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THE RIEMANNIAN STRUCTURE
OF ALEXANDROV SPACES
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Abstract

Let X be an n -dimensional Alexandrov space of curvature bounded
from below. We define the notion of singular point in X , and prove that
the set Sχ of singular points in X is of Hausdorff dimension < n - 1

and that X - Sx has a natural C°-Riemannian structure.

0. Introduction

Let J£{m , JC , D) denote the class of ra-dimensional compact Rieman-
nian manifolds with sectional curvature > — K and diameter < D. Any
sequence {Mi}i=ι 2 of J((m, K , D) contains a subsequence {M.,.Λ.
converging to a compact metric space M^ with respect to the Hausdorff
distance dH (see [12]). Although we could not expect the limit space
M^ to be a manifold, it inherits several properties of the manifolds in
Jί{m, K , D), i.e., M^ is an Alexandrov space of curvature > — κ2 , di-
ameter < D, and of Hausdorff dimension < m . We say a metric space X
is an Alexandrov space (of curvature bounded from below) if X is a con-
nected, complete, and locally compact length space of curvature bounded
from below and of finite Hausdorff dimension. (In [4] any such space X is
called a FSCBB. The precise definition of Alexandrov space will be given
in §1.) Therefore the study of Alexandrov spaces makes clear the structure
of the d^-closure of «/#(m, K , D), and then it is very useful for the study
of manifolds in J£{m, K , D).

Assume that X is an Alexandrov space of curvature > k. For any
triple of points p, q, r e X we denote by Zpqr the angle at q of a
triangle Apqr in the simply connected space form of constant curvature
k such that \pq\ = \pq\, \qr\ = \qr\, and \fp\ = \rp\, where \xy\ denotes
the distance between x and y. A point p £ X is called an (n, δ)-
strained point if there exist points pi e X, / = 1, , 2n such that
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ΪPiPPi+n > n - δ for any / = 1, , n and Zp.ppj > π/2 - δ for any
/, j = 1, , 2n with i ψ j mod n . We call any such {pt} an (n, δ)-
strainerat p . Let Xn δ be the set of (n, <S)-strained points in X. Burago,
Gromov, and Perelman [4, §6] proved that the Hausdorff dimension of
X is equal to the maximal number of n such that Xn δ Φ 0 for all
sufficiently small δ > 0, and in particular the Hausdorff dimension is an
integer and is called the dimension of X denoted by dim X. They also
proved that Xn δ is open dense in X and is an ^-dimensional topological
manifold, where n := dimX and δ > 0 is small enough. In [11, §3 \ ],
Gromov conjectured that X-Xn $ is of ^-dimensional Hausdorff measure
zero. We give an affirmative answer to that conjecture. A point p e X is
called a nonsingular point if it is an (n, ί)-strained point for any δ > 0,
and a singular point if it is not a nonsingular point. Clearly, X — Xn δ

is contained in the set Sχ of singular points in X. One of our main
theorems is

Theorem A. Let X be an n-dimensional Alexandrov space. The set
Sx of singular points in X is of Hausdorff dimension < n - 1.

Recall that the Gromov convergence theorem [12], etc., states that for
any sequence {M.} in ^ ( m , /c, D) such that the sectional curvature KM

of M{ satisfies \KM \ < K and the volume of M. is greater than a positive
constant, then the limit M^ of some subsequence of {M(} is a Cx+a-
Riemannian manifold for any 0 < a < 1 (i.e., the metric tensor is C
and its differential is Cα-continuous in the sense of Holder's condition),
and M( is diffeomorphic to M^ for all sufficiently large /. It is, there-
fore, natural to ask whether X — Sχ has some differentiate structure and
Riemannian structure or not. In this direction we have the following re-
sult. We refer to § 1 the precise definition of differentiable and Riemannian
structures on a space which is not necessarily locally Euclidean.

Theorem B. Let X bean n-dimensional Alexandrov space. Then there
exists a C -Riemannian structure on X—SχcX satisfying the following :

(1) There exists an Xo c X — Sχ such that X — Xo is of n-dimensional
Hausdorff measure zero and that the Riemannian structure is ^^-continu-
ous on Xoc X.

(2) The metric structure on X - Sχ induced from the Riemannian
structure coincides with the original metric of X.

Remarks. (1) It was proved in [4] that X - Xk δ is of topological di-
mension < k -1 for any 0 < k < n and that any nonboundary (n -1, δ)-
strained point is (n, ^-strained, where δ' -> 0 as δ —• 0. By these two



THE RIEMANNIAN STRUCTURE OF ALEXANDROV SPACES 631

statements, the set of singular and nonboundary points is of topological
dimension < n-2 . Recently, in [5], independently of Theorem A, this has
been proved for Hausdorff dimension instead of topological dimension.

(2) In general, Xn δ does not have any C°-Riemannian structure sat-
isfying (2) of Theorem B because Xn δ may contain singular points (see
Example (2) below).

(3) The set X - Sχ of nonsingular points in X is not necessarily a
Riemannian manifold (see Example (2) below). Nevertheless, X is a
C°-Riemannian manifold in the ordinary sense whenever X contains no
singular points (see the definition of Riemannian structure in §1).

(4) The boundary of any convex body in a Euclidean (n + l)-space
Rn+ι is an Alexandrov space of curvature > 0, and its structure was
investigated very well for many decades (see for example [7]). A point
on the boundary of a convex body is called a singular point if its support
hyperplane is not unique. Note that the notion of singular point described
here is a little wider than that for Alexandrov space. A point is called
an r-singular point if its support hyperplanes have w n + l - r degrees of
freedom". Then the sets Sr of r-singular points for r = 0, , n - 1
satisfy SQ c Sχ c c Sn_ι , the Hausdorff dimension of Sr < r, and the

complement of Sn_{ has C differentiate structure (see [2]). Our result
is a generalization of this.

(5) A. D. Alexandrov also proved that the boundary of a convex body in
Rn+ι has an almost everywhere second differentiable structure in the sense
of Stolz. In [11], Gromov suggested that any Alexandrov space will have
some second differentiable structure. Our result is a partial answer to that.
An affirmative answer to the conjecture will be given in the subsequent
paper [15] by developing the approach of this paper.

(6) Let X be the limit space of a Cauchy sequence in {M e
jr{m,κ,D) I \KM\ < κ2} and let n := dimX. Then, X and Sχ

have more rigid structures (see [10]), i.e., X has a stratification Sn :=
X D Sn_{ := Sχ D Sn_2 D D S0D S_x = 0 such that Sι - Sι_ι for
any / = 0, , n has a structure of C°°-Riemannian manifold whose
induced metric is close to the original metric (in the sense of the Lipschitz
distance).

(7) In [3], Berestovskii proved that any G-space satisfying a certain
axiom is a C°-Riemannian manifold. Later, Plaut [ 17] extended this to the
case of geodesically complete Alexandrov spaces having positive injectivity
radius. Their proofs are simpler than ours because of the fact that any
geodesic is extendable in their cases.
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FIGURE 1

Examples. (1) Let X be a complete two-dimensional PL-manifold
without boundary. For any vertex p e X denote by Z(X, p) the sum
of all the inner angles at p of faces F 's of X such that p is a vertex of
F. Then, X is of curvature bounded from below (or is an Alexandrov
space) if and only if Δ(X, p) < 2π holds for any vertex p of X (see [7,
§17]). In this case, X becomes nonnegatively curved, and a vertex p of
X is a singular point if and only if Z(X, p) < 2π. Note now that the
space Σp of direction at a vertex p of X is a circle (for the definition of
the space of direction see §1.3). It follows that the length of Σp is equal

)to
(2) Let us construct an example of a two-dimensional Alexandrov space

X with the property that the set Sχ of singular points of X is dense in X .
We first define a sequence {Xk} of convex polyhedra in R inductively.
(The desired X is realized as the Hausdorff limit of {Xk}.) Let Xχ

be a regular tetrahedron in R , the barycenter of which is the origin o .
Assume that Xk has been defined. Let us define Xk+ι . Take a monotone
decreasing sequence {ez} of numbers tending to zero in such a way that
0 < e. < 1 for each i and e := ΓT^iO ~ c , ) > 0. We take the barycentric
subdivision of Xk and move all the new vertices outward slightly along
rays emanating from o (keeping the original vertices of Xk ) to obtain the
convex tetrahedron Xk+ι (see Figure 1). We may assume that

2 π - Z(Xk+χ ,p)>(l-ek) (2π - Δ{Xk , p))

for any vertex p of Xk .

Define I c R 3 to be the Hausdorff limit of {Xk}. Then, X
negatively curved. For any k and any vertex p of Xk , we obtain
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oo

Urn (2π - Δ{X., p)) > f ] ( l - ek+i) (2π - l{Xk , p))
l~*°° i=0

>e (2π-l(Xk,p))>0.

The length of the space of direction at p of X is l i m ^ ^ /.(X. ,p)<2π.
Thus any vertex of Xk for any k is a singular point of X. Since the
maximal length of all the edges of Xk tends to zero as k -» oo, the set
Sχ of singular points is dense in X .

(3) Let X be the double of the n-dimensional Euclidean unit ball,
i.e., the union of two copies Bχ and B2 of the ^-dimensional Euclidean
closed unit balls such that dBχ and dB2 are identified by an isometry, so
that X is homeomorphic to the standard sphere Sn . Since X contains no
singular points, applying Theorem B and recalling Remark (3) we have that
X is a C°-Riemannian manifold (and then a C^-differentiable manifold).

The present paper is organized as follows. In §1, we introduce the
notion and convention used in this paper and summarize the facts known
for Alexandrov space (see [4]). For example we define the angle of two
minimal segments emanating from a point in an Alexandrov space X,
the space of direction Σp at p e l , the tangent cone Kp at p, (weak)

Cr-differentiable structure and C^-Riemannian structure on YcX for
r > 0, etc.

In §2, we prove Theorem A. For δ > 0 we define

§ δ := { x e X I Zpxy < π - δ for any y e X - {x}}.

Let B(p, r) denote the metric r-ball centered at p e X. From To-

ponogov's convexity, the map S δ Π B(p, r) —> Σp which assigns to

x G S δ Π B(p, r) the element v G Σ corresponding to a minimal

segment px is L-expanding, i.e.,

f o r any x , y € 5 P ϊ ί Π B(p , r),

where L is a positive constant depending only on n := dim X, K; , J , and

r. Since the Hausdorff dimension of Σp is equal to n - 1, the Hausdorff

dimension of Sp δ Π B(p, r) is < Λ - 1. Since the Hausdorff measure

is completely additive, the Hausdorff dimension of S := \Jδ>QSp δ is

< n - 1 . From the splitting theorem for Kp (see [13], [18]), there exists

a discrete subset {pz }/=1 2

 c ^ such that for any X G S ^ there is an i

with x £ S . Hence the Hausdorff dimension of Sγ is < w — 1 .

In the later sections we prove Theorem B. In §3 we define natural
local chart through the distance functions on X. For p e X, let
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V := {x e X I px is un ique} , where px denotes a minimal segment

joining p and x. Let x e X-Sχ. Since Kχ is linearly isometric to R" ,

we identify Kχ with Rn . We have that X-Vχ is of /?-dimensional Haus-

dorff measure zero because of X - Vχ c Sχ . Thus, for almost all choices

of pχ, ••• ,PneX, xtVp. for any / = 1, ••• , n and {vχp)i=u... >fI is

linearly independent in ATX . Let us define a map 9? : X -» R" by

for x € X . We formulate the first variation formula for any triple of
points (Theorem 3.5), which enables us to show that φ is a bi-Lipschitz
homeomorphism on an open neighborhood U at p . Let Vφ := f|"=1 Vp n
(U - Sx), and define a map g : F —»• Mat(«) by

Then, ^ is continuous. We introduce the notion of cut locus for Alexan-
drov space. The cut locus Cp of p e X is the complement of the set of
points x e X such that px is unique and extends to a minimal segment
py ? y φ x . We prove that the /^-dimensional Hausdorff measure of C

is zero and that g is C1/2-continuous on ^ - f | " = 1 C p . We may assume

that g is positive definite. We call any such φ : U —• R" a natural local

chart.
In §4, we prove that coordinate transformations of natural local charts

are almost everywhere differentiable, and g is the Riemannian metric
compatible with them, which determines a Riemannian structure o n l -
Sx c X in a weak sense. In §5 we construct new charts which are C 1

everywhere by approximating natural local charts. In §6, we prove that
X - Sχ is locally path connected, and the induced metric on X - Sx from
the Riemannian structure coincides with the original metric on X. The
proof of Theorem B will be completed there.

Finally, in §7, we give an addendum. Concerning [14], we see that if
a convergent sequence {AfJ of Riemannian manifolds in JP{m, K , D)
satisfies that the excess of Mt tends to zero, then the limit space is a
C1/2-Riemannian manifold.

1. Preliminaries

In this section, following [4] we will review known facts, and intro-
duce the notion of differentiable structure and Riemannian structure on
topological space which is not necessarily locally Euclidean.
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1.1 Lower curvature bound for length space. Let X be a complete lo-
cally compact length space, i.e., a complete locally compact metric space
such that any two points p, q € X is joined by a minimal segment whose
length is equal to the distance \pq\ (or \p, q\) between p and q, where
the length \c\ of a continuous curve c : [a, b] -> X is defined to be

m-\

sup
a=to<-<tm=b ) = 0

For p, q e X we denote by pq a minimal segment joining p and q.
We now fix a number k e R. For simplicity, we call a complete simply
connected surface of constant curvature k a k-plαne. For any triangle
Apqr in X, i.e., any triple of points p, q, r e X, we denote by Apqr
a triangle Apqr in a fc-plane such that \pq\ = \pq\, \qr\ = \qr\, and
\rp\ = \rp\. Denote by Zpqr the angle of the triangle Apqr at the vertex
corresponding to q . Note that Apqr does not necessarily exist in the case
of k > 0. By definition, X is of curvature > k if the following axiom
holds.

77ze Alexandrov Convexity. For any minimal segments px and py
emanating from a common point p, the angle Zx(s)py(t) is monotone
nonincreasing in s, t > 0, where j φ ) (resp. y(/)) denotes the point on
px (resp. py) whose distance from /? is equal to s (resp. t).

This statement is equivalent to the following. Take any triangle Apqr
and any points x e pq and y e pr, where /?# and pr are arbitrarily
fixed. Then, there exists a triangle Δ/?#r =: Apqr such that if we take the
two points x e pq and y e pr with |/?x| = \px\ and |/?y| = |pj?|, then
we have |xy| > |xp | .

Let X be of curvature > k and fix two minimal segments px and py .
The Alexandrov convexity implies the existence of the limit of Z x(s) p y(t)
as s, t -> 0, which is called the angle Δxpy. We have Δxpy > Δxpy,
which is an analogue of Toponogov's comparison theorem for Riemannian
manifold and which we call Toponogov's convexity. It is easily verified
that any minimal segment in X does not branch.

1.2 Hausdorff measure and rough volume. Assume now that X is a
metric space and A a subset of X. For δ > 0, let Gδ be any family of
Borel subsets of X with diameter < δ and covering A. For a > 0, the
a-dimensional Hausdorff measure VH

a(A) of A is defined by
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where a(a) := Γ(l/2)a/Γ{a/2 + 1), and Γ is the Euler's function. Note
that a is not necessarily an integer. The Hausdorff dimension dim^ A of
A is defined to be sup{ a > 0 | VH

a(A) = +oc } = inf{ a > 0 | Vff

a(A) =
0 } .

Assume A c X to be precompact. A subset N of A is called an e-
discrete net, e > 0, if the distance between any two different points in N
is greater than or equal to e . Then, any e-discrete net of A is of finite
number. Denote by βA(c) the maximal number of e-discrete net of A
and define the a-dimensional rough volume Vra(A) of A by

Vra{A) :=limsupeaβA{e).

The rough dimension dimr A of A is defined in the same manner as the
Hausdorff dimension. Obviously we have VH

a{A) < a(a) Vra(A) and
dim^ A < dimr A . The Hausdorff measure is a Borel regular measure. On
the other hand, the rough volume is not completely additive and does not
measure X.

Let X and Y be two metric spaces and L > 0 a number. A map
/ : X —• Y is said to be L-expanding if \f(p)f(q)\ > L\pq\ holds
for any p, q e X. A map / : X —> Y is said to be L-contracting if
l/(p)/(?)l < ^l/^l holds for any p, q e X (i.e., / i s Lipschitz contin-
uous with Lipschitz constant L). If / : X -> y is L-expanding, then
VH

a(f(X)) > LaVH

a{X) and dimH/(ΛΓ) > d i m ^ Z . If / : X -> Y is
L-contracting, then VH

a(f(X)) < LaVH

a{X) and dim^/(JΓ) < dim^X.
The same inequalities hold for the rough volume and the rough dimension.

1.3 Alexandrov space. Let X be a complete locally compact length
space of curvature > -κ2 > -co and of Hausdorff dimension = n < + oo .
We call any such space X an Alexandrov space. Recall (see [4, §6]) that n
becomes an integer and that both the Hausdorff dimension and the rough
dimension of any metric ball are equal to n , and besides the topological
dimension coincides with n. Thus we call n the dimension dim X of
X. For a point / ? G l , w e denote by Σ' the set of equivalence classes of
minimal segments emanating from p, where px is equivalent to py if
Δxpy = 0, i.e., one of px and py is contained in the other. The space
Σ'p has the distance function naturally induced from the angle between
minimal segments from p. We call the completion of Σ'p the space of
direction Σ , and each element of Σ a direction at p. It is known
that the space of direction Σp is compact. For any minimal segment px
in X, the symbol υpχ denotes the direction at p corresponding to px.
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With this notation we have \vpχvpy\ = Δxpy for any px and py. The
cone K(Y) over a metric space Y is defined to be the topological cone
Y x [0, +00)/y x 0 equipped with the metric defined by

\(x,s), (y, t)\ := yjs2 + t2 - 1st cos min{\xy\, π}

for any (x, s), (y, t) e K{Y). Denote the vertex of K(Y) by o. The
tangent cone Kp at p e X is defined to be the cone K(Σ ) over the
space of direction Σp . It is known (see [4, §7]) that the space of direction
(resp. the tangent cone) at any point is an Alexandrov space of dimension
n - 1 (resp. n ) and of curvature > 1 (resp. > 0), and that for any fixed
p e X, the pointed space (rX, p) converges to (Kp, o) as r —• +oo in
the sense of the pointed Hausdorff distance, where rX denotes X with
metric multiplied r times. A point p e X is called a singular point if
Kp is not isometric to R", or equivalently Σp is not isometric to the
standard (n - l)-sphere. Note that the present definition of a singular
point is equivalent to the definition given in §0 (to prove this we may use
the splitting theorem (see [13], [18])). If a point p e X is nonsingular,
then Kp is identified with R" and the scalar multiplication, the inner
product ( , •), etc. in Kp are assumed to be defined.

1.4 Radius. The radius rad(X) of a length space X is defined by

rad(X, p) := sup \pq\, rad(X) := inf rad(X, p).
qex p£χ

It follows that diam(X)/2 < rad(X) < diam(X).
Assume now that X is an n-dimensional Alexandrov space of curvature

> 1. If a point p e X satisfies rad(Λf, p) = π, there exists a unique point
q such that \pq\ = π. The point q is called the antipodal point of p.
We can easily prove that rad(X) = π if and only if X is isometric to the
^-dimensional standard sphere. Therefore, a point p in an Alexandrov
space is a nonsingular point if and only if rad(Σ;7) = π .

1.5 Generalized differentiate structure and Riemannian structure. Let

X be a topological space, and let 7 c I , n G N, 0 < r < 2. A
family ® = {(Uφ9Vφ, φ)}φeΦ is called a weak C-atlas on Y c X if the
following hold:

(1) For each φ e Φ, Uφ is an open subset of X, and Vφ c Uφ .

(2) Each φ e Φ is a homeomorphism from U into an open subset of

R \
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(4) If two maps φ, ψ e Φ satisfy VφnVψ^0, then

is Cr on φ(V9ΠVψΠY).

Note here that, for 0 < a < 1, a map / from an open subset U of Rn

into R" is said to be Cι+a on a (not necessarily open) subset V of U if
the differential of / exists at every point in V and is Ca -continuous in
the sense of Holder's condition.

Each (U , V 9 φ) is called a local chart. When Uφ = Vφ holds for every
p e Φ , w e call the weak Cr-atlas a Cr-atlas on Y c X, and express that
ί ( ί V P ) } , € Φ w h e n x = r > t h e existence of a Cr-atlas on 7 = X
implies that X is a Cr-manifold in the ordinary sense. Note that our
aim is to construct a C1-atlas on X - Sχ c X and that the concept of
weak atlas is needed only for the way of our proof. Two weak Cr-atlases
on Y c X are said to be equivalent if the union of these is also a weak
Cr-atlas on Y c X. We call each equivalence class of weak Cr-atlases
a weak Cr-differentiable structure. A weak Cr-differentiable structure is
called a Cr-differentiable structure if it contains at least one Cr-atlas. A
continuous function / : X —• R is said to be Cr on Y with respect to
a fixed weak Cr-differentiable structure on Y c X if f o φ~ι is Cr on
φ(Vφί)Y) for any local chart (U' V , φ) in the maximal weak Cr-atlas.
In the same manner, we can define the concepts of Cr-map, Cr-curve,
etc. We can also define the tangent space T X for each p e Y and the
concepts of vector field, form, and any other local objects in the standard
way.

A family g = {gφ}φeΦ is called a Cr~x-Riemannian metric associated

with a weak Cr-atlas {{Uφ , Vφ , φ)}φeΦ on Y c X if the following hold:

(1) For each φ e Φ, g is a map from V to the set of positive
symmetric matrices.

(2) For each φ e Φ, gφ°φ~X is Cr~ι on <p(Vφ n Y).
(3) For any x e V Π Vψ , φ, ψ e Φ, we have

gψ{x) = ld{φ o ψ~l)(ψ(χ)) gφ{χ) d{φ o ψ

Let 3) and £)' be two equivalent Cr-atlases on Y c X. Two C r - 1 -
Riemannian metrics g and g' respectively associated with D and 5)' are
said to be equivalent if QUQ is a C r-1-Riemannian metric associated with
DUX)'. Note that if 35 has a Cr~x-metric g, then a unique C r M-metric
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g associated with £)' is naturally induced from g such that g and g are
equivalent. We call the pair of any equivalent class of CΓ~*-Riemannian
metric and its associated (resp. weak) Cr-differentiable structure on Y c
X a (resp. weak) Cr~x-Riemannian structure on Y c X. In the case
where X = Y, the existence of a Cr~ -Riemannian structure on Y = X
implies that X is a Cr~ι -Riemannian manifold.

Now, we fix a (weak) Cr~ι -Riemannian structure on Y c X. Take any
p eY and a local chart (Uφ9 φ) = (Uφ9 xι,-- , xn) around p. (When
the structure is weak, we may take φ such that p e V .) Let u, υ e TpX
be any vectors, and let

where un

is defined
V
by

: R ,

A

i = 1, ••• , ι

and v = Y v . r
Y ιdxι

, π . The inner product in the tangent space

where (^.(p)) := gφ(p).
1.6 Landau's symbols. We sometimes use Landau's symbols o( ) and

O(') (i.e., when x tends to 0, we have that o(x)/x tends to zero, and
O(x)/x is bounded). Define the symbol θ{x) to be a number which tends
to zero as x -* 0, (i.e., θ(x) = o(x)/x). Note that θ(x) + θ(x)
CΘ(X) = Θ(JC), etc., hold. The symbols ^ ^ 5 . . . ( x ) , Oa Λ . . . W , θβ

mean o(x), O(JC) , Θ(JC) depending on a, Z?, .

2. The mass of singular points

The purpose of this section is to prove Theorem A. Let X be an n-
dimensional Alexandrov space of curvature > -κ2, K > 0. For p e X
and δ > 0 let

Sp δ:={χ eX \ Zpxy < π - δ for any y eX - {x} }.

It follows that Spδ c Sp> ^ for any ί > J7 > 0. Let 5 p := U J > 0 ^ , J

Then we have
Lemma 2.1. There exists a constant L = L{κ, r , 5) > 0 depending

only on κ,r,δ > 0 MC/Z ίAα/ Zx/rμ > L | x y | for any x,y e SpJ Π

B(p,r).
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Proof. Take any x, y e Sp δ n B(p, r). It follows that

> cosh M + M _ c o s h \py[si cos
K K K K

= (1 + cos Zpxy) sinh -—- sinh -—-.
/C K

Hence, by |pjc| + \xy\ < 3r and Zpxy < π - δ, we have

\px\ + \xy\ - \py\ . u 3r / t . . . u |px | . u |xj>|
^ — - — ^ ^ — ^ - ί sinh — > (1 - cosδ) sinh i£—-1 sinh J-£-L.

JC K ~ K K

On the other hand,

(Zxpyf . |/?jc| . r ^ M ~ , . u |/7x| . u^ sinh i£—-L sinh — > (1 - cos Δxpy) sinh i£—-1 sinh
K K /c

^ sinh sinh > (1 cos Δxpy) sinh sinh
2 K K /c K:

= cosh -—- — cosh
K

- 2K1

Therefore

1 -

Lemma 2.2. 77ze 5̂ ί 5 ^br any p e X is of Hausdorff dimension

<n-\.

Proof Since S =\JtS δ Π ̂ ( ^ , r.), where Jz —»• 0 and r. —• H-oo ,

it suffices to prove that S δΠ B(p, r) for any J , r > 0 is of Hausdorff

dimension < n - 1. In fact, Lemma 2.1 and Toponogov's convexity imply

that the map S δ Π B(p, r) 3 x \—> vpχ e Σp is L-expanding, where

L > 0 is the constant in Lemma 2.1. Since Σ is (n — 1)-dimensional,

this completes the proof, q.e.d.

For any given D > 0 we assign a positive number

ψ(D) := max{ \pr\/Δpqr \ Apqr is a triangle in the k-plane

such that \pq\, |pr | < D and |pr | > 2 | \pq\ - \qf\ \ }.

For the proof of the next lemma we need the following fact, which is an

almost immediate consequence of Toponogov's convexity.

Fact (a) [4, 9.2]. Let C be a compact subset of X and x e X a point.

Set D := diam(C U {x}), Dχ := max f l ( E C \ax\ - min f l G C |αjt | . Then for any

e > 0 and any maximal e-discrete net N in C, there exists a subset Nf of

N containing at least βc(e)/(2Dι/e + 1) points such that {υχy \ y e N'}

is an e/ψ(D)-discrete net of Σ .
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A point x e X is called a singular point viewed from a point p e X if
there exists a px such that r a d ^ , υχp) < π. Denote by 5^ the set of
singular points viewed from p .

Lemma 2.3. Let C be a compact subset of X such that Vrn(C) > 0.
Then there exists an e - e(C) > 0 such that if {/?.} is a maximal e-
discrete net in C, ίAeji α«y singular point in X is a singular point viewed
from some p..

Proof Let e > 0 and let {p.} be a maximal e-discrete net in C.

Suppose now that there exists a singular point x e X which is not a

singular point viewed from any p.. Since rad(Σ v, υvn) = π for any /,

there exists the antipodal point -v of υ (i.e., |^χ/7 , {—v )| = π ),

so that the bi-ray consisting of the two rays tangent to v and —υχ is

a straight line in the tangent cone Kχ . By applying the splitting theorem

(see [13], [18]), the tangent cone Kχ is isometric to the product space

Kχ x R , where K'χ is an Alexandrov space containing no straight lines.

Then, Σχ contains a subspace S^"1 isometric to the {k- 1)-dimensional

standard sphere, and every υ is contained in 5^ - 1 . Note that, since x

is a singular point, we have k < n . Fact (a) shows that

When e tends to zero, the left-hand side times c - 1 tends to φ(D)k~ι

• Vrk~[ (Sk~1), and the right-hand side times e"" 1 to Vrn(C)/2D{. There-

fore e must be greater than a positive constant depending only on C .

Proof of Theorem A. By Toponogov's convexity we have Sp c S for

any p e l . This and Lemmas 2.2 and 2.3 complete the proof.

3. Natural local chart

In this section we construct local charts by using the distance functions
on X. Let p be a point in X . A point x e X is called a α ^ pomί of p
if any minimal segment py emanating from p does not contain x in its
interior. We denote by Cp the set of cut points of p and call it the cut
locus of p . Let Wp:=X-Cp. We have

Proposition 3.1. The cut locus of any point in X is of n-dimensional
Hausdorff measure zero.

Proof Fix any p e X. For δ > 0 let

Wp δ:= {x e X \ there exists a minimal segment py

containing x such that \px\ < (1 - <J)|pj>| }.
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It follows that W — \Jδ>0 W δ . Note that, since a limit of minimal
segments is also minimal, Wp δ is a closed set and Wp is a (topological)
Borel set. Define a map fδ[r ' WpJ ^ B{p, {\ - δ)r) -> B(p, r) for
J , r > 0 by the following: for any x e Wp δ n #(/?, (1 - δ)r), we take
a minimal segment py containing x such that \px\ = (1 - <ϊ)|pj>|, so
that fδ r{x) := y . Obviously this is a surjective map. The Alexandrov
convexity implies that fδr is (1 + 0r(<ϊ))-contracting, so that

(1 + θr{δ))n VH

n(Wpiδ Π B(p, (1 - δ)r)) > VH

n(B(p, r)).

Letting J —• 0 we have

which shows that CpΓ\B(p, r) for any r > 0 is of /?-dimensional measure
zero. This completes the proof.

Remark. Since any singular point viewed from a point p e X is a
cut point of /?, Proposition 3.1 and Lemma 2.3 show Sχ to be of «-
dimensional Hausdorff measure zero.

For p, q, x e X, define the excess function

The following facts are needed for the proof of the next lemma.
Fact (b) [14, 4.7]. Let p, q, x, y e X be such that epq(x) < rδ, where

r := min{\px\, \qx\} and δ > 0 is a small number. Assume that xp and
xy are fixed and that y(s) denotes the point on xy whose distance from
x is equal to s. Then we have

\py(s)\ = \px\ - s cosΔpxy + 0{s jr + δ s + rδ).

Fact (c) [4, 2.8]. Let p{, q., xt e X tend to p, q, x e X respectively.
Then the following holds:

(c-1) If Pixi and qixi tend to px and qx respectively, then

.x.q. > Δpxq.
ι > + o o ' ' ι

(c-2) Fix a minimal segment px. If xt e px for any i, then

lim Zqxx. = min Zpxq.
*->+oo ' qx

We now prove
Lemma 3.2.
(1) Let p, q, x, x. e X. If px{ and qx{ tend to px and qx respec-

tively and rad(Σ χ, υχp) = π, then Δpxtq tends to Δpxq. In particular,



THE RIEMANNIAN STRUCTURE OF ALEXANDROV SPACES 643

if x is a nonsingular point, and px and qx are unique, then the function
y »-> Δpyq is continuous at x, i.e.,

\Δpxq- Δpyq\<θpqχ(\xy\).

(2) Fix any p, q eX and x e Wp n Wq . Then

I cosΔpxq - cosΔpyq \ < Opqχ{\xy\X'2)

for any y e X.
Proof. (1) The first assertion implies the second. It follows from Fact

(c-1) that
limmΐ Δpx.q > Δpxq.

Take any fixed e > 0. By rad(Σ ;c, vχp) = π, there exists a point a e Wχ

such that Δaxp > π - e . Obviously, ax is unique. By Fact (c-1),

liminf Δax.p > Δaxp > π - e ,

and hence
Δaxtp > π - e

for all sufficiently large /. Therefore by remarking that the curvatures of
Σ^ and Σ v are greater than or equal to 1, we have

I Δaxq + Δpxq - π \ < e and | Δaxtq + Δpxfi - n \ < e

for all sufficiently large i. Since liminff _ + o o Δaxfl > Δaxq ,

lim sup Δpxβ < Δpxq + 2e ,

which completes the proof of (1).
(2) By x e Wp Π W we can extend px and qx to pp and qq such

that 0 < c := \p'x\ - \q x\ < mm{\px\, \qx\}. Assume that t := \xy\ is

small enough and let x e X be the point on px such that |^JC7| = tl/1.

Applying Fact (b) yields

\qx\ = c + tXβ cos Δpxq + O(t).

Let y € py be such that \yy\ = tx/1 (see Figure 2, next page). Since
e
qq'(y) < 2/, by Fact (b) we have

\qy\ = c + /1/2 cos Δpyq + O(ί).

The above two formulas imply

(*) cos Δpxq - cos Δpyq = Γ (\q'x'\ - \q'y\) + O(t ).
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FIGURE 2

Letting δ := π - Δpyp and δ' := π - Δpy'p , later we shall prove that
δ1 < (l+θ(t))δ . Denoting by y" the point on py such that \y'y"\ = tι ,
we obtain

4- ' / = π - Δpyp < δ' <

Let Δpyp' := Δpyp and let x and p" be the points on pp such that
\px\ = c and \pp'\ = 2c. Then the Alexandrov convexity shows that
|Jcj>| < t, so that 5 < π - Δpyp" < O(t) and

|y/| < O(ί3/2).
' Ί \ \ ι ' f\

Since (1 - θ(\xy\))\xy\ < \xy"\ < t + \yy"\ < 0{t), we have

\χ'y'\<0(t),

which together with ( *) implies the claim.
Let us last prove δ' < (1 + θ(t))δ. Then

cosh 1^-1= cosh ^ ^ cosh

= cosh

+ sinh M sinh
K K

cos J

s i n h j ^ i s i n h

and the same formula holds for j / and δ' instead of y and δ . Since by

the triangle inequality \py\ + |^V| > I ^ Ί + | P V | »

ί 2 ( x sinh 2Z1 sinh

>δ'2(Uθ(δ'2)) sinh M sinh Jώϊ,

which completes the proof, q.e.d.
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For p e X let Vp := { q e X \ pq is unique }. Obviously W c V ,
so X - Vp is of π-dimensional Hausdorff measure zero in particular. The
following proposition and Lemma 2.2 imply that X — V is of Hausdorff
dimension < n — I.

Proposition 3.3. For any p e X we have

sp = spu(x-vp).

Proof. Let us first prove Sp c Sp U {X - Vp). We may show that

(X-Sp)ΠVp c X-Sp . Take any x e (X-Sp)Π Vp . Then, px is unique.
For any δ > 0 there exist y e X - {x} and a minimal segment xy such

that Δpxy >π-δ/2. From Fact (c-2) it follows that there exists y e xy

close enough to x such that λpxy > π - δ , that is, x e X - Sp δ . By

the arbitrariness of δ , we have x e X - Sp.

Next we shall prove Sp D Sp U (X - Vp). Since Spc Sp, it suffices to
show that X - J^ c Sp . Suppose that x e (X - ^ ) - 5 p exists. Then,
at least two different minimal segments σ and τ connect x to p. Since
x φ S , for any <5 > 0 there exists y e X - {x} such that Zpxy >π-δ.
By Toponogov's convexity we have that min{ \vσvχy\, | ^ τ ^ x y | } > n - δ .

The existence of the triangle Avσvτvχy in S2 shows that δ > \vσυτ\/2,
which contradicts the arbitrariness of δ . q.e.d.

For pχ, - , pn e X let φ : X D Uφ -+ Rn be the map defined by

φ(x) := \\pγx\, , \pnx\) for any x eUφ (we consider R* to be the set

of column vectors unless stated otherwise). Assume that Uφ is open. We

call φ a natural local chart if for any x eUφ-Sχ such that xpt is unique

for every i = 1, , n , the symmetric matrix £ ( c) := ((v , vχp ))f.. is

positive definite. The points /?!, , pn are called the base points of φ .

Let φ : U -* R" be a natural local chart with base points p{, , pn .

Put ^ := Uφ Π Π = 1 Kp/ Π (X - Sx) and MΓ := Uφ n Π = 1 ^ It follows

that F D Wφ , so that Lemma 3.2 yields

Lemma 3.4. The map gφ : Vφ -> Mat(n) w continuous, and is dis-
continuous on W .

To investigate natural local chart, we need
Theorem 3.5 (The first variation formula). Fix any p, x e X and xy

for each y e X. Then

\py\ - \px\ = -\xy\cosminΔpxy + o(\xy\)

for any y e X.
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Proof. Take any fixed e > 0. Let xat be minimal segments such
that {vχa } is an e-dense net of Σχ, i.e., for any u e Σχ there exists
an / such that \uvχa \ < e. The compactness of Σχ implies that xai

can be assumed to be of finite number. By Fact (c-2), Zpxa^t) tends to
minpχ Zpxat as t -* 0 for any /, where at(t) denotes the point on xat

such that Ixa^ήl = t. Hence, there exists tt > 0 such that for any / and
t<t€,

(* ) [Zpxa^t) — minZpxcijl < e.

Take any y e X with \xy\ < te, and note that e = θ{\xy\). Then there

exists i{y) such that Zyxy < Za^xy < e, where y := a^y){\xy\), so

that \yy'\ < θ(e) \xy\. Hence we have

\Zpxy-2pxy'\<θ{e)

and also
I mmΔpxa., , - minΔpxy\ < e.

px W) px

Moreover, from (* ) it follows that

\lpxy - minZpxai{y)\ < e.

The above three inequalities imply

I min Δpxy - Zpxy\ < θ(e).

Thus applying Fact (b) to the -κ:2-plane yields

\py\ - \px\ = -\xy\ cosZpxy + O(\xy\2)

= -\xy\ cosminZpxy + \xy\θ(e) 4- O(|jcy| ),

which completes the proof, since e = θ(\xy\).
Remarks. (1) Theorem 3.5 is similar to Fact (b). However, Fact (b)

does not imply Theorem 3.5 in the case where e (x) > 0.
(2) Theorem 3.5 is closely related to the Rademacher theorem, which

states that any Lipschitz function on the Euclidean space is almost ev-
erywhere differentiable. Compare the above proof with [8, 3.1.2] and [9,
3.1.6].

For x e Vφ we define an inner product on Rn by

for any w, v e Rn , and define the map Iφ{χ) : Kχ 3 u ι—> ((«, vxp))i e

R" . We have
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Lemma 3.6. (1) Iφ{χ) : Kχ -* ( R \ ( , )φ{χ)) is an isometry for any

(2) For any x € V and y eUa, letting h := ( ( υ , w ) ) . , we
ψ ψ xy -Kyi *

(3) i w tfrt μ x, y e Uφ and z e Vφ,

I φ(x) ~ φ(y) \φ{z) = (1 + θ

(4) For any I G I - ^ there exists a bi-Lipschitz natural local chart

φ : Uφ -» R" 5MCΛ ί/zαί x € Vφ .
φ

/ (1) Any u e Kχ is written as u = ̂ " = 1 £,-v^ , ίf € R. Since

(M > % > = Σ 7 ^ ( ^ p . , vχp) , letting ξ := (ξ.), we have

and

ι M ι 2 = ' { g f w { = ' / f W ( « ) ί f w-'/f(Jϊ)(«) = ι/fW(«) ι;w.

(2) The first variation formula implies that

where (Af.) := Λ . This proves (2).

(3) Fix any z e Vφ and let / = 1, , n be any number. Since z e

Vn Π (ΛΓ - Sn ) , it follows from Proposition 3.3 that z £ Sn . Hence, for

any e > 0 there exists a point // e X such that

(*) Zpizp'i>π-e.

We take any JC, y e U such that max{|xz|, |yz|}/|pf'z| < e for any i.

Note here that we can assert e = θz(max{|xz|, |}>z|}). Take a minimal

segment xy and denote the point on xy by y(t) whose distance to x is

equal to t > 0. For any / and 0 < t < \xy\, let ai := έp.χy, a.(t) :=

έpjy(t)y, a\ := Zp|xy, and α̂  (ί) := £p\y{t)y. Note that these angles

are not uniquely determined because p{x, / ^ ( ί ) , etc., are not necessarily

unique. Toponogov's convexity shows that a^t) < ai + θ(e) and d^i) <

oίi + θ(e) for any 0 < t < \xy\. Moreover, it follows from (*) that

I at + a. - π \ < θ{e) and | a((t) + a[{t) -π\< θ(e). Therefore

\ai{t)-ai\<θ{e)
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for any 0 < t < \xy\ and /. By remarking that this holds for any choice
of at and a.(t) (or ptx and p^yifj) and by the first variation formula,
we obtain

for any 0 < t < \xy\ and any δ e R - {0} with t + δ G [0, |jcy| ] . Using
the compactness of the interval [0, \xy\ ], we can show that there exists
a division 0 = t0 < < tm = \xy\ such that

V+i V
4-cosα,. <θ(€)

for any / and j . By adding up over all j ,

Thus

where A^ := (cosα^j . Since |A | ^ = 1 holds in the case where x = z ,
Lemma 3.2(1) shows that \hχy\φ{z) = 1 + θ(\xz\), so that

I 9iy) - 9(x) \Φ) = (1 + β(O + β(|x

Since as stated above e = θ(max{|xz|, \yz\}), the proof of (3) is com-
pleted.

(4) Let x G X-Sχ be any fixed point. Since (rX, x) tends to (Rπ , o)
as r —»• +oo in the sense of the pointed Hausdorff distance, and since
X - Vχ is of measure zero, there exist points p{, , pn € Vχ such that
( ( ί i ^ , vp.x))ij i s positive definite (for example, an (n, J)-strainer at x
satisfies such the condition). Lemma 3.2(1) implies that ((v , υ ))z is
also positive definite for all y e Vφ close enough to x. Hence, taking a
sufficiently small neighborhood U at x we obtain the natural local chart
φ : 1/ —• Rn with the base points pχ, , pn . By (3), replacing [7 by a
smaller one we conclude (4).

4. Natural atlas

Let φ : U —> Rn be a bi-Lipschitz natural local chart with base points
pχ, , pn . For ^ G Λf, define the function d : Γ̂ -* R by rf^(x) :=
|^x| for any x e X. Let D (d ) : V ΠVq -* Rn (where we consider Rn

to be the set of row vectors) be the map defined by
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for any xeVφnVq, where ζ.:= {υχq, υχp) and ξ := (ξ.). Let ψ : Uψ -+

R" be another bi-Lipschitz natural local chart with base points qχ, . . . , qn

such that ^ Π F ^ 0 . Define a map Z y y ) : VφnVψ-> Mat(w) by

for any i E ^ n Γ r where atj := ( ^ , υ ) and ^ := (α/y).

Lemma 4.1. (1) The function dqoφ~x : φ(U) -• R is differentiable on

φ{V(ΛVq), and its differential is equal to D (dq)oφ~ι. The map ψoφ~ι :

φ(UφΠUψ) —• ψ(UφΠUψ) is differentiable on φ(V nV ) , and its differential

is equal to D (ψ) o ^ - 1 .

(2) 77*£ mα/? Dφ(dq) o φ~ι is continuous on ψ{Vφ C\ Vq)dq) φ

andis C1/2-continuouson φ(WφC\Wq). Themap D (ψ)oφ~~ι iscontinuous

on φ(Vφ Π K ) <2A7ύf w C1/2-continuous on φ(W Π FT ).

( 3 ) F o r <2«>> x e F n F , w Λαve

gψ(*) = tDψ(φ)(x) gφ(x) Dψ(φ)(x),

Dφ(ψ)(x)'{ = Dψ(φ)(x).

Remark. Since d o ^ - 1 : ί?(t/ ) -> R and ^ o ^ - 1 : φ(U Π 17 ) —>
ψ{U Γ\Uψ) are Lipschitz continuous, Rademacher's theorem implies that
these maps are almost everywhere differentiable. However Rademacher's
theorem does not tell us where these maps are differentiable. Lemma 4.1
gives detailed information for it.

Proof. (1) Take any fixed x e φ(Vφ n Vq) and set x := φ~\x). Let

h eRn be any vector such that \h\ is small enough, where | | denotes the

canonical norm on Rn . We put y := φ~\x + h) and h := {(vxy, vχp))i.

Then Lemma 3.6(2) implies

h = -\xy\h + ox(\xy\).

β y 7

f W ( v ^ ) = ί a n d ' fM^y) = Λ ' w e h a v e
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Hence use of the first variation formula leads to

= -\χy\Dφ{dq){x)h +

= D9(dq)(x)h + ox(\xy\).

Since o f̂lAI) = ox(\h\φ{χ)), by Lemma 3.6(3) we obtain oχ(\xy\) = oχ(\h\)

and therefore

dq o φ~\x + h)-dgo φ-\χ) = Dφ(dq)(x) h + oχ(\h\),

which means the first assertion.

Applying the above formula for q = qχ, , qn yields

ψoφ-ι(χ + h)-ψo φ~\x) = Dφ(ψ)(x) h + oχ(\h\)

for any fixed x e φ(V Π V ) .
(2) is a direct consequence of Lemma 3.2. (Recall that φ is a bi-

Lipschitz homeomorphism.)
(3) follows from an easy calculation, q.e.d.
Denote by Φχ the set of all bi-Lipschitz natural local charts on X and

let Ί3X := {(Uφ, Vφ, <p)}φeΦχ and gχ := {gφ}φeΦχ . We have

Theorem 4.2. (1) T>χ is a weak C 1 -atlas on X - Sx c X with the

C°-metric &χ.

(2) There exist XQ c X - Sχ and Φχ c Φχ such that X - Xo is

of n-dimensional Hausdorff measure zero, and that {(U' <p)}φeΦ is a

C1+1/2-atlas on XocX with the Cι/2-metric {gφ}φeΦχ

Proof (1) follows from Lemmas 3.6(4) and 4.1.
(2) Since X is finite dimensional, any metric ball of X is precompact

and hence X is separable. We take a countable dense subset {xt} c X
and a φ. £ Φχ with xi e Vφ for each /. Let Z := U, ( ^ . ~ w

φ)
 s i n c e

each U — W is of ^-dimensional Hausdorff measure zero, so is Z . By
letting Xo := X - Sχ - Z and Φχ := {φ •} , the proof is completed.

5. Construction of a C -atlas

The purpose of this section is to construct a C1-atlas equivalent to the
weak C1-atlas Ί)χ .

Let q eX -Sχ and δ > 0. Define a function dδ

q : X -+ R by
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for any x e X, where the integral is relative to the Hausdorff measure.
For φeΦχ, define a function Dδ

φ{dq): Vφ -> R" by

Di(da)(x) :=
VH

for any x e Vφ . Note that since the map y »-+ Dφ{dy)(x) is continuous

on t^. and since B(q 9δ)ΠVχ has the full measure in B(q, 5), the above

integral has a meaning. For any φ, ψ e Φ χ , let ψδ :=((dδ , •- , dδ) :

Uψ -+ Rn and Z)J(vf) := £ (Z)J(^) , ••• , Dδ

φ{dq)) : F ^ Mat(n). We

have
Lemma 5.1. (1) The function dδ o φ~ι : ί?(t/ ) -> R is C 1 o« ^ ( F )

its differential is equal to Dδ

φ(dq) o φ~ι. The map ψδ o φ~x :

/ 1
n ^ ) - / ( ^ n ^ ) w C 1 ^ ^ ( ^ Π t/^) and its differential

is equal to Dδ(ψ) o φ~ι.

(2) For any fixed φ, ψ e Φx and x € VφΓ)Vψ, we have

\Dδ

φ(ψ)(x)-Dφ(ψ)(x)\<θ(δ).

(3) For any φ e Φχ and x e Vφ, there exist δ{φ, x) > 0 and a

neighborhood Uώ c U at x such that φx := φδ{φ'x) : Uώ -> Rn is a

bi-Lipschitz into homeomorphism.
(4) For any φ, ψ e Φx, x e Vφ, and y e Vψ9 the maps ψy o φ~x,

φoψ~x ,and Ψyoφ~ι are C 1 respectively on φ{VφMJφ), Ψy(
v

φnUψy),

and φx(UφχΠUψyn(X-Sχ)).

Proof. (1) Fix any x e Vφ and let x := φ(x). For any y eWχ, since

x e Vy, Lemma 4.1(1) implies that

( * ) dyoφ-\χ + h)-dyo φ-\x) = Dφ(dy)(x) h + o(\h\).

for any h eRn . Since dy o φ~\x + h), dyo φ~ι{x), and Dφ{dy){x) h

are integrable in y e B(q, δ), so is the above o(\h\). Thus

m U o(\h\)=(
O \h\ JB(q,δ)3y JB(

Integrating (*) over all y e B(q, δ) yields

which means that dδ o φ~ι is differentiate at x . The continuity of the

differential Dδ

φ(dq)oφ~ι is implied by that of Dφ(dy) (see Lemma 4.1(2)).
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(2) follows from the continuity of the map y H-> Dφ(dy){x) at q., where

(3) Fix any φ e Φχ and x eVφ, and let x := φ(x). It is easily verified

that φδ is Lipschitz continuous with Lipschitz constant φi. Since φ is
bi-Lipschitz, it suffices to prove that

(*) \φδ °φ~ι{y)-φδ °<p~\z)\>L\y- z\

for any y, z e B(x, r), where r, δ > 0 are sufficiently small constants,
and L > 0 is a constant. It follows from (2) and Lemma 4.1(1) that
the differential, D {φ){x), of φ o φ~ at x is a regular matrix, which
is in fact close to the identity matrix. Thus, the rest of the proof is to
modify a standard proof of the inverse function theorem. Define a map
f:φ(Uf)->Rn by

f(y):=φδoφ-\y)-Dδ

φ(φ)(x)y

for any y e φ(U ) . Then, / is Lipschitz continuous on φ(U ) , and C 1

on φ(Vφ). We now fix any r > 0 and y , z e 5(jc, r ) . Let P : Rn -•

R""1 be the orthogonal projection from Rn to the hyperplane (which is
identified with Rn~ ) containing the origin o and normal to the vector
y - z . By the coarea formula (cf. [9, 2.10.25]), we have

- Vφ) Π p-\ξ)) < c VH

n(φ(Uφ - Vφ)) = 0,

where c > 0 is a constant. This implies that VH

ι(φ(U -V )Γ\P ι(ξ)) = 0

for almost all { e Rn~ι, so that there exist two sequences {yj and {z.}

of points in B(x, r) such that P{y.) = P{zi) =: ξi and VH\φ{Uφ - Vφ) n

^ > 1 ( ί ί ) ) = 0 for every / and that l i m ^ ^ ^ = y and limi_^oo zt = z.

Thus, / is C 1 at almost all points on the line P~\ξi). Since df(x) = 0,
SUVWGB(X r) I df(ϊD) I < θ(r). By remarking that the line segment yizi —: It

is contained in B(x, r) Π P~l(ξi), we have

I Rϊi) - f(Zi) I < / I rf/(t») I < θ(r) I ̂  - z{ I

for any / and therefore, by letting i- too,

\f{y)-f{z)\<θ{r)\y-z\.

Since

k'o9'"10')-/«>?'~1(2)l>l^(?')W(P-2)l-l/U')-/(ί),,
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we obtain ( * ) provided r, δ > 0 are small enough.

(4) The differentiability of ψyoφ~ι follows from (1). We shall prove

the differentiability of φo ψ~ι . Take any fixed xeψv(VaΓ\U^) and any
y y ψ ψy

h eRn such that \h\ is small enough. Let

h:=φoψv \χ + h)-φoψv \χ) and X:=φoψv\χ).

- 1

" y V" ' ' " / T Ύy V"/ ~ ~ * ~ •v . ψ γ

The differentiability of ψ o φ ι at x implies that

h = ψyo φ~\χ + ϊι)-ψyo φ-\χ) = Dδ

φ

{ψ'y\ψ) o φ~\x) 7ι + o(fh\),

so that o(\h\) = o(\h\) and

which means the differentiability of φ o ^Γ"1 at Jc .
For any z e ί7~ Πί/^ Π (X - Sχ) there exists p e Φχ such that

zeVp. Then, ^ y o ̂  1 = (ψy op~ι)o (φχ 0 / Γ 1 ) " 1 is C 1 at ^ χ ( z ) . The

arbitrariness of z implies that ψvoφ~ι is C 1 on p(C/~ nU~ Π(X-SY)).

q.e.d.
From Lemma 5.1 it follows that Ί)χ := {([/. , ^ x ) | p G Φ ^ , x e F }

is a C1-atlas on X - Sχ c X equivalent to the weak C1-atlas Ί)χ . For
any p e X - Sχ, the tangent space Γ^X and the inner product ( , •)

on T X are induced from the weak C -Riemannian structure connected

with Ώχ and gχ. For any φ £ Φχ, x e Vφ, and P € U^ Π(X - Sx),

let us define

where ( x 1 , , xn) := φx . Letting 9X '.= {gφχ \ <P € Φχ, x £ Vφ }, we

directly have

Theorem 5.2. Ί)χ with QX is a C 1 -atlas with a C^-metric on X-Sχ c

X equivalent to the weak C1-atlas Dχ with the metric gx.
Theorems 4.2 and 5.2 imply Theorem B except (2).
Remark. The tangent space TpX at any p e X - Sχ is naturally

identified with Kp . In fact, the inner product ( , ) p in TpX is induced

from ( , -)φ{p) introduced in §3, and Kp is identified with (Rn , ( , )φ{p))

by the isometry / (/7) (see Lemma 3.6(1)).
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6. Compatibility between the length metric
and the Riemannian structure

The main purpose of this section is to prove Theorem B(2). From now

on, assume X - Sx c X to be equipped with the Riemannian structure

constructed above.

Proposition 6.1. Let γ : [a,b] -> X - Sx be any minimal segment.

Then, γ\,a b) is a C1-curve.

Proof. Fix any t0 e (a, b) and take a φ e Φχ such that γ(t0) e Vφ .

Denote by px, , pn the base points associated with φ . Set γ(t) :=
Vγ{t)y{t+h) f θ Γ a Π y t G (a ' ^) a Π d a Π ^ > 0 * N ° t e t h a t W) i S i n d e P e n d e n t

of h . We now fix γ(t)pi such that \γ(t) v ,t, | is minimal. Then the first

variation formula implies that

\γ(t + h)p.\ - \γ(t)p.\ = -h(γ(t), vγ{ήp) + oy(ί)(A)

for any t e (a, b) and any h e R with ί + A e [<z, 6], so that

φ o γ(t + A) - p

which means that ί? o 7 is differentiate and not necessarily C 1 . More-

over, by γ(t0) G Vφ and Lemma 3.2(1), the function t »-* (y(*)(vy(ί)P.) is

continuous at t = t0, and hence y is C 1 at t0 . q.e.d.

Denote by L( ) the length of a C -curve induced from the Riemannian
structure. We have

Proposition 6.2. ^4«y Cι-curve c:[a, b]—> X-Sχ satisfies L{c) = \c\.
Proof. For any t e [a, b] we can find ^^ e Φ χ such that c(ί) e

V . By remarking that φt ° c is differentiate at t and using Lemma
3.6(3), we can prove the claim in the standard way. q.e.d.

In order to prove the next theorem we need
Lemma 6.3. Let δ > 0, p e X, and F c X. Assume that the metric

of F is the restriction of the metric of X, and that \ \px\ -\py\\ < δ\xy\
for any x,y e F. Set A := B(o, \pF\\ K{F/\pF\)), and the \pF\-ball
centered at o in the cone over the space F/\pF\. We fix a minimal segment
px joining p and each x e F, and define a map f : A -> X by the
following: for any (t, x) e A with t > 0 and x e F we assign to f(t9 x)
the point y e px with \py\ = t. Then, f is an L-expanding map, where
L > 0 depends only on k, \pF\, and δ.

Proof. The lemma is a straightforward consequence of the Alexandrov
convexity.

Theorem 6.4. For any p, q e X and e > 0, there exist a point x e
X-Sχ and minimal segments px, qx entirely contained in X-Sχ such
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that \px\ + \qx\ < \pq\ + e. In particular, X-Sχ is locally path-connected.
Proof. Take p, q e X and fix a minimal segment pq joining them.

We take a nonsingular point z close enough to pq. By Lemma 3.6(4),
there exists a bi-Lipschitz natural chart φ : U -> Rn such that U is a
sufficiently small neighborhood of z . We may assume that one of the
base points of φ is taken to be p (cf. the proof of Lemma 3.6(4)). Let
Ft := {x e U | \px\ = |pz| + ί} for any t e R. Since F, is the inverse
image of a piece of a hyperplane of Rn through φ , f or a small <5 > 0 and
any ί e R with |ί| < δ, Ft has finite and positive (n - l)-dimensional
Hausdorff measure. By the coarea formula and Theorem A, we obtain

f* VH"-\FtnSx)dt<cVH

n({xeU
J —δ

\px\ - \pz\ I < δ } n Sx) = 0,
' —δ

where c is a constant depending only on n. Hence, one can choose a
t e R with \t\ < δ such that

where F := Ft. We fix a minimal segment px joining p and each x e F ,
and then define the map / : A —• X as in Lemma 6.3, so that / is L-
expanding. Let γχ forxeF be the ray in K(F/\pF\) from o of
direction x. Then applying the coarea formula and Theorem A yields

F3X

VH

l{γxnΓ\sx)-B{o,r))<cVH

n(Γl(Sx)-B(o9r))

<^nVH

n(f(A)nSχ-B(p,r)) =

for any r > 0, where c is a positive constant depending only on n and
the Lipschitz constant of the central projection from A - B(o, r) to F .
Therefore, for any r > 0 and almost all x € i 7 ,

Since pxΠSχ = [j^px n ^ - £(/?, r.)), where rz ̂  0, we have

for almost all x e F. Recall (see [4, 7.16]) that the space of direction is
continuous along the interior of any minimal segment with respect to the
Gromov-Hausdorff distance. Thus, px - {x} contains no singular points
for almost all x e F.

It follows that | \qx\ - \qy\ \ < δ'\xy\ for any x,y e F, where δ' > 0
is a constant tending to zero as δ and diam(ί7) both tend to zero. Hence
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we can prove that qx - {x} contains no singular points for almost all
x e F in the same way as above. Moreover, (*) states that almost all
x € F are nonsingular. Therefore, px U qx contains no singular points
for almost all x e F. Hence the proof of the first assertion is completed.

Now let us prove the second assertion. Take any fixed p e X and
r, e > 0. Any point q e B(p, r) - Sχ and p are joined by a curve
c c X - Sχ with length less than r + e . The subset U := {JqeB(P r ) cq of
X - Sx is path-connected (in fact contractible) and satisfies

B{p, r) - Sχ c U C B(p, r + e/2) - Sχ,

which completes the proof.
Proof of Theorem B (2). Denote by d the distance function on X-Sx

induced from the Riemannian structure. Let p, q e X—Sχ be any points.
By Propositions 6.1 and 6.2 we have

d(p, q) = inf{ L(c) | c is a C -curve joining p and # }

> inf{ |c| I c is a continuous curve joining p and q }

On the other hand, for any e > 0 we take minimal segments px and qx
as in Theorem 6.4 and have

d(p, q) < d{p, x) + d{q, x) < L{px)

= |px|

which completes the proof.

7. Addendum

7.1 Volume and HausdorfF measure. Let X be an n-dimensional

Alexandrov space. The volume vol (•) of any (topological) Borel sub-
set of X — Sχ entirely contained in a local chart (U , φ) is defined in
the standard way. The volume vo\{A) of any Borel subset A c X -Sχ is
defined by

where {{Uφ9 ^)}/ = l f2,... i s a C^atlas on X - Sx c X. Note that the
existence of the countable family {(Uφ9φi)}i=ι 2 is guaranteed by the
separability of X (see the proof of Theorem 4.2(2)), and that vol(A) is
independent of the family {([/ , ^ f.)}/=1 2
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Proposition. For any Borel subset A c X - Sχ we have

voiμ) = VH\A\

Proof. The proposition is proved in the standard way by using Lemma
3.6(3), so its proof is left to the reader.

7.2 The limit of manifolds of small excess. For a length space X and

0 < d < rad(X), we define the d-excess ed(X) of X (see [14]) by

e (X) := sup sup inf e(x).

The injectivity radius inj(X) of an Alexandrov space X is defined to be
the supremum of all r > 0 such that for any p e X and v e Σp there
exists a unique minimal segment pq such that v = vpq and \pq\ > r.
In the case where X is a Riemannian manifold, our definition of the
injectivity radius is equivalent to the usual definition. We can easily prove
that inj(X) > d if and only if rad(X) > d and ed(X) = 0 for any
Alexandrov space X and d > 0. Concerning [14], we have the following
corollary.

Corollary to Theorem B. Given m e N, K > 0, and d > 0, let
be a sequence of m-dimensional C°°-Riemannian manifolds such

that KM > -κ2 and rad(Mz) > d for any i, and that ed(Mi) tends to

zero as / —• oo. Then, there exists a convergent subsequence {M.,Λ of

{Mt} such that the limit space X of {M^ is a Cx/1-Riemannian man-

ifold of dimension 1 < dimZ < m, curvature > -κ2 (in the sense of the
Alexandrov convexity), and of injectivity radius inj(X) > d. Furthermore
Λf./jx for every large enough i is a fibre bundle over X with the fibre whose
fundamental group is almost nilpotent.

Proof Since the limit space X is an Alexandrov space of dimension
1 < n := dimJF < m, curvature > -κ2, and of d-excess ed(X) = 0,
and inj(X) > d and Sχ = 0 , for any x e X we can find a natural
local chart (Uφ, φ) in such a way that x e Uφ c f|"=i B(Pi > d), where
P\, - ' , Pn £ X are the base points of φ . Thus we have Uφ = Wφ , and

can construct a C1+1^2-atlas of X with C1//2-metric (see §4). An almost
Riemannian submersion fj{i) : Mj{i) -> X is constructed by the method in
[14].
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