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SYMPLECTIC TOPOLOGY ON ALGEBRAIC 3-FOLDS

YONGBIN RUAN
Dedicated to the memory of Andreas Floer

1. Introduction

In [18], the author introduced two Donaldson-type invariants, Φ and
Φ, based on Gromov's remarkable theory of pseudoholomorphic curves
in a symplectic manifold V. Roughly speaking, φ is based on counting
the number of holomorphic spheres in V, and φ is based on counting the
perturbed holomorphic maps from S2 to V. A major difference between
the two invariants is that Φ takes into account multiple cover maps [8],
but Φ does not. It turns out that Φ is the invariant used in topological
σ models in mathematical physics. There is a remarkable mirror symme-
try phenomenon among Calabi-Yau 3-folds relating this invariant to the
variation of Hodge structures of its mirror. But we shall not say anything
more about this phenomenon here. Instead, we refer the reader to [24],
[14]. Here we deal with a different type of application, primarily for Φ .
We should point out that various simple forms of these two invariants
have been used by Gromov [5] and McDuff [10], [12].

Before we give the definition of Φ, recall that a symplectic mani-
fold ( F , ω) is semipositive if for any A in the image of Hurewicz map
π2(V) -> H2(V, Z), ω(A) > 0 implies that c{(V)A > 0. Now we give
the definition of Φ, following the notation in [18].

Let Ω(F) be the oriented bordism group of V.
Definition. Let ( F , ω) be a symplectic manifold and A e H2(V9 Z)

with c{(V)A > 0. Furthermore, if d i m F > 8, suppose that ( F , ω )
is semipositive. Choose a generic tamed almost complex structure /
on V. For any aχ, ••• , ak e Ω(F) such that degα^ < 2n - 2 and
Σjiln - degα, - 2) = 2cx(V)A + 2n - 6, choose a representative of at,
still denoted by α z . We can define an integer Φ^A 3 ω ) ( α j , , ak) as
follows. First notice the following:
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(1) There are only finitely many unparameterized, nonmultiple cover
/-spheres in Jf*Λ ^ intersecting aχ, , ak .

(2) For each such /-sphere / , we can associate a multiplicity m(f).
Then, we define

Φμ j ω)(aχ, , ak) is independent of the choice of representative
of at, multilinear with respect to the group structure of Ω(F), and triv-
ial with respect to the module structure of Ω(F) over the Thorn bor-
dism group. Furthermore, it is independent of / , hence an invariant of
(V, ω, A), and so we denote it simply by Φμ,ω) Furthermore, if ωt

is a path of symplectic structures, satisfying the semipositive hypothesis
when dim V > 8, then Φ ( ^ Q ) = Φ{A^ .

To put this invariant into perspective, consider the classification ques-
tion of symplectic structures. Let W be the space of all symplectic struc-
tures on V. Then W is an open set in the space of closed 2-forms on V,
and the orientation preserving diffeomorphism group Diff+ V acts on W.
By considering the moduli of symplectic structures W = W j Diff+ V,
the classification of symplectic manifolds can be split into two problems:
(1) distinguish the different components and (2) study the structure of
each component. So far all the works on classification had concentrated
on problem (2). The period defines a map P from WQ = ^/Diff0 to
H2(V, R), where Diff0 is the group of diffeomorphisms inducing the iden-
tity in H2(V, R). Moser's theorem implies that the preimage of a point
P~ι(A) is discrete. McDufΓs examples [8] demonstrated that P"ι{A) can
be infinite even when restricted to a single component of ^ . So far there
has been no work on problem (1). This is the main topic of this paper.
Two symplectic structures are said to be deformation equivalent if and only
if they are in the same component of W. From this point of view, the
period is not very relevant since it could change within a component. One
possible way to use the period map is to study its image in H2(v, R). Then
one can try to show that up to automorphism of H2(V, R), the image has
two disconnected components. Indeed, Ono [15] gave an alternative proof
of a pair of the author's examples, namely (Barlow surface) xS2 and (the
blowing up Rs of P2 at 8-points) xS2 , by following this route. But one
must be very lucky to be able to use this approach. It involves studying all
the symplectic forms, a task which is usually impossible. This elementary
method probably works best if we have a pair of sharply contrasting ex-
amples like a semipositive symplectic manifold versus a seminegative one.
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This is what happens for the Barlow surface and the rational surface i?8.
The author has been told that when we blow up the Barlow surface and
i?8 at two points, this elementary method no longer works. Later on we
shall see that blowing up does not affect the present invariants.

For the question of deformation equivalence, the most important clas-
sical invariant is the homotopy class of tamed almost complex structures,
particularly its Chern classes. Throughout this paper, we will ignore the
period. The classical invariants only mean the differentiate structure of
the underlying manifold and the homotopy class of a tamed almost com-
plex structure. The classical invariants are invariants of the deformation
class of symplectic structures. Until now it was not known if they were
complete invariants. Although semipositivity is not necessarily preserved
in an arbitrary symplectic deformation, our new invariant is an invariant
of the deformation class of symplectic structures when dim V = 4 or 6.
We shall calculate it for some examples, and we show that the classical
invariants fail to classify the deformation class of symplectic structures
and that the new invariant indeed goes beyond the classical one.

Our primary interest is algebraic 3-folds, which has real dimension 6.
There are two reasons.* So far, the most work has concentrated on the
4-dimension. But the results are not very satisfactory. Only uniqueness
results are obtained [5], [10]. In order to find nontrivial examples, we have
to be able to decide the classical invariants first. In the 4-dimension, the
question surrounding the classical invariants are delicate. In fact, they are
exactly the questions Donaldson theory tries to answer. But in dimension
6, the classical invariants appear to be trivial. For the differential structure,
there is a series of classification theorems [6], [21], [22], [27]. For the
homotopy class of almost complex structures, Wall has shown that it is
uniquely decided by the first Chern class of the almost complex structure.

Another deeper reason for studying algebraic 3-folds is their relation
with Mori's theory of 3-folds. Recall that in the definition of Φ, we have
to fix a homology class A e H2(V, Z). To use this invariant effectively, it
is often a delicate issue to choose an appropriate A. Mori theory suggests
that one should choose A in an extremal ray. Hence it is particularly
important to establish a symplectic version of Mori's extremal ray theory.
This will be done in [19] and further applications of these ideas will be
explored in future work. We shall not pursue the matter here.

Our next task is to calculate the invariants which we have defined. If
the symplectic manifold is Kahler, then this is just a question of classical
algebraic geometry. Note that because the set of all Kahler forms on a given
complex manifold V is convex, all such forms are deformation equivalent.
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Thus, for our purpose, it does not matter which form we consider, and we
will frequently talk about a Kahler manifold as a symplectic manifold
without explicitly mentioning the form involved, since we always assume
that this form is Kahler. Let V be a nonminimal algebraic surface and
W be a minimal one. Then V, W, V xΣ, W xΣ are Kahler manifolds,
where Σ is any Riemann surface. We shall show

Main Theorem. If W is not a rational ruled surface and pχ(Wk)φQf

then VkxΣ is not deformation equivalent to WkxΣ, where Vk, Wk are
obtained by blowing-up k-different points ofV, W for fc = 0 , l , 2 , .

Combined with the results about the geography of simply connected
minimal surface of general type, one can use this theorem to get a vast
number of interesting examples. For instance, we can prove the following
corollary.

Corollary. For any n, there is a simply connected minimal algebraic
surface of general type W such that W x Σ admits more than n many
distinct deformation classes of symplectic structures whose tamed almost
complex structures are homotopy equivalent to each other. Furthermore,
for any blowing-up Wk of WkxΣ also admits more than n many distinct
deformation classes of symplectic structures whose tamed almost complex
structures are homotopy equivalent to each other.

A particularly interesting example is the Barlow surface B which is the
only known example of a simply connected minimal surface of general
type with geometric genus p = 0. It is homeomorphic to a rational

surface i?8 obtained by blowing-up P at 8 points in generic position.
i?8 x Σ and B xΣ have the same classical invariants, but W is minimal
and Λ8 is, of course, nonminimal. The theorem implies that R% <g> Σ
and B x Σ are not deformation equivalent. Rs and the Barlow surface
have been extensively studied by gauge theorists [7], and are examples of
homeomorphic 4-manifolds carrying different differential structures. After
stabilizing by taking the product with Σ, they become diffeomorphic, but
their exoticness can still be detected by symplectic topology. We get more
such examples by choosing W to be an elliptic surface. This fascinating
phenomenon will be taken up again in [20]. Note that it is still a conjecture
in gauge theory that a minimal algebraic surface is not diffeomorphic to a
nonminimal algebraic surface unless it is a rational ruled surface.

This paper is organized as follows: In §2, we give topological informa-
tion about 6-manifolds, the proof of the main theorem is in §3, and the
examples are in §4.

The author wishes to thank S. K. Donaldson for valuable discussions
and D. McDuff for reading a draft and making many useful suggestions to
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improve the paper. Finally the author would like to thank the referee for
pointing out a gap in the original manuscript.

2. 6-Manifolds

The classification of smooth 4-manifolds is complicated, as is demon-
strated by the complexity of Donaldson theory. But it is well known that
the classification of higher dimensional manifolds is much easier. There
is extensive literature on either topological classification or smooth clas-
sification of simply connected 6-manifolds by Wall and other [21], [6],
[27]. Here we list one such classification which is the most useful for our
application.

Theorem [6]. Two closed, I-connected, smooth 6-manifolds X, Y with
torsion-free homology are diffeomorphic if and only if there is an algebraic
homomorphism p: H*(X, Z) —• H*(X, Z) which preserves the cup product
structure μ: H2 <g> H2 ® H2 —> Z, second Stiefel-Whiteney class w2, and
first Pontryagin class pχ. Furthermore, the diffeomorphism which realizes
this algebraic isomorphism is orientation preserving.

So, the smooth classification is the same as the homotopy classification
plus characteristic classes. One should note that the assumption of H*
being torsion free is essential. Otherwise, there are new invariants to be
considered. We refer to [27] for more detail.

Next we consider the homotopy class of almost complex structure. There
is again a satisfactory classification due to Wall.

Wall's Theorem [21]. Let M be a smooth oriented 6-manifold. Then
M has an almost complex structure iff w3(M) = 0. When this is so, there
is just one homotopy class of almost complex structure for each cχ £ H2(M)
whose mod 2 reduction is w2(M).

Remark. In the case of dimension 4, homotopy classification of al-
most complex structures is much more complicated. For example, recently
Donaldson used his Yang-Mills invariants to show that on K3 , there is a
homotopy class of nonintegrable almost complex structures with cx = 0.

3. Main Theorem

The ultimate goal for our invariant is to distinguish different symplec-
tic manifolds which have the same classical invariants. The only known
examples, as far as the author knows, are the examples constructed by
McDuff [8], which are actually deformation equivalent to each other. Her
examples rely on Gromov's result on the symplectic diffeomorphism group
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of S2 x S2 . In this sense, the invariant we define is more general. Later, we
shall see that our invariant is particularly suitable for algebraic geometric
techniques when we deal with examples from Kahler manifolds.

Recall that Φ is defined by choosing a generic tamed almost complex
structure / . Roughly speaking, / is generic iff all the relevant moduli
spaces are smooth and have the correct dimension for any homology class
in H2(V, Z). (See the precise definition in [16].) In practice, it is im-
possible to verify that a given almost complex structure is generic. We
have to relax the genericity condition. In proving the existence of φ^ one
discovers that we need only two conditions on / : (1) for any / e Jί*a ^ ,

Ho> x{TfV) = 0 and (2) the space of cusp ^4-spheres are of codimension
at least 2. We say that / is A-good if / satisfies both conditions. In
general, it is harder to prove that a particular almost complex structure
is .4-good than to calculate the invariant itself. Usually our argument
includes three parts: show (1), (2), and calculate the invariant.

Let V be a nonminimal algebraic surface and W be a minimal one.
We shall prove that

Main Theorem. If W is not a rational ruled surface and pχ(Wk) φθ,
then VkxΣ is not deformation equivalent to WkxΣ, where Vk, Wk are
obtained by blowing up k-distinct points ofV,wfk = 0,l,2, - .

We divide the proof into a series of lemmas.
Lemma 1. If Ae H2(Vk,Z) (or H2(Wk,Z)) is represented by an ex-

ceptional rational curve E, then ΦA([E]) = - 1 .
Proof Fix a symplectic form ω which is Kahler with respect to a com-

plex structure. If we deform the complex structure a little bit, as in moving
the blow-up points, the new complex structure is at least ω-tamed, since
the tamed condition is an open condition. Now all the tamed symplectic
forms on a complex manifold form a convex set. We can replace ω by a
Kahler form ω of the new complex structure. Therefore, we can assume
that the blow-up points are not on the exceptional divisors. Let / be such
a complex structure on Vk and Jo be a complex structure on Σ. We
claim that J x Jo is Λ-good.

Clearly
jtA = {E x {a} for a e Σ}.

E has normal bundle ^ ( - 1 ) in Vk . E x {a} has normal bundle NE =

0 + 0(rX). Hι{0 + @{-1)) = 0. By the exact sequence

0 _> TV1 -> T{Vk x Σ)_£ -> NE -> 0,

Hι(T¥ι) = 0 implies that Hι(Vkx Σ)\f) = 0. Hence (1) is satisfied.
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Next we check that there are no cusp curves and thus / <g> JQ is ,4-good. If

A +Λ + * * "+Λ i s a C U S P ^-rational curve, then L/j]+[/2]+ +[fk] = [E].

If / : P1 -> Vk x Σ is an ^-rational curve, let f. = .// x 7, > where ^ : P1 ->

F^ and /,-: P1 -> Σ. If Σ ^ P 1 , // must be a constant map. If Σ = P 1 ,

then [/.] = Λ I P 1 ] for some n. > 0. But £[//] = 0. Thus, [/,] = 0 and

fi is a constant map. So fχ', c Vk x pt for some pt e Σ. Since / = Σ . f.

is connected, / c Vk x pt and we can view / as a cusp ^4-rational curve

in Vk . If E appears r times in this set for r > 1, then we get a set of

rational curves gχ, , gk_r such that [gχ] + + [^_r] = - ( r - 1)[£].

This is impossible since ω(gz) > 0 for each gt and co(E) > 0 where ω

is the Kahler form. Suppose ftφ E for any i . Blow down Vk at / to

define another Kahler manifold V'. Let ^ be the image of f.. Then we

get cusp rational curves fx 4- f2 H h ̂  representing the zero homology
class, which is impossible as we just showed. Hence J x Jo is ^4-good.

JtA = Σ is parameterized by a e Σ. Choose the bordism class corre-
sponding to E. It can be represented by an embedded 2-sphere X x {b},
where X c Vk is transverse to E. Clearly there is only one ratio-
nal curve E x {b} intersecting X x {b} with multiplicity - 1 . Thus
Φ i ί ( [ £ ] ; F x Σ ) = - l .

Lemma 2. Suppose that W is neither P62 «or α π/fe/ surface. If
ΦA φ 0 for A e H2(Wk, Z) am/1/ Λ2 = - 1 , cx(Wk)A = 1, then A must
be an exceptional class; i.e., A is represented by one of the exceptional
rational curves.

Proof Let l{, , lk be the exceptional curves in Wk . Suppose that

A Φ Vί\ where /• is an exceptional rational curve. Then for a generic

tamed almost complex structure / ' on Wk , J?*A j^{Wk) Φ 0 . Otherwise,

/ ' x Jo is ,4-good on Wk x Σ and φA = 0. Since Φ[L] Φ 0, [/,.] is

also represented by a /'-rational curve for the same reason. By McDufFs
theorem [10], A[lt]>Q.

Since W is minimal, by the classification theorem [13] one of the fol-
lowing occurs:

(i) cx(W)(D) < 0 for any effective divisor D.

(ii) W = Ψ2.

(iii) W is a ruled surface.

By the hypothesis, W has the property (i). Now we claim that there is
no yl-rational curve and no ,4-cusp rational curve which contradicts the
hypotheses ΦA Φ 0. If / is an ^-rational curve, blow down each /z to
obtain a rational curve / on W with cx(W)(f) > cx(Wk)(f) = 1. But
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since W is neither P 2 nor a ruled surface, cι(W)(f) < 0. This is a
contradiction. Let / = fχ + f2 H fs be a cusp ^4-rational curve. Then

[f\ ] + L/2] " *" t^l = ^ Some of the components may appear more than
one time corresponding to multiply covered components and components
which have the same image. We can rewrite f = μχlχ-\ \-μklk + axgx +
• + atgt where g. is not an exceptional curve and gt Φ g if i Φ j .
Moreover, μt > 0 and α.> 0. Let ĝ  be the image of g. in W. Then
homologically [g.] = [g.] - r.y[/ ;], where r/7 = [g^lj] > 0. Note that
A[lj] > 0. Hence Σ z ̂ / ^ - ^ > 0. Then

which implies that

But μj-Yiiairij < 0 for each 7 . Then Σ / ^ I ( ^ J ) - 1 N o t e t h a t ai > °
and c^W^Cg^ < 0. This is a contradiction.

Lemma 3. Suppose that W is an irrational ruled surface. There are

at most k distinct classes Al9-- , Ak e H2(Wk,Z) with A] = - 1 ,

i = ι > AiAj = 0,and ΦA φθ.

Proof. Suppose that A Φ [lt]. If / is an ^-rational curve, blow down

lt to get a rational curve / o n (f. The only rational curves on W are

the fibers, and so / is a fiber. Thus / is the strict transform of a fiber / .

In order to have that f2 = -1, one can only blow up one point on each

fiber / . In fact, by choosing a generic complex structure, we can assume

that this is always the case.

If / is a cusp ^4-rational curve, we can repeat the argument in Lemma

3. We find that

Again, each Jξ. has to be a fiber. Note that ~gt is a smooth P1 and hence
r(j = 1. Furthermore, / = μχlχ + + μklk + axgx + + atgt is connected.

Then its image aχgχ H h at~gt in W is also connected, and there can
be only one g.. Hence, A = [C] - [/,].

It is easy to check that in any cases, there are at most λ>many classes
A{ with A.Aj = 0 if i Φ j .

Proof of the theorem. Now we prove that Vk x Σ is not deformation

equivalent to Wk x Σ. First of all, we can assume that W is not P 2 .

Otherwise, W and V have different Betti numbers since b2(V) > 2.
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Thus Vk xΣ is not even diffeomorphic to WkxΣ. Suppose that Vk x Σ is
deformation equivalent to W^xΣ. There is a diffeomorphism F: VkxΣ—>
^ x Σ such that F ' c , . ^ x Σ) = ct{Vk x Σ), F*pχ(Wk x Σ) = p ^ x Σ),
and Φ^(Λ.; F f cxΣ) = Φ ^ w ( / ^ . ) ; Wk x Σ) = - 1 for (fc + l)-many

Λf. €= # 2 (J^ , Z) with q μ j = 1, ^ = - 1 , A.Aj = 0.

We claim that for any A e H2{Vk, Z), .F*μ) e iJ2(W^, Z). Let α €
H2(Σ, Z) be the positive generator. Suppose that F*(α) = na + β for

β eH2(Vk,Z). Note that the first Pontryagin class / ? 1 ( K f c x Σ ) = / ? 1 ( F ^

0 and p j ( ^ x Σ) = P J T O ^ 0. Let γ(Vk) e H\vk,Z) be such that

γ(Vk)[Vk] = 1. Define y{Wk) in the same way. Then px{Vk) is a nonzero

multiple of γ(Vk) 9 and P^W^) is a nonzero multiple of y(Wk). Thus,
* = γ(Vk), which implies that

1 = (γ(Wk) U α ) [ » ; x Σ] = F\y(Wk) U α)[Ffc x Σ]

Hence n = 1. Furthermore, F*(a2) = 0. Then (α + jff)2 = laβ + β1 = 0.
Therefore 2α)ff = 0 and β2 = 0, which imply that β = 0. Now let [Σ] be
the orientation class of Σ. For any AeH2(Vk,Z),if F^(A) = k[Σ] + C,
then k = a(F^(A)) = f*(a)(A) = 0. Hence FJ.A) € H2(Wk, Z). So, each

FMt) e H2(Wk9Z). Clearly cx{Wk){F^At)) = ^ ^ ( ^ - ) 2 = - 1 , and
F^A^F^Aj) = 0 as homology classes of Wk . But we just showed that
there are at most k many such classes with nonzero invariants. This is a
contradiction.

Remark. Symplectic rational ruled rational surfaces have been clas-
sifed by [10], to which we refer the reader for more details.

4. Examples

Of course in many cases F x Σ and WxΣ are not diffeomorphic. If one
can find V and W such that there is a homotopy equivalence between V
and W preserving the first Chern class, then by smooth classification of
6-manifolds [21], [6], there is a diffeomorphism between VxΣ and WxΣ
preserving the first Chern class. By Wall's theorem, two complex structures
are homotopy equivalent to each other under this diffeomorphism. There
are no classical invariants to distinguish them. But by the main theorem,
Vk and Wk are not deformation equivalent.

An interesting pair of such examples consists of the blow-up R% of P 2

at 8 points in general position and the Barlow surface B. B is, of course,
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nonminimal. There has been a lot of discussion [7] of the Barlow surface
in gauge theory. We refer to [1], [7] for details. The Barlow surface is
a minimal surface of general type with K2 — \, where K = -cχ is the
canonical class. It has the same homotopy type as V. By Freedman's
theorem, B is homeomorphic to i? 8 . Note that κ\ = 1 too. D. Kotschick
pointed out to me that Wall [22] proved that there is an isomorphism of
H2(B,Z) to H2(RS,Z) preserving the intersection form and K. So
there are no classical invariants to distinguish the deformation class of
Bk x Σ and (Rs)k x Σ . It is easy to check that P{(Bk) = -21 - 3k
is not zero. By the main theorem, they are not deformation equivalent,
this give infinitely many examples of smooth 6-manifolds which admit at
least two deformation classes of symplectic structures which cannot be
distinguished by classical invariants. When k = 0, Ono [15] gives an
interesting elementary proof.

Note that both blow-up of P2 and the Barlow surface have geometric
genus pg = 0. The Barlow surface is the only known simply connected
minimal surface of general type with p — 0. One may ask if there are
any such examples with p > 0. It turns out that not only such examples
do exist, but they exist in abundance. Let me describe a way to find such
examples in the surfaces of general type. At the same time, we shall find
examples with many deformation classes of symplectic structures.

One wants to find two minimal surfaces V, W of general type such that
the blow-up Vk for some k > 0 is homotopy equivalent to W preserving
the first Chern class cχ. We recall some basic facts about simply connected
4-manifolds. We are particularly interested in odd, indefinite manifolds.
Their intersection forms always have the form λ(l) Θ μ ( - l ) . Regarding
the uniqueness of cx, Wall has proved the following theorem.

Theorem (Wall [23]). If λ, μ > 2, then the automorphism group of
the intersection form is transitive on the primitive characteristic elements of
fixed square.

Of course, cx is characteristic. If c\ is prime, then cχ is primitive.

Hence by Wall's theorem, c2 uniquely determines cx up to the automor-

phism of the intersection form. Note that in blowing up, c2 decreases by

1 and c2 decreases by 1. Also 3τ = c2 - 2c2 decreases by 3 where τ

is the signature. Conversely, if c2{V) - c\{W) = c2{W) - c2(V) = k > 0,

it is easy to check that λ(V) = \{c\ + c2) - 1 = λ{W) and μ{W) =

\c2- \c\ - \ = μ(V) + k. By blowing up V /c-times, we get a nonmini-

mal algebraic surface Vk which has the same homotopy type as W. If we
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also assume that c2(W) is an odd prime and λ(W), μ{W) > 2, then by
Wall's theorem, there is an algebraic isomorphism q: H*{Vk) -> H*{W)
preserving the first Chern class. It follows that there is a diffeomorphism
q: Vkx S2 x W x S2 preserving the characteristic classes. Furthermore,
the tamed almost complex structures are homotopic to each other under
this diffeomorphism.

Recall the famous geography of minimal surfaces of general type.
Roughly speaking, one wants to know if there are minimal surfaces of
general type with a given pair (c2, c2) of positive numbers. There are sev-
eral restrictions in addition to positivity on the possible value of (c2, c2).
They are that c[ + c2 is divisible by 12, pg < \c[ + 2, and c2 < 3c2 . Let
x = j2(c2 + c2), which is the holomorphic Euler characteristics, and let
y = c2 . Then the last two conditions are 2x - 6 < y < 9x. λ > 2 is the
same as x > \ and μ > 2 is the same as y < lO.x-3. The signature τ = 0
is equivalent to y = 8x. The condition c\(V) - c\(W) = c2{W) - c2(V)
corresponds to the requirement that (ax(V), y(V)) and (x(W), (W)) be
on the vertical line x = b. Now it is obvious how to find such minimal
surfaces V and W. For large b, draw the vertical line x = b. Choose
a minimal y such that y is prime and (b, y) is represented by a simply
connected, minimal algebraic surface W of general type. Then we can try
to find all the pairs (b, yx), {b, y2), , (b,yk) such that y{ > y and
(b, y.) is represented by a simply connected minimal algebraic surface X.
of general type. From Figure 1 there are clearly at most finitely many such
(b, y.). Now blowing up X. suitable times, we get V0=JV9Vl9- - ,Vk

with the same c2 = y, a prime. By the argument above, the manifolds
Vj xΣ are diffeomorphic to each other and have the same classical in-
variants. If px(W) Φ 0, the main theorem implies that these manifolds
are mutually nondeformation equivalent to each other. Note that p{ = 0
corresponds to y = 8JC. Hence we only have to choose W below the
line y — 8JC in the geography map. Continuing tq blow up, p{ remains
nonzero, and we get infinitely many smooth 6-manifolds which admit fc-h 1
many distinct deformation classes of symplectic structures.

Now the question is how to get such a pair (b, y). There are many
results about the geography of minimal surfaces of general type, let me
just mention two of them.

Persson's Theorem [17]. If (JC, y) satisfies
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FIGURE 1

then (JC , y) is represented by a simply connected minimal algebraic surface
of general type.

Chen's Theorem [2]. If (x, y) satisfies

for large x, then (x, y) is represented by a simply connected minimal
surface of general type.

Chen's examples are particularly interesting since they contain examples
of positive signature. We will not go into any of the constructions here.
Instead we refer the reader to the original papers [2], [17]. One thing worth
mentioning is that genus 2 fibrations play a crucial role in the construction
of these examples. We refer to Xiao's work [21] for further information.

Now it is clear how to get (b9y). Persson's and Chen's examples cover
a large portion of the geography map of simply connected minimal surfaces
of general type. Actually the only region not covered is the strip close to
y = 9x. For any b, one only has to find the first prime number on the line
x = b over y = 2x - 6 which is in the region covered by Persson's and
Chen's examples. For example, any odd prime number p can be expressed
as 2bp - 5 for some bp . Then (bp, 2bp - 5) will be a satisfactory pair. A
whole segment of the vertical line x = b is in the Persson-Chen region.
As bp becomes larger and larger, the length of this segment will approach
infinity. Hence we have shown

Corollary. For any n, there is a simply connected minimal algebraic
surface of general type W such that W x Σ admits more than n many
distinct deformation classes ofsymplectic structures with the same classical
invariants. Furthermore, for any blow-up Wk of W, WkxS2 also admits
more than n many distinct deformation classes of symplectic structures
with the same classical invariants.
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