 3 and k = 1 , 2 , 3 , with dimM0(k) = n, dimΛf^A;) =
n - 1, dimM2{k) = n - 3, dimM3(k) = 3 satisfying (b), (c), (d), and (e)
of the theorem. When n = 6 they will also satisfy (a).

Fix a positive prime number m and write E = Q(y/m). Denote by (9E

the set of integers of E. Fix / e ffE and define, for k = 1, 2, , the
quadratic form Q{k) on Rn+ι by

Q(k)(xx, , xn+ι) = I2{k-χ)x\ + x\ + x] + + x\ - V^tx2

n+V

Define now groups

G0 = {ge GL(n + l,R): gH = H} where H = {x e R Λ + 1 : x π + 1 > 0} ,

Gx = {geG^geλ=ex},

G2 = {geG0:gei = ei9i= 1,2,3],

G3 = {geGQ: ge. = ei9i = 495,-> , ή],

and

H0(k) = {geG0: Q(k)(gx) = Q(k)(x) Vx e M n + 1 } ,

Hi{k) = HQ{k)KGi, 1 = 1 , 2 , 3 ,

, 1 = 0 , 1 , 2 , 3 ,

where the subindex (9E means that the entries of the matrices are in (9E ,
and ei is the vector in Rn+ι whose 7 th coordinate is δj . Note that for
all k, Ht{k) = //z(l) and Γ.(ifc) = Γ.(l) for i = 1, 2, and write just
H{, H2 and Γj, Γ2 respectively.
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Define also

Xo = {x = (xχ, ... , xΛ + 1) e R"+ 1: β(l)(x) = - v ^ , xΛ + 1 > 0},

Xx = X0Π {(x{, ... , xΛ + 1) G 3RΛ+1: x{ = 0},

X, = {(*!, , * Λ + 1 ) € l o : x 1 = x 2 = x3 = O})

X3 = {(Xj, , xπ + 1) e Xo: x4 = x5 = = xn = 0},

and we consider Xo with the metric, at a point x e l o , that is the restric-
tion of 0(1) to the hyperplane tangent to XQ at x. This Riemannian
metric is of constant curvature -\jφn. We remark that I 2 c I j C
ΛΓ0, ί 3 c XQ where all the inclusions are totally geodesic, and also that
X2^\X^ = en+ι.

Consider the n + 1 by n + 1 diagonal matrices

and note that D{k)Hi{k)D{k)~x = i/ z (l), / = 0, 1, 2, 3.

Since fl .(l) acts on jr.. and Z)(fc)Γ)(k)D(k)~ι c i/z(l) for i = 0, 1, 2,
3, we define

Yβ) = X./DWΓiikMk)-1, i = 0 f l , 2 , 3 .

Note that Y.(k) = Yt(l) for all k and / = 1, 2 so write just 7j and Γ2 .

3.2.1. Now for an ideal J^ of (9E consider the congruence subgroups

for i = 0, 1, 2, 3 . Also write

YiWjr = XJDikWβ^Dik)-1, 1 = 0 , 1 , 2 , 3 .

3.2.2. We have the following facts.
1. For any nontrivial ideal J ^ of ^ £ , Γ^A:)^ is a subgroup of finite

index of Γ^A:) because @El<y is finite.
2. Γz(fc) is discrete (see the proof of step 1 of Lemma (3.2.3) or [10,

p. 239]).
3. Y.(k) is compact (see [12] or [10, p. 238]).
4. For all but finite ideals ^ , GL(n + 1, @E)jr is torsion free (see

[3; p. 113]), so that all Γ^fc)^ are also torsion free. Thus all Y^k)^
are compact manifolds. Furthermore, for all but finite ideals ^ , we have
that if

π(k): Xo - X0/D(k)Γ0(k)^D(k)~l = Y0(k)^

is the projection, then

1 = Yi{k)jr, 1 = 0, 1 , 2 , 3 ,
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so that the Y.{k))^ are (totally geodesic) submanifolds of YQ(k)^ (see
Proposition (2.2) of [11]).

Remark. To be able to apply (2.2) of [11] we need some remarks. Let
σn i = 1, 2, 3, be the following involutions: σι{xι, x2, , xn+ϊ) =

(—Xχ , X2 j , Xn+\) j ^ 2 ^ 1 ' *2 ' "*3 ' "^4 ' ' ' ' ' *n+V = \ * \ » ~~*2 ' ~"*^3 >

• 4̂ 5 * * * ? ^n+\' ' ^ - ^ ^3v ^ i 9 %2 ' "^3 ' "^4 ' "^5 ' ' * * ' ^n ' ^n+\' = = ^ 1 ' "^2 ' "*"3 '

- x 4 , -x5, -" , -xn, Λ:Π+1) . Note that X. is the fixed point set of σt.
We also have that σiΓ0(k)jrσi = Γ0(fc)^ , i = 1, 2, 3, and the following
two facts hold:

1. TQ{k)jr acts freely, because it is discrete and torsion free.
2. T^jr = {ge TQ{k)y. gXt = Xt} = {ge Γ0(k)^: σ.gσ, = g},

/ = 1 , 2 , 3 . To see the first equality note that a group of orthogonal
matrices with coefficients in ffE is finite. Thus we can apply (2.2) of [11]
to obtain (*).

3.2.3. Lemma. The widths r(k) of tubular neighborhoods of (Y{)jr in
Y0(k)jr can be chosen such that r(k) —• oo.

Proof We have three steps:
Step 1. We prove that

is closed and discrete.
The proof of this is similar to the proof of the fact that Γ0(k) is discrete

(see [2, p. 190]). So, to prove step 1 note first that &E is not discrete in
R, but the map φ: <fE —• R x R defined by x ^ (x ,x), where x is the
conjugate (i.e., a + y/mb -a- y/rnb), is a bijection of <fE in R2 whose
image is closed and discrete.

Thus ~φ\ (XQ)^ -• R n + 1 x R n + 1 is a bijection and also has closed and

discrete image. Since x\ + + x\ - \[mx2

n+x = -\fm implies x\ +

• + x2

n + yjrhx\+x = y/m, pro}2(φ({X0)^)) is compact, so that (Xo)^ =

pτo}{(φ({XQ)^ )) is closed and discrete.

Step 2. We prove that for all s e R+ there is a K such that ||y^π+11| > s

for k > K and y e D(k)Γ0(k)D(kyι\Γι, where the bars denote the

Euclidean norm in R Λ + 1 .

So, take γ as before. Then γ = D(k)βD(k)~ι for some β e ΓQ(k).

Since γ is not in Γ{ and also (*) implies that Γj = {g e Γ0(k): gXχ =

χ χ ) = {g e Γ 0 ( k ) : gX{nXχ φ 0 } ) , b y n o t i n g t h a t (lk'][aχf + ••• +

an - y/ma2

n+x = -y/m s o t h a t γen+x = {lk~xax, a2, , a n + x ) e ( X o ) ^ ,
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we obtain

yen+ι = D(k)βD(k)-χen+ι = D(k)βen+ι = {lk~Xax, a2, a3,

with flf. G ̂  and flj ^ 0. Now (X0)o is closed and discrete by step 1.

Consequently {X0)j nB(09s) is finite, where B(09s) is the ball in Rn+ι

with center at the origin and radius s. Thus the set projj ((Xo)# Γ\B(0, s))

is finite, where proj^Xj, , xn+ι) — xx. By taking K large enough we
khave that, for k > K, lk~ι does not divide any of the nonzero elements

of p r o j ^ Λ ^ Π 5(0, s)) so that γen+ι = ( Z * " ^ ! , α 2 , , fln+1) does

not belong to J?(0, 5) which means that Hy^+JI > s for k > K.
Step 3. We complete the proof. Because of step 2, we have that

rf(<Wi' {^Λ+i : y € Z)(/:)Γ0(/:)Z)(/:)-1\Γ1}) -^ 00 as A: - 00, where d is
the Euclidean distance. Thus it is easy to see that the same happens with
the Riemannian metric of Xo (both metrics induce the same topology), so
that the lengths of closed geodesies, not in Yj, at the point o = π{k)(en+ι)
go to infinity as k goes to infinity. Using the triangular inequality we hence
complete the proof of the lemma.

We have found manifolds satisfying condition (e) of the theorem, we
now pass to finite coverings to find manifolds satisfying (b), (c), and (d).
We need the following result from [11, p. 122].

3.2.4. There are infinitely many ideals J^ of ffE such that the following
two conditions hold:

1. XJY^jr is orientable, i = 0, 1, 2, 3.
2. If γ e Γ 0 ( l ) ^ and γx e X2, for some x e X3, then γ = g2g3,

where $ € ^ . ( 1 ) ^ , / = 2 , 3 .
Thus we can suppose that the ideal *f which we choose in Lemma

(3.2.3) satisfy (3.2.4).
Remark. Statement 2 of (3.2.4) holds if and only if Y2(ί)^ Π Y 3(l)^

is one point.
Consider Γ/(fc)(/*)njr, / = 0, 1, 2, 3, where (/*) is the principal ideal

generated by /* . Since (/*) Π S c J , Γ (λ:) ( /* ) n j r c T^k)^ . Denote by

\ i = 0, 1 , 2 , 3 ,

and note that Σ^k) is a subgroup of Γ ^ l ) ^ for i = 0, 1, 2, 3. More-
over, from Γ.(l)(l2k)n^ C Σf.(fc) C Σf.(l) C ^.(1)^ it follows that Σ.(fc)
has finite index in Γ ^ l ) ^ and Σ f.(l). Write

Mi{k) = Xi/Σi{k), i = 0 , 1 , 2 , 3 .
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We prove that these manifolds satisfy (b), (c), (d), and (e) of the theorem.
Note that all M^k) are compact orientable manifolds because they are

finite covers of the XJT^l) = 3^.(1)^ (for the orientability we use condi-
tion 1 of (3.2.4)). This also implies (b) and the fact that the dimensions
are right.

Next we prove (d). Remark that Σt(k) = Σ0(fc) Π G. = Σ0(fc) Π T.(k)^ ,
i = l , 2 , 3 . This fact together with (*) yields that if π(k): Xo -> M0(k)
is the projection then π(fc)(Z/) = M((k), i = 1, 2, 3. If p(k) denotes
the projection p(k): M0(k) -+ Afo(l), then (d) follows from π(l) =
p(k)π(k).

Since (M0(k), Mx{k)) covers (YQ(k)^9 (Yχ)jr), Lemma (3.2.3) im-
plies that (e) holds.

Finally we prove (c). Let γ e Σ0(fc) be such that γx e X2 for some
xeX3. Then by (3.2.4), we have γ = g2g3, g. e T]{1)^ , i = 2, 3.

Because γ e Σ0(k) = D(k)Γ0(k){lk)n^D(kyι there is a β e Γ0(fc)(/*)nJΓ

such that y = D{k)βD(k)~ι. Thus

But

so that

= [D(kΓlg2D(k)][D(k) lg3D(k)).

D(k) lg2D(k) =

= g2[D(k)-lg3D(k)],

) ιwhich implies that D(k) ι g3D(k) has entries in (9E, because β and g2

/fc
have. Since β = Idmod(/ ), by noting that βei = g2e{, / = 4, , n,

and βei = et mod(lk) and also that g2 has determinant one (due to con-

dition 1 of (3.2.4)), we have that g2 = Idmod(/*), and also D{k)~ιg3D(k)

= Idmod(/*). This means that g2 € Γ2(fc)(/*} and D(k)~ιg3D(k) e

Γ3(fe)(/jt). Consequently

g. e D{k)Ti(k){lk)njrD(k)~x = Σ.(fc) C Σ0(fc), i = 2, 3.

If π(k) denote the projection XQ -> M0(k), then

π(k)(x) = π(k)(γx) = π(k)(g2g3x) = π(k){g3x).

But ^ 3 x € X3 for x e l 3 , and ^3x e X2 since ^ ( ^ J C ) = yx e X2, so
that g3x = X2ΠX3 = en+ι, which implies that π(k)(x) = π(k)(en+ι) = o.
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4. Nonpositive curvature case in higher dimensions

Denote by Tm the m-torus ^ x x S 1 with the canonical differ-
entiable structure and the induced PL structure ττm . We prove here
that if we take one of the examples of §3 and multiply it by Tm , we still
have exotic nonpositively curved triangulations. To see this we note that
if (M, τ0) and (M, τ2) are two nonpositively curved triangulations on
M, then (M x Tm, τ 0 x ττm) and [M x Tm, τχ x τTm) are also nonpos-
itively curved. Moreover, if (M, τ0) and (M, τχ) are nonconcordant,
then (M x Tm, τ 0 x τΓm) and (M x Tm, τχ x τTm) are also so, for the
Kunneth formula tells us that Z2-cohomology classes do not vanish when
we take products. So, it remains to prove that these triangulations are not
equivalent. To see this it is enough to prove the following (see (3.1.2) and
(3.1.3)).

4.1. Proposition. Let f: M x Tm -+ M x Tm be a homeomorphism,
where M is a compact orientable hyperbolic manifold. Then f ~ g, where
g is a diffeomorphism.

Proof. Because nχ{M) has trivial center (see [9]), we have that if
φ: π{(M x Tm) —• π{(M x Tm) is an isomorphism, then there are iso-
morphisms φχ: πχ{M) -> πx(M)9 φ2: πχ(Tm) -> πχ(Tm) and a homo-
morphism ψ: πχ{M) -^π{{Tm)^Zm such that

φ = φχ Θ φ2 + 0 Θ ψ.

4.1.1. Lemma. Let M be a compact oriented differentiate manifold,
and λ: nχ(M) —• Z m a homomorphism. Then there is a diffeomorphism
h: M x Tm -+ M x Tm such that for A#: πχ(M x Tm) - πχ(M x Tm) s
πχ(M)φZm, we have

Proof Since HX(M, Z) is the abelianization of nχ{M), we have that
λ factors through it:

_ / %yf\ abelianization τr / %* η,\ ~λ r#rn

i.e., the composite of these two maps is λ. Let p., / = 1, , s, be a

basis for the free abelian group H1 (M, Z) = H o m ^ (M, Z), Z). Then

there are elements at = (niX, , nim) e Z m such that λ = Y^aipi.

M is compact and oriented, so by Poincare duality, there are Nt e
Hn_x{M, Z) dual to pt. We can represent N by an embedded (n - 1)-
dimensional closed submanifold (we denote it also by N ) . These Nt
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have tubular neighborhoods U. = [0, 1] x N., and we make no distinction
between Ui and their images. Define g.: Ui x Tm -> [/. x Tm by

where δ is smooth such that δ' > 0, 5(0) = 0, ί ( l ) = 1, and it is
constant near 0 , 1 . Define also A.: M x Γ m -> M x Tm by

ntΐl

K, xe{MχTm)\{Ui χTm).

These are well-defined diffeomorphisms, because the two definitions agree
on a neighborhood of dUi. Finally put h = hι — hs, which completes
the proof of the lemma since h^ = Idπ ,MxTm\ +0 θ λ.

We complete now the proof of Proposition (4.1). Let / : M x Tm —>
M x Tm be a homeomorphism. Let φχ, φ2, and ψ be such that f% —
φx θ φ2 + 0 θ ψ. Let h be as in Lemma (4.1.2) where we take λ =

ψφ\x. Then ( A 1 / ) * = Φx <S Φ2 By Mostow's rigidity theorem there
are diffeomorphisms rχ and r2 inducing φχ and φ2 respectively. Thus

(h ιf)^ = (rχ x r2\ and by (1.6) of [6] / Γ 1 / - rχ x r2 or / - A ^ x r 2 ) ,
which is a diffeomorphism.
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