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HOROSPHERIC FOLIATIONS
AND RELATIVE PINCHING

BORIS HASSELBLATT

Abstract

Relative curvature pinching in negative curvature provides regularity of
the horospheric foliations up to C 2 ~ e .

The horospheric foliations of a negatively curved Riemannian mani-
fold are defined as the stable and unstable foliations of its geodesic flow,
as explained below. There are two classical results about smoothness of
horospheric foliations: Negatively curved surfaces have C1 horospheric
foliations [4], and ^-pinched Riemannian manifolds have C1 horospheric

foliations [2]. The latter has been improved to give C2y^ foliations assum-
ing fl-pinching (α € (0, 1)). An open question, posed in [2], is whether
these results hold assuming only relative pinching (e.g., does relative \-
pinching imply C1 foliations). We do not know the answer, but give suf-
ficient relative pinching conditions for the same range of smoothness and
indicate where improvements seem possible. See [1] for a brief survey of
interesting related results.

Definition 1. The sectional curvature of a compact negatively curved
Riemannian manifold N is relatively a-pinched if C < sectional curva-
ture < aC for some C:N -» - R + . If C is constant, the curvature is
said to be (absolutely) α-pinched.

Theorem 2. For α e (0, 1) a compact relatively a-pinched Riemannian
manifold has C2a horospheric foliations.

This follows from Theorems 5 and 6. Theorem 5 is a regularity the-
orem for the stable and unstable foliations of an Anosov flow based on
a "bunching" assumption of contraction and expansion rates sharpening
the standard regularity theory in [1], which cannot be substantially im-
proved. Theorem 6 establishes a connection between relative pinching
and bunching which may not be optimal. Here are the needed properties
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of the geodesic flow of a negatively curved Riemannian manifold.
Definition 3. A flow / o n a compact Riemannian manifold M is

called Anosov with Anosov splitting (Eu, £*):= (Esu Θ Eφ , Ess Θ Eφ) if
TM = Esu Θ £ s s Θ Eφ, Eφ = span{0} φ {0}, and 3λ < 1, C > 0,
Yp € AT, t>0 such that

and
WDψ-'WW < Cλ-'\\u\\ (ueEu(p)).

Call φt α-bunched if there exist μf < μs < 1 < vs < vf. M x R+ —> R+

with

) ~ llim supμs(p, t)vs(p, t)~lμf{p, t)~~a = 0,

lim sup μs(p, ί ) ^ ( p , t)~lvf{p ,t)a = 0

such that for all p e M, t; € £M(p) > w ^ Esu(φ'p)» ^ > 0, we have

i/yίP, O"ΊNI < ^
This notion of bunching is weaker than the one used in [1]. For geodesic

flows in negative curvature the terminology is clearer since μt = v~x ( i =
/ , s) by symplecticity, and hence α-bunching means

lim sup v(p, t)~2/auf(p,t) = 0,

so vs<Vj< v2ja uniformly for large /.

Eu and Es are tangent to foliations Wu and Ws, respectively (un-
stable/stable foliations), whose leaves are C°° injectively immersed cells
depending continuously on the base point in the C°° topology [3], In the
case of a geodesic flow these are the horospheric foliations on the unit tan-
gent bundle. The regularity of Eu, Es in the C°°-topology is that of their
representations in smooth local coordinates. Regularity of horospheric fo-
liations is the regularity of their tangent distributions. For regularity C 1

and higher this coincides with all alternative definitions.
Definition 4. A map / between metric spaces is called Holder con-

tinuous with exponent α 6 (0, 1] if d(f(x), f(y)) < const (d(x, y))a

for nearby x and y. If β e R, / : R -> R, / is Cm and / W 1 ) is
β - [β]-Hόlder, then we say / e Cβ . A distribution is Cβ if it is Cβ in
a smooth chart.
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Theorem 5. The Anosov splitting of an a-bunched Anosov flow is Ca

in the C°°-topology for α e ( 0 , 2 ) .
Theorem 6. A geodesic flow on the unit tangent bundle M = SN of a

compact relatively a-pinched Riemannian manifold N is 2a + e -bunched
for some e.

Remark, α-pinching implies l^fa + e-bunching [6, Theorem 3.2.17],
which is stronger. Ideally this would follow already from relative a-
pinching.

Proof of Theorem 5. We only treat the case a e (0, 1) to show how to
modify [1]. The framework of the argument is the same as in [1] which
in turn uses the formulation of [5]. For p e M, take a hypersurface ίΓ
transversal to φ of uniform size depending C°° on p . For each p, let
Wu:= Wu(p)n3r

p, Ws:= Ws(p)n3r

p, Eu:= TWU, and Es:= TWS. Take

coordinates Ξ:M x [~e , e]k+ι -• M such that Ξp: [~e , ef+ / - ^ ^ is

continuous in p, [-e, e]k x {0} -• Wu, {0} x [-e, e]1 -+ W5, and if
ψί'.ZΓ ^ &\ is the induced map then

with 11^ ! | | < vs(p, t) ι and ||CJ| < μs{p, t). Write the coordinates as
(x,y) with Ep(x, 0) E ^ M and Ξp(0, y)eWs.

Lemma 7. G/V^Λ p e M, q ~ (0, y) e Ws, (0, y£):= ^ ( 0 , y), there
exist C > 0 α«rf Ĉ  > 0 ŵcΛ that

•'•(i",)
Dφ

< Cvs{q,ty\ | | ς | | < Cμs(q,t), \\C;l\\ < Cμf{q9(fι

9

\\Bt\\<Ct\\y\\, C\\yt\\ > μf(q,t)\\y\\.

/V00/ H^ί"11| < vs(q, t)~ι in coordinates centered at q. But up to a
distortion factor, uniformly bounded independently of t, the linear part

of the coordinate change is of the form ( 1 , so that up to a bounded

factor the representations A~ι agree in both systems, as do the ones for

Ct and C~ι. ||2?J| < Ct\\y\\ since <pι is a diffeomorphism with Bt dif-

ferentiable and vanishing at the origin of the coordinate system. For the

remaining claim it is slightly easier and by boundedness of coordinate

changes clearly sufficient to show \\y\\ < Cμ^p, tyι\\φt(y)\\. To this end

let γt:[0, 1] -> ^ be a geodesic with y,(0) = φ\p), yt{\) = φ\q),
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where q ~ (0, y). By standard hyperbolic theory φ~tγt converges to a

smooth curve c( ) c ^ . If l i m ^ ^ U\y)\\^f{p, OIMI = 0, then by the
intermediate value theorem this holds for all c(s), 5 ^ ( 0 , 1]. Using com-
pactness of M (to control higher derivatives) yields uniformity in s, so
l i m ^ ^ \\Dφ\v)\\lμf{p, t)\\v\\ = 0 for v = c(O), contrary to the choice
of μj>. q.e.d.

In Ξp , represent elements

\k + 1-dimensional distributions v on M such
veV(δ):= ι

 Ί
that υ(p) contains φ(p) and is (5-close to E (p)>

by identifying υ(p) with υ(p)C\TZΓp\ likewise for v(q) in coordinates Ξ^
for q G ̂ p. Thus (J-closeness is determined by representing v(p) as the

graph of a linear map D: Rk —> R1 via Ξp and using the norm topology.

φ* acts on V{δ) via (&tυ)(p):= Dφ\v{φ~tp)). ^(K(<5)) c V{δ) for

large ί and £Ptv
 tz^? Eu for ?; e V(δ). Also one easily shows

Lemma 8. For δ, e0 > 0 there exists K = K(δ, e0) > 0 swc/z that
V(δ) c K(ί, 605 K):= {E e V(δ)\\\E(z)\\ < K\\zf when e0 < z < e} c
V(δ).

This is useful since for all sufficiently large t we have ^t(V(δ)) c V(δ).

Proposition 9. // α e (0, 1] am/ p r w a-bunched, then Eu is Ca.
This follows from
Lemma 10. For all δ e (0, 1) there exist K>0, η e (0, 1) such that

for all sufficiently large t we have &t(V{δ)) c V(δ, η , K).

Namely η / € N ^ ( ^ W ) c v(δ' 0, ΛΓ), i.e., every £ € n ί € M ^ ( ^ W ) is
Holder continuous with exponent a and constant AT. But by construction
we have Eu eΠi&0>t{V{δ)).

To obtain Lemma 10 we show
Lemma 11. 77zm> exwί K, e > 0 ŵcΛ ίλαί // Ϊ; G F(ί(e)) and \\y\\ <

e, then there is a T G M such that for te[T, IT] we have 3ΰ

t(V{δ{e))) c
V(δ{e)) and, with (0, z) = ̂ ( 0 , y),

||t;(0, y)\\ < K\\y\\a -+ | | ( ^ ) ( 0 , z)\\ < K\\zf.

Inductively this yields
Corollary 12. There exist K, e > 0 swcA that for v G K(ί(e))

\\y\\ < e there is a T e l MC/Z that for t > T we have &>t{V{δ{e))) c
F(J(6)) αnrf | |v(0, y)| | < ^ b l | α =• | | ( ^ ) ( 0 , z)\\ < K\\zf.

If we take 7/ to exceed the slowest contraction rate, then Lemma 10
follows by Lemma 8 and we are done.
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Proof of Lemma 11. Write υ(y) instead of υ(0,y), etc. Then v(y)

is the graph of a linear map D and hence the image of the map (ι \

where / is the (k, Λ;)-identity matrix. Thus

- (ί;
where " ~ " indicates that the two maps have the same image. If ]\υ(y)\\ <

K\\y\\a, z = φ'y, and T is such that C2+a (ys{q, tyιμs(q, t)μf(q, t)~a)

< i and &t{V(δ)) c V(δ) for t > T, then

\\D(z)\\ = \\(Bt(y) + Ct(y)D(y))A;ι(y)\\

< ||2?,(>>)|| \\A;\y)\\ + \\A;\y)\\ \\Ct(y)\\ \\D(y)\\

< Ct\\y\\ • Cus(q ,tyι + C\(q, t)~lμs(q, t)K\\y\\a

<CtC
2μf(q,tΓlus(q,t)-l\\z\\

+ C2+a (vs{q, tTlμs(q, t)μf{q, t)~a) K\\zf

< K\\zf

for t e [T,2T] whenever K > sup /€[Γ 2T]2CtC
2μf(q, t)~Xvs(q, t)'1.

q.e.d.
Theorem 5 now follows after similarly modifying [1] for α > 1 and

getting the same regularity for Es by reversing time, q.e.d.
For Theorem 6 we need a lemma from ordinary differential equations.
Lemma 13. {GronwalΓs inequality). If f, g e C°([0, oo), (0, oo)),

a € R+ , and f(t) < a + /0' f(s)g(s) ds, then f(t) < ae^g{s)ds. The same

holds with reversed inequalities, so 0 < h{t) < f{i)lf{t) < g(t) implies

f(O)efoh{s)ds<f(t)<f(O)efo^ds.
Proof Integrating f(t)g(t)/(a + f^f(s)g(s)ds) < g(t) yields

log ί a + / f{s)g{s)ds ) - logα < / g{s)ds;

hence f(t)<a + f^ f(s)g{s) ds < ae$»8{s) ds. Same with " > ". q.e.d.
Proof of Theorem 6. This is an adaptation of the arguments in [6,

Theorem 3.2.17]. Fix τ > 0 and a continuous family of symmetric op-
erators E from the horizontal subspace Vh in TSN to the vertical sub-
space Vυ ~ Vh . For p e SN, take the geodesic with c(0) = p, and let
Eτ(p) = (£τ)*(£(<;(-τ))) be the image of E(c(-τ)) under the geodesic
flow, whose action is given by the Riccati equation E(t) + E2(t) + K(t) = 0
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along c. So if Kχ(t):= -infΛ:^ and K2(t):= -supKc{t), both taken

over all two-dimensional subspaces, then β{t):= *ninveS M^SV)> v) > 0

and γ(t):= maxυeS M(Et(υ), v) > 0 satisfy differential inequalities β >

K2 - β2 and γ < Kχ - y2 along c. By relative 0-pinching, K2 > aKχ, so
whenever β(t) < aγ(t) we have

βy-βy> (K2 - β2)y - β(Kχ - y2) > {ay - β)Kx + γβ(y - β)

>(aγ-β)(Kχ+γβ)>0

and

Thus β > ay for all t as long as we take β(0) > aγ(0). The spectrum of
U:= limτ_^oo E is thus in [κo(p), κχ (p)] for Holder continuous Kf. SN ->
M+ with tf/Cj < κ:0. (Here one would like yfa instead.)

U represents the unstable distribution in the sense that every v € Eu(p)
can be written as (ι>Λ, U(p)υh) for some horizontal vector υh e TpSN.
In effect, vh gives the initial value of an unstable Jacobi field along c,
and Uυh = Ve(0)vΛ gives the initial derivative. Along c we write K^t)
for κ.(<:(0) and U(t) for U^t)). Then

(1) 2κo(θKWII2 < ^ K ( 0 l l 2 = Άvh{t), U(ήvh(ή) <

(2) κ2

0(ή\\vh(t)\\2 < \\Vvh(ή\\2 = \\U(t)vh(ή\\2 < ί

With xz(/):= f^K^ds, Lemma 13 and (1) give

which together with (2) yields
2

^-\\Vvh(0)\\2e2x°{t) < κ2

0(t)\\vh(0)\\2e2Xa{t) < κ2(t)\\vh(t)\\2 < ||V^(OI|2

< κΐ(t)\\vh{t)\\2 < κ2(t)\\vh(0)\\2e2Xι{ή < ^\\Vvh(0)\\2e2^{t\

Since the κ{ are bounded, the last two equations show that

T^||Ϊ;(O)||^O ( / ) < ||v(ί)|| < C\\υ(0)\\eXι^\
C

So if p = c(0) then us(p, t) > ex°{t)/C, vf(p, t) < CeXιiή , and

/ ,\—2/2a / ,\ ^ s^1 (1/β) I aκΛs)—κn(s)ds

vs(p,t) vf(p,t)<C eκ ' JJo l W o W .
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By compactness relative α-pinching implies relative (a + e)-pinching for
some e > 0, so the integrand is bounded away from zero. This implies
2<z-bunching and also (2a + e)-bunching by the same token, q.e.d.
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