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CYLINDRICAL TANGENT CONES AND THE
SINGULAR SET OF MINIMAL SUBMANIFOLDS

LEON SIMON

The question of what can be said about the structure of the singular set
of minimal surfaces and the extrema of other geometric variational prob-
lems has remained largely open. Indeed, for minimal surfaces, apart from
various upper bounds on the possible dimension of the singular set (see,
e.g., [11, [5], [7], [8], [10], [13], [17], [19]), little has been known beyond
the work of Jean Taylor [22], [23] and Brian White [24], [25] concern-
ing mod p and “(M, ¢, §)” minimizing hypersurfaces, where the tangent
cones are of very special (and unvarying) type, and there are topological
obstructions to perturbing away the singularities.

Here we prove rectifiability and local finiteness of measure of the sin-
gular set for various classes of minimal submanifolds, including for the
first time cases where the tangent cones may have varying type and where
there is no topological obstruction to perturbing away the singularities. For
example we establish here (in Corollary 1 of §1) the (n — 2)-rectifiability
for the interior singular set of any mod 2 minimizing current of arbitrary
codimension, and local finiteness for the (n — 2)-dimensional measure of
the “top-dimensional” part of this singular set. Perhaps more importantly,
the work here produces some analytic machinery which seems to hold
promise for further developments.

The key result of the present work is a technical decay lemma, Lemma
1 of §1. This lemma says roughly that, if M c R™™* lies in a suitable
“multiplicity one class” .# of n-dimensional minimal submanifolds C
R (described precisely in §1), and if M is close to C in a ball B,J

in a suitable L’ sense (made precise in Lemma 1), where C = C, x R"
is a cylindrical cone having cross section C, satisfying an “integrability
condition” (see i} of §1), then either there is a significant “gap” in the part
of the singular set consisting of points X € B ) where the density 6, (X)
of M at X > the density 6(0) of C at 0, or else there is a cylindrical
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cone C close to C such that the quantity p_"_2 Jvan distz(X , C) decays
P

by a fixed factor as we reduce radius by a fixed factor.

While methods involving “improvement of excess” as in the second
alternative above are by now quite standard in regularity theory (see, e.g.,
[11, [2], [5], [6], [8], [13], [16], [17]), a result like Lemma 1 (which says
that either we get excess improvement or else there is a significant gap in
the singular set) has not, as far as we are aware, been previously utilized
in the study of geometric extrema. It seems likely that the same kind of
result could be usefully applied in various other contexts—certainly all the
main results here have analogues in the study of energy minimizing maps
between Riemannian manifolds M, N ; these will be described in detail
in [21].

A direct consequence of Lemma 1 is the decomposition theorem (The-
orem 1 of §1) which says that, for suitable J € (0, 1), under hypotheses
similar to those of Lemma 1, except that M should be suitably close to
C in B, , we get a decomposition of the form

{X€B,:6,/(X)>6.0)}=SUT,

2p°

S c L, L an m-dimensional embedded C'** manifold with vol(L) <
©,p", and T C U; B, (X;) for some family B, (X;) of balls with
J J

Zj.\;l p; < (1—-0)p™. The nature of this result suggests the possibility

of repeated iteration, starting at the second stage with a suitable scaling

and translation of M N B p,(X j) in place of M N B - Such an iteration
J

is indeed possible under the appropriate circumstances (the main point is
that one must be able to check the starting hypotheses at each new stage),
and the main theorem about the structure of the singular set (Theorem 2
of §1) is obtained in exactly this way.

Corollary 1 of Theorem 2 settles a well-known question about the rec-
tifiability of the singular set of mod 2 minimizing currents of arbitrary
dimension and codimension, and also establishes a local finiteness result
for the (n — 2)-dimensional measure of the singular set.

A second class of results is obtained when we are in a setting which
makes it possible to check that the first alternative of the technical lemma
above (i.e., the alternative that there can be a significant “gap” in the ap-
propriate part of the singular set) can be ruled out a-priori. This class of
results is given in Theorem 4 of §1 and its corollaries. For example Corol-
lary 2 shows that the results in [22], [23] and [24], [25] relating to the
“top-dimensional part” of the singular set can be generalized to a station-
ary setting in arbitrary codimension. In Corollary 3 we also prove that if
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X, 1s a singular point of density less than 2 for any n-dimensional integral

varifold V which is stationary in an open subset U C R (k > 1 arbi-
trary), then there is p > 0 such that the singular setof V in B p(XO) is the

union of an embedded C''® manifold and a set of dimension <n-2.
If n = 2, then we prove the more precise result that singV is either a
properly embedded C @ jordan arc, or else is a finite union of prop-
erly embedded locally C : Jordan arcs of finite length, each with one
endpoint at X, and one endpoint in 9B p(XO)' Of course all the above
results extend naturally to multiplicity one classes of minimal subman-
ifolds of an arbitrary complete Riemannian manifold; this extension is
briefly discussed in §7.

The proof of the main technical lemma (Lemma 1) is based on a variant
of the “blowup method”, a technique going back to De Giorgi in his work
on area minimizing hypersurfaces, and first used in a context where “inte-
grability hypotheses” (like 1} of §1) play a role by Allard and Almgren [4]
in their study of minimal submanifolds with isolated singularities. Crucial
among the new ingredients needed to make the blowup method work in
the present context of nonisolated singularities are the L2-estimates given
in §3. It is also necessary to take care of the analysis of the solutions of
- the Jacobi field operator over cylindrical domains. This is somewhat more
subtle than the corresponding analysis for the case of isolated singularities,
and is discussed in §4.

The applicability of Theorem 1 to the analysis of the singular set of
a wider class of minimal submanifolds (e.g., to codimension 1 absolutely
minimizing currents) is limited by the “integrability hypotheses” i} of §1
for the cross section of the tangent cylinder. Thus an important question
which remains to be settled is whether or not some version of Lemma 1 is
valid without this hypothesis.

1. Notation and statement of main theorems
k, I, m, n will denote fixed positive integers with n =/ +m > 2.
n will be the dimension of the submanifolds which we study, k the codi-
mension, and / will be the “cross-sectional” dimension of the cylindrical
tangent cones, as described below.
B/},V (X) denotes the open ball with center X and radius p in R";

B,(X), B, will often be used as abbreviations for BZ”‘( X), B:,'”‘(O)
respectively.
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Ny, will the denote the map X — p(X-Y). Thus n, , translates

Y to the origin and homotheties by a factor p"l .

#’ will denote j-dimensional Hausdorff measure.

A will denote a set of smooth n-dimensional minimal submanifolds;
each M € .# is assumed properly embedded in R™* in the sense that for
each X € M thereis ¢ > 0 such that M DFU(X ) is a compact connected
embedded smooth submanifold with boundary contained in B (X). We
also assume that for each M € .# there is a corresponding open set
U, D M, such that Z"(M NK) < oo for each M € .# and each
compact K C U,,, and such that M is stationary in U,, in the sense
that

(1.1) / div, ®dp =0
M

whenever @ = (®', .- , <I>"+k): U, — R™ isa C*™ vector field with
compact support in U, . Here du denotes integration with respect to
ordinary n-dimensional volume measure (i.e., n-dimensional Hausdorff
measure) on M, and div,, @ is the “tangential divergence” of @ relative
to M. Thus

n+k

div,, @ =Y (e;- V"),
j=1

where e, - -, €, is the standard basis for R™** , and v™ denotes

tangential gradient operator on M , so thatif fe C 1(U ) then \vasd f(X)=
Py (gradgn« f(X)), with P, the orthogonal projection of R™* onto the
tangent space T, M forany X e M.

We assume that the M € .# have no removable singularities: thus if
X € MnU,,, and thereis ¢ > 0 such that MNB _(X) isa smooth compact
connected embedded minimal submanifold with boundary contained in
0B, (X), then X € M. Subject to this agreement, the (interior) singular
set of M (relative to U,,) is then defined by

(1.2) singM = U,,nM\M,

and the regular set reg M is just M itself.

We assume here also that the class .# is closed under appropriate ho-
motheties, rigid motions, and weak limits—we shall call such a class a
“multiplicity one class”; more precisely, we assume the following:

13(a). Me# = qo Ny, ,M € M and go Ny ,Un = qunx’,M for
each X € U,,, each p > 0, and each orthogonal transformation g of
Rn+k )
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13(b). If {M}} c.#,if UcR™" with Uc U, for all sufficiently

large j, and supj>lZ’"(M NK) < oo for each compact K c U, then
there is a subsequence M » and an M € .# such that U,, M, O U and

M;— M in U mthesensethat Jag, [(X)dZ"(X) — fo(X)a'/?"(X)

for any fixed continuous f: R"™* L R with compact support in U .
Notice that 1.3(b) is a strong restriction in that it precludes, in partic-
ular, the possibility of getting varifolds with multiplicity greater than one
on a set of positive measure as the varifold limit of a sequence M, C M
with each U,, D U for some fixed open U ; for this reason we refer to

such a class as a multiplicity 1 class.

1.4. Examples. In view of later applications, we should mention here
a couple of important classes .# which satisfy the conditions imposed
above. One such class consists of the interior regular sets of the mod 2
minimizing currents described as follows: If T is an n-dimensional lo-
cally rectifiable multiplicity 1 current in R , if spt, 0T denotes the
mod 2 support of 8T, if T is mod 2 minimizing in R"E (in the sense
that for each bounded open U C R™* the mass of TL U is < the
mass of S L U for any multiplicity 1 current S such that support of
T — S is a compact subset of U and such that 7 — .S has zero mod 2
boundary in U), and if reg, T is the mod 2 regular set of 7" defined in
the usual way as the set of all X € spt T\ spt,dT such that T is mod 2
equivalent in a neighborhood of X to multiplicity one integration over
a smooth properly embedded n-dimensional submanifold containing X,
then the collection 7, of all such sets M =reg, T is a class .# satisfying

all the conditions imposed above, provided we take U,, = R"+k\ spt, 0T .
Indeed by the Allard theorem spt T'\(reg T U spt, dT) has # "-measure
zero, and it follows that M = reg, T satisfies (1.1), and, using the nota-
tion introduced above in our discussion of the general class .# , we have
sing M = spt T'\(reg T U spt, dT), which coincides with the usual defini-
tion of the (interior) singular set of such mod 2 minimizing currents T .
The property 1.3(b) (plus an existence theory) is true by the compactness
theorem for flat chains mod p (see, e.g. [11] or [9]).

Another such class is the collection 7; = {reg; T'} of the interior reg-
ular sets of n-dimensional multiplicity 1 currents 7 which are mod 3
minimizing in R™* (defined analogously to the mod 2 case) if M=
reg, I’ then M satisfies (1.1) with U,, R"+k\ spt, 07T, and singM =
sptT\(reg T U spt; 0T). Again the property 1.3(b) (plus an existence
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theory) is true by the compactness theorem for flat chains mod p.

Notice that these classes 7,, J; have dimsingM < (n-2), (n—1)
respectively by [10], [6].

A third class which has the form of .# above is the collection .7 of all
submanifolds M of the form M =regT, where T is an n-dimensional
orientated boundary of least area in some open U = U, C R , in the
usual sense that 7 = A[V] in U (in the sense of currents) for some
measurable V' c U and TL U has mass < than the mass of SL U, for
any multiplicity 1 locally rectifiable current S in R™* with support S—T
equal to a compact subset of U and with §(S—7) =0 in U. In this case,
with M =regT, we take U,, = U, singM = UnNsptT\(regT UsptdT),
and the singular set satisfies dimsing M\ sptdT < n—7 (see, e.g., [10] or
[19] or [13]). The property 1.3(b) in this case is discussed in, e.g., [9], [13]
or [19].

For the first class mentioned above (i.e., 92 ), Theorem 2 implies count-
able (n — 2)-rectifiability for sing M and a local finiteness result for the
(n—2)-dimensional measure of measure sing M in Corollary 1 of §1. (See
the precise statement in Corollary 3.) Corollary 2 gives information about
the singular set of the class 7;, and analogous classes of stationary sur-
faces, in the case n = 2. Application to the third class 7~ (the absolutely
minimizing multiplicity one currents) is hampered by the integrability hy-
pothesis }i.

We briefly need to recall here some basic properties of minimal sub-
manifolds in the context of our general class .# . First recall that, by the
monotonicity formula, for each M € .#,

(1.5) p' " (MNB,(X))

is increasing as a function of p so long as _B_p(X ) € U,,, and hence in
particular the density

b

Z"MNB (X
6,,(X) =lim ( ,,"( )
pl0 w,p

where w, is the volume of the unit ball in R”, exists and is upper semi-
continuous on U,,. Notice that then M N U,, is just the set of points
X € U,, with 8,,(X) > 1, and, by (1.5),
(16) Z"(MNB,(X))>w,p", XeM, B,(X)CUy,.
This shows that #"(singM) = 0 for each M € .#, because by

measure theory (e.g., [19, Theorem 3.5] or [9]) we know that
limplop_"/?’"(MﬂBp(X)) =0 for #"-ae. X € U, \M. If we use
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the Allard regularity theorem [1], we get the additional fact that M co-
incides precisely with the set of X € U,, with 8, (X) = 1; in fact the
Allard theorem guarantees that there is a;, = (7, k) > 0 such that
M={XeU,:0<8,(X)<1+aq4},

singM ={X €U, :8,(X)>1+aq,}.

Also, by a simple compactness argument based on (1.3), (1.7), and (1.5), it
is straightforward to check the following: For each A > 0, there
is B = B(#,A) >0 such that if M € #, p > 0, B, C Uy,
X" (MNB) <A, MNBy,, #@, and p~"7 [, dist'(X, P) < B
n+k

(1.7)

for some n-dimensional subspace P C R, then there is a Cz-map

u: PﬁBw4 — P such that

MﬁBp/2 Cc graphu Cc M,

(1.8) p 2sup|ul® + sup [Vul* < Cp—"_2/ dist’(X, P)dpu.
BOM

Another important general fact (see, e.g., [1], [19]) concerns tangent
cones: if M € # and X ¢ M N U, , and if p; 1 0, then there is a
subsequence p; such that 5y oy M tends in the sense of 1.3(b) to a cone

C € # with vertex at 0. Thus U, = R™* and fy ;C = C for every
A > 0. The set of all such C is denoted subsequently by Tan, M ; notice
that Tan, M is a singleton set containing just the classical tangent plane
of M at X if X € M, but that it is far from obvious (and an open
question) whether or not Tan, M can contain more than one cone C if
X € sing M. We note also that 8,,(X) = ©.(0) for each C € Tan, M,
again by (1.5) and 1.3(b).

An important property of O for cones C € .# (i.e., elements C € #
with 5, ,C=C Vi>0) is that

(19) S(C) ={Y e R"™:8,(Y) = 6,(0)} is a lincar subspace of R*** .

(Notice of course that by upper semicontinuity of 6., it is automatic that

B.(Y) <O.(0) forevery Y € R ) (1.9) follows from the fact that, by
a standard argument based on the monotonicity formula (see [1] or [19]),
if Y € S(C) then C is also a cone with vertex at Y, so in particular
O (Y +AX) = O(Y + X) for each X € R*™ and each 4> 0. Thus for

any 1> 0,any X € R"* and any Y € S(C), we have
Bc(X) = O (AX) = O(Y +AX - Y) = O(Y + A7>(AX - Y))
=6.(AY +2 (AX - Y)) = O (X + (A— 1)),
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so that ©.(X +tY) = B.(X) for every t € R, X € R™* and every
Y € S(C), and the fact that S(C) is a linear subspace follows directly
from this. Of course (for example by (1.7) with M = C), it is then
automatic that C is actually invariant under translations by elements of
S(C), so that

(1.9 ny ,C=C VY esS(C), 21>0.

Since # is a multiplicity 1 class (so that in particular 1.3(b) holds and
each C € Tan, M must be multiplicity 1—in fact it lies in .#), using
(1.8) we easily check that the following alternative characterization of M
holds:

(1.7) M ={X e UnM :3C € Tany M with dimS(C) = n}.

Of course dimS(C) = n means precisely that C is an n-dimensional
subspace of R _in fact just the classical tangent space of M at X
once it is established that X € M . '

We shall also need the following useful “stratification of sing M by
tangent cone type”, which is a direct modification of [7, 2.28] to the present
context. Namely, if

5’].(M) ={X €singM :dimS(C) < jVCe€Tan, M}, j=0,---,n—1,

then

Hausdorff dimension ofS”j(M) <j,j=0,1,--- ,n—1,
HM)N{X:06,,(X)=a} is discrete for each a.

To prove the first part of (1.10) for j =0,1,--- , n— 1, we first note

that, by (1.5), (1.9), and the definition of #(M), for each X € (M)

and each 6 > 0 there is an integer u = u(X, d, M) > (dist(X, BUM))_l
such that, whenever ¢ € (0, 1/u), ny {Y € B,(X) :8,,(Y) 28,,(X) -
1/u} (= {Y € B, : Gﬂx ﬂM(Y) > eﬂx vM(O)— 1/u}) is contained in
the d-neighborhood of some j-dimensional subspace L x.o (depending
on X, o). With § > 0 arbitrary (and fixed), let

F={XeF M) p(X, 6, M) =i},
and for g > i let
=X eF 18, (X)ella-1)/i,q/i)}.

(1.10)

Notice that then for any given X € 5”1 we have

»i,q

F 0 CAY €5, ,:0,() 2 8,,(X) - 1/i},
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and hence, for each g > 0,
My o 1. NBL(X)) C iy Y € B,(X):0,,(Y) >8,,(X) - 1/i},

which is contained in the J-neighborhood of the j-dimensional subspace
Ly , (as above) for each o € (0, 1/7).

On the other hand, a simple iterative argument using the definition
of Hausdorff measure shows directly that if 4 is any subset of R™MF
and if for each X € A there is some g, = g,(X) > O such that

Ny (AN B_(X)) is contained in the J-neighborhood of some j-dimen-

sional subspace of R , depending on X, o whenever X € 4 and -

o < g, then j?’”o(‘s)(A) = 0 for some 6(J) depending onlyon d,n, k,
with 8(d) | 0 as 6 | 0. Since each 5”1 i has such a property (as proved

above), this shows #7770 () = #7O(Y, U,si S, 5 ) = 0 for ev-
ery d > 0, thus completing the proof of (1.10) for j=1,--- ,n—1.
The fact that S N {X: ©,,(X) = a} is discrete is easier: if not, we
get X, € &, such that X, — X, for some sequence {X;} C S\{X,}
with ©, (X j) = aVj. Using 1.3(b) to take a convergent subsequence of

Mx,, |X0—Xj|M , and using (1.7) we then get C € Tan/,k,(J M such that singCn

S"*=1 £ & contradicting the fact that X,€%.

From now on, C9 ¢ # will denote a cylinder of the form c? =
Cf)o) x R™, where Cg)) is stationary in R and sing Cgo) = {0} . We also
let ) = Cg,o)hSlJ“k_l , so that X is a smooth compact (/—1)-dimensional
submanifold of S'**7! if I > 2 and a finite set of pointsif / =1.

The following classes will be referred to frequently in what follows:

1.11. Definition. /Ve(C(O)) isthe setof all M € .# (where .# satisfies
all conditions discussed above, including (1.2), (1.3)) such that U, D

Bys fyns, dist’(X, C) + [co, dist’(X, M) and Z"(MNB) < 1+
7" c”nB,).

Remarks. (1) Using (1.5), the compactness 1.3(b), and (1.8) (applied
to translations and homotheties of M) it is easy to check that there is

g:(0,1) — (0, co0), depending only on .# and c® , with o(¢) | 0 as
¢ | 0 and such that

M e 4 = 17" (MnB,)-#"(C”nB) < ()"

for g(e) < p<1l-oa(e).
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(2) For given ¢ > 0 and any given M e A , if c? ¢ Tan y M then au-
tomatically Nx ., MeJs, (C ) for some sequence of p. i 0; this follows
directly from the definition of Tany M, 1.5, and 1.3(b).

1.12. Definition. (i) Z(C © ) is the set of all cylinders of the form
C=C,xR" C R'™** | where C, C XI(CO) <1 +71(C8°)) is a cone
with singC, = {0}, with Z=C, nS**~! smooth and compact for [ > 2
and a finite set of points for / = 1, with C, stationary in R \{0},
7'(Cc,) <1+2'(c) and

/ dist’(x, ¢ + / dist’(X, C) < &°.
CnB, c9np,

(i) %(C(O)) denotes the subset of the set of orthogonal transformations
of elements of &(C?) given by &(C”) = {exp(4)C : C € &(C?),
4 € and |A| < e}, where & denotes the subspace of skew-symmetric
transformations of R”*k spanned by the special skew—symmetnc transfor-
mations (x y)o—»xe1+k+] e, (x, y) eRFXR™ =1, l+k,
j=1,---, m.

Note. It is not assumed that %(C(O)) CH .

For any open Q C C where C = C; x R" e Z;(C(O) for some ¢ > 0),
we let CZ(Q; C'L) denote the maps u € C2(Q; R”+k) such that u(x, y) €
(T, ") ) for each (x,y) € Q, and CZ(Q; Cé ) is defined analogously
for any open Q C C,,. Thus CZ(Q; Cl) is just the set of C? sections of
the normal bundle over Q c C, and C 2 (Q; Cj ) is the set of C? sections
of the normal bundle over Q C C,. A and Z.\C0 will be the usual (normal)

Laplacian operators on such normal sections. For u € CZ(Q; CL) we
define

graphu = {(x, y)+u(x,y):(x,y) € C}.
We let €, @’Co and note the minimal surface operators on C> (c;chH

and CZ(CO; Cé ) respectively (i.e., the Euler-Lagrange operators for the
area functional of graphs of normal sections over domains in C and C,
respectively), and let %, .S”CO be the linearizations of &, é?’co at 0.
Thus using variables (x, y) = (rw, y) € R" x R", r=|x]|, |xl_

and letting A be the Laplacian E (8/8y’ ) in the y-vanables we have

v = Ay'u +£’Cov ,
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with
L. v=A.v+ q(w)v
C, C, /2
1 0 (1-10v 1
T 3; <r W) + r_z(Az” +q(w)v),

where ¢g(w): (Tw):.)l — (TwZ)L is the zero-order operator given by
(w, g(w)(v)) = trace 4, (w)* o 4,(v), for any v, w € (T,X)", with

» the second fundamental form of ¥ (thought of as an operator from
(TwZ)L — Hom(T_ X, T %) in the usual way). The operator A; + g(w)
appearing here will henceforth be denoted % ; notice that % is a self-
adjoint elliptic operator on the normal sections CZ(Z; Cé) of the normal
bundle of the smooth compact submanifold X of grk-l
values of —.% form a sequence

, SO the eigen-

AISAZSA:;S”'SA'[(S"', )-kTOO,

and there is a corresponding complete orthonormal sequence of eigenfunc-
tions ¢,, ¢,, 95, -+, ¢, -+ (orthonormal with respect to the LZ(Z)-
norm).

There is an important method of generating solutions of the equation
_7 'u = 0, analogous to the method in Riemannian geometry of generating
Jacob1 fields by taking the initial velocity vector of a one-parameter family
of geodesics, as follows:

Suppose {M,} (te(=1,1)} is a one-parameter family of /-dimensional

minimal submanifolds in R'** with M, = C,, and suppose that, for small
enough ¢, M, can be expressed as the graph, over a domain Q, C C,,
of a CZ(Qt; C;)L ) function u, ; thus u, is a smooth section of the normal
bundle of C, over Q, and M, =graph u, = {x +u,(x):x € Q;}. Sup-
pose also that u,(x) dependsina C ! fashion jointly in (x, t), and that
the Q, engulf all of C;, as |¢| | 0 in the sense that {J,_ ., <r1<s & = Cp -
Let v be the initial velocity given by v = du,/dt|,_,. Then v satisfies
the equation _S?Cov =0 on all of C;,. An important special case of this
general principle is as follows:

1.13. Example. Assume that the family {M,}, satisfying the general
conditions imposed in the above discussion, is a family of minimal cones
{C,} all with singC, = {0} . In this case the initial velocity v is a function
which is homogeneous of degree 1 in the variable r = |x|; that is, v =
rg(w), where r = |x| and w = |x|_1x
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Remark. Such families C, can be obtained for example by rotations
of C,; thus C, = (exptA4)C,, where A4 is any fixed nxn skew symmetric
matrix, gives such a family. In this case we get v(r, w) = r(Acz))‘L , WE
C,, where ( )l means orthogonal projection onto (TwCO)l
In the main technical lemma, which we now state, we need an addi-
tional condition on Cf)o) (like the “integrability condition” needed in [4])
as follows:
Every homogeneous degree 1 solution of <, cov = 0 is
generated, in the manner described in Example 1.13, by a

() 1-parameter family {Ct}ltl <1 of minimal cones, all station-
ary in R'**\{0}, with singC, = {0} and C,=CY.

We can now state the main technical lemma of the present paper; all the
main results about the structure of the singular set proved here are based
on this lemma. The proof of the lemma will be given in §5.

Lemma 1. Suppose that Cgo) satisfies t{. Forany 0 € (0, %) , there are
8y =86(C?, 0), &y =&,(C?, £, 0)€(0,}) such that if M € 4, (C”)
and C e %‘o (C(O)) , then either

(i)

B; (0,y)N{X € B, :6,,(X) 280 (0)} =& for somey € B{?Z(O) ,
or thereisa C € %yeo(C(O)) such that

.. —n-2 .2 p a .2
G) 6 / dis(x, €) < CO / dist®(X, C),
MnB, MnNB,

where C = C(C?, #)>0, y=9(CY, #,6)>1,and a = o(CY, #)
€(0,1).

1.14. Remark. For later reference we note that the alternative (i) not
holding implies

(*) {0} x {y € R" 1 |y| < 3} € By, ({X :8,,(X) 2 60 (0)}),

where we use the notation that B_(S) = Uy.s B, (X) for any S C R"
and ¢ > 0.

Using Lemma 1 we will show in particular that the following “decom-
position theorem” follows directly:

Theorem 1. Suppose C(()O) satisfies 1t. There are ¢ = ¢(A , c® ), 0y =
8o ,C?), a=a(#,C% € (0,1) such thatif M e £, U, > B,,
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and
Z"(MNB,)
w, 2"

n

—6,0(0) < £, / dist’(X, C?) < &2,
MB,(0)

then
{X € B, : GM(X) > GC(O)(O)} =SuT,

with S ¢ L, L a properly embedded m-dimensional C L2 manifold with
Z#" (L)< w,,, and with T C U, Bpj (X;) for some family of balls Bpj (X;)
such that 3, p] <1-6;.

The proof of this will be given in §5.

Our first main theorem about the singular set, which we now state, fol-
lows more or less directly by iteration of the above decomposition theorem,
as we show precisely in §6. In this theorem m denotes the maximum
among the positive integers m such that there is a cylindrical tangent
cone C, x R” € # . m is called the top dimension for the singular sets
of M € .# ; using (1.10) it is easy to check that in fact

(1.15) m = max{dimsing M : M € £},

so the terminology is appropriate. Here and subsequently we also use the
notation

sing, M ={X : ©,,(X)=a and 3 a cylindrical cone ¢(C,x R™) € Tan, M}.

Theorem 2 (Main Structure Theorem). Suppose m is asin (1.15). Sup-
pose also that, for each cylindrical cone c® = Cgo) x R™ € A, the cross
section Cg)) satisfies the integrability condition 1. Then for each M € A ,
singM is countably m-rectifiable, and sing, M has locally finite #"-
measure for each «; further any compact K C U,, intersects sing, M for
at most finitely many o.

Remarks. (1) sing, M has locally finite /#"-measure in the usual
sense that for each X € sing M there is p = p(X) > 0 such that
H#"(sing, M N B (X)) < oo.

(2) Recall that by (1.10) sing M\({J,sing, M) C U Y(M) and
hence has dimension < m — 1 and is discrete for m = 1

(3) Note that it is automatically true that sing C(0 c {0} if C(O
a cone and C(O) x R™ C .# (because otherwise C( ) would contain a
whole ray of singular points and then Cg) x R™ would have singular set
of dimensions at least m + 1, contradicting (1.15)), so it makes sense to
require that Cf)o) satisfies 1.
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Actually we prove in §6 a slightly stronger theorem.

Theorem 2'. Suppose m is as in (1.15). Suppose also that o > 1 is
given, and that all cylindrical cones c® = Cgo) xR™ € M with B.0(0) =«
are such that Cg)) satisfies 1. Then, for each M € A, sing M is
countably m-rectifiable and there is an open V, D sing M such that V, N
{X e U,,:8,,(X) >a} haslocally finite Z™-measure in V, .

Remark. We show in (2.1) that, if m isasin (1.15), the set of possible
densities ©(0) corresponding to cylindrical tangent cones C = C, x R" €
A is a discrete set, so this result clearly does imply Theorem 2.

An important point is that the troublesome integrability hypothesis i}
is automatically satisfied if m = n—1 or m = n — 2. For example
if m = n -2, then any cylindrical cone C = C, x R" € .# has two-
dimensional cross section C,;, so C, must consist of a finite union of
two-dimensional planes Uf;l P, where each P; passes through the origin
and P,NP = {0} for i # j, since the only smooth connected compact

embedded one-dimensional minimal submanifolds of S™**~! are the fi-
nite unions of pairwise disjoint great circles. Of course then the integra-
bility condition is trivially satisfied, because the Jacobi field opeator for

the plane P, is just the ordinary Laplacian acting on sections of the nor-

n+k

mal bundle over P. Since such a plane Pj CR has an orthonormal

basis of constant normal vectors n(J Voo, "f.{zk—z , this then means that

the Jacobi field operator % c, on P, is just the ordinary Laplacian act-
ing on the components relative to these constant basis vectors. Thus the
homogeneous degree one solutions of _9” U= 0 on P are precisely the

I+k—2 l(;) 1(1)

restrictions to P; of functions of the form 2o , where the

are arbitrary lmear functions of x = (x , 1+k) Any such soluuon is

easily seen to be generated (as in Example 1.13) by a family C, = Uy =1 }') ,
where Pm = (exptd;)P;, with A; a skew-symmetric transformation of

R, thus we claim that YK [Dp0) - (Aj(x))L on P, for suitable

skew-symmetric A4 ;: T R*F R’+k. For example x — x’ n;j) (for any

pefl, -, l+k}, ge{l, -+, I+k—2}) isgiven by (4,(x))" on P,,

where A ; is the skew-symmetric transformation x — xpnfl -Xx- nflj ) €,

as one checks keeping in mind the fact that x - n;j )=0 on P,
Likewise for m =n —1 (when C; is simply a finite union of rays em-
anating from the origin), the integrability condition }i is easily checked.
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Thus we have the following corollary of Theorem 2.

Theorem 3. - If m is as in (1.15) and either m=n~-2 or m=n-1,
then for each M € # , singM is countably m-rectifiable, and sing,Z M
has locally finite #™-measure for each «; in fact there is an open V, D
sing, M such that V, N {X : ©,,(X) > o} has locally finite # "_measure
inV. .

Ngtice in particular that the class 7, of the regular sets of mod 2
minimizing currents in R™MK (discussed in §1.4) have m = n — 2 (by
[10]) for any k > 2, and furthermore (by [14]) any cylindrical cone C, x
R" 2 ¢ &, issuch that C,, consists of a union of a collection of j pairwise
mutually orthogonal 2-planes in Rk+? (any pair of which have only the
origin in common), where 2 < j < k/2 + 1. We therefore also conclude
from Theorem 2 the following:

Corollary 1. Suppose M is the interior regular set of a current T
which is mod 2 minimizing in R 5o that T is mod 2 minimizing
in the sense described in §1.4, and M = regT\sptd,T. Then singM
(= M\(M Ud,T)) is countably (n — 2)-rectifiable. Also, if S; denotes the
set of all points X € sing M such that Tan, M contains a cylindrical cone
q(C, x R"'Z) with q € SO(R"+k) and C, a union of j pairwise mutually
orthogonal 2-planes in R*2 | then dim(sing M\ (U, <j<k/2415;) Sn—3

for n > 4, singM\(UszSk/zﬂSj) is discrete for n = 3, and S; has

locally finite " 2-measure for each j .

Remark. Notice that Theorem 2’ actually implies the stronger result
that for each j there is an open V; D Sj such that singM N {X € I/; :
©,,(X) > j} has locally finite # "~2_measure in V.

Finally we note one case where we can capitalize on the fact that the

first alternative of Lemma 1 always fails: This is the case if the following
hold: X, e singMNU,,,

(1.16) 8,,(X,) = p=min{B.(0): C=C, xR" € £},
and € = Cgo) xR™ € Tan x, M is such that the singularity 0 of Cf)o) NB,

cannot be perturbed away in -3—1 in such a way that the boundary X, =
Cgo) N S™*%~1 is held fixed; that is, when
there does not exist a smooth embedded compact [-dimen-

(1.17) sional manifold-with-boundary M C §1 such that OM =
Z,.
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Then we have

(O}"heor%m 4. Suppose m is as in (1.15). Suppose also that M € # ,
C —C( ) x R™ eTanX M satisfies tt, that © co(0) = u, u asin(1.16),
and that (1.17) holds. Then there isa p > 0 such that B ,(Xp) Nsing M is
an embedded m-dimensional C* La manifold for some a = a(#) € (0, 1).

Notice that both i} and (1.17) trivially hold in case m = n—1 and C,
consists of an odd number p of rays emanating from C. Thus we arrive
at

Corollary 2. Suppose the m of (1.15) is equal to (n —1). If M €
A, CO = C(O) xR € TanX M with C( ) consisting of an odd number
of rays emanating from 0, and (1.16) holds, then there is p > 0 such
that singM N B ,(Xy) is a properly embedded (n — 1)-dimensional ch
manifold.

We also have the following corollary, which will be proved in §6.

Corollary 3. If V is an n-dimensional stationary integral varifold in
some open set U C R*™* and X, € U with 1 < By(X,) < 2, then
singV N B p(XO) is the union of an embedded (n — 1)-dimensional C bo
manifold and a closed set of dimension < n—2. If n = 2 we have the more
precise conclusion that there is p > 0 such that either singV N B,(X,) is
a properly embedded C Lo Jordan arc with endpoints in 8B p(XO) or else
is a finite union of properly embedded locally C Lo Jordan arcs of finite
length, each with one endpoint at X, and one endpoint in 0B p(Xo).

Remark. By a properly embedded locally C @ Jordan arc I’ we mean
a homeomorphic image of [0, 1] such that for each compact subarc K c I'
not containing either of the endpoints of I" there is a C e diffeomor-
phism of [0, 1] onto K.

2. Technical preliminaries

First we recall some important facts about the set of compact embedded
minimal submanifolds £ of dimension /-1 (/ > 2) which are C2-close
to %,, T, =C NS ! asin §1. For each ¢, > 0 let

g\ = {graphun s 1ue C(Cy); (€)1,
u(rw) = ru(w)Nr>0, wex,, |u|Cz <&y},



CYLINDRICAL TANGENT CONES 601

7" = the compact embedded (/- 1)-dimensional minimal
submanifolds € S'**~" .

Notice that then, with @’ég) the Euler-Lagrange operator of the area func-
tional as in §1,

7N feil) = {graphun st

2 0 0),L
ue ;€ utrw) = ru(w), [l e,y < &

é?’cgo)u = 0} .

Recall also (see, €.g., the discussion of [18]) that, for ¢, sufficiently small
(depending on Cgo)) , Wﬂ?}ﬁl) is a real-analytic variety in ?;E)]) . Hence in
particular for suitably small ¢, >0 #'~'(2) = #'7'(5)) vEe7'ng,
and

(2.1) 6(0) =680 (0) VCe s?;o(dm),

where ¢, = eO(C(O)) > 0. Also, since Z is the linearization of &,

we have § = d(e, C(O)) with d(e, C(o)) 10 as & | 0 such that if ¢ < ¢,
then

cez(”)=cn{(x,y)eB,:|x|>dly|} =graphy,

where v € CX(Q; (C”)*) with {(x,y) e C?:|x| >y} cQcC?,
and by Definition 1.12(i1),
I+k
(22) w(x,») =D y-ne +rop(@)+R(x,y), r=x|, o=x"'x,
i=1
for some n, € R”, ¢ € CZ(EO; (Cf)o))J‘), with || < Ce, suplg| < Ce,
Zeo(rp(@)) = 0, r'|R|'+ |VR| < Cé* for r > 5, C = C(C?. of
course subject to the integrability condition i} the possible r¢(w) which
appear here account for al/l homogeneous degree 1 solutions v = rg(w)
of Zwv =0, and the additional terms Eij n;- ye;‘ are generated as in
Example 1.13 by rotations exp(t4), 4 € ¥, & asin Definition 1.12(ii).
Using (1.8), it then directly follows that if (1) holds, if M; €./, €y, if

C e E;’;j(cw)), where &, 1 0, if [y p, dist’(X, C,) < B, where B; | 0,

andif n, €R", g =1, ,I+k, p € C*(Z5; (C)*') with Zo(re) =
0 and |7,| +sup|p| < K, then for some subsequence {i} C {j} we can
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find C; € 8, (C,) (v =»(C"”, K) fixed) and 9, 7, | O such that
M;n{(x,y) € B, :|x|>¢;} =graphu, = graph&,,

where uiecz(ni;cf),a,.eC( ; C;') with {X =(x,») €Clx|>
ti}CQiCCi,{X=(x,y)€C |x|>‘c}CQ CC and

B ((x, ¥) + w,(x, ) = #,((x, ¥) + ¥,(x, ¥)))

(2.3) I+k
—Zy n,e; +ro(w) + R,

on {(x,y) € c® ﬂB3/4 : |x| > 7;}, where sup|R;,| — 0 and y;, ¥,
correspond to y of (2.2) with C,, éi respectively in place of C.

In the following lemma, we let .Z denote the set of cones C € .# with
vertex at 0; thus C € Z means C € .# and ’70,/1C =C foreach 1>0.
Then we have:

24. Lemma. Let K > a > 1 be given. There are 6: (0, 1) — (0, 1)
and R: (0, 1) — (2, oo) (depending on K, #) such that if ¢ € (0, 1),
Me#, Uy D Bg,(0), 0€singM, and

Z"(M N By)/w,R()" —a<d(e),

then X, € {X € B, :©,,(X) > o} implies the following hold:
(i) 0< (wnp")_la‘?"(Man(Xl)) —a<é forall p<R(e)-1.
(ii) There is C € Z such that |0.(0) — a| < ¢® and

/ dis’(X,C) <&, pe(0,1],
Ny pMﬁB
and, if m is asin (1.15), for all p € (0, 1]

(iii) either there is a cylindrical cone C = ¢(C, x R") € Z with
18.(0) — a| < & and

/ dist’(X, C) < &°,
”Xx ’pMnBl

{XeB,:0, ,(X)2a}c{X:dis(X,H)<é}

or

for some (m — 1)-dimensional subspace H of R™K (We emphasize that
C and H depend on p here.)



CYLINDRICAL TANGENT CONES 603

Proof. (i) and (ii) are both easy consequences of (1.5) and the com-
pactness 1.3(b) of .# . (See, e.g., [1] or [19] for similar arguments.)

To prove (iii) we note the contrary implies that for some fixed ¢ € (0, 1)
there are sequences p; € (0, 1], a;, Jj 10, Rj T o0, Mj € A with

l+ay <o <K (a asin (1.7)) and UMj D BR,,’ and a sequence

X, € B, with eMj(Xj) > o such that, with M; = M, p,M;>

(1) 0<#"(M,NBy)/w,R; —a, <4,

J

) /~ dist’(X,0) > &* or [8c(0)—a,l > ¢,
MnB, v

for every cylindrical cone C = q(C x R™) e %, and
(3) {Xeﬁl:eﬁ(X)Zaj}¢{X:dist(X,H)<e}
J

for all (m — 1)-dimensional subspaces H C R By (iii) there are cor-
responding cones CY) € % such that

@ [ Bdistz(X,C(j))—>0 and ©)(0)—a; >0 asj— oo,
iNB,

and by the compactness property 1.3(b) there are subsequences (still de-
noted M,, CcY)y and C, € Z such that

(5) M ~c, inB,, c”-c, nR™
in the sense of 1.3(b). Also by (4) and (5) we obtain
(6) 2;, 87 (0) = 8¢ (0),
and
(7) /~ dist’ (X, C,) — 0,
MnB,

and hence, by (2), C, does not have the form g(C, x R™) € Z . Then
(see the discussion preceding (1.10)) we have

{X€T,:6 (X)>6¢ (0} cH

for some (m — 1)-dimensional subspace H C R"** . Then by (5), (6)
and the upper semicontinuity of densities (in the sense that 6. (Y) >
limsup© (Yj) for any sequence Y, — Y) we get

J

{X € B, :Oﬁj(X) >a;} C{X :dist(X, H) <&}
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for all sufficiently large j, thus contradicting (3). Hence Lemma 2.4 is
proved.

Subsequently, we use the first variation formula (1.1) in a number of
places; in particular we shall need the following direct consequence of this
formula. (For general discussion of first variation, see [1], [19].) Here let

M e # with U, > B,, and for each X € M let (g"”) be the matrix of
the orthogonal projection of R™* onto the tangent space Ty M of M at
X ; then (gij ) is a symmetric (n+k) x (n+ k) matrix with »n eigenvalues
equal to 1 and k eigenvalues equal to zero, and ZZ:‘ g’ = g".
Notice that thus the gradient operator v appearing in (1.1) is given at
apoint X = (x,y) € M by

M I+k F) m likai i O
e.-V = ”x,y—.+ 1,1__, j=1,--- ,n+k.
; ;g (295 ;g 5y

Then by substituting ®(X) = y*(x, y)(x,0), X = (x, ) e R"* xR™ =
R"E , into (1.1) directly, we get the identity

m

1 2 2

/ [+ Zlel+k+j| v
M j=1

I+k o ) I+k m lekeie
ij i i, i
=_,/ Z gjx Dy —2V’ZZ(6i1+k+J’—g j)x Dij
M\ j=1 k=1 j=1

1/2
I+k m
ij 2 1 1L 2
s/M - g'x'D iy +2(x, 0)7| |y (Z|e,+k+j|) ID,v|

i,j=1 J=1

forany y € Cc°° (B,) , where e,frk +j is the orthogonal projection of e, ;

onto (T(x’ y)M )L and (x, O)L is the orthogonal projection of (x, 0) onto
(T,y.,yM)" . Thus
L2 I+k+j , I+k+j
ekl =1-g "
and

L, Lo ek Lk i i2
1
e, 0 = zw,.,.—gf)xxf=z(z<a,.q-gq>x) ,
i,j=1 q:l i=1

since g = EZ:{‘ g’ forevery i,j=1,---,n+k. Notice that, by

using the above inequality in combination with the Cauchy inequality, we
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1 & 1 2 2
/M(I+EZI e1+k+j|)w

Jj=1
Lk 2 1.2 2
1 1
ng =Y g'x' Dy +2|(x, 007 ID,w|"] .

i,j=1

obtain
(2.5)

We now want to make some observations about the extent to which we
can initially take M € /VS(C(O)) to be represented graphically (via a normal

section over a region in a given cone C € ?;(C(O))) , and some initial L
estimates for such normal sections.

2.6. Lemma. Suppose y,p,t € (0,1) are arbitrary with 1 <
(1 =y)/10. There is ¢, = so(C(O),/, y,B,1) € (0, 1] such that if
C=C,xR" € %O(C(O)) and M € /VEO(C(O)), then there is an open
U c Cn B, with the properties

(x,y)e U= (X,y) e U whenever (X, y) € C with |X| = |x|,
{(x,y)eCnB,:|x|>1}CU,

and such that there is a u € C2(U ; CL) with

MnB,N{(x,y):|x| >t} Cgraphuc M, supr_llu| +sup|Vu| < B,

and

/ A Awwtcc| & c=cc 2,7, p;
MﬂBy\ graph u Uns, MnB,

note in particular that C is independent of t©. Here r(x,y) = |x|,

d(x,y) =dist((x, ), C), (x,y) e R xR",

Remark. Notice that by using the standard elliptic L? estimates for
u we conclude from the above that

1/2
Hausdorff distance (M N B, 4(e), CN B, ,(e)) < C (/ d2) ,
MnB,

whenever e € C;, x {0} with |e] < 1/2.
Proof. Consider M € /VeO(C(O) )and C=CyxR" € %EO(C(O)) , where

for the moment ¢, > 0 is arbitrary. For each x, p € (0, 1], { € R”, let
TP,K(C ) be the torus defined by

(1) T, (0) = {(x,») e R xR™ : (Ix|-p)* +[y—LI* < x*(1-7)"p"/4}.
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Let U be the union of all T, et l/Z(C) NC overall (¢£,() eCn By such
that there exists u, . € Cc¥( Ty 3/4(8); C) with

(2) Mn 7]¢|,1/2(C)Cgfaphu‘g|,cCM
and
—1
(3) €] sup Uy |+ sup [Vug | <B/2.
CNTigy,374(0) CNTigy, 340

Let u € C*(U; C*) be defined on T ;,({)NC by
(4) Ty 1O NC =ty (T 120 NC.

By unique continuation of solutions of &.u = 0, (4) makes sense as a
definition and does give a C2(U ; Cl) function u. Notice also that since
M € 4, (€) it follows from (1.8) and 1.3(b) (see also the remark fol-
lowing Definition 1.11) that

{(x,y)eCnBy:|x| >t cU

and
MnB,n{(x,y):|x| >} Cgraphuc M

as required, provided that ¢, = ¢,(7, 7, B, c 7 ) is chosen sufficiently
small. Of course by definition we have

(5) sup x|~ u(x, )] + sup|Vu| < B.

Furthermore, if (£, {) eCn By NoU, then
© &R, c=cc, ),
MNT (0

because otherwise by (1.8) we would have Up ¢ a8 in (2), (3), thus contra-

dicting the fact that (£, {) € CNnB,NdU . (Notice that CN{0} xR™ = @,
so |£] > O here.) Also, for such (¢, (), since [¢| < 7 < (1 -1y)/10 and
Z"(MnB)<#"(C?”NB,))+1 by Definition 1.11, we have by (1.5)

(7) / Ao, c=ce).
UNB,y(0,0)
But also |Vu(x, y)| < B for (x, y) € U by (5), so (7) implies

(8) / AIvul < CBAE?,
UﬂB,om(O {)
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with C = C(C(o) , # ,y) and then from (6) and (8) it follows that
© [ Plvul < € &£, Cc=cC® L.y,
UNB g (0,0) MOTy, ()

whenever (£, {)e CNB,NaU. Since
{(x,y) e UnB, :dist((x, y), B,naU) < 3|x[}

- U lex'(o ,¥)
{(x,y)eCNaUNB,}

and
lefll(o’ C]) nBZK;I(O’ CZ) == Tlé,l,l(cl)n T|52|,1(C2) =0,

by virtue of the “5-times covering lemma” ([9] or [19]) and (9) we obtain

(10) / L PAvaP<ce[
{(x,)€UNB, : dist((x, ), B,NdU)< Lfl} MnB,

But, for any (x, y) € Byn U with dist((x, y), BynaU) > %|x| , from (3)
and the standard L? elliptic estimates ([12)) it follows that

/ r2|Vu|2 < C |u|2’ pe (0’ S_I;Jilil) .
CNB,,(x,y) ‘ CNB,(x,y) 2

By covering the set
{(x,») e UnB,:dist((x, y), B,ndU) > j|x[}

by a countable collection of such balls {B, /2(x ,¥)} in such a way that

the corresponding collection {B p(x ,¥)} can be divided into C = C(C(O))
pairwise disjoint subcollections, we thus conclude that

/ . r2|Vu|2 <C Ju|
{(x,y)eUns, :dist((x,y),BrnaU)Zlfl} UnB,

<cC d,
MNB,

(11)
where C = C(C?, y).
Now again consider (£, n) € CNB,NAU. Then (6) and (7) imply that

/ P <C i, Cc=ccc”, 2, 8p).
Manm(o,{) MﬂTm’l(C)
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Note that, by (2), the union of MnBzm(O, §) over (£,0) € CﬂBy noUu
contains M N By\ graphu . Hence using the 5-times covering lemma as
before, we conclude that

(12) / r<cC d’.
MnB\G MnB,

The proof is now completed by adding (10), (11), and (12).

In the proof of the decomposition theorem (Theorem 1), we shall need
the following covering lemma, in which we use the notation that if Q =
E+[-p, pI" is acube in R™, then

e(Q) = the edge length of Q = 2p,
and
Q(N) = the N-times enlargement of Q =& + [-Np, Np]”

Also, if & is a collection of cubes, then

M-o™:0eey.

All cubes considered here are closed and will always have edges parallel to
the coordinate axes, unless otherwise explicitly indicated.

2 7. Lemma. Let 6 = 1/2N for some integer N > 4, let Q, =
—1, 31" be the unit cube in R™, let F C Q, be arbitrary, and let &
be any collection of cubes of edge length < % such that F C UQe ¢ @, and

Q€& = 3acube Q, C Qwithe(Q,)>8e(Q)and Q NF =3.
Then there is a collection @ of subcubes of Q, such that
(i) FcUQ Ze(Q <1-6
Qc€ Qe
and

(i) Q€ 0= 3Q e withQ c Q) and %e(Q) <e(Q)<e(Q).

Proof. Foreach j=1,2,--- let % be the collection of 2™ con-

gruent subcubes of edge length 277 obtained by repeated subdivision of
the unit cube [3, 31”. Let &% = & and for each j > 1 let & be the
collection of cubes in 2’?] which intersect at least one of the cubes in 4?’] ,
where

€, ={Qe@:1/2" <e(@) <1/2}y, j=1,2,.
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Notice that P € &, = 3P, € &, with
(1) PNP#2 and P, DQ,,

where Q, is a cube contained in some Q € é?’] such that FNQ, = J
and e(Q,) > ¢ /2’ . Now we define subcollections .93? C &; as follows:
.97’ = ¢, and, assuming P PR é’?;_l are already defined, let .f?j be
the collection of all P € &; which are not contained in |J;
Let P = U;’;l.é’:. Notice that U, 5P = Upcp and that the cubes

in & have pairwise disjoint interiors. We divide each é’: into three
subcollections:

i<j (Upeg’ P).

Z; = those cubes P € @; which contain a cube Q,, where (as in (1))
Q, is contained in some Q € é?] and FNQ, =9, e(Q,) > 5/2j .

.@j = those cubes P € 5’7;\?3 which are such that there is P, € ﬁ; as
in (1), and

7= P\EV%).

J

Let ¥=U2, 8, Z=U;, %,,and 7 =, 7. We claim that

2) UPc U PP anda Yprclyr?
Pe7 PeBLE Pe& Peg%

In fact the second inclusion is true by the definitions of & and . To
prove the first inclusion, take a cube P; € 7] Since Wlo = & for the

smallest i, such that .52’: # & and any cube in a Wq must intersect a
0

cube in ./&‘\’;' for some ¢’ < g by virtue of property (1), by definition we
can find a sequence {P 697} Ly with j=j, > >jy=j—1,
i>N-12>1, j e%’ U?],,P np; #@andwnhP e%
forall g =1, , N—1. Notlce that then the sum of the edge lengths
Yo e(ij) is < %z;;},z ‘e(P._;) < e(P,_,), so that P, C P, thus
establishing the first inclusion of (2)

Now by (2) we have

Se@)"= e+ eP)"+ > eP)”

P Peg Pe® P

<(1+3"+23") Y e(P)" <3 Y e(P)".
Peg Pe%
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On the other hand since each P € 3} contains a cube Q, of edge length
0 /2j = 27U yith Q, N F = &, by subdividing each of the cubes in
Pe 9?’] into 2~V +hm congruent subcubes (each of edge length 2~N-J _l)

b

we obtain a new collection % with
E e(P)m _ Z e(P)m < 32m+l Z e(P)m
PeF Ped Pe¥
and
Yo eP)" 22N ()" = (é)m S ep)".
N = 2
PeP, PNF=0 Pe¥ 1454

Thus if we let
G={PeP:PNF £},

then
(3) S e@m <3 Y e(p)",
Qeé Pe%
and
m ) " m 2m—1 m
@ Y e® 2(5) S e(P)" 26 T e(@)", by (3).
PeEP\@ Peg Q@

Since 30, ze(P)" <1, (4) gives

Y e@"<(1+6m ) <16,
ge@

Furthermore by construction each Q € @ is contained in Q(s) for some
Q € @ with 27" Pe(Q) < e(0) < e(Q), so the proof is complete.

3. L’-estimates

The main L’-estimates are as follows.

3.1. Theorem (Main L? estimates). Suppose y,71,a € (0,1) are
given. There are ¢, = 80(C(0) ML, 7)), By= BO(C(O)) € (0, 1) such that
if e <e, C=CyxR" e &(CY, MecC?), and U, u areas
in Lemma 2.6 with B = B, then the following inequalities hold for all
Z=(,n) € B3/4 with GM(Z) > ec(o)(O) :
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@)

2 N1 2 d*
e [ Sl [
I | MAB ZI 1+k+]| MnBr IX""ZIn a

y j=1

_ R)\?
R (M_)) <c[ &, R=R(x,y)=\/IxP+ P,
UnB, OR MnB,

(i) / e D= o
{X=(x,y)€CNB, : |x|>1} IX — Z|n+2 @ ) MnB,
where &* (x, y) means orthogonal projection of (¢, 0) onto (TXC)l, and
C =C(,a, c® ,#) > 0 is a positive constant not depending on t;
notice that él(x , V)= ﬂ‘;’i éj ejl(x , V) depends only on w = |x|"1x and
noton |x| or y.
Before we prove the theorem we state and prove an important corollary.
3.2. Corollary. Let a,7,6 € (0, %) be given. There are g, =
eo(CO, 4, 7), By = By(C?) € (0, 1) such that if C € £(C?), M ¢
AQ(C(O)) with ¢ < min{g,, 6}, u is as in Lemma 2.6 with B = B, and
y = 3, and hypothesis (xx) of Remark 1.14 holds with 8, =&, then

2
W oxlccf &,
{(x,y)=(rw,y)€CnBl/2:r>1} Is MnNB,
3 d*
0 [ Lol o
MnB,, Is “ MNB,

where C = C(a, A, C(O)), rs =max{r, 6} (=max{|x|,d}), x(x,y)=
Zﬁ’;’; icj(r,y)ejl with k; :(0,1) x B{"(O) — R satisfying suplicjl2 <
C fMﬁBl d’, and e;'(x, y) is the orthogonal projection of e; onto

1
(Tix, €)™

3.3. Remark. Notice that (ii) implies
d2 < C 51—:: / d2,

/Mn(Bg‘f" xR™)NB, ), MnB,
with C independent of &, so that the part of M N B, 2 close to the
subspace {0} x R™ contributes little to [, B, d* if the hypotheses of

Corollary 3.2 hold with 6 small enough (depending only on C¥, #).
Proof of 3.2. To prove (ii), note that (i) of Theorem 3.1 implies that

| d<c @, pew, b,
MNB,(0,2) MNB,
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for each z € B;';z , because by (*x) of Remark 1.14 for any such z we
have Z € {X : ©,,/(X) > B.0n(0)} with |Z - (0, z)] < J. Since we
can cover B, N B’y xR” by N < C(n,k)p™" balls B,(0, z;) with
|z, < 3 such that the collection {B p(O, z;)} decomposes into < C(n, k)
pairwise disjoint subcollections, this implies that

-'+a/ d<c| 4, pe@. ),

M0B, ,N\(B,}; xR™) MnB,

and the required result (with 2o in place of «) follows by multiplying by
p_l+a and integrating with respect to p.

To prove (i), for p € (4, %) let Bp(O » Z;) be the same cover as we used
above in the proof of (ii). By inequality (ii) of Theorem 3.1 for each j

we have ¢; = (é} , o, 6;") € R™ such that
2 &k 1.2 2
3 pe / uro, ) -3 Eerf<c | &,
U,NB,0,z,) = MnB,

where ¥,7((€)’ < C Juns, @ and U, = {(x,y) € CN By, : |x| >
t}. Thus if for each fixed (r,y) we let Ki(r, y) be selected so that
Sk (r, 9)) < C fyop d° and

I+k I+k P Lo

/|u(rw,y+)—Ex‘(r,y)eﬂzdw:inf/ uro, y) - > AetPdo,
z i=1 z i=1

where the inf is over all 4 € R™ with ¥ '{()* < C [y d°, and
X =C,NS"* ", then from (3) it follows that

I+k .
@ o utx, =Yk, netfec [ a i
U,NB,0,z,). o1 MnB,
Summing over j in (4) we thus get
=2+ L 1,2 2
—1-2+a i
14 / ek |u(xsy)—EK(r’y)ei| SC da
U,N(BLYX xR™) P MNB,

and again the required inequality is obtained by multiplication by p_”“
and integrating with respect to p.

Theorem 3.1 will be proved by combining the two Lemmas 3.4 and 3.9
below.

3.4. Lemma. Suppose a, y,1€(0,1). There are 80=80(C(°),/, 7,7)
and B, = By(C'®) > 0 such that if C = C xR™ € (C?), M e #(C?)
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with ¢ < ¢, ©,,(0) > O.0(0), and U, u are as in Lemma 2.6 with
B =B, then

/UnB RZ_" <?(—g§(i))2 M /MnB R‘"—Zl(x, J’)J_lz

—n—2+a 42
/ Zlel+k+1I +/ B R d

7]1 Y

2
<C d-,
MnNB,

where C = C(C(o) ,a,7), R=R(x,y) x>+ ¥*, (x,y)" means
orthogonal projection of the radial vector (x, y) onto the normal space
(T M) of M at (x,y), and d(X) = dist(X, C).

Proof. Recall (see, e.g., [1] or [19]) the following version of the mono-
tonicity identity for M € .# ; namely, if M € # with U,, D> B i then

o [ R = [ 9MRE - 16,0
MnNB P Jmns,

P

d n
< %(% (MnB)-ICNB)), ae pe(0,1].

If w:R — [0, 1] is a decreasing C' function with v =1 on (o0,
(1+7)/2) and ¥ =0 on ((3+7)/4, co), by multiplication by y*(p) and
integration with respect to p this implies

1
/ Wiy / R(x, y) Pde < / W3 (R) - / Vi (R).
0 JMnB, MnB, cOns,

Since w =1 on [y, (1 +y)/2], this gives

n-11—7y R"2 2
@ 7 BT s [ V= [, VR

1

Now we use (2.5) with y = y(R), so that Dy = x'y¥'/R and D,y =
y'¥'/R. Then (2.5) yields
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3)
N "
/MhBl (l+ i;’el+k+j' ) ¥ (R)
I+k

scf otz RYRYE®) Y ¢
MnBI A{I”\Bl i,j=1

<cC / I(x,0)llz(w2(R)+(v/(R))2)—2/ PR (R (R),
MnB, . MnB,

where (x, O)J‘ means orthogonal projection of (x, 0) onto (T( M)l

for any point (x, y) € M, and we use the fact that

x,y)

bk oo, Bk L L
1 1 i 1

E g'x'x’ =r" + E (g’—J,.j)xx’=r —](x, 07"

i, j=1 i,j=1

If (x,y)=(x",y)+u(x',y) e G=graphu, then

1
(4) ('x’ O) = u('xl’ ,V)+(1)(x,y) _Q(xl’y))(x’ 0)9

where P(x, ) and Q(x,, »” denote respectively the orthogonal projection
onto (Tj, ,M)" and (T, ,C)". Since |[Vu| < 1, we have [P, , —

Q' .yl < CIVu(x', y)|, C = C(n, k), and hence from (3) and (4) it
follows that

1 &, 1 2 2 22 2
I+ = . R SC/ +riv
/ nB,( 2}§=l:|e,+k+,|)w< <€ [, Qo)

+C ) ?R'W(RW'(R),
MNB\G GNB,

(5

where G = graphu and 7 = (3 +7)/4. Now since C, is a smooth cone

with volume element ' ! drdw where dw denotes the volume element
of X, by a one-dimensional integration by parts we deduce that

2 _ ]
I/C0¢(r>— 2/C°r¢(r)<o<r),

provided ¢ € C*(0, co) with ¢ = constant in a neighborhood of 0 and
¢ = 0 in a neighborhood of oo. Using this with ¢(r) = y(R), R =

\/7* + |y|* for each fixed y and then noting that ¢'(r) = r~'y'(R), after
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an integration with respect to y we conclude that
2 2 -
(6) Lo vw=-2[ PR ®.
CnB, CnB,

We also need to note that the volume element of G is \/Erl"l drdw,
where /g = 1 + E, with |E| < C(r~*|u® + |Vu|?), and that r, R at
a point (x,y)+ u(x,y) € G are given by = |x|2 + |u(x, y)|2 and
R = |x|2 + |u(x, y)l2 + |y|2 respectively. Thus for example

2.-1 2. -1
| PR RW® = [ R WRWRVE,
GnB, UnB,
where . = |x|* + [u(x, y)I* and Rj(x,y) = |x" + [u(x, p)]* +[y[*, and
by using (6) in (5), and keeping in mind that |u(x, y)| < |x| in U by
definition, we deduce that

m
21—1/ _L.2+/ 2R_/ 2R
@~ D 1€k Mng,”’” ml"’“

y j=1

< c/ (jul + P 1Vup) + C/ 2,
uns, MNB\G

and by (2) and Lemma 2.6 with  in place of y we obtain

m
—n-2 1,2 1 2 2
G D S CROR i D D b 2ol [

y y j=1 MnB,

—n-—2+ad2

Next we establish the required bound for [,, . R . First notice
Y

that d: R™* — R, defined by d(X) = dist(X, C), is a homogeneous
degree 1 function of |X| with Lipschitz constant < 1, as a function of
X = (x, y) is independent of the y-variable, and is smooth in x in the
conical region

K, ={(x,)¢€ R"\{0} x R™: dist(X, C) < gy|x|}

provided ¢, is small enough, depending only on C9 . Thus we can easily
construct a smooth homogeneous degree 1 function d: R~"+k — R with
d = d in the conical region K80 and with C_ld(X) <dX) < Cd(X)
and Lipd < C everywhere, where C = C (C(O)) .

Now in the identity (1.1) take ®(X) = (*R™""d*X/R*, where { €

n+k
C*R") with {=1 on B,, ,,{=0 outside B,,and [V" ¢(|<C,
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C = C(y). Notice that d? /R2 is smooth and homogeneous degree zero
away from the singular axis {0} x R”, and hence

n+k "

(8) ZX’

Of course since Lipd < C and d < CR we also have
n+k
(9) |V® d/R| < 2C/R.

n+k
Since div, X =7 and [VYR| < |V® R| <1, (1.1) in combination with
(8) implies

N / CZ R 2
MNB,

n+k

—n+a Sl ZE i_ ij
O )

i,j=1

and by Cauchy’s inequality and (9) this yields

/ R 2 <C (CZR—n—2+a|(x, y)le +R—n+ad2|VMC|2)
MnNB MNB,

with C = C(C?, a). Using (7) with (1 + y)/2 in place of y, we then
have the required inequality.
It remains only to prove the bound

2-n (Ou/R 2 2
10 R ( ) <c[ &
(19 vrs, 5R o,

This is proved as follows. First we note that the expression (x, y)l ap-
pearing in the inequality (7) can be written on graph u as (x'+u(x’, y), y)J' ,
where x’ denotes the nearest point projection of x onto C,. Now with
R=|(x",y)| and ®(x, y) = (x,y) = (x'+u(x', y), y) we see that, be-
cause ® maps C into M, we must have d®(x’, y)/OR € T(x,y)M, and
hence (8(®(x’, y)/R)/OR)" is the same as —R >(x, y)*. But on the
other hand, since R"l(x' , y) is homogeneous of degree zero with respect
to R, the expression d(®(x’, y)/R)OR is just d(u(x',y)/R)/OR, and
hence we obtain the identity

(x,y)"=-R (% (“("R’ y)»l ., (*,yeU.
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However, u(x', y) is normal to C at (x', y), and 1Py )= Qe pll < 3
. 0 . .
provided B, = BO(C( )) is sufficiently small where P, Y Q(x,’ »

are as in (4). Thus
0 [ux',y)
OR R

and the remaining inequality (10) follows from (7) and (11).

b

(11) (e, )" > 2K

In the following lemma we are going to consider a point Z + (¢, 1) €
sing M N B, /4> where M € /Ve(C(O)) . Notice that then by Lemma 2.6 we
have |¢| = dist(Z, {0} x R™) < J, with § =d(e,C¥) >0 as ¢ | 0. If
we take suitable &, = £,(C?), 8 = (C?) € (0, 1), and if C=C,xR" €
Q;O(C(")) and X = (x,y) € R"™* with |x| > 67'(j¢] + (X)), then

(3.5) dist(X , 7,C) = |(x, ¥) - (x', ») — €' | + R,

where x' is the nearest point projection of x onto C,, 1, the translation
X—X-2, é‘L is the orthogonal projection of (£, 0) onto (T( " ’O)C)l ,
and

(3.6) IR <Clxl"'f?,  c=c?).
Since |(x,y) - (x', )| = dist(X, C),

3.7) | dist(X , 7,C)| > €| - dist(X, C) — |R|.
Notice also that by the triangle inequality,

(3.8) | dist(X , 7,,C) — dist(X , C)| < [¢]

for all X € R™**, because 7,C =14 (,C.

3.9. Lemma. Thereis ¢, = sO(C(O) , M) >0 suchthat if C = CyxR" €
%(C(O)) and M € /VB(C(O)) with & < &, then for any Z € sing M N B,
with ©,,(Z) > 8.0 (0) we have the inequality

dist*(Z, {0} x R™) +/ a<c| &, c=cc?, ),
MnB, MnB,

where d,(X) = dist(X, t1,C), with 1, the translation X —» X — Z.
Proof of 3.9. Since M € /Veo (C(O)) and the cross section Cf)o) has only

the isolated singularity at 0, we must have a constant J, (C(O) , #) such
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that for every a € R'**

&y =¢&(p, C(O)) so that

, p€(0, ) and Z €singM N B, ,, there exists

(1) lat| > d,la| on a set of measure >4d,p" in M NB,(Z);

here, as in (3.5), aJ‘(X ) is the orthogonal projection of a onto (Tx,CO)L
for X = (x,y) € Mn B, with |x| > Cd(X). Indeed if no such ¢,

exists we would have (1) failing with § = j ~! and with sequences a ;€
S*t e 10, M, C; €% (C?), Z, in place of a, &, M, C and
J

Z respectively. Thus laJ‘.Ll < j_llajl except on a set of measure < j ' p"

in M ;NB p(Z ;) After passing to a subsequence we have a; — a € skt

which together with Lemma 2.6 shows that Z i (0, z) for some z with
|z| < 1. Then from 1.3(b) and Lemma 2.6 it follows that at=0on Cgo) ,
where al(x, y) denotes the orthogonal projection of a onto (T(x’ y)Cw))l
for (x,y) € Cc® . But this would imply that Céo) is invariant under

translations in the direction a, contradicting the fact that sing C(()O) = {0}.
Thus (1) is established. We use (1) with a = &, where Z = (£, ) is as
in the statement of the lemma.
With p, € (0, 1) and &y = &y(Py> c? 7 ) > 0 sufficiently small, (1)
with p = p, yields
102

2
Polél < C (4
MnB, (Z)

with 6 = 6(C?) € (0, 1). Thus by (1.5), (3.6), and (3.7) we have
(2) err<c[  drcplletec 4
MnB, (Z) MnB,

But by applying Lemma 3.4 with 7, , /2M in place of M and using (3.8)
we obtain

3 g / i<c[ d<c / 4’ + Clel.
MnB, (Z) MnB, MnB,

Notice that here C = C (C(o) , #) does not depend on p,. Thus combin-
ing (2) and (3) yields
4)
GPo<ac [ d e eE, =, ).
n 1
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Since by Lemma 2.6 (see the discussion preceding the lemma) we know
already that

€| < 8(ey, C, ), witho(e,C”, .#) 1 0ase |0,

by choosing p, suitably small (depending on c® , #) from (4) it follows
that

HiEXe d>
MNB,

provided &, = ¢,(C N 4 ) is sufficiently small, and by (3.8) we also have

/ a2 gz/ &+ Clef’.
MnB, MnB,

The required inequalities are thus proved.

Proof of Theorem 3.1. First select Z = (£, n) € B, /4 with ©,,(Z) >
B0 (0) . Note that by Lemma 3.9 we have

(1) |&f =dist’(Z, {0} xR™) < C d, c=cc9, 2.

MnNB,
Also, by applying Lemma 3.4 to Nz.1 +M , and using (3.8), we obtain
d2
@) | ——fa<c[ &,
MnB, (2) |[X — Z|"°7 MnB,

where d,(X) =dist(X, 7,C), 1, asin (3.5). Of course this implies

2
/ ——Z - <C / d’,
MnB, ,(2) |X — Z| MnB,

and since d,(X) < d(X)+ || by (3.8), this together with (1) gives that
2
o [ —scc] & c-cc a0
MnB,,(2) | X — Z| MnB,

Next we prove the last inequality in Theorem 3.1. Notice that by (3.5)
and (3.6) we have

dy((x, y) +ulx, ») = lu(x, ) =& | +R,
where |§[ < 1"1C|¢|2 for (x,y) € U,, and hence (2) implies

12
(4) ‘/U |u(x’y)_é |

nB, . (2) |X — Z|"te

-2, ..4 1 2
<cre 1 ___4c / .
<l U,nB,,,(2) | X — Z|"te MnB,



620 LEON SIMON

Since |X —Z| > 7 in U,, assuming (as we may) that ¢, < 7 , we thus
deduce

-2 1 1
éf*

el

UnB,,2) | X — Z|"P7 T cnB, ,2) X = Z" ~

<C d by (1),
MnB

where C = C(C(0 A ) ; notice that C does not depend on 7. Hence the
last inequality in Theorem 3.1 is proved.

<Cl’

4. Linear asymptotics

Let C© Co x R™ € # be as in §1, let Z¢o be the Jacobi-field
operator of §1, and let X, = Céo) N S**=! . Here we consider solutions v

of the equation £ v = 0, subject to L? restrictions of the type given
for u in Theorem 3.1. For example, for Lemma 4.2 below we assume

v — k|
4.1) /C =

for some a € (0, 2), where k(x, y) = E“k Kk;(r, ye; L, with x; bounded.

Our first aim here is to analyze the homogeneous degree 1 solutions of

Z.0v =0 subject to (4.1); the main result is as follows.

c
4.2. Lemma. If v € C2(C(°); (C(O))J‘) is a homogeneous degree 1

solution of Zov =0 on c? and v satisfies (4.1) for some a < 2, then,
for 1 >2,
I+k n
v(x,y) =D y-ne +ro(w)

i=1

for some n,,--- ,m,,, € R" and some 9 € C*(Z,; €Y. Iri1=1
the same conclusion holds under the additional hypothesis that
2
lim . v(rw,y)=0
rl0 9roy’ wezy_o ( )
foreach i=1,--- ,1+k, uniformly for |y| <1.

4.3. Remarks. (1) Of course ¢ must be an eigenfunction of —L,:0

with eigenvalue /-1 if [ > 2.
(2) In case / = 1, when Z; consists of a finite collection of points

{w,, -, @y}, the statement ¢ € C™(Z,; (€)Y should be taken to
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mean that ¢ is any map T, — R"**

each of the points w = w; of .

(3) No conclusion like that in Lemma 4.2 above can be drawn without
the additional hypothesis if / = 1, m > 2. In fact in this case if p
is an arbitrary C*® (S”"l) function with [om-1 p(w)dw = 0, then there
is a homogeneous degree 1 solution v of L.ov = 0 having the form
v(rw, y) = ry(y/r)e”, where e € R'* is arbitrary, and y € C®°(R™)
with |z| " w(z) ~ p(|z| ' z) as |z| — oo ; more precisely,

such that ¢(w) € (T, 0)C(O))J' at

lzl™'w(z) = p(lz] ' 2)| < Clz|™" for |z > 1.

One can check that then the L’ restriction (4.1) holds with x(z) =
p(lzl'lz)eL . On the other hand we can easily verify (although we shall
not make use of it here) that the additional hypothesis is not needed in
case [=m=1.

We first dispense with the case / =1 of Lemma 4.2.

Proof of Lemma 4.2 for | = 1. Incase [ =1, X is a finite set of
points {w,, -, @y} in sk , SO c s just a union ij:l Hj , where
H; = {(rwj, y):r>0, ye R"—l} is an n-dimensional half-space in
R™* with 0H; = {0} x R"! foreach j =1,.--, N. The equation
Z.ov = 0 in this case is simply Av = (Av', -, Av™F) = 0, with
v = ('v1 , "+k) normal to H on H foreach j=1, , N. Thus
in this case v is a homogeneous degree 1 function satlsfymg

Avi=OonHj, i=1,---,n+k, j=1,--- | N,
and
! —-3+a 2
(1) [ [ e, 0 -k, P dydr <o,
o Jam J J
with
1+k

K(rw;,y) = Zx(r y)e onHj, suplxi|<oo,
together with the additional hypothesis that lim, |, #zy,- Zj.i 1 V(row;, y) =
0. By the reflection principle this means that

w(r,y) = Z v(rw;, )
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extends via even relection in the r-variable to a homogeneous degree zero
harmonic function on all of R", and hence must be constant. Thus

N n—1

1
E 'v(ra)].,y)sra+z y'b,
j=1 j=1

for some a, b, € R  x {0}. Foreach j=1,---,N, let Pj:R”k x

{0} — R'™ x {0} denote the orthogonal projection of R'** x {0} onto
the orthogonal complement of the n-dimensional subspace containing the
half-space H . (1) evidently implies

2

N
@ limp / / AL y))—Zy b| =0,
rl0 Bn 1 =
where #(r,y) = (x',---, k', 0), with x* as in (1). Notice that in
particular (2) implies that each b, is in the subspace {Z i=1 , (c):ce
R'** x {0}}, so in fact (2) can be written
lim -_a// P |&(r,y) - ‘.|| dydr=0
imp " | B{'";J(( y) ;y, y
for suitable ¢, € R"** x {0} . But then
lim p dyd
lim / i 4 ( (r,y)- Zyc) ydr

- iy //an(i (M )
) aver

because K is bounded. Thus

n—1 2
lgfgp_lfopfm_l P, (k(r, y) — gyici) dydr=0
foreach j=1,---, N, and, by (1) again,
S = :
lﬁ'gp /0 /B,"“ v(ro;, y) —gy Pc,| dydr=0
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foreach j=1,---, N. Since v(rw;,y) = Z;’;‘ yinci is harmonic on

{(r,y):r>0,y€ R"_l} , it follows (for example by using a Green’s rep-
resentation formula on the half-ball) that v(rw Iz y) extends continuously

n—
i=1

to r = 0, with boundary values ! yinc,. . Thus we can make an odd

reflection (with respect to the r variable) of v(rw;, y) —Z;’;l yinci , and
hence conclude, since v is homogeneous of degree 1, that

n—1
i .
v(re;,y)=ra;+y y'P(c), j=1,---,N,

i=1
for some a; € Pj(R1+k x {0}), which is the required result.

Before we begin the proof of Lemma 4.2 for the case / > 2, we need
some preliminary discussion. First note that if 4, <4,--- are the eigen-
values of —_S’;:o asin§l,and ¢, ¢,, --- are a corresponding orthonormal
set of eigenfunctions, then v ;= (v, 9 ].) ) satisfies the equation

1 8 (1197
(r —>+Ayvj—/ljvj=0

ar\" B
on C¥ . Notice that if 9; (with eigenvalue 0) is one of the eigenfunctions
of the space spanned by ell R e,tk , then (4.1) implies that v = v;
satisfies the bound
2
lv —k(r, y)I
(4.4) /c s, T < 00,

where k(r, y) = xj(r, y) ={k, ¢j)L2(20) , whereas if 9; is not in the sub-
space spanned by ell s e,tk , then (even if the eigenvalue correspond-

ing to ¢ ; is zero—i.e., the same as the eigenvalue of the eJ.L) v =
satisfies

2
v
(4.5) /C l|+21—a <%

Ong, r

Thus we want to analyze real-valued homogeneous degree 1 solutions v €
C*((0, o) x R™) of the equation

1 0 (i1-10v
4. —_— — —Av =
(4.6) TTar ( 8r) +Av—-Av=0
subject to the restrictions (4.5), and in case A = 0 we also need to analyze
solutions v in the space spanned by ell st e,ik subject to the weaker

restriction (4.4).
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Notice that any such homogeneous degree 1 solution can be expressed
v(r,y) =rv(l, y/r); that is, writing w(z) = v(l, z), z € R", we have
v(r,y)=ry/r),

where ¥ € C™(R™). By direct computation (4.6) is equivalent to the
linear elliptic equation

m L m
47 Ay+ Y ZZDDy-(1-1)) zZDy+(-1-y=0,
i,j=1 i=1

and the L’ restrictions (4.5), (4.4) are easily seen to imply

(4.8) / r_l_a/ ly (ro)) dw dr < oo
1 sm=1
and
2
(4.9) / / ‘ (:“’) x(ro)| dwdr <o,
Sm 1

where sup, ) g |K| < 0.

In view of the above discussion, Lemma 4.2 for / > 2 is now evidently
a direct consequence of the following lemma.

4.10. Lemma. (i) Suppose | >2 and A€ R. If w € C*(R™) satisfies
(4.7) and (4.8), then w = 0 for | —1 -1 # 0 and y = const. for
[-1-4=0.

(ii) Suppose 1 > 2 and A =0. If y € C¥(R™) satisfies (4.7) and (4.9),
then y(z)=a-z for some a € R™.

Proof. We first consider A > 0 and note that each partial derivative
v=D v satisfies the equation

m . . m .
(1) > (6;+22)DDw—(1-3)) 2Dy —iv=0,
i,j=1 i=1
as one easily checks by direct differentiation in (4.7). We would like to
assert that, with the notation 4, , = B}'(0)\B,'(0) forany 0 <o < p,

(2) sup [Dy|<Cp~' sup ||, p21,

Aﬂ/Z,ﬂ Ap/4 <P
but this is not in general true for solutions of (4.7) except in the case m =
1. On the other hand if m > 2, then for any eigenfunction ¢; of —Agm-1
corresponding to a homogeneous degree j harmonic polynomial on R”
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we can write y,(z) = y,(r)g;(w), where y,(r) = [gn-1 Y (rw)p;(w)dw
satisfies the ODE

(1+r2)y;’+(mr‘1 —(1—1)r)y;_(W+a—1+1>yj=o

on (0, c0) and remains bounded as r | 0. Notice that then y; is still
a solution of (4.7) on R™\{0}. In fact since y; is bounded near 0, it
extends across z = 0 to give a C°(R™) solution; furthermore by using
elementary ODE estimates for Vi, we easily check that in fact (2) does
hold (with constant C depending on j) with Y; in place of y . Also, Y,
certainly satisfies (4.8) (respectively (4.9)) if y does, and if we establish
the lemma with each such v, then the lemma also follows for . In
other words, we can without loss of generality assume that the inequality
(2) does hold.

Now if m > 2, we introduce spherical coordinates z = rw, r = |z|,
w= lzl—l in R™\{0}, and note that (1) can be written in the form

g 3} ( 8’0) rg
% AU+ (g2 ) -
Pl S or 8ar) " 1+r

2v=0,

where g = P! (1472)~(+m)/2+2

this can be written in weak form

. Since (1/r)Vgm-1v isboundedas r | 0,

e g sm! sm! dv 8¢ g B
) /0 /s”‘" r2(1+r2)V vV C+g3" ar " 1+r2’UC—0,

V¢ e C(R™).

Now replace { by v¢?, where { = {(r) isa C™(0, o) function which
is constant in a neighborhood of r = 0 and vanishes identically for suf-
ficiently large r. Then after an application of Cauchy’s inequality (3)
implies

S m—1 2
/0 /;m—l gCZ ((1 +r2)_1(r_2|VS vl2 +Av2) + (—?;:) ) dodr
(4)
® 2 2
SC/O g() /sm_l'v dwdr.

Now we are going to use the “logarithmic cut-off trick”. Let p > 2 be arbi-
trary, and let {(r) = max{2 — (logrp)/(logp) , 0}, where r,= max{r, p}.
Notice that then { = 1 on [0,p], { = 0 on (p2, 00), and (C')2 <
r_2(10g p)_2 on (p, pz) . Thus using this choice of { in (4), noting that
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g< P , and using also (2), we obtain
p m—1 2
(5) / g/ ((1 +A)7T VY w0+ (@) ) dwdr
0 Sm—l 6"
2p2
< ¢ 5 rt o t//z(rw) dwdr
(log p)” Jp/2 s
2p2
< —C-5 r_3/ wz(rw) dwdr (since [ > 2)
(log p)* Jp/2 sm!
2c (¥

-1 -1 2 Ky
< oz o2 r /Sm—; Ir w(rw)—x|"dwdr+ 6Clogp ,
where k,, is any upper bound for |«|. Letting p 1 oo, and using (4.9),
we see that this implies Vv =0 incase A =0 and v =0 in case 4> 0.
Notice that in case A =0 weget y =a-z+b for fixed ac R”, beR.
If the stronger estimate (4.8) holds, then evidently a=0 and y =b. So
the lemma is proved if m >2 and 4> 0.

For m=1, 1> 2,and A > 0, the argument is similar: We can write
(1) in the form

Ag

1+ 2°

2 (@' -2 v =0,

where g = (1+ 22) — (I — f3)/2, which in weak form is

! l (o o}
/gv’c + 28 _y0=0, WeC®R).
R 14z

Replacing { by sz , where { = {(|z|) is the same logarithmic cut-off
function as before, we get (as in the case m > 2)

p
/ (g(UI)Z + Ag 2”2> < C i lz|_3v2dz,
-p 1+z (log p)* Jpj2<|zi<2p?

and the proof is concluded essentially as before.
For m=1, [>2,and A <0 we note that the equation for ¥ can be
written

(1 +22)y/"— (I-Dzy' +(I-1-Ay =0,

and by using series expansions near oo one easily checks that any solu-
tion y which is not identically zero satisfies

6) liminf p~'~2- / ()P >0,
p/2<|z|<p

p—o0
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where ¢_ = Re <1 +(-2)/2- ((1—2)/2)2+A) . Since 4 < 0 and
[ > 2, clearly we have g_ > 1, so that (6) contradicts the growth restric-
tion (4.8).

For m>2,1>2,and A< 0 welet yj(r) » 9; be as described above,
and note that y i satisfies the ODE

_ . _9
L+ + (1"—1 (- l)r) y - (l(—fif———) Ny 1) y. =0,

r J r J
and again by taking series expansion near oo, we see that any solution y .
which is not identically zero satisfies

p

1iminfp“‘2"—/ Iy, (O >0,

P2

p—o0

and again this contradicts the growth restriction (4.8), because q_ > 1.
Thus the proof of Lemma 4.10, and hence the proof of Lemma 4.2, is
complete.

Now we show that Lemma 4.2 leads to decay estimates for an appro-
priate class of solutions of the equation _S’Cm)v =0 on C9n B,. We
here need to consider solutions which are orthogonal on c9n B, to the
solutions of Lemma 4.2. Thus we assume that

(4.11) / v(rw, y)ro(w) =0, / v(re, y)y'e)t =0,
Conp, c¥ns, !

for each solution w = rg(w) of Lo =0 and each i = 1,---,m,
Jj=1,--,1+k, where (ej)l is the orthogonal projection of the unit
vector e; onto (TwC(o))J‘. (Notice that then (ej)L is a function of w
alone; it does not depend on r, y.) Notice that (4.11) is equivalent to

. 2 2
(4.11') min v — vl =/ lv|°,
veZ JcOnp, c%nB,

where .# is the linear space spanned by the homogeneous degree one
solutions of Lemma 4.2; that is, .% is spanned by the solutions y’(ej)l ,
i=1,--- ,m, j=1,---,l+k, ro(w).

Then we have:

4.12. Lemma. Let B,,f, > 1, a € (0,2) be given constants, and
suppose v € C °°(C(0)ﬂ§1 ; (€YY is a solution of the equation Zov =0
on CN B, satisfying (4.11) and also '

2
v — K| 2
(+) Lo Bti<a [, wl
cOnp,, rtte YJeons,
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I+k L . I+k 2 2
where k(ro,y) = 3.0 k;(r, y)e; , with sup) . |k ,|" < B, fc‘%al vl”,
and eil = eiJ' (w) denoting the orthogonal projection of e, onto

(T(w,o)C(O))'L, r=\x|, o=|x|""x. Then, for | >2,

/ (6(v/R))2>ﬂ-1/ o’
c®ng\5, \ IR B c%np,

with B = B(a, B, B,, C(O)) > 1. The same holds in case | =1 subject to

the additional assumption
2

0
lim . v(rw,y)=0, i=1,---,l+k,
rloaraylwezzo ( y)

uniformly for |y| < §.
Proof. The proof is based on the results of Lemma 4.2. Suppose the
lemma is false. Then there is a sequence v ; of C™ solutions of .S”C(ow =0

in c© N B, , with each v ; satisfying (4.11) and the L*-bound (*) in the
statement of the lemma, but such that

2
d(v,/R)
(1) / —— < 8]' / I’Uj|3 >
c®ng\B,, \ O9R CcOng,

where ¢; — 0 as j — oo. Notice that (x) =, for each 6 >0,

@ wlf<cs™ [ P

cnp, J I

/c(°>nB, MBS xR™)
Notice also that by the usual L? theory we have fixed bounds on all the
derivatives of |lv j||2210 ; on compact subsets of c®n B, . Then by (2)
we have a subsequence w; of |v j”;zl v; which converges strongly in the
L? norm on €9 n B, 29 and furthermore the limit is with respect to the
C?-norm on fixed compact subsets K C c® NB, - Let the limit function

be v; of course v satisfies Zov =0 on c9n B, 29 and, by virtue of
(%), we have
1+k I+k

2
v — K| 1

/(0) <00, K(X,y)=Y_K,(r,y)e;, sup) |x;|<oo,

CUnB,, T j=1 j=1

and, by (1), v extends to be a homogeneous of degree 1 on c? . But
now, in case / > 2, Lemma 4.2 implies that
I+k
v(x,y) =Y v -ne +ro(w),

i=1
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and this contradicts (4.11) unless v = 0. Thus we deduce that w ; con-
verges uniformly to zero on compact subsets of c®n B, 2 which (by
direct radial integration, keeping in mind that |lw,]| 8 = 1 and that the

L? norm of w ; over cn B, P Bf;k x R™ is small by (x)), we deduce

that, contrary to (1),
2
/ Ow,/R)\* | i
cOnB, R

with C > 1 independent of ;.

Incase [ =1, .S”C(O) is just the Laplacian on c? (see the discussion
in the proof of Lemma 4.2), and the given conditions guarantee that each
of the functions v ; is such that

0
wﬁp)(r, NESY 'a?”j(rw, y)
WEL,
extends to a harmonic function on B;'/ 4(0) which is even in the r-variable,
and hence the limit function v has the property that Zwe}.‘.o ov(rm, y)/8y’
extends, via even reflection in the r-variable to a harmonic function on
B;’M(O) . Thus v satisfies the conditions of Lemma 4.2 for / = 1, and the
proof can be completed as for the case [/ > 2.

For the next lemma, we need one further piece of notation. As in
(4.11'), let Z be the space of solutions described in Lemma 4.2, and for
each p € (0, 1] let
(4.13) vV, =0-VY,,
where y, € & is selected such that

2 . 2
v - = min (e .
/(-3(°)an | Wpl ey /d"’nBP | Vi

(Notice that then (4.11) holds with B ) in place of B,.) Then we have
the following:

4.14. Lemma. Suppose 6 € (0, 3), B, B, >0, a€ (0, 2), that v is
a solution of Zwv =0 on c9n B, , and that, for each p € [0, 1], v
also satisfies

2
. [+2—a |vp - Kp' 2
(i) P [ Tt < fv,|
conp,, rtte Yeons, 7'

.. 2-n (8(V/R)\? —n—2 / 2
<
(if) /C“’)anR ( OR ) < Byp c“ns, LA
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where
I+k N - )
1 1 -n
K, (X, y) =Y Kk,(r,y)e; and sup " < Byp /C“”nB vl
i=1 » I}
Suppose also that in case | = 1 we have the additional condition that

2

. 17}
lim - v(rw,y)=0
rlO arayl wezzo ( y)

uniformly for |y|< % and i=1,--- , m. Then

—n-2 2 U 2
07 [l <cot [l
c9np, Cc9nB,

where the notation is as in (4.13) and p = ,u(C(O), By, By, ) € (0,1),
C= C(C(O) , By» By, @) > 0. In particular, u, C do not depend on 6.

Remark. Of course since v , = V=Y, with ¥, homogeneous of
degree one (in fact with y, € .2’), we have

d(v/R) 0(v,/R)
OR ~ OR
Proof. By Lemma 4.12 for / > 1 we have

-n (0(U/R) 2 -1 —n-2 2
D[ R (URY e
() c®nB\B,, OR Bor C‘°’an' 2

with B depending only on «a, B, B,, C” . Notice that then by (ii)

-/C“’)an\Bm R (%)2 Z (ﬂﬁz)_l /C“”nB‘,/4 R (-B(%R—))Z ’

and hence, by adding [0, R*™(8(v/R)/dR)* to each side of the last
pl4
inequality (“hole filling”), we have

2-n a(v/R))2 / 2-n (O(V/R)\?
/C(O)an/‘R ( OR <7 C(O)anR OR ’

where y € (0, 1) is a fixed constant determined by 8, 8,, Cc | Starting
with p = }T, this can be iterated v times, where v > 1 is such that
6 e (47", 47"], thus giving

2-n a(v/R))2 ,,/ 2-n (8(U/R))2
/CW)QB,,R ( OR s C(")anR dR ’

for each p.
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with u such that 6” = y. Hence the proof is completed by using (ii) with
p=1 and (1) with p=20.

5. Proofs of Lemma 1 and Theorem 1

All constants C in this section are understood to depend only on c® s
A , unless otherwise explicitly indicated.
5.1. Proof of Lemma 1. Let 6 € (0, ) be given, let 0 <¢; <J; | 0

be arbitrary, and let M, € ., (C) and C; € &, (C'”) be such that the
J J

alternative (i) of Lemma 1 is false (so (xx) of Remark 1.14 is true) with
M B Cj in place of M, C and €, Jj in place of ¢&,, J, respectively.

We aim to prove that we can find y = y(C(o) , # , 0) (independent of
j) and C; € &, (C'”) such that for infinitely many j
J

(1) 0‘"‘2/ d; <ce”, d:,
M;NB, M;nB,

with C = C(C'”,.#) independent of 0, where d,(X) = dist(X, C,),

and d;(X) = dist(X, C ;) for X e M;. In view of the arbitrariness of the

sequences this will establish the lemma. Now by definition of %j(C(o))

(see Definition 1.12), we can find ¢; = exp4;, 4 j € & as in Definition

1.12 with |4 <e¢; and ¢;'C, e?;j(c“”).

Let B, = ﬂO(C(o)) be as in Corollary 3.2, and let 7 10 sufficiently
slowly (depending on ) to ensure that the conclusions of Lemma 2.6 hold
(for j sufficiently large) with g = B,, y = 3 and with qj_le, T, 8,
”o,qu_le in place of C, 7, 80; M respectively, for all p € [0, 1].
Then Lemma 2.6 gives u; € C2(Uj; (qj"le)l), where U, = {(x,y) €
g;'C,NB;,:|x| > 1,} and

g, 'M;nBy,\{(x,y):|x| > 1;} Cgraphu; C q; M,
and such that (for sufficiently large j) the estimates of Theorem 3.1 and
Corollary 3.2 hold with u;, qj"Mj , qj'le » Tjs & in place of u, M,
C, 7, ¢, respectively. We also agree to choose 7; to converge to zero at

a slower rate than ([}, . 5, df)l/ 2. thus
J

2) mm;zf d:=0.
M;nB,
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Now let p €[4, %]. The estimates of Theorem 3.1 and Corollary 3.2
(applied to 7, qu'le with a = %) tell us that, for j sufficiently large,

2
u,—x, (ro,u _
(3) p1+3/2/ il ”113(/2 e d: ford>207'5,,
UnB,, rs MnB,
. I+k i
with xp’j(rw, y)=Z,~L K;’j(r, y)e;L,
I+k ) )
4) sup Kk ) <Cp™" d;,
anBpi___Zl( p.s) p M8, ’
2 2
_ U, _ d:
(5) pl 1/2/ |1 ,1|2’ pl 1/2/ 1112 <C pe
UnB,, 15 M08, 15 M08,
for 6 >207's,,

and

2

_, [O(u./R .
(6) / R2n (1/ ) SCan‘/ d2
U,nB,, OR M8, ’
Next, let
1/2

7 = / d’ , v.=8"u..
o b=, 4) - e

For each compact K C B, \({0} x R™), by Lemma 2.6 and standard elliptic
estimates [12] we know that

(8) sup |V'v, | <C, <3,
KnC,
for sufficiently large j depending on K, where C = C (C(O) ,K).
Since qj'lC ;€ ?;}_(C(O)) with ¢; | 0, by (2.2) we have, for a suitable
sequence T; (which, by a new choice of our original sequence if necessary,
we may take to be the same as the original sequence 7 ,') ,

— I+k
9) q;'C,nB\(B," xR™) C graphy,,
J

where y; € C(CY N B,\(B,'); x R™); (CV)*) with |y|.2 < Ce; - 0.
J

So now (8) and (9) imply that v j(x+ y/j(x)) converges, on each compact

subset of C© NB,, in the C*-norm to a limit function v € C* (C(O) NB,),

with Zov = 0. Also the estimate (5) for u ; then evidently guarantees
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that the convergence is strong convergence with respect to the L*-norm on
c”nB ) for each p < 1, because (5) tells us in particular that

- - 1
“/2/ <o, 520, 5<p<s.
U,nB, ,N(B;** xR™) 2

In view of this, the remaining inequalities above yield directly
2
1+3/2 v -, 2
———<C v,
(10) p L(o)ﬂBp/z rl+3/2 - C(O)HBF | I

where K (rw, y) = P x;(r, y)e;" , with

11 su xizsc_"/ v|?,
(h i g( ) =P C‘°)an| |
and
2
(12) / R (M> < Cp_"_Z/ |2
c®ns,, OR c®ns,

We emphasize that in the last three inequalities C does not depend on 6.
Notice also that (5) additionally implies that

(13 |
j\ljﬁB

p/2

df < Cél_l/zﬂf
n(B[,;ka"')
for 6 > 2676 ;> SO we also have (using again the strong convergence of

v,(x+y,(x)) in CYNB, for p<}) that

. -2 2 2 1
14 lim .a'.=/ v, < -.
(14) s B = Jony P <3

Now all of the above was computed relative to an arbitrary sequence C ;€
‘%.(C(O)) , and (since ¢ j'1 0) is equally valid if we choose a new cylinders
" ~
Cj € %EO(C(O)) (where y > 1 is arbitrary) in place of C e Of course
J ~
in this case we get new quantities dj , W In ¥ in place of dj s Uiy U
respectively, but, for j sufficiently large depending on 7, the estimates
above remain equally valid, with constants C only depending on c® , A

as before; notice particularly that the constants C do not depend on y.
So let £ be the linear subspace of solutions of Zow = 0 described

in (4.11"). Because of the integrability condition it for the cross section
Cgo) , by (2.3) we know that, for each f > 0 and for each y € & with
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=2 0
Supcoinp, |W] < B, we can find €, €%, (C?) (v =(C"”, §) 2 1) such
that the new function # ; (i.e., the function corresponding to u ; when C ;
is replaced by € ; in the above discussion) satisfies a relation of the form

(x5 ¥)+0;(x, ¥) = u((x, ¥) + ¥;(x, ¥)) - By + R,

for (x,y) € C(o)ﬁBe’/4 with |x| > 7,, where ; | 0, and ,Bj"'|Rj| — 0 as
Jj — oo. Thus ¥ = v — y and in place of (10), (11), and (12) we obtain,
for any constant # > 0 and y € % with sup|y|< S,

2
/ 1+3/2 lv-—y—-x, | / 2
- ¥Y.P < -
(10) P /C(o)rpr/z pl+3/2 <C c®ns, lo—vl",
where k, (rw,y) = ok x;’p(r, y)e; , with
(11y sup Iﬁf(x" ' <cp™ ] o —wl’,
cng, i3 v.p cna,
and
2
a [, BT <o [ -l
c®ns,, OR CnB,

where C = C (C(O) , #), and the inequalities are valid for arbitrary p €
e, %] and arbitrary 8 > 0 ; we emphasize that the constant C is indepen-
dent of B, 6. Notice that in (12)" we used the fact that d(v/R)/dR =
8((v — w)/R)/OR, which is true because ¥ is homogeneous of degree
one by definition of .. Notice also that in place of (14) we obtain the
identity

. -2 52 2 1
ase)  am [ pRdr= [ w-wf, <y
e 4

where d,(X) =dist(X,C)), X € M;.
Now (see (4.13)) for p € [0, %] , we have by definition that v,=v-Y,

with
/ IU—'//|2=inf/ v -y,
CcnB, ’ veZ Jcnsg,

and hence (since [.op [v* < 1) we have
1

p" / wP<co™, c=cc.
cong, *
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Thus by elliptic estimates and homogeneity of y we have sup.o, B, ll//pl <
CO™" for p €6, 1], and we can apply the above with 8 =CO™", y =
y(C?, 6),and y = y, in order to conclude from (10)’, (11)', and (12)’
that, at least for / > 2, v satisfies all the estimates needed to apply Lemma
4.14 (with o = 1). So we conclude that there is a = o(C'”, #) € (0, 1)
and C = C(C?, #) such that

15 0‘"’2/ v 25C0°/ v <o,
(13) C“’)rw,,| 9| C‘°’nBl| ll

2 2 .
where we used the fact that [0, B, [v,]” < feon B, |v|” < 1 by construction.

On the other hand by virtue of (14)" with p = 6 (and with y = ¥,), We
have
. ) 2
lim B;d; = / vl
)

JmoJMnB,

and hence (15) implies
o[ @ <2pjco”
M;nB,

“ for all sufficiently large j, which is (1) as required.
Notice that the same proof will apply also to the case / = 1 if we can

check the condition
2

16 li -
(16) 0 aroy'

b

-

You(rw,y)=0, |yI<

WEZ,

as required in order to apply Lemma 4.14. To check (16), we proceed as
follows. Choose { = {(r, y) to be smooth for 0 < r < 0o, y € R” such
that {(r, ) =0 for r* + ) > 1 and 0{/0r =0 in a neighborhood of
r = 0. Notice that then in particular we have

(17) ch(lxl’y)=0 fOl'IX|<T, q=1’91+k,
for suitable 7 >0. For ie {1, --- ,1+k}, ae{l,---, m} we have by
(1.1) that

(18) /~ Vx".vcﬁ/~ eV, =0, M=q¢'M,
Mj Mj

where {, =0(/0y”. Let gf 7 denote the matrix of the orthogonal projec-

. +k = .
tion of R™™" onto 7|, M, let G; = graph(u;|U; N B, ,), with U, u;
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corresponding to U, u as in 2.6 with ]Tfj in place of M, and note that,
by Lemma 2.6, }l7] N BI/Z\Gj c {(x, y):|x|] <t} for all sufficiently large
Jj . Since

n+k
(19) [ wxtve, |—/ S g”(0D,L,| .
‘MJ‘\GJ 1 J p=1
and DpCa=0 Vvp=1,---,1+k, |x| <71, we have for |x| <t that
ntk n—1 i L4kp
ip i,
Zg Dpca = Z(ai,l+k+p—g )Dy”ca
p=1 p=1
n—1 N 5
S Zlel+k+p| |Dcal
p=1

So, for j large enough, (19) together with (1.5) and Theorem 3.1 gives
(20) /~ vx' Ve

AN

< \/(;1’"(1\71.019l 2\G)) / Zle1+k+,,i sup | D¢ |

Jpl

1/2
<Cv (/ Zle%,.) sup D,

Jp"

Now let w§ )

Sy, a)ﬁ.N ) be unit vectors in the direction of the singular
rays of the j-dimensional cross section C(()j ) of the cylinder C(()j IxR" ' =

qj"le , and write

N .
U(r)=U;n{(x, ) € R xR x| > 1) = U U}l)(‘t)
i=1
where ‘
U;')(r) {(x, w(') »):yeR"™ x>1}.
Also, define

G,(7) = graph(u,|U,(1)),  G,(v) = graph(u,|U}"(2)).

Next note that |e1l+k ol 2 %[Dypujl on U () for j sufficiently large (de-
pending on 1), and hence the first estimate of Theorem 3.1 implies that

(21) D e L C”nB,,).
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Suppose for the moment that wﬁ.l) = e, . Then

(22) /G oy vx' v,
//m\/—{h (x, yai(q, (\/x2+|uj|2,y))
+Zh1 l+k+p &} (Ca( /x2+|uj|2,y))} dy dx,

where (h”")pw{2 .. .14y 1s the inverse of the n x n matrix
gpq+Dpu-un)p’q ¢ (2, 14k} and hj is the determinant of this matrix.
ow

G (Vi y) = 2o (¢ (Vv il )

@U/oNG/* + 1w, p)u; - duy/0y"
N ’

and hence after an integration with respect to y, we can write

[ e (e g (e (Ve 0)
e =[] {( ' =1) o (V)

na [@NG/X +1ul, yyu;-ou /oy
- \/;fhf ax 2 2 :
\/Xx +|uj|

1,1+k 2 11 2 1
24) B (x, ) < Clvyl, |\/i7jhj ~1]<Clvuf on U,

Also

as one checks from the fact that (hf?) is the inverse of
(6pq +D,u; un_])p G2, 1=k} and hence using (23) and (24) in (22)
by standard elliptic estlmates we get, for j sufficiently large (depending

on 1),
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/(1) VXI.VC“
G (1)

2 2 2
25) <cC IV, + 1w, | (V0] + IV D)L + V2L
UV(31/4)

<c ( / ui) sup(|V¢] + VL)
U (z/2)nB,

where C depends on 7 but not on j. Also, since Gﬁ.l) is given by x =

ui(x,O,y), i=2,---,1+k,for i >2 we have
(26)
vx' . V¢
Gﬁ.')(t) a

=/U¥”<r) 2 h?q(D"uj') (D"<C"<“x2+|u|2’y)))\/h_f

J P,q#2, ,1+k

= [, (VU VL, +R),
U;’()

where [R;| < C|Vu,|* sup(ID¢,|+|D*(¢,]), and ¢,V is the gradient oper-
ator on qj.—lC ;- Combining (25) and (26) yields

1+k

/G“)()E(e Ve, —/m()Vu-VCa+Rj,

-1 . .. . . . .
where ﬂj R, — 0 as j — oo. This is an invariant expression relative

to orthogonal transformations of R!* , and hence it holds without the

assumption wﬁ.l) = e, , and a similar formula holds for each Gj.i)('c) . Thus

1+k

/ Ee V¢, e, —/ Vu-VCa-f-Rj,
Uy(®)

with BJ."IR ; — 0 as j — oo. Combining this with (20) and using (18) we
conclude that
1+k

0= /Ze VCe—/Vu Vi, +R,+S,B8;,

Jl 1
where B 'R; — 0 as j — o0, and |S;| < Cy7. Since v € L*(C”nB, ;)

and D v € LZ(C(O) NB, /2) by (21), we can multiply by ﬂj'l and first take
limits in j and then let 7 | 0, thus giving
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/;:(o> Vu-vE =0,

whenever 8(/8r =0 in some neighborhood of r =0 and { € C.° (B;'/4) .
Since { is a function of r, y only, after an integration by parts, the
above equation can be written || ¥ A{, =0, where H is the half-space

{(r,y) e R" : r > 0}, and 9(r,y) = E;V:lv(rwj,y). In view of the
arbitrariness of {, this evidently implies

[od,80=0, i<y,
[ 0-5,

provided { is smooth with {/dr = 0 in a neighborhood of r = 0 and

{=0 for \/r + [y > L, where 8, ,(r, ) =L(r, y+he,,)-L(r, ).
This in turn clearly yields that

27) /H(éa’hz"))-AC=0, |h|<-j:.

Now for any function { € C:°(B;'/4) with {(r,y) = {(-r,y) we can
find a sequence {, such that the derivatives of {, up to and including
order 2 are bounded independent of k, {, — { in the C? norm locally
in BJ,\{0} x R""', and 8¢, /0r = 0 for |r| < 7, with 7, > 0 and
7, | 0. Thus using the dominated convergence theorem we in fact deduce
that (27) holds for any { € Cf°(B;'/4) with {(—r, y) ={(r, y). Of course
then

(28) /(5,,,,0)-AC=0, <X
B, 4

where 9 is the even extension 9(r,y) = 9(—r, y). On the other hand
we trivially have (28) if {(r, y) = —={(—r, y) (even if { does not have
compact support). Since any { € CC°°(B;'/4) can be written as the sum
2r,y) + L(=r,¥) + (¢(r, y) = L(~r, y)), we conclude that in fact
(28) holds for any { € Cc°° (B, /4) , and Weyl’s lemma tells us that Ja, 20
is a smooth harmonic function on B, , for || < ;.

Since by (21) h_léa,hz‘) — D,.0 in LZ(B;'M) as h — 0, it then follows
that Dyav also extends to give a harmonic function which is even in the
r-variable. In particular we have (16) as required. Hence the proof is
complete.

5.2 Proof of Theorem 1. Choose 6 € (0, §) such that
(1) Co“<1/4,
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where C and a are as in Lemma 1. Let sing, M = {X € B1/2 16,,(X) >
6. (0)}, and let ¢, J, (depending only on c® , #) be small enough to
ensure the conclusions of Lemma 1 with the above choice of 6. We also
assume ¢, is less than the ¢, of Theorem 3.1 when o and y of Theorem
3.1 are both equal to % and 7= 10"2. Let M satisfy the hypotheses of
Theorem 1 with Ce < ¢,, where C = C(C(o) , #) >1 is to be chosen (>
the choice of y of Lemma 1), and define E;, j= 0,1, -, as follows.
E, is the set of X € sing, M such that ”x M satlsﬁes alternatlve 1)
of Lemma 1 for some p € (6, 1], and, for j 21,let E; be the set of
X € sing, M such that n, ,M does not satisfy alternatlve (i) of Lemma
1 (hence does satisfy (xx) of Remark 1.14) if p=6', i =0,---, j,
and such that 7, pM does satisfy the alternative (i) of Lemma 1 when
p=6"*"_ Finally, E_, is the set of X € sing, M such that n, M does
not satisfy alternative (i) of Lemma 1 (and hence does satisfy (xx) of
Remark 1.14) forall p=6', i=0,1,2,---.

First note that if E;# & then, keeping in mind (1.5) and the fact that,
by Lemma 2.6, sing M N B, C the d(¢)-neighborhood of {0} x R™, with
o(e) | 0 as ¢ | 0, we trivially have the conclusion of Theorem 1 with
S =0 and T = sing M N B, . Thus from now on we assume

(2) E,=02.
Next we want to show that E_ C L, with L as in the statement of the
theorem. We are going to show that the theorem holds with § = E_ and

= (sing, M\E__) U (sing M N BI\BI/Z) .

Take X, € E_ . Using the definition of E_, we see that, provided
vE < g, with y = y(C(o) , #) is sufficiently large, we can iterate Lemma
1, inductively choosing C,, C,, -, with C, = =9, C e % (C(O)),
and ¢; = exp4,, with 4, € & (& asin Deﬁnmon 1. 12) |A| < vg,
and q; C € % ( (0)) as the inductive step we apply Lemma 1 with

q; ’7,\' o’M in place of M, giving C,,, €% (C(O)), such that

p=(+D(r+2) / dist’(x, Ch) <y 1g-it) / dist’(x, C,)
3) . M,NB,i+1 MonByi
<27 / dist*(x, €%) < 27%¢%,
M,nB,

where M; =1 XOM (t X, the translation X — X — X)), and

(4) Hausdorff distance (C,n B,, C,,, N B,) < ye2™",

i+1
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subject to the inductive hypothesis that this holds W1th Jj <i—1 inplace of
I ; notice that we need to check at each stage that g, n X, o'M S (C( ))
but this is an easy consequence of Lemma 1 since Ce < & - Notlce also
that (3) actually implies (4) for suitable y = y(C(O) , # , 0) by virtue of
the remark following Lemma 2.6. _

In particular (4) implies that there exists C x, € CZ;e(C(O)) such that

Hausdorff distance (C,n B, , C x, N B,) < 227"

g in+2) /
M,

oNByi

foreach i=1,2,---. Thus

and
dist’(X, C, ) / dlSt (x,c,

o2 / dist’(X, C, ) < Cp* dist?(x, c®)
M,B, 0 MyNB,

for all p € (0, 1], with u = u(f) chosen so that 6% =1 .
By definition there is dx, eSO(R"*") such that qXOC X, € %},e(C © ) and
(5) |qX0_l|SC8>

and by applying the first estimate in Theorem 3.1 (with dx,Mx,, pM in
place of M) we have, for p € (0, 1],

(6) p~' " dist(qy T4 (sing, M) N B, {0} xR™) < Ce,

where 1 x, is the translation X — X — X;. Also, again by a standard
argument ‘based on (3), (4), :

(7 lay, — ay,| < CelX, ~ X"

Since this is valid (with fixed constant C = C (C(o) ,#)) forany X, Y, €
E_ , we can then write

(8) E_ Cgraphv = {(x, v(x)): x €[}, 31"},

where v :[-1, $1" — R satisfies

(9) law<Ce, C=C(CY).

So L = graphv has the properties stated in Theorem 1, assuming we take
S = E_ . Now in view of (2) and the definition of E;, we have

o
(10) sing, M\ graphv = UEj.
Jj=1
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Also, we note that for points X, € E ; we can apply precisely the same
iterative argument (based on repeated use of Lemma 1) as we used for
E_ , except that now we conclude (3), (4) only for i = 1,---,j, and

correspondingly (6) is only valid for p > @’ . That is, we can still select
fixed dx, and CXo (no longer unique) such that (5) holds and

(1) p ' dist(qy, 7 (sing, M) N B,, {0} x R™) < Ce, o <p<l.
Notice that in particular, in view of (5) this gives
p~! dist(sing, M N B,(X,), X, + ({0} x R™)) < Ce,
0'<p<1, X,€E,.
Also by definition of E ; we have the additional fact that
(13) VX, €E;,
3Y € X, + ({0} x By;(0)) with B, o(Y) Nsing, M = 2,

(12)

where J, = JO(C(O) , #) is as in Lemma 1. By combining (12) and (13)
it is now straightforward to check that F ; can be covered by a collection
R, of cubes R= (&, n)+[~0/2, ¢/ /21", where (¢, n) € E,,

R X (n+1-67/2, 67/21™) N sing, M

C (€, m+([-Cet’, C20'1™ x [-67/2, 67 /21™),
and R has a subcube (&', ') +[-266’, 266’]"** such that

(15) R x (4 +[-200, 266'1™)) Nsing, M = @,

with 6 =2"", N=NC9, #)>4.

Thus we can apply Lemma 2.7 to the collection &€ of cubes in R™
which are obtained by orthogonal projections II;»R onto {0} x R™ of the
cubes R in the collection Uj?ilﬂj and with F the orthogonal projection
onto {0} x R™ of U}2, E;. Then Lemma 2.7 gives a collection & of
cubes in {0} x R” with

g K

(16) Yep)"<1-6", FclP,

PeP PEP
and with the property that for each P € & thereisa Q € & with
(17) Pc @ and (3/4)e(Q) < e(P) <e(Q).

Now for each such P = fj+[—p, p]” € & and corresponding Q = [MgnR
as in (17), where R € U;";lﬂj has center (£, 7) € Uj>lEj, select an
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(n+ k)-cube R with I'Inmﬁ = P and with center (£, ) such that £ =¢&.
Let % be the collection of such cubes R. Then by (12), (15), (16), and
(17) we have for ¢ sufficiently small depending on .# , c® ,

(18) UE cUR  Ye®"<1-67,

ReX REX

and, by (14), for each R € Z with center &,n) e R < R™,

(19) JE;NR C (E+[-Cee(R), Cee(R)])xR", C=c(C?, ).
j=1

Now the rest of Theorem 1 follows from the fact that for each o > 0 we

can find balls {B, (X )} such that X, € {0} x [—— , 31" and

I+k
(—&,8) " x[-4,41"c UB (X)), Zw,,,p}" <l+a,
=1
where ¢, = ¢,(a, n, k) € (0, 7) . Applying this to appropriate scalings and
translations of {0}x[-1, 11", and using (18) and (19), it then follows that

we can replace our covering % by a covering by balls with the required
properties. Hence the proof of Theorem 1 is complete.

6. Proofs of Theorems 2’ and 4, and Corollary 3
6.1. Proof of Theorem 2'. Let m be as in (1.15), and let sing, M
denote the set of X € sing M such that there exists a tangent cone C €

Tan, M with C = ¢(C, x R") for some g € SO(R™¥) . Notice that by
(1.10) we have

(1) dim(sing M\ sing, M) <m —1.
Let
S =sing, M(=sing, M N{X :0,,(X)=0a}),

X,€S,, €¢>0,and let c? = q(C(O) xR™) € TanX M . By the definition
of TanX M and the compactness 1.3(b), for each e > 0 we can find
= a(e) > 0 such that B (X,) C U, and such that M, = M, M
satlsﬁes Uy M, 2 B and
X" (Myn BR(e))

2 E 0) < d(e / dist’ (X, C) < &7,
(2) w,R(e) Oco(0) <o) M,nB,(0) ( )




644 LEON SIMON

where d(¢) and R(e¢) are as in Lemma 2.4. Let
+ .
S, ={Xes1ngM0:6Mo(X)2a} () (nXO,aSa)ﬂBl).
Notice that S: is closed in UM0 by upper semicontinuity of OMO(X )

(which is true by (1.5)). For given p, € (0, %) take a finite cover of
S*NB, by balls B, (Y,) with g, < p, such that

=
3) Zwma,."’ <u, (S;NB)+1,
1
where u 24 is the outer measure defined by
,upo(A) = infz wmp;"
J

taken over all countable collections {B p,(X )} of balls with 4 c |J ;B pA(X )
J J

and Pi<PpPy Vi. Of course we may assume S;' NB_(Y;) # O foreach i,

otherwise we can drop the B, (Y,) which do not satisfy this. For each i

choose Z; € S: nBa,. (Y,) and apply Lemma 2.4 to M,,. Then, for suitably

small ¢ > 0 (depending only on .#, K), either there exists a cylindrical
cone C = ¢(C, x R") € # with 6,(0) = and

(4) o " / dist’(X, C) < &
Nz, 20, Mo B,
or else
(4) {X € By, (Z):8,,(X) 2 a} C{X : dist(X, H) < &}

for some (m — 1)-dimensional affine space H containing Z,. Notice that
here we use the fact that by (2.1) and (2) we can choose ¢ (depending
only on .#, K) to ensure that ©,(0) = a in (4); we henceforth assume
that ¢ > 0 is so chosen.

In the case of (4) we consider two subcases, namely, 4(i): EZi € S;“ with

Y, - Zil < 0,/4, and 4(ii): Baﬂ(Yi) n S;' = . In case 4(i) we can apply
Theorem 1 to #n, ,, M, to give an embedded C' submanifold L” and
balls {B, (Y;)},_, , . such that, for some &,=d,(#,C®) € (0, &),

Sa N B, N ZN\LY c | B, (¥,),
(5) g

Yoo <2 "1-6pa", 2"LY)<2 0,0 <w,0".
J
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Also, applying Lemma 2.6 to Nz 25 M, Yyields that S;“ N FU'(YI.) is con-
tained in the d(e)-neighborhood of Z, + ¢({0} x R™) with d(e) | O as
¢ | 0, 0 depending only on C? and #. Therefore, for ¢ small enough
(depending on c® , A only) we can cover S:nﬁai(Yi)\de_ /2(Z ;) by balls
{B&U(f’ij)} such that

Z &, <(1+27"8y) (0" =27 "a]").

Thus, using this in combination with (5), we obtain a collection {B, (Y;;)}
ij
satisfying

Sy nB, (Y\LY ¢ Us,, (¥,
J

© Yoo < (=27 (1+27"8) +27"(1 - &))a]"
J

= (1-2"""5y)a",
m, (i) m
Z (L") Lw,0; .

In case 4(ii) we can still use the fact that S: n _Ea_(Yi) is contained

in the &(e)-neighborhood of Z;, + ¢({0} x R)™ and hence (since

Z"(Z; +4({0} x R") N B, (Y))) < ©,,(13)"?¢" in case 4(ii)), we can

cover ST NB,(Y;) by balls B, (¥,;) such that (6) holds with LV = &.
1 1j

Of course we can also trivially find a cover B, (Y, j) such that (6) holds

with LY = & in case (4)" holds. Thus we have shown that we can in all
cases select a cover {B, (Y, j)} for S: N B, (Y;) such that (6) holds.
ij i

1
Repeating this process (starting with any one of the balls B (Y, j) in
ij
place of B_(Y,) and again using Theorem 1), we get embedded submani-
folds L” and balls {B, (Y;;,)} such that, with & =27"4;,
ijq
+
Sa nBaij(Yij)\Lij = UBU,-,-(,(Yijq)’
q

7) )
( Yoo, <(1-8)o;, F"(L,)<o,0].
q

Notice that by combining (6) and (7) we have
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st nBai(Yi)\ (L(’) U (UL,.}.)) cUs, (),
i j.q
~ 2 j ~
Ea,.';'q <(1-6)a", & (Lmu (ULU)) <w,0 (1+(1-38y)).
q,] J

After repeating this argument (N — 2) times more we get a collection of
balls {BU)v (Yy )} and C' submanifolds Ly ; such that

\ nﬁl\ (ULN,i) c UBUN,,.(YN,I')’ Zalr\’n,i <(1 "30)Nzaim’
z" (ULN,i) < (Zwmaf') (L+(1=dg)+--+(1=8)").

Since N is arbitrary this gives /za(S;r nFl\ Ui,N Ly,)=0 for each o €
0, py) so Z™(S; nB\U; yLy,) = 0, and u, (S, n B))
(,upo(S;L NnB,) + 1)d;" for each a € (0, p,), so Z"(&" nB))
(u po(S: NB,) + 1)5;' < oo as required. In view of the arbitrariness
of X,, this completes the proof.

<
<

6.2. Proof of Theorem 4. Without loss of generality we can assume
that X, = 0. Let ¢ > 0 be arbitrary for the moment, and pick p small

enough so that the cube [—-p, p]™** is contained in U,, and

p"2 / dist?(X, C) < &°.
M[-p, pI"**

For small enough &, (1.17) guarantees that the slice M p = {(x,y) €

[-p/2, p/2]"+k NM :y = z} is not a smooth manifold for any z €
(=p/2, p/2)™. Then Sard’s theorem yields that for #"™-almost all z €
(=p/2, p/2)™ we must have

(1) S, =singMn{(x,2):x€(-p/2, p/2)"} £ .
By (1.10), we know that #"-almost all Z = (x, z) € S, are such that
(2) q(Cy x R™) € Tan, M

for some cylinder C = g(C, x R™) € .#(q € SO(R"™)). Also, since
the set of densities ©(0) corresponding to such C is discrete by (2.1),
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from (1.16) and (1.5), it follows that p > 0 can be chosen to ensure that
©.(0) = u for all such cylinders C = g(C,xR™), where y is as in (1.16).
Thus the alternative (i) of Lemma 1 always fails in this case, so by the
same argument as in the proof of Theorem 1, there is ¢ > 0 such that, if
11 holds for all C = C;xR" € # with 8(0) = u and ¢ is appropriately
small, then

(3) S,N(=p/2, p/2)"* C graphw,

for some embedded C'** manifold of dimension m, where Sg de-
notes the set of points Z in §, such that (2) above holds, and w €

CVH(=p/2, p/2)™; {0} x (—p/2, p/2)"*) satisfies
(4) |'LU|C1,;¢ <Ce.

However since there is at least one point of Sgﬂ{(x ,zZ)E(—=p/2, p/ 2)l+k}
for #™-almost all z € (—p/2, p/2)", it is evident that

o0 (=p/2, /2" = graphw,

and hence
singM N (-p/2, p/2)"* = graphw UK,
for some set K disjoint from graphw. Now we claim B, N K = @
for suitably small o > 0. Otherwise we can find a sequence {Z;} C K
with Z o 0. For sufficiently large j we can choose X ;€ graphw
with |Xj -Z,| = min|X - ZJ.I over all X € graphw . Since 6,,(X) >
u for all X in graphw sufficiently close to 0 and since by (1.5) u <
(,0)"' #"(MNB,) < u+e0), where &(c) | 0 as o | 0, and since
Z,, X, — 0, it follows from (1.5) that n, , _, M — M with ©(0) >
j2> 5 1X;=Z) M

p and lim (o, p") '\ #"(MnB ,) = i Thus by a well-known argument

ploo
involving the monotonicity formula we deduce that M is actually a cone
with vertex at 0. On the other hand, by another application of (1.5) we
have 81‘7(X ) > u (and hence is equal to u) at each point of {0} x R,
and (see the discussion subsequent to (1.9), and (1.9)) we conclude that
M is invariant under translations X — X + (0, z), z € R™. But by
construction there exists Z € sing M \{0} x R™, and hence dim singﬂ >
m+1, which contradicts the definition of m . Hence the proof of Theorem
4 is complete.

6.3. Proof of Corollary 3. Since O (X,) < 2 we can choose g, > 0
such that B, (X,) C U and (wnag)"HV(l(B%(XO)) < 2. Notice that then
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V is multiplicity 1; in fact by (1.5) there is ¢ € (0, ;) such that

IVII(B,(Y))
(1) sup —— L — <2—¢, forsomeeg,>0.
YEB,(X,), pe(0,0) @ P

Let 7 be the class of all varifolds g7, p#(V L B,(X,)), where Y €

R™** p > 0, and g € SOR*¥). Also, given any open W C R™™*
we let %(W) be the set of all varifold limits, taken in W, of conver-
gent sequences (qj"Y,- , pj#V) L. W (thought of as varifolds in W) with
U;"__’l ﬂ‘i’_f_j an},‘_’ija(Xo) D W, and let 7 = U, Z;(W). By virtue of
the compactness and regularity theorems [1] the set .# consisting of all
the regular sets (in W) of all varifolds in Z;(W), taken over all open
W c R" , 1s a multiplicity 1 class in the sense of §1, provided we take
U,, = W whenever M = regT for T € Zj(W). Furthermore by the
analysis of [3] the only cylindrical cones C;, x R"! possible in this class
are given by the cones C, consisting of a union of three coplanar rays
emanating from the origin in R , and meeting at equal angles of 2x/3.
Notice also that VL B_(X,) € Z;(B,(X,)). Now the corollary is proved
by virtue of Theorem 4 and (1.10) in case n > 3.

To prove the additional claim in case n = 2 we proceed as follows. Let
M =reg(VL B (X)) (€ .#). By virtue of (1.10) we have exactly two
possibilities: either

(i) TanXo M contains a cylindrical cone ¢(C,xR) with C, as described
above, or

(i) X, € (M) so that no elements of = Tan X, M are cylindrical.

In case (i) we can directly apply Corollary 2 in order to deduce that for
some p >0, singM N Bp(Xo) is a properly embedded C - Jordan arc
with endpoints in OB p(XO) , so there is nothing further to prove in this
case.

For case (ii) we first observe that each of the cones C € Tan X, M must
have at least one ray of singular points. Indeed since 0 € singC (by virtue
of the regularity theorem [1] and the fact that X, € sing M) otherwise
C would have an isolated singularity at 0. However then £ = Cn gk
would be a smooth embedded compact one-dimensional submanifold of
gkt , and £ would have to be a finite union of a pairwise-disjoint great
circles: X = UN , where each X, is a great circle. If N =1 this would
give singC = @ a contradlctlon If N > 2, then 8,,(X,) =6.(0) > 2,
again a contradiction. Hence each C € sing M has at least one singular
ray as claimed.
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So, in case (ii), take C € Tan X, M, andlet r , -, ry be the singular
rays of C. In view of the fact that along each of these rays C has normal
cross section consisting of three coplanar rays meeting at angles of 27/3
(by the above discussion of cylindrical cones in .#), and in view of the
fact that ©,(Y) < 2—¢, (by (1)), it is easy to check using (1.5) that there
is a fixed constant 6 > 0, depending only on .# and ¢, such that

k+1

(2) dist(r, n S 0" >0, i),

and in particular N is bounded above by a fixed integer depending only
on .# . Also by definition of TanX M there is a p, > 0 such that for
each p € (0, p,) there is a cone C € Tan X, M such that

(3) p! [ dist’(X, C,) <&’
MNB (X,)

Equations (2) and (3) evidently imply that the number N of singular rays
r; in a cone C € Tan X, M 1is a constant. Furthermore if ¥ # 0 is on
one of the singular rays r; of C, then for suitable > 0, CnN B,(Y)
is a union of three half—dlscs meeting along the common boundary rin
Bs(Y) at angles of 2m/3. Thus (cf. the argument at the beginning of
§6.2), for almost all p € (0, p,), 0B , N M contains at least N singular
points Z,,---,Zy,onein the ¢(p)-neighborhood of each rjnaBp , j=
1, , N, where ¢(p) | 0 as p | 0. Therefore by applying Theorem
4 to er M (and making using of the estimate (4) in §6.2 in the proof
of Theorem 4), we deduce that there are exactly N properly embedded
locally C''® Jordan arcs I, -, Iy, each with one endpoint in 0B,
and with one endpoint at X, where o € (0, p,) is chosen suitably small,
such that singM N B, = Uf; 1 T'j - The fact that the T'; have finite length
follows directly from the fact that (by estimate (4) of §6.2) I, N B \B, ,
has length < p for sufficiently small p. (In fact (4) of §6.2 gives length
anBp\Bp/2 <(l1+¢&(p))p/2, where e(p) |0 as p|0.)

7. Concluding remarks

The main discussion centered on the properties of the singular set. How-
ever, an examination of the relevant arguments will show that in fact we
obtained various results about asymptotics of M on approach to the sin-
gular set. For instance, the proof of Theorem 1 shows that, for given
6 > 0, if we select X € sing, M such that there exists ¢ = (X, M) >0
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with
(7.1) B;(I(B, N1y ,sing, M)) D q,({0} x R™)N B,

for all p € (0, g), where II is the orthogonal projection of R"** onto an
m-dimensional subspace qp({O} x R™), q, € SO(R"+k) , then, provided

0=90 (C(O) , #) is sufficiently small,

(12) p "2 / dist?(X, C)
MﬂBp
<C (B)”a‘”'z/ dist’(X,C), O<p<o,
o MNB,
for some fixed cylindrical cone C = q(Cf)O) xR e #, u=u#H) e
(0, 1). That is, we have the following:

7.3. Theorem. Suppose o > 1 is given, and C© = Cg’) xR" € A
with ©.0(0) = a is such that {} holds. If M € #, X € sing, M, and
there is a > 0 such that (7.1) holds for all p € (0, o), then (7.2) holds.

Remarks. (1) Notice that, for any given é > 0, the hypothesis (7.1)
is automatically satisfied (with ¢ , independent of p) for some o >0 at
any point X at which sing M has an approximate m-dimension tangent
plane ¢({0} x R) in the sense of [19]; since we have shown sing, M
is countably m-rectifiable, we have (7.1) (hence (7.2)) at #™-ae. X €
sing, M .

(2) Notice that in particular this means that C is the unique tangent
cone of M at any such point X .

We also note here that if the hypotheses are as in Theorem 4, then the
proof of Theorem 4 shows that (7.2) holds uniformly for X € singM N
B p(XO) for suitable p > 0, and it is standard that this implies there is a
C'*® diffeomorphism of B, ,,(X,) onto itself which takes 3 N B, ,(X,)
onto B, 20N c,

Finally we want to point out that all of the above extends in a straight-
forward manner to a Riemannian setting. Indeed in view of the Nash

embedding theorem it is enough to consider classes .# as in §1, except
that in place of (1.1) we have

(1.1") /Mdide>=/M<I>-HM

for some function H,, satisfying supy, |Hy,| < A, , where A,  is a
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constant. Then in place of (1.5) we have that

e—CAMp

-1
(0,0") "2 (M 1 B,(X))

is an increasing function of X so long as Bp(X ) € U,,, and the )
estimates of §3 generalize to this setting with “error term” CA,, on the
right (or with CA,, on the right in case of estimates taken over the ball
B, rather than B,). Then the proof of Lemma 1 easily generalizes to the

case when (1.1') is assumed with A, <& S in place of (1.1), provided
J

2 /2 . 2,1/2 -
we use B, = (fMjnB, d; + CAMj) /2" in place of (fM,-”BI d;) /2 in that
argument. Then we can conclude that if the hypotheses are as in Lemma
1, except that (1.1') is assumed in place of (1.1), and if A, < g, then

either alternative (i) of Lemma 1 holds, or there is C € %Veo (C(O)) such

that
/ dist?(x, €) < C6° ( / dist?(X, C) +AM) .
MnB, MnB,

The reader should keep in mind that all elements of Z;(C(O)) (and all
elements of Tan, M) still satisfy (1.1), at least away from the singular
axis {0} xR™.

~ Of course once this modified version of Lemma 1 has been proved, then
the proof of Theorem 1 carries over; the proof merely needs to be modified
to allow additional terms like CoA M2_2' on the right side of inequalities
like those in (3) and (4) of the proof of Theorem 1. The reader can easily
check that this makes no essential difference to the argument. Then the
proofs of Theorems 2, 2', 3, 4 and their corollaries carry over with the
same proofs as before. Thus in conclusion we have:

7.4. Theorem. Theorems 2, 2', 3, 4 are all valid in case the class
M consists of submanifolds M satisfying (1.1') in place of (1.1). In
particular, mod 2 minimizing currents T in any complete Riemannian
manifold have interior singular sets as in Corollary 1 of §1.
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