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CONTRACTION OF CONVEX HYPERSURFACES
IN RIEMANNIAN SPACES

BEN ANDREWS

Abstract

This paper concerns the deformation of hypersurfaces in Riemannian
spaces using fully nonlinear parabolic equations defined in terms of the
Weingarten curvature. It is shown that any initial hypersurface satisfy-
ing a natural convexity condition produces a solution which converges
to a single point in finite time, and becomes spherical as the limit is ap-
proached. The result has topological implications including a new proof
of the 1/4-pinching sphere theorem of Klingenberg, Berger, and Rauch,
and a new "dented sphere theorem" which allows some negative curva-
ture.

1. Introduction

An earlier paper by the author [1] considered a general class of fully
nonlinear curvature flows of hypersurfaces in Euclidean space. In this pa-
per we adapt these techniques to the more difficult problem of deforming
hypersurfaces in Riemannian spaces. We prove that any compact hyper-
surface satisfying a sharp convexity condition is necessarily the boundary
of an immersed disc (Theorem 1-5).

Let Mn be a smooth, connected compact manifold of dimension n > 2
without boundary, and let (Nn+ι, gN) be a complete smooth Riemannian
manifold satisfying the following conditions:

(1-1) -Kx < σN < K2, IV^Λ^I^r < L

for some nonnegative constants Kχ, K2 and L. Here σN is any sectional

curvature of Nn+ι, V^ is the Levi-Civita connection corresponding to

gN, and RN is the Riemann tensor on Nn+ι.
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Suppose <p0: M
n —• Nn+ι is a smooth immersion of Mn . We seek a

solution φ: Mn x [0, T) -• iVn+1 to an equation of the following form:

(1-2)
φ(x,Q) = φQ(x),

where i/(x, ί) is a unit normal to p,(Af) at φt{x) in Γ7V/I+1, W(x, 0
is the Weingarten map on Γ ¥ w induced by φt, λ is the map from
T*Mn <g> ΓM n to Rn which gives the eigenvalues of a map, and / is
a smooth symmetric function. Several further conditions are required of
the function / ; these will be discussed in §3.

Huisken [8] has considered the mean curvature flow in this setting; in
this case f(λ) = Σ"=\ λt The main theorem of [8] may be stated as
follows:

Theorem 1-3. Suppose Mn, Nn+ι, and <p0 are as above, and assume

in addition that the injectivity radii i (N) of Nn+ι have a positive lower

bound i(N), and that the principal curvatures of φ0 satisfy the inequality:

(1-4) Hλ-nKχ >n2L/H,

where H = f(λx, ..., λn) = Σ " = 1 λ . Then there exists a unique smooth
solution to (1-2) on a maximal time interval [0, T). The immersions
φt converge uniformly to a constant p e Nn+ι as t approaches T. The
rescaled immersions φτ obtained by rescaling a neighbourhood of p by
a factor (2n(T - t))~ι/2 converge to the unit sphere 5j*(0) in Euclidean
space, exponentially in C°° with respect to the natural time parameter

The details of the rescaling process will be explained in §6. This theorem
gives optimal results in the case of a locally symmetric background space;
the particular case of hypersurfaces of the sphere was developed further in
[9]. In more general spaces, the appearance of the derivatives of RN in
Theorem 1-3 is undesirable.

This paper considers a class of fully nonlinear flow equations which
does not include the mean curvature flow. The structure of the equations
is similar in many respects to the mean curvature flow, and to the class
of equations considered in [1]. A typical example is the flow by shifted

harmonic mean curvature, for which f(λ) = ί^Σ/=i(^, ~ V^ϊ))

The main result achieved here is the following:
Theorem 1-5. Let Mn and Nn+ι be as above. Assume that f satisfies

the conditions Theorem 3-1, and every principal curvature λ of <p0 satisfies
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the following condition:

(1-6) λ

Then there exists a unique smooth solution to (1-2) on a maximal time
interval [0, T), and the immersions φt converge uniformly to a constant
p in Nn+ι as t approaches T. Expanding a neighbourhood of p by a
factor (2(T -t))~χ/2 gives rescaled immersions φτ which converge in C°°
to the unit sphere about the origin in Euclidean space, exponentially with
respect to the natural rescaled time parameter τ = -\ ln(l - t/T).

The hypotheses of this theorem differ from those in (1-3) in two impor-
tant respects: No lower bound on the injectivity radius of N is required,
and (1-4) is replaced by (1-6). For locally symmetric background spaces
(L = 0), the new condition is slightly more restrictive than (1-4), but
still sharp in the sense that there are counterexamples which satisfy (1-6)
with equality. Furthermore, the removal of the dependence on L is a sig-
nificant improvement in the general case, allowing some useful geometric
applications which will be discussed in §7. Note that the condition (1-6)
is just enough to ensure that the hypersurface has nonnegative sectional
curvatures.

Corollary 1-7. Any compact hypersurface in N with principal curva-
tures greater than y/K[ is diffeomorphic to a sphere, and bounds an im-
mersed disc.

The organisation of the paper is as follows: §2 introduces the notation
for the paper and gives some useful preliminary results. §3 contains details
of the evolution equations—the form of the function / , the equivalence
of the system (1-2) locally to a scalar equation, short-time existence and
uniqueness of solutions, and the induced evolution equations for some
geometric quantities. §4 deals with the preservation of convexity and the
pinching of principal curvatures; this requires only minor modifications
from the proof for the Euclidean case [1]. The application of these esti-
mates, however, is more difficult than in the Euclidean case—the quantities
dealt with there can no longer be defined, and one must use more local
estimates. These are developed in §5: The local graphical parametrisation
of the flow developed in §3 is used to prove local Holder estimates on the
curvature of the immersions, using results from Krylov [10]. This allows
us to show in §6 the convergence of appropriately rescaled hypersurfaces
on a subsequence of times to a strictly convex pinched hypersurface in
Euclidean space. A recent result of Hamilton [6] implies that this limit
hypersurface is compact, and the proof of convergence to a point follows
directly. The convergence of the rescaled immersions to a sphere follows
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using techniques similar to those in the analogous section of [1]. §7 con-
cludes with an extension to slightly different flow equations, an application
of the main theorem to give a new proof of the 1/4-pinching sphere the-
orem, and a generalisation of this proof to give a new "dented sphere"
theorem.

The author wishes to thank Gerhard Huisken for his advice and en-
couragement while this work was undertaken. This work forms part of the
author's doctoral thesis for the Australian National University.

2. Notation and preliminary results

As far as possible the notation of this paper is consistent with that in

[1].
The background space Nn+ι is supplied with a metric gN, and corre-

sponding connection V^ and Riemann tensor RN. Each immersion φt

of Mn induces a metric g, a connection V, and a Riemann curvature
tensor R on TMn , the tangent bundle of M (the dependence of these
on time will not be made explicit):

g(u,υ) = gN(Tφ(u),Tφ(v))

( )

R(u,υ,w)= ( v υ V M - V M V υ - V [ l l > f > ] ) t ι/,

R(u,v,w, z) = gN(R(u,υ,w), z)

for all u, v , w and z in TχM
n . Here Tχφ is the derivative of φ , and

πχ is the projection of Tφi^χ)N
n+ι onto the image of Tχφ . The Riemann

tensor is well defined as a symmetric bilinear form on 2-planes: For 2-

p l a n e s X = u Λ v a n d Y = w Λ z , d e f i n e RA(X, Y) = R { u , v , w , z ) .

The sectional curvature σN(X) of a simple nonzero 2-plane X = u Λ v is

given by RA(X, X)/\X\2 - It is also convenient to use the Riemann tensor

to define a map 31: T*M® TM -• T*M <g> TM generated by the equation

&(g*(u(g) v))(w) = R(u,w,υ). Note that 31 sends symmetric maps to

symmetric maps.

For any point y in N, the exponential map expy: TyN —• N can be
defined: For a vector u in TyN, expy(w) is the endpoint of the geodesic
from y which has tangent in the direction of u at y, and length equal to
the length of u. This is always a diffeomorphism on a small neighbour-
hood of the origin in Γ̂ ΛΓ. The injectivity radius iy(N) is the least upper
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bound of the set of r for which the exponential map is a diffeomorphism
on the ball of radius r about the origin in TyN.

There are several different metrics which will be used in the course of
this paper. The norm on tensor bundles associated with a metric g will
be denoted by j.| .

A convenient notation is the following: for a tensor ίΓ in T*N, we
write ^(u) in place of &~(Tφ(u)), for any vector field u in TM. This
generalises in an obvious way to higher tensors.

As in [1], the normal component of the connection on Nn*1 gives the
second fundamental form Π e T*M <g> T*M, which is symmetric with
respect to the metric g:

(2-2) Π(u, v) = -gN

for all u and υ in TχM
n . The Codazzi and Gauss equations are slightly

different from the Euclidean case:

(2-3) VΠ(u , v , w ) = VΠ(v , u , w ) + R N ( v 9 u , υ , w ) ,

(2-4) R(u ,v9w, z) = Π(u, w)Π(υ, z) - Π(v, w)Π(u, z)

+ RN(u,v,w,z)

for all u, v , w and z in TχM
n .

The Weingarten map 2Γ: ΓM" -> ΓMn gives the change of the normal
with respect to the ambient connection:

(2-5) W(u) = Γ^"

for all u in Ϊ^AfΛ. As in the Euclidean case the Weingarten relation
relates the second fundamental form to the Weingarten map:

(2-6) JΓ(iι,t;) = ί ( a r («),«).

This paper gives particular consideration to convex hypersurfaces. By
this we mean local convexity, or positivity of the Weingarten map. We
will also refer to a hypersurface as α-convex if the Weingarten map has
all eigenvalues greater than a.

A useful identity involving the second derivatives of the second fun-
damental form is Simons' identity. This combines the Codazzi equation
(2-3), the formula for interchange of derivatives in terms of curvature
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which derives from (2-1), and the Gaαss equation (2-4) for the Riemann
tensor:

H e s s v Z Γ ( w ,v,w, z) = H e s s v Z Γ ( κ ; ,z,u,v) + Π ( u , v)Π{W{w), z)

-Π{w,z)Π(y(u),υ)

+ Π(u9 z)Π(Wr(w)9v)-Π(w9υ)Π(Wr(u).9 z)

+ RN(u ,w,υ, aΓ(z)) - RN(w 9u\z9 W(v))

(2-7) + R N ( u 9 z 9 υ 9 W ( w ) ) - R N ( w 9 υ 9 z 9 W { ύ ) )

(tt, v)R (w9v, z,v)

+ VNRN(u,v,w,z,v)

- V R (w, z, u,v, u)

for all vectors u, v , w , and z in
In §3 we will make use of special local coordinates on Nn+ι which

are particularly convenient for the local graphical parametrisation of the
evolution equations (see Lemma 3-2).

Suppose ψQ: Σn —• Nn*x is a smooth immersion of a compact manifold
Σ (possibly with a smooth boundary). We wish to extend ψ to Σn x
(—e, e) by the following equations:

(2-8) fsψ(ξ, s) = P(ξ9s), ψ(ξ9 0) = ψQ(ξ)

for every ξ in Σn and every s in (-6, e), where v(ξ, s) is a unit normal
to ψ(Σn, s) at ψ(ξ, s), such that the maps ψ^ = ψ(., 5) are nondegen-
erate; the corresponding induced metric, connection and second funda-
mental form on Σ are denoted by g{s), V(s ), and Π{s). The map ψ is
called a graphical coordinate system over ψ0.

Lemma 2-9. For Σ and ψ0 as above, there exists a map ψ : Σn x
(—e, c) satisfying (2-8) ./or 5ome sufficiently small positive e, am/ a/so a
constant C depending on ψQ and N such that:

(2-10) C~y o ) '(κ, w) < ̂ (5)(w, u) < Cg{0\u, 11),.

|^(5)(w, 11)1^ < C, \V^v - V^υl^m < C

for all u in TΣn.
Proof. This follows from the induced variation equations for geometric

quantities, which are given by Theorem 3-15, substituting 1 for / . q.e.d.
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There is a special case of such graphical coordinates which is very im-
portant for proving local estimates: Let y0 be a point in N, P an n-
dimensional subspace of Γ, N, and en a unit normal to P in T N.
Define a map ψQ: P —> N according to the equation:

(2-Π)

for every ξ in P. On a region Σ of P where ψ0 is nondegenerate, it
can be used as the initial immersion in equation (2-8), where we use the
unit normal given by

(2-12) * «

The map ψ produced in this way is called the graphical coordinate system
over P .

The metric on P c Γ, N will be denoted by ( , •), and the correspond-

ing norm by | | . The standard (flat) connection on P is denoted by d.

Lemma 2-13. Suppose N satisfies (1-1) with Kχ = K2 = L = 1. Then

the graphical coordinate system ψ over any n-dimensional hyperplane P

is nondegenerate on the domain Bp x {-p0, pQ) c PφRe0 for some fixed

p0 > 0 depending only on n, where Σ = Bp is the ball of radius pQ in

P. Furthermore, the following estimates hold for some fixed constant C:

C~l\u\2 < g{s\u, ύ) < C\u\\ \Π{s\u, u)\ < C

(2-14) I V ^ V - duv\ < C, \Vis)Π{s)\ < C

for all u and v in P.
Proof The assumptions (1-1) give uniform control over the curvature

of N and its derivative. This allows control over the Hamilton-Jacobi
equations (2-11) and (2-8) which define ψ, and the induced variation
equations for the metric and curvature, q.e.d.

A hypersurface can be described locally using the graphical coordinates
given by Lemma 2-9. For a smooth function s: Σn —• (—e, e), define an
immersion φ: Σn —• N by

(2-15)

for all ξ in Σn . For such a graph we can calculate the metric, curvature,
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and connection of the immersion:

(2-16) v =

(2-17) g = g{s

Π(u, υ) = l [Π(s\u, υ) + Π{s\v,V{s)s)Vus

V1 \H
(2-19) +Π{s\u, V{s)s)Vυs-Hessv{s)s(u, υ)]

for all vectors u and υ in TξP £ P.
To conclude this section we will review some of the properties of sym-

metric functions which we will use in the paper. Let / be a smooth
symmetric function defined on the positive cone Γ+ = {λ = (λχ, , λn):
λi > 0} in Rn . Corresponding to this is a function F = f o λ of pos-
itive definite linear maps which applies / to the eigenvalues of a map.
This is a smooth function on the space of positive definite maps. If / is
monotonic with respect to each of the variables λt, then the derivative F
of F is positive definite: In local normal coordinates which diagonalise
the Weingarten map, F = dmg{df/dλλ, , df/dλn}. If / is convex
(concave) with respect to λ, then F is also convex (concave). In the case
where / is concave, the following inequalities hold:

(2-20)

for every i and j , at every point of Γ+ . For proofs of these results see
[1], [2], or [12].

3. The evolution equations

The class of allowed speeds / is in many ways similar to that used in

[1]:
Conditions 3-1.

(1) / is a symmetric function which is smooth on Ya = {λ =

(Λ-i > , λn): λt > a}, and continuous on Γa, where a = y/ϊt^.
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(2) / is strictly increasing in each argument: df/dλi > 0 for i =
1, , n at every point of Γ α .

(3) / is homogeneous of degree one in (λχ - a, 9 λ n — a ) .
( 4 ) / is strictly positive on Γa, and /(1 + α, , 1 + α) = 1.
(5) / is concave on Γα.
(6) / = 0 on dΓa.
(7) sup A 6 Γ J/)/ |<oo.
For convenience the composition / o λ will be denoted by F, and

its derivatives by F, F, etc., as in [1]. Note that the shifted harmonic

mean curvature, given by / = ί £ ΣίLiί^i ~ a)~) satisfies all of the

conditions 3-1.
Condition (2) ensures that equation (1-2) is a degenerate parabolic sys-

tem of partial differential equations. The second part of condition (4) is
only a normalisation condition, and can always be satisfied by rescaling
time. Note that condition (6) rules out the mean curvature flow, and con-
dition (7) rules out the other flows previously considered in [3] and [4]. In
the case where N has nonnegative sectional curvatures, the allowed flows
are a subset of the allowed flows in the Euclidean case [1]. More generally,
we require the more complicated homogeneity condition (3) in order to
overcome negative curvature of the background space.

The proof of short-time existence and uniqueness of solutions is essen-
tially the same as in [1], but the graphical parametrisation is somewhat
more complicated because of the background geometry. Some results con-
cerning the graphical parametrisation of the flow are necessary:

Lemma 3-2. Let ^ : Σ " x ( - e , e ) -> Nn+ι be a nondegenerate map
given by Lemma 2-9, and φ0: Mn —• N a smooth a-convex immersion.
Suppose there exist a nondegenerate map χQ:Σn —> Mn, and a smooth
function s0: Σn —• (-e , c) such that

(3-3)

(3-4)

for all ξ in Σn . If φ: Mn x [0, T) —> N is a family of a-convex immersions
satisfying (1-2), then for sufficiently small t0 > 0 there exist a smooth
family of nondegenerate maps χ: Σn x [0, t0) —• Mn and a smooth family
of functions s: Σn x [0, t0) —• (-e, 6) such that

(3-5)
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for all {ξ, t) in Σn x [0, t0). Furthermore, s satisfies the inequality

-.[Π{s)(u, u) + 2Π{s\u, V( ί)s)Vuί - Hessv(ί)ί(M, u)]

(3-6)

/orα// (£,/) in Σ " x [ 0 , / 0 ) am/ all u in TζΣ". The following strictly

parabolic equation holds on Σ x [0, ί 0 ) :

oj/), s(ξ,0)=sQ(ξ),

where g is given in terms of s by (2-17), and stf is the map given by

)\Vs)

Here (W{s)γ is the adjoint of W{s).
Conversely, ifs:Σnx[0, t0) -»• (-e, c) w smooth and satisfies (3-6)

(3-7), then for every point (ξχ, tχ) in Σn x [0, ί0) rΛ r̂e exwί a manifold
M and a smooth family of diffeomorphisms χ ofMx[t{, t2) onto regions
of Σn containing ξx, for some t2 e (tx, t0), such that the map φ: M x
[tx 9t2)->N given by

(3-9) 9t(x) = Ψ(Xt{x),sMx)))

is a smooth family of a-convex immersions satisfying (1-2). If s is pro-
duced from φ as above, then there exists a nondegenerate map φ: M —• M
such that

(3-10) <pt(φ(x)) = φt{x)

for all (x, t) in M x [0, t0).
Proof Let φ be a solution to (1-2) as above, and suppose s0 and # 0

give ί?0 by equation (3-3). Consider the ordinary differential equations

( j

There exist solutions / and ^ to (3-11) on a short time interval [0, tQ),
with !$,({) I < e . The consistency of the equations is guaranteed by the
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following calculation:

for all ί and ί. Hence equation (3-5) holds on the interval [0, tQ).
Equations (3-6) and (3-7) follow immediately from the expressions (2-19)
and (2-17): The first since φ is α-convex, and the second from (1-2).

Now consider the converse situation: Suppose s: Σn x [0, t0) -»(-e , e)

is a solution to (3-7), and (ζχ, tx) is in Σn x [0, t0). Let Mn be a small

open neighbourhood of ξχ in Σ" , and define χt : Mn -> Σn x [0, ί0) by

^ = Id x { ί j . Extend χ to a region Mn x [^ , t2) (taking t2 - tx and

Mn sufficiently small) by the following differential equation:

where the right-hand side is evaluated at the point χt{x), for all (x, t) in
M π x [ίj, t2). The definition (3-9) of φ then gives

by equation (2-16), and φ satisfies (1-2). Finally, if s is produced from
a solution φ , define ψ: Mn -+ Mn by

(3-13) ί

which is well defined since χto%% satisfies the equation χtd/dtχtoχt = 0.
q.e.d.

Now consider the case where Σn = Mn and ψQ = φ0. The following
result is easily obtained from Lemma 3-2.

Theorem 3-14. There exists a unique smooth solution to equation (1-2)
on some time interval [0, T).

Proof. There exists a solution for a short time to equation (3-7) with
zero initial conditions, since it is strictly parabolic. This gives a solution
to (1-2) by the lemma above, satisfying the correct initial conditions.
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Suppose there are two solutions φι and φ2 to (1-2) with the same
initial condition φ0. This gives two solutions to (3-7) with the same
initial conditions, which are therefore identical. It follows that φι and
φ1 are identical up to a time-independent diffeomorphism, and therefore
identical since they have the same initial condition, q.e.d.

The evolution equations satisfied by the metric, normal, and curvature
of the immersions φt of a solution to (1-2) are similar to the Euclidean
case:

Theorem 3-15.

(3-16) ^-g = -

(3-17) SLu =

(3-18) ^Π = Hess v F - FΠ2 + FRN(., v, ., v),

(3-19) ^-W = g*HessvF + FW2 + F^N(gN)*(u 0 v),

(3-20) l-F=5?F + FF{W2) + FF(&N(gN)\v 0 i/)),

where S? = Fg*Hessv .
Proof. The evolution equations for metric and normal follow as in [1].

The evolution of Π can be calculated from the definition (2-2):

N

Fvg
N (yN

Tφ(u)Tφ{v),V)

υ) , ή + g

N (v^u)Tφ(v), -Tφ(VF))

, v) + FRN(u,v,v,v)

, M V ; W ( ^ ) , ή + FRN(u,u,υ,u)-d^vF

dudvF -Fg{W(u), W{v)) + FRN{u,u,v,v)-d^

HessvF(w, v) - FΠ2(u, v) + FΛ^w, v, v, v).

The remaining evolution equations follow exactly as in [1].
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Lemma 3-21.

dt'

(3-22)

+ ^(Fj)(u) - aF(Id)(W2{u) + RN(u 9u9v))9

TM —• T*M <g> TM is defined by the equation

9 z) = VNR{w, z , u, v , v) - VNR(u, υ , w, z , v).

Proof Apply Simons' Identity (2-7) to the equation (3-19). q.e.d.

The following result allows us to deduce evolution equations for the
graphical parametrisation of Lemma 3-2 from those given above.

Lemma 3-23. Suppose Q is a scalar quantity defined on Mn x [0, T),
which evolves under (1-2) by the evolution equation

for some Z: Mn x [0, T) -• R, and let χ:Σx [0, tQ) -• M be the diffeo-

morphisms given by Lemma 3-2. Define Q: Σn x [0, t0) —• R by

,t) = Q(χt(ξ)9t).

Then the following evolution equation holds:

(3-24) + F * \ [aid + Π

{s) + (W{S)ΫVS 0 V*
1 + | V | J

where Z(ξ, t) = Z(χt(ξ), t) and & = Fg*Hess v ( ί ) .

Proof This follows directly from equations (2-18) and (2-19) which

give expressions for the difference in the connections V and V ( j ), and

from equation (3-11) which determines the gradient term arising from

the diffeomorphism χ of Lemma 3-2.

4. Preserving convexity and pinching

In this section it is proved that a solution to (1-2) remains strictly a-
convex, where a = y/K[, and also that the shifted principal curvatures
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A. - a remain pinched. The proof is very similar to the corresponding
estimate in [1], but slightly more complicated.

Theorem 4-1. Let φ be a solution of (1-2) on the domain Mn x [0, T).
Then the maximal time of existence T is finite, and there exist constants
C > 0 and β > a depending on φ0, Kχ, and L such that the following
estimates hold:

(4-2) λt(x,t)-a> C(λj(x,t)-a), λt{x, ί) > β,

for all i and j , and all (JC, t) in Mn x [0, T).
Proof Equation (3-20) will enable us to prove both that α-convexity

is preserved and that the maximal time T is finite: Since λi > a, we
obtain at a point where F attains its infinum, using a frame {et} which
diagonalises W \

F has an initial strictly positive lower bound. The maximum principle
applied to the above equation shows that this is preserved in time. Since
F has bounded gradient and is homogeneous, positive, and zero on the
boundary of Γ α , it is comparable to the smallest shifted eigenvalue Amin -
a, and strict α-convexity is preserved. The maximum principle also proves
that the time of existence T is finite, since the above inequality forces
infM F to become infinite in finite time.

As in [1], we consider quantities of the form Q/F, where Q = q o A
and q is an appropriate convex, homogeneous degree 1 function of (λχ -
a, , λn - a). Note that Q/F approaches infinity on the boundary of
the cone Γ α , so it is sufficient to find an upper bound. First consider the
evolution equation for Q, which is calculated by applying the derivative
Q to equation (3-22):

£ (QF - FQ)(VW, VSF)

(4-3) + #>(f 9 Q) + 2&*{P o W)(Q)
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where S? is given in Lemma 3-21. From this it is easy to calculate the
derivative of Q/F:
(4-4)

j j W){Q) - j&N(Q ® W){F)

+ j (β(Id)F - F(Id)Q) (W2 + ̂ N(gNγ(u ® v)) .

The various terms appearing here are easily estimated: First, concavity of
/ implies concavity of F, and convexity of q implies convexity of Q,
so we have

t

The next term contains a gradient of Q/F, and so can be ignored when
applying the maximum principle. The global supremum bound on VNRN

gives the following estimate:

where C is a constant depending only on n. Note that F and Q are
bounded if we assume both / and q satisfy (7) of Condition 3-1. The
next terms can be estimated using the following simple calculation which
is valid in a normal coordinate system at a point where W is diagonal:

N{F o W){Q) - N

where ex, , en are unit eigenvectors of W. A similar calculation ap-
plies to the last terms:

(Q(Id)F - F{\ά)Q){W2 + g*RN(., i/, ., i/))

The second term here can be estimated using K2 , K{, and (7) of Condi-
tion 3-1. The first combines with (4-5) to give
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The last factor here is positive by the assumption of α-convexity and the
definition of a and Kχ. The remaining factors are negative since / is
concave—compare (2-21). The following estimate is obtained:

The parabolic maximum principle now gives sup(Q/F) < C(l +1) which
is bounded since we know the interval of existence is finite.

Note that a suitable function Q can always be found—for example
Q = \W - a\ά\ satisfies all the required conditions, q.e.d.

An immediate corollary is that the map F remains comparable to the
identity map throughout the period of existence of the solution.

5. Local estimates

In this section Holder estimates are found for the curvature of the im-
mersions φ . This is essentially an application of the general results de-
scribed in [10], but some care is required to apply these in the absence of
a lower bound on the injectivity radii of N. This is accomplished here by
using the graphical coordinates ψ introduced in Lemmas 2-13 and 3-2,
which are nondegenerate but may not be diffeomorphic. Once the appara-
tus of section Lemma 3-2 is in place, the application of [10] presents no
difficulties.

The analysis is simplified by considering the scaling properties of equa-
tion (1-2), which follow directly from the homogeneity condition (4) of
Condition 3-1:

Lemma 5-1. Suppose φ: Mn x [0, T) -> (Nn+ι, gN) is a solution

to equation (1-2) with speed f(λ). For any constant A > 0, define

φ{A): Mnx[0, A2T) - (Nn+ι, A2gN) by φ{

t

A)(x) = φΛit{x). Then φ{Λ) is

a solution to (1-2) with speed function / ^ ( λ ) = f(λ + (A - l/A)a), which

satisfies the homogeneity condition (4) of Condition 3-1 with a^ = a/A.
The first problem is to consider appropriate graphical coordinates, and

to estimate the time of existence and other properties of the solution given
in Lemma 3-2. The previous lemma assists us by allowing us to consider
only solutions which are rescaled to satisfy a curvature bound:

Lemma 5-2. Let φ: Mn x [-1, 1] -• Nn+ι be a solution of the equa-

tion (1-2) with sup^j 0 ] χ M * |3Γ(JC, 0)| = 1, and suppose N is such that

m a x ^ , K2, L} < 1.' Choose x0 in Mn, and let P = Tχ φo(Tχ Mn) c

Tφ ( χ jJV. Let ψ be the graphical coordinates over P. Then on a domain
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^ ( 0 ) x [~τ, τ] c P x R there exists a smooth function s corresponding to
φ by equation (2-15), and we have

(5-3) sup \s\ < e, sup \Ds\ < 1, sup \W\ < 2.
Bδx[-τ,τ] Bδx[-τ,τ] Bδx[-τ,τ]

Here δ is a constant depending only on n and f.
Proof. At the initial time we can construct the required map χ and

function s giving the graphical parametrisation of φ0 : Set s(0) = 0 and
χ(β) = χQ ? and extend according to the following differential equations:

V{s)s(ξ) = IT ψ{s)Γl (θ{s)(ζ)
(5-4)

Tξχ(u) = (Tχ{ξ)φ0)-1 (Tξψ
{s\ύ) + Vus(ξ)ϋ{s\ξ)) ,

where Vus in the second equation is calculated by the first equation. These
expressions can be used to solve for s and χ along radial curves from the
origin in P. The solutions s and χ along such a curve can be extended
within the region of definition of ψ as long as \s\ < e and |VJ | w remains

bounded, since gN[v(χ{ξ)), 0{s\ξ)]~ι = J\ + \Vs\2

g(S). We can estimate
these on a small region as follows: The expressions (2-17) and (2-19) can
be combined to give an expression for \W\, using the estimates (2-14).
Since \W| < 1, this gives an estimate of the form

(5-5) \Ds\ :

for some constant C . Since |Vs|(0) = 0, this gives a bound on \Ds\ on
a ball of radius r0 which does not depend on xQ or φ . Note that this
also implies a bound on \Vs\ w , since g^ is uniformly equivalent to the
metric on P in the region considered. Without loss of generality, let us
assume that we have taken r0 sufficiently small to ensure that \Ds\ < \ .
By taking r0 smaller if necessary, this also ensures \s\ < e/2.

The next difficulty is to show that this solution s exists for a fixed time
interval on a suitable region of P , and to estimate \Ds\ throughout the
time interval. Note that equations (3-11) in the proof of Lemma 3-2
show that the solution can be extended in time as long as \s\ < e and
\Ds\ is bounded. To control the curvature on a small interval, we can use
equation (4-3) with Q = \W\:

d 2 3

dt ~ ~
where C depends only on / and the pinching bound of (4-2). Since
sup ί = 0 \W\ = 1, we can find a small time interval on which \W\ < 2. On
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this time interval we also have a bound F < \W\/y/n < 2/y/n. On an
interval [0, τ], the solution stays in a neighbourhood of width 2τ/y/n of
the initial immersion φ0. For τ sufficiently small, and considering only
the smaller region of radius rQ/2 in P, this neighbourhood is contained
in a strip about the initial function s0, given by s0 - Cτ < s < s0 + Cτ for
some constant C, using the bound on |Zλs| at the initial time. Clearly we
can choose τ small enough to ensure that \s\ < e on this region. Now we
use the bound (5-5) again, in the form

\D\Ds\\<C(l + \Ds\2)V2.

Integrate along a curve γ which begins at some point in Br j2(0) c P, and
follows the direction of steepest ascent of s. First we have an estimate on
\Ds\ from below for small distances:

\Ds\(r) >(A- Cr)

where A = \Ds\{0) I \J\ -I- \Ds\2 this holds for A - Cr > 0. Integrating

again we obtain the estimate

s(γ(r)) - s(γ(0)) > C"1 (^/

Suppose \Ds\(γ(0)) > 1. Then for a distance r < C~\l/Vl- l/y/3)
we have the estimate s{γ(r)) - s(γ(O)) > r/y/2. However the estimates
obtained above ensure that s(γ(r)) -s(γ(O)) < Cτ+r/2, using the gradient
bound at the initial time. Consider points which are contained in the ball
of radius ^r0, and paths γ of fixed length r no greater than the minimum

of C~x ί l/λ/2 - l/λ/3] and \r0. The endpoint of any such curve is still

contained in the ball of radius \rQ, but has s(γ(r)) - .s()>(0)) > 1/Λ/2 >
\r + Cτ provided we restrict to a time interval of length no greater than
C~ιrV2-l/2.

The same techniques show that the solution can be extended backward
in time to — τ, since we have assumed a curvature bound on [—τ, 0].
q.e.d.

Now we are in a position to begin applying estimates from [10]. Note
that we have existence of s on a region which is independent of any
bound on the injectivity radii. The first estimate we obtain is a bound on
the oscillation of the curvature:
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Lemma 5-6. Under the conditions as in Lemma 5-2, there exists a
positive function σ: (0, 1] -+ R such that

(5-7) inf F{ζ,t)>σ{γ)F{0,0)
« 0 € * x [ y τ τ ]

for all y e ( 0 , 1].
Proof The previous lemma allows us to apply directly the following

Harnack inequality due to Krylov and Safonov ([11] (see also [10, §3.1]):
Lemma 5-8. Let u be a positive solution in W1'2 (B{(0) x [-1, 1])

to the equation

(5-9) J U = aij{x, ήDfijU + b\x, t)Dtu + c(x, t)u

on the domain B{(0) x [-1, 1 ] C R " X R , where the coefficients are mea-
sureable, bounded, and uniformly elliptic:

(5-10) C M 2 < aiivivj < C\v\2, \b\<C, \c\<C,

for all {x, t) in Bx(ϋ) x [-1, 1] and v e Rn . Then there exists a constant

K depending only on n, C_, C, and C such that

If C_, C, and C change within a bounded range, then so does K.
An application of this lemma followed by rescaling of either space or

time variables gives a more general result. In view of the estimates (2-14)
which control the map ψ, and the bounds on height, gradient and cur-
vature (5-3), this lemma can be used immediately to obtain the desired
result.

Lemma 5-12. Under the conditions of Lemma 5-2 the following esti-
mate holds if x0 is chosen so that supM« \W(x, 0)| = |2Γ(* 0, 0)| = 1:

(5-13) inf F{y,t)>C,
(y,t)eBδ/2(x)x[τ/2,τ]

where C is a function of nf f, and do(x9 xQ), d0 being the distance in

Mn with respect to g at time 0.
Proof This result follows by repeated application of the previous

lemma—for points near x0, a single application suffices. For points fur-
ther away, several applications on shorter time intervals give the result.

Lemma 5-14. Under the conditions of Lemma 5-12,

(5-15)

where β{x) and C(x) are functions of n, / , and dQ(x,x0).
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Proof. For this result we can apply a more sophisticated result from
[10, §5.5] which gives Holder estimates for solutions to uniformly parabolic
equations

where F is convex (or concave) in the second derivatives, provided some
other conditions are satisfied involving boundedness of the derivatives of
& with respect to other arguments. Our previous lemma ensures that the
curvature is bounded above and below on each region we consider. This
guarantees that all the required conditions are satisfied, and the result
follows.

6. Convergence

In this section we apply the estimates from the previous chapter to
complete the proof of Theorem 1-5. This involves showing convergence to
a sphere on a subsequence of times under an appropriate rescaling (which
uses a recent result of Hamilton [6]), and then deducing the convergence
for other times (which is in most respects analogous to the proof in the
Euclidean case [1]). Before we can carry out this program, we require the
following result which guarantees the existence of the solution as long as
the curvature remains bounded:

Theorem 6-1. Suppose φ: Mn x [0, t0) —• Nn+ι is a smooth a-convex

solution to (1-2), and s u p M « x [ 0 t ,F < oo. Then φ extends uniquely to

Mn x [0, tχ) for some tχ>t0.

Proof Lemma 5-12 ensures that we have C α estimates for the curva-
ture of φ on the domain Mn x [0, t0). Note that the distance moved by
any point is bounded by t0 supMπ χ [ 0 % > F < oo, so the image of φ is con-
tained in a compact set of N on this time interval. Consequently we have
bounds on all the higher derivatives of the Riemann tensor of N. Stan-
dard Schauder estimates therefore provide bounds on all the derivatives
of the curvature of φ. This ensures C°° convergence to an immersion
φt (see, for example, [7, §8]). The short time existence result Theorem
3-14 now applies to extend the solution to a longer time interval, q.e.d.

The estimates of §5 are enough to prove the convergence in a restricted
sense: We consider a subsequence of times {tk} approaching the maximal
time of existence T of φ, chosen such that the following holds for a
corresponding sequence of points xk in N:

(6-2) sup
Mnx[0,tk]
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The existence of such a sequence is guaranteed by Theorem 6-1.
For each k we rescale the metric gN on a time interval about tk to

make φ satisfy the curvature bound required for the application of Lemma
5-1. Then we use Lemma 5-1 with A = Ak = sup[0 t^W\, and proceed
with the estimates of §5, obtaining Holder estimates on the curvature on
a time interval of rescaled duration τ, depending only on the rescaled
distance from the point xk .

For each k, we choose an isometry from Rn+1 to T, * JV. In this way
we identify the tangent spaces to TV at each of these points. Note that
the exponential map at φ{xk) is nondegenerate on a ball of (rescaled)
radius rQAk for some fixed rQ > 0 depending on Kχ and K2. Since Ak

is unbounded as k becomes large, the exponential map is eventually non-
degenerate on arbitrarily large regions of Rπ+1 under this identification.
Furthermore, the curvature bounds (1-1) show that the metric induced
on Rn+ι by the exponential maps converges in C3 to the flat metric as
k tends to infinity. Although the exponential map may not be diffeomor-
phic on these regions, we can use the nondegeneracy to obtain a family of
hypersurfaces in Br A (0) c Rn+l which corresponds to the family φ(M)
under the exponential map. This is given by the solution to the following
differential equation for immersions φ into Rn+ι:

(6-3) Tφ = (Tφ exp^) ' 1 o Tφ, φ(xk , tk) = 0.

The estimates from Lemma 5-14 give C2+β estimates on each ball Br

in Rn + 1, independently of k. Hence for each positive integer R we can
find a subsequence {tk } of {tk} for which the families of hypersurfaces

converge to a C2+β family of hypersurfaces of Rn+ι. Furthermore we
can arrange that {tk } is a subsequence of {tk } for each R. Taking a
diagonal subsequence {tk }, we obtain convergence to a limiting family of

complete hypersurfaces in Rw+1. Each hypersurface in this family satisfies
the estimates (5-15), depending only on the distance from the origin. Fur-
thermore, the limiting family consists of strictly convex hypersurfaces with
curvature bounded below by the estimate (5-13), depending only on dis-
tance from the origin. The curvature of the hypersurfaces is also bounded
(|2Γ| < 2), and the family is a solution to equation (1-2) with a = 0.
It follows (again using the estimates of §5 and Schauder theory) that the
limit hypersurfaces are smooth.

We can now employ the following recent result due to Hamilton [6]:
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Theorem 6-4. A complete, smooth strictly convex hypersurface with
pinched principal curvatures in Euclidean space is compact.

It follows immediately that the solutions φ are boundaries of small
immersed balls in N for sufficiently large times. In particular, the solution
remains in a compact subset of N for the length of its existence. This
implies that the solution converges for a subsequence of times to some
point of N, since the hypersurfaces approach a compact hypersurface
after arbitrarily large rescaling, and so have diameter tending to zero. It
follows that we have convergence to a point of the whole solution, since
later hypersurfaces are contained by earlier hypersurfaces.

Note that this result immediately gives us uniform estimates in C°°
for the rescaled hypersurfaces, since the solution remains in a compact
subset of N, and we have uniform estimates on all the derivatives of the
Riemann tensor of N on this region. This also implies that we have the
convergence to the limiting hypersurfaces in C°° on the subsequence of
times.

The limit hypersurfaces must in fact be spheres. This follows from the
evolution equation (4-4) for the pinching quotient Q/F: In the limit,
the maximum of this quotient is nonincreasing. By the strong maximum
principle, the maximum is strictly decreasing unless Q/F is constant.
But if the maximum decreases on the family of limiting hypersurfaces, we
have a contradiction to the convergence (note that the quantity Q/F is
unaffected by the rescaling process). Hence Q/F is constant in the limit,
for any Q satisfying the conditions of §4. But then in equation (4-4),
the negative second term must also vanish, which implies that the limiting
hypersurfaces have constant curvature and are therefore spheres.

The Harnack estimate (5-13) gives bounds below on the rescaled cur-
vature at each of the times tk , since the diameter of the hypersurface is
finite. Since the (unrescaled) minumum of the curvature is nondecreasing
by the maximum principle applied to equation (3-20), this ensures that
after some sufficiently large time, the hypersurfaces are strictly convex and
pinched with respect to the flat metric on Rn+ι. The proof now proceeds
exactly as in [1], §7.

7. Extensions and applications

In this section we conclude with some extensions to slightly different
flows, and some applications to geometry.

Theorem 7-1. For any strictly a-convex initial immersion φQ, there
exists a unique smooth solution φ on a finite time interval [0, T) to equa-
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tion (1-2) with speed f satisfying Conditions 3-1 with (4) replaced by
homogeneity of degree 1 in λ. The immersions φt converge to a point of
N and become spherical as in Theorem 1-5.

Proof Equation (3-20) still ensures that the convexity is preserved
(although α-convexity need not be preserved), with a bound below on the
principal curvatures decaying exponentially in time. Theorem 6-1 still
holds, showing that a solution which has bounded curvature on a finite
time interval can be extended further. On any finite time interval equation
(4-4) still yields a pinching estimate. Therefore it is sufficient to show that
the interval of existence of the solution is finite—the proof then proceeds
exactly as before.

First note that φ0 encloses an immersed disc, by Theorem 1-5; we can
consider the evolution as taking place on the disc itself, in which φ0 is em-
bedded. The solution φ to this equation immediately becomes enclosed
by the solution φ^a) of the nonhomogeneous equation. The solutions also
remain disjoint: Suppose the two solutions touched again. At the point
where this occurs the curvature of the outer hypersurface φ^ is no greater
than the curvature of the inner hypersurf ace φ. Hence the rate of change
of the distance between the hypersurfaces at such a point can be estimated
as follows:

> f(W{a)) - f(W{a) - aid) > a inf F(Id) > a,

where we have used the inequality (2-20) in the last step. This is a con-
tradiction since dd/dt < 0 at a newly attained minimum of d. Since
φ^ contracts to a point in finite time, φ can only exist for a finite time,
q.e.d.

Note that this proof depends very strongly upon the result for the non-
homogeneous equation proved in this paper. I know of no way to prove
this result directly.

The first application I wish to discuss is a simple proof of the 1/4-
pinching sphere theorem of Klingenberg, Berger, and Rauch. This proof
uses a method devised by Gromov and employed by Eschenburg [5].

Theorem 7-2. Let N be a compact simply connected smooth Rieman-
nian manifold with sectional curvatures in the range \ < σN < 1. Then N
is diffeomorphic to a twisted sphere.

Proof Choose a point x0 in N, and consider exponential spheres
about x0. We consider these as immersed spheres given by immersions
φs where s is the distance parameter. These immersions are related by
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the equations
d

The change in the curvature and the metric on these spheres in given by
the following equations, the proof of which is identical to that of Theorem
3-15:

(7-3) j^g(u,υ) = 2Π(u,υ),

(7-4) ^ a r ( i ι ) = - w\u) - RN(y ,u,v).

Using the assumptions on the curvature of N, we obtain the following
estimates for the maximum and minumum principal curvatures of the
exponential spheres:

(7-6) Λmin > cot(5).

It follows that the exponential spheres are nondegenerate for any s < π.
Equation (7-3) for the metric gives a bound on the metric as long as \W\
remains finite for expanding exponential spheres. The strict inequality in
(7-5) implies that there is some distance s < π for which 0 > λmaχ >
λmin > -oo, and hence the exponential sphere at this distance is strictly
convex in the outward direction. It follows from Theorem 1-5 that this
sphere bounds a disc in N. This gives an expression for N as a union of
two discs by a diffeomorphism from one boundary to the other, q.e.d.

The result from Theorem 1-5 in the general case allows negative curva-
ture in N. We can use this to prove the following "dented sphere theorem"
which generalises the \ -pinching theorem above:

Theorem 7-7. Let N be a compact smooth simply connected Rieman-
nian manifold with sectional curvatures bounded below by some constant
-a2. Let e e (\, 1) be such that e cot(eπ) < - α , and let p e [π/2, π) be
such that e cot(ep) = -a. If there is a point x0 in N such that e < σN < 1
on the ball Bp(x0), then N is diffeomorphic to a twisted sphere.

Note that for any bound below for the sectional curvatures of N, one
can find a pinching ratio e and a radius p which satisfy the conditions
here. If a becomes very large, then e and p must be taken very close to
1 and π respectively.

Proof This is exactly analogous to the previous theorem. If we take
expanding exponential spheres about the point x0, the evolution of mini-
mum and maximum principal curvatures can be estimated by the following
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equations:

This gives the following estimates for balls of radius less than or equal to

P-

(7-10) 6 cot(w) > λmaχ > λmin > cot(s).

At distance p the hypersurface is still nondegenerate, and is α-convex in
the outward direction, but possibly not strictly α-convex. However, since
N is smooth, there is some short distance beyond p on which the sectional
curvatures are positive. Hence by taking a distance s slightly larger than
p, we obtain a nondegenerate, strictly outward α-convex hypersurface. By
Theorem 1-5, this is the boundary of a disc, and the result follows.
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