LINEAR HOLONOMY OF MARGULIS SPACE-TIMES

TODD A. DRUMM
To Aimee, with love

1. Introduction: Free discrete groups

If $\Gamma \subset \operatorname{Aff}\left(\mathfrak{R}^{3}\right)$ acts properly discontinuously on \mathfrak{R}^{3}, then Γ is either solvable or free up to finite index [3], [6]. If Γ is free and acts properly discontinuously on \mathfrak{R}^{3}, then Γ is conjugate to a subgroup of $\mathbf{H}=\mathbf{O}(2,1) \times \mathbf{V}$, where \mathbf{V} is the group of parallel translations in $\mathbf{E}=\mathfrak{R}^{2,1}$ [3]. Let $\mathbf{G}=\mathbf{S O}(2,1)$ and let \mathbf{G}^{o} denote its identity component.

Complete affinely flat manifolds correspond to $\Gamma \subset \operatorname{Aff}\left(\mathfrak{R}^{3}\right)$ which act properly discontinuously and freely on E. Define Margulis space-times as complete affinely flat 3-dimensional manifolds with free fundamental group; their existence was demonstrated by Margulis [4], [5].

Let $L: \operatorname{Aff}\left(\mathfrak{R}^{3}\right) \rightarrow \mathrm{GL}(n, \mathfrak{R})$ be the usual projection. If Γ acts properly discontinuously on \mathbf{E}, then $L(\Gamma)$ is conjugate to a free discrete group of G; it was shown in [2].

Theorem 1. For every Schottky group $G \subset \mathbf{G}^{0}$ there exists a free $\Gamma \subset \mathbf{H}$ which acts properly discontinuously on \mathbf{E} and $L(\Gamma)=G$.
$G \subset \mathbf{G}^{o}$ is a Schottky group if and only if all nonidentity elements are hyperbolic. The set of all Schottky groups in \mathbf{G}^{0} is a proper subset of the set of all free discrete subgroups of \mathbf{G}^{o}. In particular, there are free discrete subgroups of \mathbf{G}^{o}, which contain parabolic elements.

We shall prove
Theorem 2. $\quad G=L(\Gamma)$ for some free finitely generated $\Gamma \subset \operatorname{Aff}\left(\mathfrak{R}^{3}\right)$ which acts properly discontinuously on \mathbf{E} if and only if G is conjugate to a free finitely generated discrete subgroups of \mathbf{G}.

For the affine manifold \mathbf{M}, the group of deck transformations Π acts on the universal cover $\widetilde{\mathbf{M}}$ by affine automorphisms. The developing map $D: \widetilde{\mathbf{M}} \rightarrow \mathbf{E}$ is a homeomorphism for complete \mathbf{M}. For every $\tau \in \Pi$ there

[^0]is a unique affine automorphism $\phi(\tau)$ such that $D \circ \tau=\phi(\tau) \circ D$, and $\phi: \Pi \rightarrow \operatorname{Aff}\left(\mathfrak{R}^{3}\right)$ is called the affine holonomy representation.
$L \circ \phi: \Pi \rightarrow \mathrm{GL}(3, \mathfrak{R})$ is called the linear holonomy representation. Margulis conjectured that $L \circ \phi(\Pi)$ for any complete affine flat manifold with free fundamental group contains no parabolic elements. Theorem 2 shows that this conjecture is false. More generally, Theorem 2 is a classification of linear holonomy representations of complete affinely flat manifolds with free fundamental group.

2. Generalized Schottky groups

Classically, Schottky groups lie in $\mathrm{PSL}_{2}(\mathbf{C})$. We can consider their restriction to $\mathrm{PSL}_{2}(\mathfrak{R})$. We also allow for orientation reversing matrices and define a Schottky group $\mathbf{H} \subset \mathrm{PGL}_{2}(\mathfrak{R})$ of n generators as a free group which acts properly discontinuously on the hyperbolic plane \mathbf{H}^{2} such that there exists a fundamental domain for its action which is bounded by $2 n$ complete ultraparallel geodesics.

We define a generalized Schottky group of n generators in $\mathrm{PGL}_{2}(\mathfrak{R})$ to be a free group which acts properly discontinuously on \mathbf{H}^{2} such that there exists a fundamental domain for this action, which is bounded by $2 n$ complete nonintersecting geodesics.

The following theorem is well known.
Theorem 3. $\quad \Lambda \subset \operatorname{PGL}_{2}(\mathfrak{R})$ is a free finitely generated discrete subgroup if and only if it is a generalized Schottky group.

Proof. By definition, a generalized Schottky group is a free finitely generated discrete group of $\mathrm{PGL}_{2}(\mathfrak{R})$.

Conversely, suppose that Λ acts properly discontinuously on \mathbf{H}^{2}. Topologically, \mathbf{H}^{2} / Λ is an n-punctured surface of genus g, where $k=$ $2 g-n-1$, and k is the rank of $\Lambda . \mathbf{H}^{2} / \Lambda$ may be an unoriented surface.

We perform surgery on this surface along k nonintersecting puncture-to-puncture curves so that the resulting surface is simply connected. $n-1$ of these surgeries will be from one puncture to another. There will be $2 g$ surgeries from a puncture to itself along curves which are not null homotopic.

We may now construct a fundamental domain \mathbf{X} for the action of Λ on $\mathbf{H}^{2} . \mathbf{X}$ is bounded by the $2 k$ nonintersecting curves corresponding to the k surgeries.

These curves may be straightened to complete nonintersecting geodesics. The region $\widetilde{\mathbf{X}}$ in \mathbf{H}^{2} bounded by these $2 k$ intersecting geodesics is also a
fundamental domain for the action of Λ on \mathbf{H}^{2}. Thus, Λ is a generalized Schottky group. q.e.d.

Let $\pi: \mathbf{G} \rightarrow \mathrm{PGL}_{2}(\mathfrak{R})$ be the usual isomorphism. Generalized Schottky groups and Schottky groups in \mathbf{G} are defined to be the preimages of generalized Schottky groups and Schottky groups in $\mathrm{PGL}_{2}(\mathfrak{R})$.

Elements of \mathbf{G} act on \mathbf{E} leaving the inner product

$$
B(x, y)=x_{1} y_{1}+x_{2} y_{2}-x_{3} y_{3}
$$

invariant. The associated cross product is

$$
x \boxtimes y=\left[\begin{array}{c}
x_{2} y_{3}-x_{3}-y_{2} \\
x_{3} y_{1}-x_{1} y_{3} \\
x_{2} y_{1}-x_{1} y_{1}
\end{array}\right]
$$

Let $\mathbf{C}=\{\mathrm{x} \in \mathbf{E} \mid B(\mathrm{x}, \mathrm{x})=0\}$ be the cone invariant under the action of all $g \in \mathbf{G}$, and let

$$
\mathbf{N}=\left\{x \in \mathbf{C} \mid x_{3}>0\right\}
$$

be its upper nappe which is invariant under \mathbf{G}^{0}. A conical neighborhood \mathbf{A} of \mathbf{C} is a subset of \mathbf{C} such that $\mathbf{A} \cap \mathbf{N}$ is c connected, and if $x \in \mathbf{A}$ then $k x \in \mathbf{A}$ for all $k \in \mathfrak{R}$. For $u, v \in \mathbf{A} \cap \mathbf{N} \cap \mathbf{S}^{2}$, the ordered pair ($\left.u, v\right)$ is the bounding vector pair for \mathbf{A} if $B(u \boxtimes v, x) \geq 0$ for all $x \in \mathbf{A} \cap \mathbf{N}$.

Note that if (u, v) is the bounding vector pair for conical neighborhood \mathbf{A}, then (\mathbf{v}, u) is the bounding vector pair for the conical neighborhood $\mathbf{C}-\mathbf{A}$.

For every generalized Schottky group in \mathbf{G}^{0} there exist a set of independent generators $\left\{g_{1}, g_{2}, \cdots, g_{n}\right\}$ and corresponding $2 n$ conical neighborhoods $\mathbf{j}\left\{\mathbf{A}_{1}^{ \pm}, \mathbf{A}_{2}^{ \pm}, \cdots, \mathbf{A}_{n}^{ \pm}\right\}$whose interiors are disjoint and

$$
g_{i}\left(\mathbf{A}_{i}^{-}\right)=\operatorname{cl}\left(\mathbf{C}-\mathbf{A}_{i}^{+}\right)
$$

Here cl denotes closure in the usual topology.
Let $\rho(\mathrm{x}, \mathrm{y})$ denote the Euclidean distance between $\mathrm{x}, \mathrm{y} \in \mathbf{E} . \mathbf{S}^{2}$ is the Euclidean unit sphere centered at the origin, and $\mathbf{B}(\mathbf{x}, \delta)$ is the Euclidean δ-ball centered at x .

Generalized Schottky groups in G can contain parabolic elements, i.e., unipotent elements, and do contain hyperbolic elements. Hyperbolic elements in \mathbf{G} are defined to have 3 distinct real eigenvalues $\left|\lambda_{g}\right|<1<\left|\lambda_{g}^{-1}\right|$, whose corresponding eigenvectors are $\mathrm{x}_{g}^{-}, \mathrm{x}_{g}^{o}$, and x_{g}^{+}. We choose the expanding eigenvector x_{g}^{+}and the contracting eigenvector x_{g}^{-}so that both are in $\mathbf{N} \cap \mathbf{S}^{2}$. The invariant vector x_{g}^{o} is chosen so that $B\left(\mathrm{x}_{g}^{o}, \mathrm{x}_{g}^{o}\right)=1$ and $\left\{s x_{g}^{o}, \mathrm{x}_{g}^{-}, \mathrm{x}_{g}^{+}\right\}$is a right-handed basis for \mathbf{E}.

For any $y \in \mathbf{E}$ such that $B(y, y)>0$, let x_{y}^{-}and x_{y}^{+}be the elements of $\mathbf{N} \cap \mathbf{S}^{2}$ such that $B\left(y, x_{y}^{ \pm}\right)=0$ and $\left\{y, x_{y}^{-}, x_{y}^{+}\right\}$is a right-handed basis of \mathbf{E}.
g is ε-hyperbolic if it is hyperbolic and $\rho\left(\mathrm{x}_{g}^{-}, \mathrm{x}_{g}^{+}\right)>\varepsilon$.
Lemma 1. If $G \subset \mathbf{G}$ is a generalized Schottky group with generators $g_{1}, g_{2}, \cdots, g_{n}$, then for $g \in \Gamma$

$$
\mathrm{x}_{g}^{+} \in \mathbf{A}_{i_{1}}^{\operatorname{sign}\left(j_{1}\right)} \quad \text { and } \quad \mathrm{x}_{g}^{-} \in \mathbf{A}_{i_{m}}^{-\operatorname{sign}\left(j_{m}\right)}
$$

where $g=\Pi_{k=1}^{m}\left(g_{i_{k}}^{j_{k}}\right)$ such that $i_{k} \in\{1,2, \cdots, n\}, j_{k} \in \mathbf{Z}-\{0\}$, and $i_{k} \neq i_{k+1}$.

Proof. Consider the action of $g^{\prime}=\pi(g)$ on the boundary of the hyperbolic plane $\partial \mathbf{H}^{2}$. Write the projectivization of all $x \in \mathbf{C}$ and $\mathbf{A} \subset \mathbf{C}$ as x^{\prime} and \mathbf{A}^{\prime}, respectively. Note that if $\left(g^{-1}\right)^{\prime}=f^{\prime}$ then $\left(x_{g}^{-}\right)^{\prime}=\left(x_{f}^{+}\right)^{\prime}$, and if $d^{\prime}=\left(g_{i}^{n}\right)^{\prime}(g)^{\prime}\left(g_{i}^{-n}\right)^{\prime}$ then $\left(x_{d}^{+}\right)^{\prime}=\left(g_{i}^{n}\right)^{\prime}\left(\mathrm{x}_{g}^{+}\right)^{\prime}$. Thus, we only need to consider x_{g}^{+}where g is such that $i_{1} \neq i_{n}$. By an appropriate change of generators we have $j_{1}>0$ and $i_{1}=1$.

We can show by induction that $g^{\prime}\left(\left(\mathbf{A}_{1}^{+}\right)^{\prime}\right) \subset\left(\mathbf{A}_{1}^{+}\right)^{\prime}$. Hence Brouwer's fixed point theorem shows that g^{\prime} has a fixed point in $\left(\mathbf{A}_{1}^{+}\right)^{\prime}$, and $x_{g}^{+} \in$ \mathbf{A}_{1}^{+}. q.e.d.

In particular,

$$
\begin{equation*}
g_{1}^{-j_{i}}\left(g\left(\mathbf{A}_{1}^{+}\right)\right) \subset \mathbf{A}_{i_{2}}^{\operatorname{sign}\left(j_{2}\right)} \quad \text { and } \quad g_{2}^{-j_{2}} g_{1}^{-j_{i}}\left(g\left(\mathbf{A}_{1}^{+}\right)\right) \subset \mathbf{A}_{i_{3}}^{\operatorname{sign}\left(j_{3}\right)} \tag{1}
\end{equation*}
$$

3. Separating wedges

For a conical neighborhood $\mathbf{A} \subset \mathbf{C}$ with bounding vector pair (u,v), let

$$
\boldsymbol{\Theta}(\mathbf{A})=2 \arcsin (\rho(u, v) / 2)
$$

and $t(\mathbf{A})=(u-v)$.
The horizontal plane through x is defined to be $\mathbf{H}_{\mathrm{x}}=\left\{\mathrm{y} \mid \mathrm{y}_{3}=\mathrm{x}_{3}\right\}$. Denoting the origin by o, we say that y is a horizontal vector if $\mathrm{y} \in \mathbf{H}_{o}$, that is $y_{3}=0 . y, w \in \mathbf{H}_{\mathrm{x}}$ for some x if and only if $\mathrm{y}-\mathrm{w}$ is a horizontal vector.

Note that $t(\mathbf{A})$ is a horizontal vector. $\Theta(\mathbf{A})$ can be interpreted as the angle between the projection of its bounding vectors u and v onto H_{o}.

Define the wedge

$$
\mathbf{W}(\mathbf{A})=\left\{w \in \mathbf{E} \left\lvert\, \begin{array}{ll}
B\left(u \boxtimes v, \frac{1}{w_{3}} w\right) \geq 0 & \text { if } B(w, w) \leq 0, \text { or } \\
B\left(u \boxtimes v, x_{w}^{+}\right) \geq 0 & \text { if } B(w, w)>0,
\end{array}\right.\right\} .
$$

See Figure 1.

Figure 1. The boundary of a wedge.
The set of $\mathrm{y} \in \mathbf{W}(\mathbf{A})$ such that $B(\mathrm{y}, \mathrm{y}) \leq 0$ is a closed set bounded by \mathbf{A} itself and $\langle u, v\rangle$. For $y \in E$ such that $B(y, y)>0$, denote the half-planes tangent to \mathbf{C} and containing y as

$$
\mathbf{P}(\mathrm{y})=\left\{\mathrm{w} \in \mathbf{E} \mid B(\mathrm{w}, \mathrm{w})>0 \text { and } \mathrm{x}_{w}^{+}=\mathrm{x}_{y}^{+}\right\}
$$

$\mathbf{P}(\mathbf{y}) \subset \mathbf{W}(\mathbf{A})$ if and only if $\mathrm{x}_{v}^{+} \in \mathbf{A}$.
Define the translated wedge.

$$
\mathbf{T}(\mathbf{A})=[\mathbf{W}(\mathbf{A})+t(\mathbf{A})]
$$

(See [1] for more discussion.) By examining Figures 2-4 (see next page), we note that $\mathbf{T}(\mathbf{A}) \subset \mathbf{W}(\mathbf{A})$. In fact, $t(\mathbf{A})$ is the unique horizontal vector v such that for all $k \geq 0,(\mathbf{W}(\mathbf{A})+k v) \subset \mathbf{W}(\mathbf{A})$.

Again citing Figures 2-4, we claim that if the interiors of conical neighborhoods $\mathbf{A}_{1}, \mathbf{A}_{2}, \cdots, \mathbf{A}_{n}$ are mutually disjoint, then $\mathbf{T}\left(\mathbf{A}_{i}\right) \cap \mathbf{T}\left(\mathbf{A}_{j}\right)=\varnothing$, for $i \neq j$.

Lemma 2. If G is a generalized Schottky group in \mathbf{G} of rank n, then for all $1 \leq i \leq n$ there exist h_{i} and \mathbf{X}_{i} such that \mathbf{X}_{i} is a fundamental domain for the action of $\left\langle h_{i}\right\rangle$ on $\mathbf{E}, L\left(h_{i}\right)=g_{i}, G=\left\langle g_{1}, g_{2}, \cdots g_{n}\right\rangle$, and $\left(\mathbf{E}-\mathbf{X}_{i}\right)$ is a submanifold of \mathbf{X}_{j} for $i \neq j$.

Proof. Because G is a generalized Schottky group, there are generators g_{i} and associated conical neighborhoods $\mathbf{A}_{i}^{ \pm} \subset \mathbf{C}$ whose bounding vector pairs we denote $\left(u_{i}^{ \pm}, v_{i}^{ \pm}\right) . \mathbf{A}_{i}^{ \pm}$are chosen so that their interiors are disjoint and

Figure 2. Cross section of nonintersecting transLATED WEDGES $\left(x_{3}=c>0\right)$.

Figure 3. Cross section of nonintersecting translated wedges $\left(x_{3}=0\right)$.

Figure 4. Cross section of nonintersecting translated wedges $\left(\mathrm{x}_{3}=c<0\right)$.

$$
g_{i}\left(\mathbf{A}_{i}^{-}\right)=\operatorname{cl}\left(\mathbf{C}-\mathbf{A}_{i}^{+}\right) .
$$

We claim that

$$
g_{i}\left(\mathbf{W}\left(\mathbf{A}_{i}^{-}\right)\right)=\operatorname{cl}\left(\mathbf{E}-\mathbf{W}\left(\mathbf{A}_{i}^{+}\right)\right),
$$

or more directly,

$$
\begin{equation*}
g_{i}\left(\mathbf{W}\left(\mathbf{A}_{i}^{-}\right)\right)=\mathbf{W}\left(g_{i}\left(\mathbf{A}_{i}^{-}\right)\right) \tag{2}
\end{equation*}
$$

Remember that the set of $\mathrm{y} \in \mathbf{W}\left(\mathbf{A}_{i}^{-}\right)$such that $B(\mathrm{y}, \mathrm{y}) \leq 0$ is a closed set bounded by \mathbf{A}_{i}^{-}itself and $\left\langle u_{i}^{-}, v_{i}^{-}\right\rangle$.

$$
g_{i}\left(\left\langle\mathrm{u}_{i}^{-}, \mathrm{v}_{i}^{-}\right\rangle\right)=\left\langle g_{i}\left(\mathrm{u}_{i}^{-}\right), g_{i}\left(\mathrm{v}_{i}^{-}\right)\right\rangle=\left\langle\mathrm{u}_{i}^{+}, \mathrm{v}_{i}^{+}\right\rangle,
$$

since g_{i} takes elements of bounding vector pairs to scalar multiples of elements of bounding vector pairs. Certainly for y such that $B(y, y) \leq$ $0, \mathrm{y} \in \mathbf{W}\left(\mathbf{A}_{i}^{-}\right)$if and only if $g(\mathrm{y}) \in \mathbf{W}\left(g_{i}\left(\mathbf{A}_{i}^{-}\right)\right)$.

For $\mathrm{y} \in \mathbf{W}\left(\mathbf{A}_{i}^{-}\right)$such that $B(\mathrm{y}, \mathrm{y})>0$, it suffices to show that

$$
\begin{equation*}
g_{i}(\mathbf{P}(\mathrm{y}))=\mathbf{P}\left(g_{i}(\mathrm{y})\right) . \tag{3}
\end{equation*}
$$

In fact, it is enough to show that (3) is true for at least one y.

If g_{i} is hyperbolic, then $\mathbf{P}\left(x_{g_{i}}^{o}\right)$ can be written as

$$
\left\{\mathbf{w} \in \mathbf{E} \mid \mathbf{w}=m\left(\mathrm{x}_{g_{i}}^{+}\right)+n\left(\mathrm{x}_{g_{i}}^{o}\right) \text { for } m \in \mathfrak{R} \text { and } n \in \mathfrak{R}^{+}\right\}
$$

The eigenvalue associated with $\mathrm{x}_{g_{i}}^{+}$may be negative, but the eigenvalue associated with $\mathrm{x}_{g_{i}}^{o}$ is always 1 , because $g \in \mathbf{G} . \mathbf{P}\left(\mathrm{x}_{g_{i}}^{o}\right)$ is invariant under the action of g_{i}.

For parabolic g_{i} there exists a $j \in \mathbf{G}^{0}$ such that $j g_{i}$ is hyperbolic. For y such that $B(\mathrm{y}, \mathrm{y})>0$ we know that

$$
j g_{i}(\mathbf{P}(\mathbf{y}))=\mathbf{P}\left(j g_{i}(\mathbf{y})\right)
$$

and

$$
j^{-1}\left(j g_{i}(\mathbf{P}(\mathrm{y}))\right)=\mathbf{P}\left(j^{-1}\left(j g_{i}(\mathrm{y})\right)\right)
$$

so that (3) is true for parabolic elements in \mathbf{G}.
Now choose

$$
h_{i}(\mathbf{x})=g_{i}(\mathbf{x})+\left[-g_{i}\left(t\left(\mathbf{A}_{i}^{-}\right)\right)+t\left(\mathbf{A}_{i}^{+}\right)\right]
$$

Then $h_{i}\left(t\left(\mathbf{A}_{i}^{-}\right)\right)=t\left(\mathbf{A}_{i}^{+}\right)$, and

$$
\mathbf{X}_{i}=\operatorname{cl}\left[\mathbf{E}-\mathbf{T}\left(\mathbf{A}_{i}^{-}\right)-\mathbf{T}_{i}\left(\mathbf{A}_{i}^{+}\right)\right]
$$

is a fundamental domain for the action of $\left\langle h_{i}\right\rangle$ on \mathbf{E} since all of the translated wedges are distinct by the previous discussion. Further, $\left(\mathbf{E}-\mathbf{X}_{i}\right)$ is a 3-dimensional submanifold of \mathbf{X}_{j}. q.e.d.

Let $\mathbf{X}=\left(\bigcap_{i \in I} \mathbf{X}_{i}\right)$. Before showing that \mathbf{X} is the fundamental domain for the action of Γ on \mathbf{E}, we will prove the following technical lemma. For $g \in \mathbf{G}^{o}$ and $\mathrm{p} \in \mathbf{E}$, We define $\mathbf{S}_{g}(\mathrm{p})$ to be the plane containing p and parallel to

$$
\mathbf{S}_{g}=\left\langle\mathrm{x}_{g}^{o}, \mathrm{x}_{g}^{+}\right\rangle
$$

Lemma 3. For ε-hyperbolic $g \in \mathbf{G}$,

$$
\begin{equation*}
\mathbf{B}\left(g(\mathbf{p}), \frac{\varepsilon \delta}{2}\right) \cap \mathbf{S}_{g}(g(\mathbf{p})) \subset g\left(\mathbf{B}(\mathrm{p}, \delta) \cap \mathbf{S}_{g}(\mathrm{p})\right) \tag{4}
\end{equation*}
$$

Proof. It is sufficient to consider $\mathrm{p}=0$, and $\mathbf{S}_{g}(\mathrm{p})=\mathbf{S}_{g}$. Let \mathbf{Q} denote the rectangle in $\mathbf{B}(\mathrm{p}, \delta) \cap \mathbf{S}_{g}$ whose four vertices are the four of $\left[\left\langle\mathrm{x}_{g}^{o}\right\rangle \cup\left\langle\mathrm{x}_{g}^{+}\right\rangle\right] \cap \mathbf{B}(o, \delta)$. Note that

Figure 5. $\mathrm{S}_{\boldsymbol{g}}$.

$$
\mathbf{B}(o, \varepsilon \delta / 2) \cap \mathbf{S}_{g} \subset \mathbf{Q} \cap \mathbf{S}_{g}
$$

See Figure 5.
g is a linear map which fixes the vertices of \mathbf{Q} on $\left\langle x_{g}^{o}\right\rangle$ and sends the vertices of \mathbf{Q} on $\left\langle\mathrm{x}_{g}^{+}\right\rangle$to points on $\left\langle\mathrm{x}_{g}^{+}\right\rangle$further from the origin. Thus, $\mathbf{Q} \subset g(\mathbf{Q})$ and (4) follows. q.e.d.

The estimate in Lemma 3 is a lower bound of the compression by g parallel to S_{g}. Note that (4) is independent of λ_{g}.

Theorem 4. If $G \subset \mathbf{G}$ is a free discrete group, then there exists $\Gamma \subset$ $\mathbf{G} \times \mathbf{V}$ which acts properly discontinuously on \mathbf{E} such that $L(\Gamma)=G$.

Proof. By Theorem 3, G is a generalized Schottky group.
We can choose g_{i}, h_{i}, and \mathbf{X}_{i} as in Lemma 2. For $I=\{1,2, \cdots, n\}$, it suffices to show that for the 3-dimensional manifold $\mathbf{X}=\left(\bigcap_{i \in I} \mathbf{X}_{i}\right)$ with boundary is a fundamental domain for the action of Γ on \mathbf{E}.

From the construction of \mathbf{X} it is apparent that no two distinct points in the interior of \mathbf{X} are Γ-equivalent. It remains to show that every element of \mathbf{E} is Γ-equivalent to some point in \mathbf{X}.

Assume that there is a p not Γ-equivalent to any $y \in \mathbf{X}$. Certainly p is contained in one of the translated wedges $\mathbf{T}\left(\mathbf{A}_{i}^{ \pm}\right)$since their union is the complement of $\mathbf{X} . p$ is also Γ-equivalent to elements in all of the translated wedges $\mathbf{T}\left(\mathbf{A}_{i}^{ \pm}\right)$. Thus, we may assume that $p \in \mathbf{T}\left(\mathbf{A}_{1}^{+}\right)$and that
$\Theta\left(\mathbf{A}_{1}^{+}\right) \leq \pi / 2$, since the sum of the $\Theta\left(A_{i}^{ \pm}\right)$'s is not more than 2π.
Let $\mathbf{X}_{0}=\mathbf{X}$ and

$$
\mathbf{X}_{n+1}=\left[\mathbf{X}_{n} \cup\left(\bigcup_{i=1}^{n}\left(h_{i}\left(\mathbf{X}_{n}\right) \cup h_{i}^{-1}\left(\mathbf{X}_{n}\right)\right)\right)\right]
$$

This is a sequence of domains for which $\rho\left(\mathrm{p}, \mathbf{X}_{n+1}\right) \leq \rho\left(\mathrm{p}, \mathbf{X}_{n}\right)$. We can define $\gamma_{n} \in \Gamma$ such that $\gamma_{n}(\mathbf{X}) \subset \mathbf{X}_{n}$ and

$$
\rho\left(\mathbf{p}, \mathbf{X}_{n}\right)=\rho\left(\mathbf{p}, \gamma_{n}(\mathbf{X})\right)
$$

γ_{n} has word length n as a reduced word in the free group Γ. For $n \geq 1$, $\gamma_{n}(\mathbf{X}) \subset \mathbf{T}\left(\mathbf{A}_{1}^{+}\right)$so the leading term of γ_{n} must be h_{1}.

Let $\left(\mathrm{u}_{i}^{+}, \mathrm{v}_{i}^{+}\right)$be the bounding vector pair for \mathbf{A}_{i}^{+}, and let

$$
\mathrm{w}=\mathrm{u}_{i}^{+}-\mathrm{v}_{i}^{+} .
$$

If $v \in \mathbf{H}_{o}$ is parallel to a ray lying in $\mathbf{T}\left(\mathbf{A}_{1}^{+}\right)$, then the angle between w and v is less than or equal to $\pi / 4$.

Let $\mathbf{L}_{n} \subset \mathbf{H}_{\mathrm{p}}$ be the line closest to p , which is Euclidean perpendicular to w and bounds a half-plane in H_{p} containing the component of the complement of $\mathbf{X}_{n} \cap \mathbf{H}_{\mathrm{p}}$ which contains p . Note that

$$
d_{n}=\rho\left(\mathrm{p}, \mathbf{L}_{n}\right) \geq \rho\left(\mathrm{p}, \mathbf{X}_{n}\right)
$$

and $d_{n+1} \leq d_{n}$. To arrive at a contradiction it suffices to show that ($d_{n}-$ d_{n+1}) is bounded away from 0 . See Figure 6.

Figure 6. H_{p}.

There exists a $\delta>0$ such that $\mathbf{B}(\mathrm{y}, \delta) \subset \mathbf{X}_{1}$ for all $\mathrm{y} \in \mathbf{X}$. Thus, $\left(d_{1}-d_{0}\right)>\delta$. Choose

$$
\varepsilon=\min \left\{\sqrt{2} \sin \left(\frac{1}{2} \Theta\left(\mathbf{A}_{i}^{ \pm}\right)\right)\right\}
$$

For $n \geq 1$, first suppose that γ_{n} is ε-hyperbolic. For every $\mathrm{x} \in \mathbf{E}$, $\mathbf{S}_{L\left(\gamma_{n}\right)}\left(\gamma_{n}(\mathbf{x})\right) \cap \mathbf{H}_{\mathrm{p}}$ is parallel to a ray lying entirely within $\mathbf{T}\left(\mathbf{A}_{1}^{+}\right) \cap \mathbf{H}_{\mathrm{p}}$ by Lemma 1. Every ball $\mathbf{B}(\mathrm{y}, \delta)$ cannot be compressed by more than a factor of $\varepsilon / 2$ in a direction parallel to $\mathbf{S}_{L\left(\gamma_{n}\right)}$ by the action of γ_{n}. Since the angle between $S_{L\left(\gamma_{n}\right)}\left(\gamma_{n}(x)\right) \cap \mathbf{H}_{\mathrm{p}}$ and the normal to \mathbf{L}_{n} in \mathbf{H}_{p} is at most $\pi / 4$,

$$
d_{n+1} \leq\left(d_{n}-\varepsilon \delta / 2 \sqrt{2}\right)
$$

Now suppose γ_{n} is not ε-hyperbolic. There exists an $f_{n} \in \Gamma$ with word length ≤ 2 such that $f_{n} \gamma_{n}$ is ε-hyperbolic and has word length $n+1$ if f_{n} has word length 1 or $n+2$ if f_{n} has word length 2 . It is enough to consider f_{n} having length 2.
f_{n} can be written as $h_{a_{n}} h_{b_{n}}$, where $h_{a_{n}}$ and $h_{b_{n}}$ are generators of Γ or their inverses. $\mathbf{S}_{L\left(f_{n} \gamma_{n}\right)}\left(f_{n} \gamma_{n}(\mathbf{x})\right) \cap \mathbf{H}_{\mathrm{p}}$ is parallel to a ray lying entirely within $\mathbf{T}\left(\mathbf{A}_{a}^{+}\right) \cap \mathbf{H}_{\mathrm{p}}$. δ-balls are not compressed by more than a factor of $\varepsilon / 2$ in the direction parallel to $\mathbf{S}_{L\left(f_{n} \gamma_{n}\right)}$ by the action of $f_{n} \gamma_{n}$.

We can define the compression factor for $g \in \mathbf{G}$,

$$
C_{g}=\min _{\mathrm{v} \in \mathbf{S}^{2}}\{\|g(\mathrm{v})\| /\|\mathrm{v}\|\},
$$

which is positive for all $g \in \mathbf{G}$. Let C_{Γ} be the minimum of the compression factors of the g_{i} 's. Then $C_{f_{n}} \leq C_{\Gamma}^{2}$.

Thus, δ-balls are compressed by at most a factor of $C_{\Gamma}^{2} \varepsilon / 2$ in the direction parallel to $\left[L\left(f_{n}^{-1}\left(S_{L\left(f_{n} \gamma_{n}\right)}\right)\right]\right.$ by the action of γ_{n}. From (1), $\mathbf{S}_{L\left(f_{n} \gamma_{n}\right)\left(\gamma_{n}(\mathbf{x})\right)} \cap \mathbf{H}_{\mathrm{p}}$ is parallel to a ray lying entirely within $\mathbf{G}\left(\mathbf{A}_{1}^{+}\right) \cap \mathbf{H}_{\mathrm{p}}$. In this case,

$$
d_{n+1} \leq\left(d_{n}-C_{\Gamma}^{2} \varepsilon \delta / 2 \sqrt{2}\right)
$$

There must be an $m \leq 2 \sqrt{2} d_{0} /\left(C_{\Gamma}^{2} \varepsilon \delta\right)$ such that $p \notin \mathbf{X}_{n}$ but $p \in \mathbf{X}_{n+1}$.

4. The end

Theorem 4 proves Theorem 2 is one direction, and in this section we will prove the other direction of Theorem 2.

If $G=L(\Gamma)$ for some free $\Gamma \subset \operatorname{Aff}\left(\mathfrak{R}^{3}\right)$, then G is conjugate to a subgroup of $\mathbf{O}(2,1)$ by [3]. Further, G is a discrete subgroup of $\mathbf{O}(2,1)$ by [6].

Consider $G \subset \operatorname{PGL}_{2}(\Re)$, and assume that $G \cap(\mathbf{O}(2,1)-\mathbf{G}) \neq \varnothing$. There must be elements in $G \cap(\mathbf{O}(2,1)-\mathbf{G})$ which have three distinct real eigenvalues and do not have 1 as an eigenvalue, but rather -1 is an eigenvalue. By an observation of Hirsch (see [3]), affine elements whose linear parts do not have 1 as an eigenvalue have fixed points. This contradicts the assumption that G acts properly on \mathbf{E}. Thus, G must be conjugate to a finitely generated free discrete subgroup in \mathbf{G}.

I would like to thank G. A. Margulis for his time, interest, and discerning eye while going through the proof of Theorem 4. I would also like to thank T. Steger and C. Bishop for informing me of the existence and proof of Theorem 3.

References

[1] T. A. Drumm, Fundamental polyhedra for Margulis space-times, Topology, to appear.
[2] T. A. Drumm \& W. Goldman, Complete flat Lorentz 3-manifolds with free fundamental group, Internat. J. Math. 1 (1990) 149-161.
[3] D. Fried \& W Goldman, Three dimensional affine crystallographic groups, Advances in Math. 47 (1983) 1-49.
[4] G. A. Margulis, Free properly discontinuous groups of affine transformations, Dokl. Akad. SSSR 272 (1983) 937-940.
[5]__, Complete affine locally flat manifolds with free fundamental group, J. Soviet Math. 134 (1987) 129-134.
[6] G. Mess, Flat Lorentz spacetimes, to appear.
[7] J. W. Milnor, On fundamental groups of complete affinely flat manifolds, Advances in Math. 25 (1977) 178-187.

[^0]: Received September 17, 1991, and, in revised form, December 3, 1992. The author gratefully acknowledges partial support from a National Science Foundation Postdoctoral Fellowship administered by the Mathematical Sciences Research Institute.

