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CYLINDRICAL TANGENT CONES AND THE
SINGULAR SET OF MINIMAL SUBMANIFOLDS

LEON SIMON

The question of what can be said about the structure of the singular set
of minimal surfaces and the extrema of other geometric variational prob-
lems has remained largely open. Indeed, for minimal surfaces, apart from
various upper bounds on the possible dimension of the singular set (see,
e.g., [1], [5], [7], [8], [10], [13], [17], [19]), little has been known beyond
the work of Jean Taylor [22], [23] and Brian White [24], [25] concern-
ing mod p and " (M, ε, δ)" minimizing hypersurfaces, where the tangent
cones are of very special (and unvarying) type, and there are topological
obstructions to perturbing away the singularities.

Here we prove rectifiability and local finiteness of measure of the sin-
gular set for various classes of minimal submanifolds, including for the
first time cases where the tangent cones may have varying type and where
there is no topological obstruction to perturbing away the singularities. For
example we establish here (in Corollary 1 of §1) the (n - 2)-rectifiability
for the interior singular set of any mod 2 minimizing current of arbitrary
codimension, and local finiteness for the (n - 2)-dimensional measure of
the "top-dimensional" part of this singular set. Perhaps more importantly,
the work here produces some analytic machinery which seems to hold
promise for further developments.

The key result of the present work is a technical decay lemma, Lemma
1 of §1. This lemma says roughly that, if M c R"+ lies in a suitable
"multiplicity one class" J( of /i-dimensional minimal submanifolds c
Rn+k (described precisely in §1), and if M is close to C in a ball B

in a suitable L2 sense (made precise in Lemma 1), where C = Co x Rm

is a cylindrical cone having cross section Co satisfying an "integrability
condition" (see tt of § 1)> then either there is a significant "gap" in the part
of the singular set consisting of points X e B where the density ®m(X)
of M at X > the density θ c (0) of C at 0, or else there is a cylindrical
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cone C close to C such that the quantity p~n~2 JMnB dist2(X, C) decays

by a fixed factor as we reduce radius by a fixed factor.
While methods involving "improvement of excess" as in the second

alternative above are by now quite standard in regularity theory (see, e.g.,
[11, [2], [5], [6], [8], [13], [16], [17]), a result like Lemma 1 (which says
that either we get excess improvement or else there is a significant gap in
the singular set) has not, as far as we are aware, been previously utilized
in the study of geometric extrema. It seems likely that the same kind of
result could be usefully applied in various other contexts—certainly all the
main results here have analogues in the study of energy minimizing maps
between Riemannian manifolds M, N; these will be described in detail
in [21].

A direct consequence of Lemma 1 is the decomposition theorem (The-
orem 1 of §1) which says that, for suitable δ e (0, 1), under hypotheses
similar to those of Lemma 1, except that M should be suitably close to
C in B2p , we get a decomposition of the form

{XeBp:θM(X)>θc(0)} = SuT,

S c L, L an ra-dimensional embedded C l α manifold with vol(L) <
ωmpm, and T c \JjBp(Xj) for some family Bp{Xj) of balls with

Σ , = 1 pT < (1 — δ)pm The nature of this result suggests the possibility
of repeated iteration, starting at the second stage with a suitable scaling
and translation of M Π B {X.) in place of M Π B . Such an iteration

is indeed possible under the appropriate circumstances (the main point is
that one must be able to check the starting hypotheses at each new stage),
and the main theorem about the structure of the singular set (Theorem 2
of §1) is obtained in exactly this way.

Corollary 1 of Theorem 2 settles a well-known question about the rec-
tifiability of the singular set of mod 2 minimizing currents of arbitrary
dimension and codimension, and also establishes a local finiteness result
for the (n — 2)-dimensional measure of the singular set.

A second class of results is obtained when we are in a setting which
makes it possible to check that the first alternative of the technical lemma
above (i.e., the alternative that there can be a significant "gap" in the ap-
propriate part of the singular set) can be ruled out a-priori. This class of
results is given in Theorem 4 of § 1 and its corollaries. For example Corol-
lary 2 shows that the results in [22], [23] and [24], [25] relating to the
"top-dimensional part" of the singular set can be generalized to a station-
ary setting in arbitrary codimension. In Corollary 3 we also prove that if
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Xo is a singular point of density less than 2 for any ^-dimensional integral

varifold V which is stationary in an open subset U c Rn+k (k > 1 arbi-

trary), then there is p > 0 such that the singular set of V in B {Xo) is the

union of an embedded C 1 α manifold and a set of dimension < n - 2.
If n = 2, then we prove the more precise result that sing V is either a
properly embedded C l α Jordan arc, or else is a finite union of prop-
erly embedded locally C l α Jordan arcs of finite length, each with one
endpoint at XQ and one endpoint in dB (XQ). Of course all the above
results extend naturally to multiplicity one classes of minimal subman-
ifolds of an arbitrary complete Riemannian manifold; this extension is
briefly discussed in §7.

The proof of the main technical lemma (Lemma 1) is based on a variant
of the "blowup method", a technique going back to De Giorgi in his work
on area minimizing hypersurfaces, and first used in a context where "inte-
grability hypotheses" (like ft of §1) play a role by Allard and Almgren [4]
in their study of minimal submanifolds with isolated singularities. Crucial
among the new ingredients needed to make the blowup method work in
the present context of nonisolated singularities are the L2-estimates given
in §3. It is also necessary to take care of the analysis of the solutions of
the Jacobi field operator over cylindrical domains. This is somewhat more
subtle than the corresponding analysis for the case of isolated singularities,
and is discussed in §4.

The applicability of Theorem 1 to the analysis of the singular set of
a wider class of minimal submanifolds (e.g., to codimension 1 absolutely
minimizing currents) is limited by the "integrability hypotheses" ft of § 1
for the cross section of the tangent cylinder. Thus an important question
which remains to be settled is whether or not some version of Lemma 1 is
valid without this hypothesis.

1. Notation and statement of main theorems

k, /, m, n will denote fixed positive integers with n = / + m > 2.
n will be the dimension of the submanifolds which we study, k the codi-
mension, and / will be the "cross-sectional" dimension of the cylindrical
tangent cones, as described below.

BN(X) denotes the open ball with center X and radius p in RN

Bp(X)9 Bp will often be used as abbreviations for Bfk(X), Bn

p

+k(0)

respectively.
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ηγ will the denote the map X •-» p~ι(X - Y). Thus ηγ translates

Y to the origin and homotheties by a factor p~x.

βfj will denote j-dimensional Hausdorff measure.
Jί will denote a set of smooth ^-dimensional minimal submanifolds;

each M e Jί is assumed properly embedded in Rn+k in the sense that for
each X e M there is σ > 0 such that Λf nBσ(X) is a compact connected
embedded smooth submanifold with boundary contained in dBσ(X). We
also assume that for each M e Jί there is a corresponding open set
UM D M, such that <%*n(M n K) < oo for each M e Jί and each
compact Γ̂ c C/M, and such that M is stationary in UM in the sense
that

(1.1) /
JM

whenever Φ = (Φ 1 , , Φn+k): UM -> Rn+k is a C°° vector field with
compact support in UM. Here dμ denotes integration with respect to
ordinary ^-dimensional volume measure (i.e., ^-dimensional Hausdorff
measure) on M, and divM Φ is the "tangential divergence" of Φ relative
to M. Thus

n+k

7=1

where ex, , en+k is the standard basis for Rn*k, and VM denotes

tangential gradient operator on M, so that if / e C 1 (U) then VMf(X) =

P^gradj^+jt f(X)), with Pχ the orthogonal projection of Rn+k onto the

tangent space TχM for any Z G M.
We assume that the M £ Jί have no removable singularities: thus if

X e MnUM, and there is σ > 0 such that ~MC\Bσ{X) is a smooth compact
connected embedded minimal submanifold with boundary contained in
dBσ(X), then X e M. Subject to this agreement, the (interior) singular
set of M (relative to UM) is then defined by

(1.2) singM = UMΠM\M,

and the regular set regΛf is just M itself.
We assume here also that the class JK is closed under appropriate ho-

motheties, rigid motions, and weak limits—we shall call such a class a
"multiplicity one class"; more precisely, we assume the following:

1.3(a). M e i ^ ί o Άx^pM € J and q o ηx pUM = Uqoηχ ^M for

each X e UM, each p > 0, and each orthogonal transformation q of

Rn+k.
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1.3(b). If {Mj} c Jt, if U c Rn+k with U c t/M for all sufficiently

large 7, and s u p 7 > 1 ^ " I ( M / Π A") < 00 for each compact K c U, then

there is a subsequence Af./ and an M e Jί such that UM D U and

M, -> M in C/ in the sense that /M / f{X)dXn{X) -* fMf(X)dJ^n(X)

for any fixed continuous / : Rn+k -> R with compact support in U.
Notice that 1.3(b) is a strong restriction in that it precludes, in partic-

ular, the possibility of getting varifolds with multiplicity greater than one

on a set of positive measure as the varifold limit of a sequence M c Ji

with each UM D U for some fixed open U for this reason we refer to

such a class as a multiplicity 1 class.

1.4. Examples. In view of later applications, we should mention here
a couple of important classes Jΐ which satisfy the conditions imposed
above. One such class consists of the interior regular sets of the mod 2
minimizing currents described as follows: If T is an /i-dimensional lo-

n-\-Ic

cally rectifiable multiplicity 1 current in R , if spt2 d T denotes the
mod 2 support of d T, if T is mod 2 minimizing in Rn+k (in the sense
that for each bounded open U c Rn+k the mass of T L U is < the
mass of S L U for any multiplicity 1 current S such that support of
T - S is a compact subset of U and such that T - S has zero mod 2
boundary in U), and if reg2 T is the mod 2 regular set of T defined in
the usual way as the set of all X e spt T\ sρt2 d T such that T is mod 2
equivalent in a neighborhood of X to multiplicity one integration over
a smooth properly embedded ^-dimensional submanifold containing X,
then the collection ^ of all such sets M = reg2 T is a class ^# satisfying
all the conditions imposed above, provided we take UM = Rn+k\ spt2 d T.
Indeed by the Allard theorem sptΓ\(regΓ u spt 2dΓ) has ^"-measure
zero, and it follows that M = reg2 T satisfies (1.1), and, using the nota-
tion introduced above in our discussion of the general class Jf, we have
singΛf = spt Γ\(reg T U spt2 dT), which coincides with the usual defini-
tion of the (interior) singular set of such mod 2 minimizing currents T.
The property 1.3(b) (plus an existence theory) is true by the compactness
theorem for flat chains mod p (see, e.g. [11] or [9]).

Another such class is the collection ^ = {reg3 T} of the interior reg-
ular sets of ^-dimensional multiplicity 1 currents T which are mod 3
minimizing in Rn+k (defined analogously to the mod 2 case); if M =
reg 3Γ then M satisfies (1.1) with UM = Rn+k\spt3dT, and singM =
sptΓ\(regΓ u spt3<9Γ). Again the property 1.3(b) (plus an existence
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theory) is true by the compactness theorem for flat chains mod p .
Notice that these classes 5^, ^ have dim sing M < (n - 2), (n - 1 )

respectively by [10], [6].
A third class which has the form of Jί above is the collection &~ of all

submanifolds M of the form M = reg Γ, where T is an ^-dimensional
orientated boundary of least area in some open U = Uτ c R , in the
usual sense that T = <9[[K]] in U (in the sense of currents) for some
measurable V c U and T L U has mass < than the mass of S L U, for
any multiplicity 1 locally rectifiable current S in RΛ+fc with support S-T
equal to a compact subset of U and with d(S-T) = 0 in {/. In this case,
with M = regΓ, we take UM = U, singM = t/ΓΊspt Γ\(regΓ(JsptdΓ),
and the singular set satisfies dim sing M\ sptdT < n - 7 (see, e.g., [10] or
[19] or [13]). The property 1.3(b) in this case is discussed in, e.g., [9], [13]
or [19].

For the first class mentioned above (i.e., ^ ) , Theorem 2 implies count-
able (n - 2)-rectifiability for sing A/ and a local finiteness result for the
(w-2)-dimensional measure of measure singM in Corollary 1 of §1. (See
the precise statement in Corollary 3.) Corollary 2 gives information about
the singular set of the class ^ , and analogous classes of stationary sur-
faces, in the case n = 2. Application to the third class & (the absolutely
minimizing multiplicity one currents) is hampered by the integrability hy-
pothesis XX.

We briefly need to recall here some basic properties of minimal sub-
manifolds in the context of our general class Jί. First recall that, by the
monotonicity formula, for each M ^Jί,

(1.5) p~nJ^n(MnBp(X))

is increasing as a function of p so long as B (X) c UM, and hence in
particular the density

ΘU(X) = hm / ,
M Pio ωnp

n

where ωn is the volume of the unit ball in RΛ , exists and is upper semi-
continuous on UM . Notice that then M n UM is just the set of points
X eUM with ΘM(X) > 1, and, by (1.5),

(1.6) βrn(MnBp(X))>ωHpn

9 X e M, Bp(X) c UM.

This shows that ^"(singM) = 0 for each M e Jf, because by
measure theory (e.g., [19, Theorem 3.5] or [9]) we know that
lim ι o / ? " T ( M Π ί (X)) = 0 for ^"-a.e. X € UM\M. If we use
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the Allard regularity theorem [1], we get the additional fact that M co-
incides precisely with the set of X e UM with ΘM(X) = 1 in fact the
Allard theorem guarantees that there is α 0 = ao(n, k) > 0 such that

M = {X e UM : 0 < ΘM(X) < 1 + α 0 } ,
( ' smgM = {XeUM:θM(X)>l+a0}.

Also, by a simple compactness argument based on (1.3), (1.7), and (1.5), it
is straightforward to check the following: For each Λ > 0, there
is β = β{J?,A) > 0 such that if M e ^f, p > 0, Bp c UM,

^n(MnBp) < Λ, MΓ\B3p/4 φ 0 , and p'n~2 JMnBβ dist2(X, P) < β

for some ^-dimensional subspace P c Rn+k, then there is a C2-map
u: PPi B3p/4 -• P± such that

M Π Bp/2 c graph uc M,

( 1 # 8 ) /Γ 2 sup \u\2 + sup |VM| 2 < C/?"""2 ί dist2(X, P) dμ.
p

Another important general fact (see, e.g., [1], [19]) concerns tangent
cones: if M e Jί and X e M n UM, and if Pj [ 0, then there is a
subsequence p > such that ηx p ,M tends in the sense of 1.3(b) to a cone

C € Λf with vertex at 0. Thus Uc = R"+/: and ηQ λC = C for every
A > 0. The set of all such C is denoted subsequently by Tan χ M notice
that Tan^ M is a singleton set containing just the classical tangent plane
of M at I if I G M , but that it is far from obvious (and an open
question) whether or not Tan χ M can contain more than one cone C if
X € singM. We note also that ΘM(X) = θ c (0) for each C e T a n ^ M ,
again by (1.5) and 1.3(b).

An important property of θ c for cones C G / (i.e., elements C G /
with ηOλC = C VA>0) is that

(1.9) S{C) Ξ { 7 G Rn+k : ΘC(Y) = θ c (0)} is a linear subspace of Rn+k .

(Notice of course that by upper semicontinuity of θ c , it is automatic that

θ c ( 7 ) < θ c (0) for every Y e Rn+k .) (1.9) follows from the fact that, by
a standard argument based on the monotonicity formula (see [1] or [19]),
if Y e S{C) then C is also a cone with vertex at Y, so in particular
θ c ( 7 + λX) = ΘC(Y + X) for each X e Rn+k and each A > 0. Thus for
any A > 0, any X e Rn+k , and any Y e S(C), we have

ΘC(ΛΓ) = θc(λx) = θ c (y + λx - Y) = ΘC(Y + λ~2(λx -

= θ c ( λ Y + A " 1 ( A X - Y)) = Θ C ( X + { λ - λ *
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so that ΘC(X + tY) = ΘC(X) for every ί e R , X e Rn+k and every
Y e S(C), and the fact that S(C) is a linear subspace follows directly
from this. Of course (for example by (1.7) with M = C), it is then
automatic that C is actually invariant under translations by elements of
S(C), so that

(13') rlγ,λC = C VYtS(C), λ>0

Since Jt is a multiplicity 1 class (so that in particular 1.3(b) holds and
each C e Tan^Λf must be multiplicity 1—in fact it lies in J(), using
(1.8) we easily check that the following alternative characterization of M
holds:

(1.7') M = {X eUΓιM:3Ce Tan χ M with dimS(C) = n).

Of course dim5(C) = n means precisely that C is an n-dimensional
subspace of Rn+k—in fact just the classical tangent space of M at X
once it is established that X e M.

We shall also need the following useful "stratification of singM by
tangent cone type", which is a direct modification of [7, 2.28] to the present
context. Namely, if

j = {Xe singM : dimS(C) < j VC e Tan^ M}9 j = 0, , n - 1,

then

Hausdorff dimension of S"AM) < j , j = 0, 1, , n - 1,

S^(M) Π {X: ΘM{X) = a) is discrete for each a.

To prove the first part of (1.10) for j = 0, 1, , n - 1, we first note
that, by (1.5), (1.9), and the definition of ^(M), for each X e ^(M)

and each δ > 0 there is an integer μ = μ(X, δ, M) > (dist(X, dUM))~ι

such that, whenever σ e (0, l/μ), ηχ σ{Y e Bσ{X) : ΘM{Y) > ΘM(X) -
l/μ} (= {Y e Bχ : θηχ^M(Y) > θηχ y θ ) - l/μ}) is contained in
the ^-neighborhood of some 7-dimensional subspace Lχ σ (depending
on X, σ). With δ > 0 arbitrary (and fixed), let

i Λ ^ : μ(X,δ,λί) = i},

and for q > i let

& j i q = {Jξ &.t.: ΘM(X) e [{q - l)/i, q/i)}.

Notice that then for any given l e ^ . j ? we have
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and hence, for each σ > 0,

which is contained in the (5-neighborhood of the 7-dimensional subspace
Lχ σ (as above) for each σ e (0, 1//).

On the other hand, a simple iterative argument using the definition
of Hausdorff measure shows directly that if A is any subset of Rn+

and if for each X € A there is some σQ = σo(X) > 0 such that
ηχ σ{AΓ\ Bσ(X)) is contained in the ^-neighborhood of some 7-dimen-

sional subspace of R , depending on I , ( j whenever X e A and

σ < σ0, then ^J+υ{0)(A) = 0 for some θ (δ) depending only o n ί , « , i f c ,
with θ(δ) I 0 as δ | 0. Since each S?. . q has such a property (as proved

above), this shows < r ' + w ( ^ . ) = ^ ; < ? ' w ( U / > i U , > / ^ ,/,,) = 0 for ev-
ery 5 > 0, thus completing the proof of (1.10) for j = 1, , n - 1.

The fact that S^Π {X: QM(X) = a} is discrete is easier: if not, we
get Xo e S"o such that X. -• Xo for some sequence {Xy} c <5*\{X0}
with ΘΛ/(X/) = αV/. Using 1.3(b) to take a convergent subsequence of
ΆY \Y -Y \M, and using (1.7) we then get C E TanF M such that singCΠ

Λ0 ' \Λ0 Λj\ Λ0

sn+k-\ ^ 0 ^ c o n t r a d i c t i n g t h e f a c t t h a t χoeS^o.

From now on, C ( 0 ) e J( will denote a cylinder of the form C ( 0 ) =

Cj0) x Rm , where C ^ is stationary in R/+* and singC^ = {0} . We also

let Σ o = C ^ Π S ^ ^ " 1 , so that Σ o is a smooth compact (/- l)-dimensional

submanifold of Sl+k~ι if / > 2 and a finite set of points if / = 1.

The following classes will be referred to frequently in what follows:

1.11. Definition. ^ ( C ( o ) ) is the set of all M e / (where Jt satisfies

all conditions discussed above, including (1.2), (1.3)) such that UM D

* i > SMΠB, dist2(;r, C(o)) + / c (o) n 5 i dist2(X, M) and #
,

Remarks. (1) Using (1.5), the compactness 1.3(b), and (1.8) (applied
to translations and homotheties of M) it is easy to check that there is
σ: (0, 1) -» (0, 00), depending only on ^# and C ( 0 ) , with σ(e) | 0 as
ε i 0 and such that

M e yΓ(C(0)) =* \β?n{M Π Bp) - β?n{Cm nBp)\< σ(ε)pn

for σ(ε) < p < 1 - σ(ε).
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(2) For given ε > 0 and any given M e Jt, if C ( 0 ) e Tan χ M then au-

tomatically ηχ M e ^ ( C ( 0 ) ) for some sequence of p., [ 0 this follows

directly from the definition of T a n ^ M , 1.5, and 1.3(b).

1.12. Definition, (i) gζ(C(0)) is the set of all cylinders of the form

C = Co x Rm c RM, where Co c *ι(C0) < 1 + ^\cf) is a cone

with singC0 = {0} , with Σ Ξ C 0 Π Sί+k~ι smooth and compact for / > 2

and a finite set of points for / = 1, with Co stationary in R/+/:\{0},
7 ' J ^ and

, C(0)) + / dist 2 (*, C) < ε 2 .
J { 0 )

/ ( , ) /
JCΠB1 Jc{0)ΠBι

(ii) i*(C ( 0 )) denotes the subset of the set of orthogonal transformations

of elements of ^ ( C ( 0 ) ) given by # ε(C ( 0 )) = {exp(A)C : C € ^ ε ( C ( 0 ) ) ,

A eS* and \A\ < ε} , where S? denotes the subspace of skew-symmetric

transformations of Rn+k spanned by the special skew-symmetric transfor-

m a t i o n s {x,y)^xieι+k+j-yjei, (x, y) e R ι + k χRm , i = l , . - ,/ + fc,

j = 1, , m.
Note. It is not assumed that ^ ( C ( o ) ) c Jt.

For any open Ω c C where C = Co x Rm e ^ ( C ( o ) for some e > 0),

we let C2(Ω Cx) denote the maps ueC2(Ω; Rn+k) such that u{x, y) G

(Γ(JC yf)1- for each (x, y) e Ω, and C 2 (Ω; C^) is defined analogously

for any open Ω c C o . Thus C 2(Ω; C±) is just the set of C2 sections of

the normal bundle over Ω c C, and C2(Ω Cj}") is the set of C2 sections

of the normal bundle over Ω c C o . Δ c and Δ c will be the usual (normal)

Laplacian operators on such normal sections. For u € C 2(Ω; C x ) we
define

graphw = {(x,y) + u{x,y) :(x,y)eC}.

We let βc, @c and note the minimal surface operators on C 2 (C; C±)

and C 2 (C 0 ; C^) respectively (i.e., the Euler-Lagrange operators for the
area functional of graphs of normal sections over domains in C and Co

respectively), and let -££,, S?c be the linearizations of £fc, &c at 0.

Thus using variables (JC , y) = (rω, y) e Rn x Rm , r = \x\, ω = \x\~ιx,

and letting Ay be the Laplacian Σj^id/dy*)2 in the y-variables, we have
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with

^ C o

υ - A C o

V +

 r2
 V

1 d ( ι-xd
T —

where <?(ω): (T(ύΣ)1' —> ( ^ Σ ) " 1 is the zero-order operator given by

(w, q(ω)(v)) = trace ̂ 4ω(w)* °^ω(^)> f o r anY v,w e (TωΣ)^, with

^4ω the second fundamental form of Σ (thought of as an operator from

(TωΣ) —• Hom(ΓωΣ, TωΣ) in the usual way). The operator ΔΣ + q(ω)

appearing here will henceforth be denoted Sfτ notice that J2^ is a self-

adjoint elliptic operator on the normal sections C 2 (Σ; CjJ") of the normal

bundle of the smooth compact submanifold Σ of Sn+ ~ι, so the eigen-

values of -oS^ form a sequence

λχ < λ2 < λ3 < < λk < , λk T oo,

and there is a corresponding complete orthonormal sequence of eigenfunc-
tions φχ, φ2, φ3, , φk, -•• (orthonormal with respect to the L2(Σ)-
norm).

There is an important method of generating solutions of the equation
<S^ v = 0, analogous to the method in Riemannian geometry of generating
Jacobi fields by taking the initial velocity vector of a one-parameter family
of geodesies, as follows:

Suppose {Mί}rte,ι JVJ is a one-parameter family of /-dimensional
l-\-lc

minimal submanifolds in R with MQ = C o , and suppose that, for small
enough t, Mt can be expressed as the graph, over a domain Ω, c C o ,
of a C2(Ωt Cj}") function ut thus u( is a smooth section of the normal
bundle of Co over Ω, and Mt = graph ut = {x + w (̂x) : x e Ω J . Sup-
pose also that ut(x) depends in a C 1 fashion jointly in (JC , t), and that
the Ωf engulf all of Co as \t\ 1 0 in the sense that U5>oΠo<|ί|<5Ω/ = c o
Let v be the initial velocity given by v = dut/dt\t=0. Then v satisfies
the equation 3?Q υ = 0 on all of C o . An important special case of this
general principle is as follows:

1.13. Example. Assume that the family {Mt} , satisfying the general
conditions imposed in the above discussion, is a family of minimal cones
{CJ all with singC, = {0} . In this case the initial velocity υ is a function
which is homogeneous of degree 1 in the variable r = \x\\ that is, v =
rφ(ω), where r = \x\ and ω = l x l " 1 * .
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Remark. Such families Ct can be obtained for example by rotations
of Co thus C, = (exp tA)C0, where A is any fixed nxn skew symmetric
matrix, gives such a family. In this case we get υ(r, ω) = r(Aω) , ω e
C o , where ( )"L means orthogonal projection onto (TωCQ)± .

In the main technical lemma, which we now state, we need an addi-
tional condition on CQ0) (like the "integrability condition" needed in [4])
as follows:

Every homogeneous degree 1 solution of *2?c(o)V = 0 is

generated, in the manner described in Example 1.13, by a
l-parameter family {Ct}^<{ of minimal cones, all station-

ary in R/+*\{0}, with singC, = {0} and Co = C^0).

We can now state the main technical lemma of the present paper; all the
main results about the structure of the singular set proved here are based
on this lemma. The proof of the lemma will be given in §5.

Lemma 1. Suppose that CQ0) satisfies ft. For any θ e (0, \), there are

δQ = δo(Cm ,θ), εo = ε o(C ( o ), Λf, 0) e (0, i) such that ifMeJ^(C(0))

and C G # ε ( C ( 0 ) ) , then either

(i)

Bδo(O,y) Π{XeBχ: ΘM(X) > θc ( 0 )(0)} = 0 for some y e £ * 2 ( 0 ) ,

or there is a C e ^γεQ(C{0)) such that

(ii) θ~n~2 ί dist 2(Z, C) < Cθa [ dist2(X, C),
JMΠBΘ JMΠB1

where C = C(C ( 0 ) ,Jt)>0,γ = γ(C{0), Jt, θ) > 1, and a = α(C ( 0 )

€ ( 0 , 1 ) .
1.14. Remark. For later reference we note that the alternative (i) not

holding implies

(**) {0} x {y e Rm : \y\ < ±} c B20Q({X : ΘM(X) > θc ( 0 )(0)}),

n*kwhere we use the notation that Bσ(S) = \JXeSBσ(X) for any S c Rn

and σ > 0.
Using Lemma 1 we will show in particular that the following "decom-

position theorem" follows directly:

Theorem 1. Suppose C^ satisfies i t . There are ε = e(JT, C ( 0 ) ), δQ =

δo(Jt, C ( o ) ), a = a{jry C(o)) e (0, 1) such that if M e Jt, UM D B2,
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and

^n(MΠB2) 2 f 2 (0) 2

β> w 2 JMΠBJO)

{X e 5j : ΘM(JQ > ΘC(O)(O)} = S U Γ,

vwίλ ScL, L a properly embedded m-dimensional Cι'a manifold with
β^m(L) < α ; , αm/ with T c\J:Bn (X) /or some family of balls Bo (X.)

m J Pj J Hj J

such that Σj P? ^ 1 ~ ^o *
The proof of this will be given in §5.
Our first main theorem about the singular set, which we now state, fol-

lows more or less directly by iteration of the above decomposition theorem,
as we show precisely in §6. In this theorem m denotes the maximum
among the positive integers m such that there is a cylindrical tangent
cone C o x R m G / . m is called the top dimension for the singular sets
of M e Jί using (1.10) it is easy to check that in fact

(1.15) m = max{dim singM : M e ^},

so the terminology is appropriate. Here and subsequently we also use the
notation

singα M = {X : θM(X) = a and 3 a cylindrical cone q(C0 x Rm) eTan^Λf}.

Theorem 2 (Main Structure Theorem). Suppose m is as in (IΛ5). Sup-
pose also that, for each cylindrical cone C ( 0 ) = CQ0) X Rm e Jί, the cross
section CQ0) satisfies the integrability condition \\. Then for each M e / ,
singM is countably m-rectifiable, and singαΛf has locally finite <%*m-
measurefor each a further any compact K c UM intersects singα M for
at most finitely many a.

Remarks. (1) singαM has locally finite ^""-measure in the usual
sense that for each X e singαM there is p = p(X) > 0 such that
^ m ( s i n g α M Π B (X)) < oo .

(2) Recall that by (1.10) singΛf\(|JαsingαM) c \JJJQ

ι S^.{M), and

hence has dimension <m-\ and is discrete for m = 1.

(3) Note that it is automatically true that singC^ c {0} if C^0) is

a cone and c£0) x Rm c Jt (because otherwise C^0) would contain a

whole ray of singular points and then c[>0) x Rw would have singular set

of dimensions at least m + 1, contradicting (1.15)), so it makes sense to

require that Cl0) satisfies \\.
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Actually we prove in §6 a slightly stronger theorem.

Theorem 2' . Suppose m is as in (IΛ5). Suppose also that a > \ is

given, and that all cylindrical cones C ( 0 ) = C^0)xRw e Jf with θ c ( 0 )(0) = a

are such that CQ0) satisfies \\. Then, for each M e J?, singα M is
countably m-rectifiable and there is an open Va D singα M such that Va n
{XeUM: ΘM(X) > a} has locally finite ^-measure in Va .

Remark. We show in (2.1) that, if m is as in (1.15), the set of possible
densities θ c (0) corresponding to cylindrical tangent cones C = C o x R m e
J£ is a discrete set, so this result clearly does imply Theorem 2.

An important point is that the troublesome integrability hypothesis \\
is automatically satisfied if m = n - I or m = n - 2. For example
if m = n - 2, then any cylindrical cone C = Co• x Rm e Jf has two-
dimensional cross section C o , so Co must consist of a finite union of
two-dimensional planes (J/li Pj > where each P. passes through the origin
and Pj Π Pj = {0} for / ψ j , since the only smooth connected compact

embedded one-dimensional minimal submanifolds of Sn+k~ι are the fi-
nite unions of pairwise disjoint great circles. Of course then the integra-
bility condition is trivially satisfied, because the Jacobi field opeator for
the plane P. is just the ordinary Laplacian acting on sections of the nor-

n-\-k

mal bundle over P.. Since such a plane P. c R has an orthonormal
basis of constant normal vectors η^ , , vtnϊk-i > ^ s t ^ i e n m e a n s that
the Jacobi field operator £?Γ on P. is just the ordinary Laplacian act-
ing on the components relative to these constant basis vectors. Thus the
homogeneous degree one solutions of Sec υ - 0 on P. are precisely the

restrictions to P of functions of the form ΣJ^X~
2 l\j)η{p , where the l\j)

are arbitrary linear functions of x = (xι, , x / + f c ). Any such solution is

easily seen to be generated (as in Example 1.13) by a family Ct = \J^=ι Pj],

where P^ = (cxptAj)Pj, with A. a skew-symmetric transformation of

Rι+k; thus we claim that Σ Ϊ Ϊ " 2 ^ ^ = i^j(x))± o n Pj f o Γ suitable

skew-symmetric A.\ Rί+k —• Rι+k. For example x —> xpη^ (for any

P € { 1 , ,l + k}, ί € { l , J + k-2}) isgivenby μ / x ) ) X on P.,

where A. is the skew-symmetric transformation x »-» xpη^ - x *$e ,

as one checks keeping in mind the fact that x η^ = 0 on P .
Likewise for m = n — 1 (when Co is simply a finite union of rays em-

anating from the origin), the integrability condition ft is easily checked.
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Thus we have the following corollary of Theorem 2'.

Theorem 3. If m is as in (1.15) and either m = n -2 or m = n - 1,
then for each M e Jί, sing M is countably m-rectifiable, and singα M
has locally finite %?m-measure for each a; in fact there is an open Va D
singαM such that VaΠ{X : ΘM(X) > a} has locally finite ^m-measure
in F .

Notice in particular that the class ^ of the regular sets of mod 2

minimizing currents in Rn+k (discussed in §1.4) have m = n - 2 (by

[10]) for any k > 2, and furthermore (by [14]) any cylindrical cone Co x

Rn~2 e ZΓ2 is such that Co consists of a union of a collection of j pairwise

mutually orthogonal 2-planes in R*+2 (any pair of which have only the
origin in common), where 2 < j < k/2 + 1. We therefore also conclude
from Theorem 2 the following:

Corollary 1. Suppose M is the interior regular set of a current T

which is mod 2 minimizing in Rn+k so that T is mod 2 minimizing

in the sense described in §1.4, and M = regΓ\spt<927\ Then singΛ/

(= Ή\{M U d2T)) is countably (n - 2)-rectifiable. Also, if Sj denotes the

set of all points X e singΛf such that Tan χ M contains a cylindrical cone

q(C0 x Rn~2) with q e SO(Rn+fc) and Co a union of j pairwise mutually

orthogonal 2-planes in R^+2, then dim(singΛf\(U2<7<A:/2+i^)) - n ~~ 3
for n > 4, singΛf\(U2<y.<A:,2+1 Sj) is discrete for n = 3, and Sj has

locally finite βΓn~ -measure for each j .

Remark. Notice that Theorem 2' actually implies the stronger result
that for each j there is an open V. D Sj such that singΛf n {X e V :

ΘM(X) > ;} has locally finite ^n~ 2-measure in V..

Finally we note one case where we can capitalize on the fact that the
first alternative of Lemma 1 always fails: This is the case if the following
hold: Xo e singM Π UM,

(1.16) ΘM(XO) = μ = min{θc(0) :C = C 0 x f α } ,

and C(0) = C{Q] χRm e TanXo M is such that the singularity 0 of C ^ n ^

cannot be perturbed away in B{ in such a way that the boundary Σo =
c(0) n sn+k-ι s h e l d fiχed; t h a t i s ? w h e n

there does not exist a smooth embedded compact l-dimen-
(1.17) sional manifold-with-boundary M c Bχ such that dM =
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Then we have

Theorem 4. Suppose m is as in (1.15). Suppose also that M e Jf,

C ( 0 ) = Cjo) xRm e Tan^ M satisfies ft, that θc«»(0) = μ, μ as in (1.16),

and that (1.17) holds. Then there is a p > 0 swc/* that Bp(X0) n singM w

an embedded m-dimensional Cι'Q manifold for some a = a{J?) e (0, 1).
Notice that both ίί and (1.17) trivially hold in case m = n-\ and Co

consists of an odd number p of rays emanating from C. Thus we arrive
at

Corollary 2. Suppose the m of{\Λ5) is equal to {n - 1). If M e

Jί, C ( o ) = C ^ x R G T a n ^ M wY/z C ^ consisting of an odd number

of rays emanating from 0, and (1.16) Λo/ώ, ίΛen there is p > 0 swc/z

ίλαf singM Π Bp(X0) is a properly embedded (n - \)-dimensional C 1 > α

manifold.

We also have the following corollary, which will be proved in §6.

Corollary 3. If V is an n-dimensional stationary integral varifold in

some open set U c Rn+k and Xo e U with 1 < ΘV(ZO) < 2, then

singVni? P(XQ) is the union of an embedded (n - l)-dimensional C 1 > β

manifold and a closed set of dimension <n-2. If n = 2 we have the more

precise conclusion that there is p > 0 such that either singVΠ Bp(XQ) is

a properly embedded CUa Jordan arc with endpoints in dBp(X0) or else

is a finite union of properly embedded locally Cι'a Jordan arcs of finite
length, each with one endpoint at Xo and one endpoint in dBp(XQ).

Remark. By a properly embedded locally C 1 α Jordan arc Γ we mean
a homeomorphic image of [0, 1] such that for each compact subarc K c Γ
not containing either of the endpoints of Γ there is a C ! ' α diffeomor-
phism of [0, 1] onto K.

2. Technical preliminaries

First we recall some important facts about the set of compact embedded
minimal submanifolds Σ of dimension / - 1 (/ > 2) which are C -close

to Σ o , Σo = C[,O) Π Sι+k~ι as in §1. For each ε0 > 0 let

{graph, nS M ~ l : u e C 2 ( C ; (cJV),

u(rω) = ru(ω)Vr > 0, ω e Σ o , M C 2 ( Σ o ) < ε 0 } ,
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*V = the compact embedded (/- l)-dimensional minimal

submanifolds e Sι+k~ι.

Notice that then, with &j® the Euler-Lagrange operator of the area func-

tional as in §1,

^ n ^ 1 } = {graphuf)S l+k~ l :

u e C2(C{^ ( c g V ) , u(rω) = ru(ω), \U\C2{ΣQ) < ε0,

Recall also (see, e.g., the discussion of [18]) that, for ε0 sufficiently small

(depending on C^0)), 2^Π^ ( 1 ) is a real-analytic variety in ^ ε

( 1 ) . Hence in

particular for suitably small ε0 > 0 ^ι~ι(Σ) = J^l~ι(Σ0) VΣ e ̂ n ^ ] ,

and

(2.1) θ£(O) = θc(o)(O) VC€^o(C ( O )) ,

where ε0 = εo(^ ( O )) > 0 Also, since <5̂ (o) is the linearization of Sφ ,

we have δ = δ(ε, C(0)) with ί ( e , C(0)) | 0 as ε | 0 such that if ε < ε0

then

C e ζ(C(0)) *Cn{(x,y)eBι: \x\ > δ\y\} = graph ψ,

where ψ e C 2 (Ω; (C^)^) with {(x9y) e C ( 0 ) : |JC| > δ\y\} c Ω c C ( 0 ) ,
and by Definition 1.12(ii),

(2.2) ψ{x,y) = Σy rliet+r<P(ω)+R(x>y)> r = \x\> ω=\x\~lχ,

for some η. e R m , φ e C 2 (Σ 0 ; (C^)" 1 ) , with |j/.| < Cε, sup|^ | < Cε,

X ( θ ) ( r p ( ω ) ) = 0 , Γι\R\ + \VR\ < Cε2 forr>δ, C = C(C{0)). O f

course subject to the integrability condition f{ the possible rφ{ω) which

appear here account for all homogeneous degree 1 solutions v = rφ(ω)

of -2̂ (0)?; = 0, and the additional terms Σ ^ fy ^ J 1 are generated as in

Example 1.13 by rotations exp(L4), A e S?, S? as in Definition 1.12(ii).

Using (1.8), it then directly follows that if (ft) holds, if M. e ^ (C ( 0 ) ), if

C. € ^ . (C ( 0 ) ) , where εj [ 0, if / ^ ^ dist2(X, C ;) < β), where ^. I 0,

and if ^ € R m , q = 1, ••• , / + fc, 9) € C 2 (Σ 0 ; (C ( 0 ) ) x ) with ^(rφ) =
0 and \η \ 4- sup|^| < AT, then for some subsequence {/} c {j} we can
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find C; G &yβ (C ) (γ = γ(C{0), K) fixed) and <?., τ f I 0 such that

Mj n {(* ,y)eBι : \x\ > δj = graph ut = graph ύi,

where w € C2(Ω. C f ) , fi. € C2(Ω. Cf) with {X = (x, y) G C z : |JC| >

τ } c Ω. c Cz., {X = (x, y) e C : |JC| > τ f} c Ω̂ . c C and

fij\ut{{x, y) + ^ ( x , y)) - w,((x, y) + ^ ( x , y)))

7=1

on {(x,y) G C ( 0 ) n ΰ 3 / 4 : |JC| > τ j , where sup|/S2 | -> 0 and ^., ^

correspond to ^ of (2.2) with C z , C. respectively in place of C.

In the following lemma, we let 3f denote the set of cones C G / with
vertex at 0 thus CeJ? means C e / and η0 λC = C fpr each λ > 0.
Then we have:

2.4. Lemma. Let K > a> 1 be given. There are δ: (0, 1) -+ (0, 1)
and R: (0, 1) -• (2, oo) {depending on K,Jί) such that if ε e {0, I),
M e / , UM D BR{ε)(0), 0 G singΛf, and

^n(MnBm)/ωnR(ε)n-a<δ(ε),

then Xχ G {X G 5, : ΘM(JΓ) > α} /mp/iβs the following hold:

(i) 0 < ( ω / ) " ι / " ( M n ί / , ( I 1 ) ) - α < δ 2 Jbr α// /? < R(ε) - 1.

(ii) There i ί C e l MCA ίΛαί |θc(0) - α| < ε2 and

Jηv

d i s t 2 ( X , C ) < e 2 , pe(O,l],

andy if m is as in (1.15), ./or all p G (0, 1]

(iii) β/YΛβr ίΛ r̂̂  w α cylindrical cone C = <?(C0 x Rm) G

|θ c (0) - α| < ε2

•/wv

d i s t 2 ( X , C ) < £ 2 ,

or
{X e 5 , : θ n M (X) > a} c {X : dist(X, /ί) < ε}

for some (m - \)-dimensional subspace H of Rn+k . (We emphasize that
C and H depend on p here.)
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Proof, (i) and (ii) are both easy consequences of (1.5) and the com-
pactness 1.3(b) of Jί. (See, e.g., [1] or [19] for similar arguments.)

To prove (iii) we note the contrary implies that for some fixed ε e (0, 1)
there are sequences p. e (0, 1], α^, δ): j 0, R. T oo, M. e Jί with
1 + a0 < OL} < K (α0 as in (1.7)) and UM D BR , and a sequence

Xj G Bχ with ΘM (Xj) > ctj such that, with M. = ηχ pM.,

(1) 0 < ̂ \M. Π BR)lωnR] - a. <δp

(2) I dist2(X,C)>ε2 or |θc(0) - α,| > ε2,

JMpBλ

for every cylindrical cone C = #(C0 x Rm) e JΓ, and

(3) {XeB{: ΘS{X) > <*j} £ {X : dist(X, H) < ε}

for all (m - l)-dimensional subspaces H c Rn+k . By (iii) there are cor-

responding cones C(7) e <%? such that

(4) ί d i s t 2 ( Z , C ω ) ^ 0 and θc(;)(0) - α, -* 0 asj-^oo,
JMJΠB2

 J

and by the compactness property 1.3(b) there are subsequences (still de-

noted Mj, C 0 ) ) and C, € 3? such that

(5) Mj-+C% i n 5 2 , C ω ̂  C+ in Rn+k

in the sense of 1.3(b). Also by (4) and (5) we obtain

(6) α ,θ^(0)^θc^(0),

and

(7) ί dist2(X,CJ-+0,
JM ΠB,fMjΠB2

and hence, by (2), C^ does not have the form q(C0 x Rm) e 3?. Then
(see the discussion preceding (1.10)) we have

for some {m - l)-dimensional subspace H c Rn+k. Then by (5), (6)
and the upper semicontinuity of densities (in the sense that θ c (7) >
l i m s u p θ - (Y;) for any sequence Y -> Y) we get

M. • J J

{X e B, : θ ~ (X) > cxj} c {X : dist(X, H) < ε}
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for all sufficiently large j , thus contradicting (3). Hence Lemma 2.4 is
proved.

Subsequently, we use the first variation formula (1.1) in a number of

places; in particular we shall need the following direct consequence of this

formula. (For general discussion of first variation, see [1], [19].) Here let

M E J ί with UMD B{, and for each X e M let (gιj) be the matrix of

the orthogonal projection of Rn+k onto the tangent space TχM of M at

Λf then (gιJ) is a symmetric (n + k) x {n + k) matrix with n eigenvalues

equal to 1 and k eigenvalues equal to zero, and Σj=i SlQSJq = gιj

Notice that thus the gradient operator VM appearing in (1.1) is given at

a point X = (x, y) e M by

l+k rv m rj
_Λf \ - ^ ijf v O ^ - ^ i+Jc+iJ O Λ Ί

Then by substituting Φ(X) = ψ2{x, y){x, 0), X = (x, y) e RM x Rm

Rπ + / c, into (1.1) directly, we get the identity

i, l+k+j x i ~

ΊXDylψ

for any ^ G C™{Bχ), where β7"ίf.fc+. is the orthogonal projection of eι+k+J.

onto {T{χy)M)1~ and (x, 0 ) x is the orthogonal projection of (x, 0) onto

\p 1 = 1 Q

* l+k+j * ό

and

l+k

since ^° = Σqtϊ SiQSiq for every /, j = 1, , n + A:. Notice that, by
using the above inequality in combination with the Cauchy inequality, we
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obtain

We now want to make some observations about the extent to which we

can initially take M e ^ ( C ( 0 ) ) to be represented graphically (via a normal

section over a region in a given cone C e ^ ( C ( 0 ) ) ) , and some initial L2

estimates for such normal sections.

2.6. Lemma. Suppose γ,β,τ e ( 0 , 1) are arbitrary with τ <

(1 - y)/10. There is ε0 = e o (C ( O ) ,Λf, γ, β, τ) e (0, 1] such that if

C = C o x R m € ^ ε o (C ( O ) ) α«rf M G ^ o ( C ( O ) ) , ^ / ι ί A ^ is an open

U c C f l ί j wYA /Â  properties

{x, y) e U => (x, y) e U whenever (x, y) eC with \x\ = |x |,

{(x,y)eCnBγ:\x\>τ}cU,

and such that there is a u e C2(U C±) with

MΠBγn{(x,y): \x\ > τ} c graph ucM, supr"ι|w| + sup|Vw| < β,

and

f r2+[ r2\Vu\2<cί d2, C = C(C{0\j?,γ,β);
JMΓ\By\ graph u JUΠBγ J MC\B{

note in particular that C is independent of τ . Here r(x,y) = \x\,

d(x,y) = dist((jt, y), C), (x,y) e RM x Rm.

Remark. Notice that by using the standard elliptic L2 estimates for
u we conclude from the above that

(r \ι/2

Hausdorff distance (M n BυΛe), C Π BxlΛe)) < C I / d2)
1 ' \JMΠB1 J

whenever e e Co x {0} with \e\ < 1/2.
/Voo/ Consider M e ^ o ( C ( O ) ) and C = Co x Rm e ^ o ( C ( O ) ) , where

for the moment ε0 > 0 is arbitrary. For each /c, p e (0, 1], ζ e Rm , let
7^ ^(ζ) be the torus defined by

/ + " M 2 Q2 < κ2(l-γ)2p2/4}.
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Let U be the union of all 7j ί | 1 / 2 (O n C over all (ζ, ζ) e C Π Bγ such

that there exists u^ ^ e C (Tj^ 3/4(C); C ) with

(2) Λ/n 7] ί | > 1 / 2 (C)c graph u{ξUζ CM

and

(3) Kf 1 sup K | { | + sup \Vu]ζlζ\<β/2.
C n r | < | i J / 4 ( C ) K I Λ C n r | i | i J / 4 ( C )

Let M € C2([/ Cx) be defined on 7^, _ ι/2(ζ) Π C by

(4) " l ^ ι > , / 2 ( O π c = M | ί U |Γ | ί | > 1 / 2 (C)nc.

By unique continuation of solutions of SQu = 0, (4) makes sense as a

definition and does give a C2(U C 1 ) function w. Notice also that since

M € J^ε (C(o)) it follows from (1.8) and 1.3(b) (see also the remark fol-

lowing Definition 1.11) that

{(x9y)eCnBγ:\x\>τ}cU

and
MnBγΠ{{x,y): \x\ > τ} c graph uc M

as required, provided that ε0 = εo(τ, γ, β, C ( 0 ) , Jt) is chosen sufficiently
small. Of course by definition we have

(5) 1

Furthermore, if (ξ, ζ) e C Π By n d U, then

(6) / rf^c"1^2!^2, c = c(c(0)

because otherwise by (1.8) we would have M... ζ as in (2), (3), thus contra-

dicting the fact that (ξ, ζ) eCnBγΠdU. (Notice that CΠ{0} xR m = 0 ,

so \ξ\ > 0 here.) Also, for such (ξ, ζ), since \ξ\ < τ < (1 - y)/10 and

Π 5j) < ̂ Λ ( C ( 0 ) ΠBJ + l by Definition 1.11, we have by (1.5)

(7) f r2<C\ξ\n+\ C = C(C(0)).
JUΠBιm(0,ζ)

But also |VK(JC, y)| < /? for (x, y) e U by (5), so (7) implies

(8) ί r2\Vu\2<Cβ2\ξ\n+\
JunBιm(0,ζ)
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with C = C(C(0) , / , y ) and then from (6) and (8) it follows that

(9) ί r2\Vu\2<cί d\ C
JunBιm(0,ζ) JMnTlξ]i(ζ)

whenever {ξ, ζ) e C Π Bγ Π d U. Since

{(*, y) e UDBγ: dist((x, y), Bγ ΠdU) < \\x\]

c U *2W(0,y)

and

by virtue of the "5-times covering lemma" ([9] or [19]) and (9) we obtain

(10) f r2\Vu\2<C ί d2.
J{(x,y)€UnB7 : disl{{x,y),BγndU)<ψ} JMnBi

But, for any (JC, y) € Bγn U with dist((x ,y),B γ ndU)> %\x\, from (3)

and the standard L2 elliptic estimates ([12]) it follows that

\u\\
JCnBp/2(x,y) JCnBp(x,y)

By covering the set

{(x, y) € U Π Bγ: dist((x, y), Bγ Π ΘU) > $\x\]

by a countable collection of such balls {Bp^2(x, j/)} in such a way that

the corresponding collection {B (x, y)} can be divided into C = C(C(0))
pairwise disjoint subcollections, we thus conclude that

/ M r2\Vu\2<C ί \u\
J{{x,y)€UnBr :άist{(x,y),BτndU)>iγ} JUΓ\Bί

I M r |VM| s <- / I"'2

( Π )

JλfnBt"I

where C = C(C ( 0 ), y).
Now again consider (£, η) € C Π By n 5 ί/. Then (6) and (7) imply that

/ r2<cf d2, C = C{C(ϋ), J?, β).
JλtnB,Λ,.,(0.C) JMnT,,, ΛC)lMnBιm(0,ζ) Jλfnτκuι(ζ)
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Note that, by (2), the union of M n Bm (0, ζ) over (ξ, ζ) e C n Bγ n d U

contains M n B \ graph w. Hence using the 5-times covering lemma as

before, we conclude that

(12) / r2<cf d\
JMΠBγ\G JMΠBι

The proof is now completed by adding (10), (11), and (12).
In the proof of the decomposition theorem (Theorem 1), we shall need

the following covering lemma, in which we use the notation that if Q =
ξ + I-P, P]m is a cube in Rm , then

e(Q) = the edge length of Q = 2p,

and

Q{N) = the TV-times enlargement of Q = ξ + [-Np, Npf .

Also, if (S is a collection of cubes, then

All cubes considered here are closed and will always have edges parallel to
the coordinate axes, unless otherwise explicitly indicated.

2.7. Lemma. Let δ = 1/2* for some integer N > 4, let QQ =
[-i> i Γ be the unit cube in R m , let F c Qo be arbitrary, and let &
be any collection of cubes of edge length < | such that F c \]Q^ Q >

Qe@ =>3a cube Qχ c Q with e(Qx) > Sδe(Q) andQ{nF = 0.

Then there is a collection β ofsubcubes of Qo such that

and

(ii) Q e Q =• 3Q e & with Q c Q{5) and -e(Q) < e(Q) < e(Q).

Proof For each j = 1, 2, ••• let ψ. be the collection of 2mj con-

gruent subcubes of edge length 2~j obtained by repeated subdivision of

the unit cube [^, \]m. Let ^ 0 = 0 and for each j > 1 let ^ . be the

collection of cubes in %?• which intersect at least one of the cubes in (§.,

where
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Notice that Pe&>.=* 3Pχ e &>j with

(1) PχΠPφ0 and Pχ D Qχ,

where Qχ is a cube contained in some Q e @ such that F n Qx = 0

and e{Qχ) > δ/2j. Now we define subcollections &. c &. as follows:

^ = 0 , and, assuming ^ , ••• , ^_x are already defined, let &. be

the collection of all P e &j which are not contained in U z<y(UP e^
 p)

Let ^ = U ^ i ^ Notice that U P 6 < ^ = \JPe<?> and that the cubes

in & have pairwise disjoint interiors. We divide each &. into three
subcollections:

*§. = those cubes P e SP. which contain a cube β j , where (as in (1))

Qχ is contained in some Q e &. and F Γ\Qχ = 0 , e(Qχ) > δ/2J,

^ . = those cubes P e i ^ \ ^ which are such that there is Pχ e ^ as

in (1), and

U ^ i / ? ^" = U ^ i ^ We claim that

U p{3) and U P c (3)

In fact the second inclusion is true by the definitions of SB and 9. To
prove the first inclusion, take a cube P. G ^ . Since % — 0 for the

J J *o

smallest /n such that £P. Φ 0 and any cube in a 2^ must intersect a

cube in ίP > for some q < q by virtue of property (1), by definition we

c a n find a s e q u e n c e {P. e &• } q = x ... ^ w i t h j = jχ > •-. > j N = j - i,

i > N - 1 > 1, P . . , €&. . U ̂  , P, Π P. ^ 0 and with P. G ^
— 7 —' J — l J — 1 Jq Jq+\ Jq Jq

for all q = 1, , N - 1. Notice that then the sum of the edge lengths

Σ^ΐe(Pj) is < ^Σ;:02-<?e(P,_,.) < e(Pj_t), so that P. c PJ%, thus

establishing the first inclusion of (2).

Now by (2) we have

e(P)m = Σ e(p)m + Σ <pϊm + Σ

3 m + 2.32m) Σ e(pf < l2m+l Σ
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On the other hand since each P e 2? contains a cube Qp of edge length

δ/2J = 2~{J+N) with Qp n F = 0 , by subdividing each of the cubes in

P G « ^ into 2~{N+ι)m congruent subcubes (each of edge length 2~N~J~ι),

we obtain a new collection & with

and

e(P)m > 2~(N+X)m Σ e(P)m

, PΠF=0

Thus if we let

then

Q€Q

and

(4) 2 e(P)m>(^yΣe(P)m>δ2m-lΣe(Q)m, by (3).

Since E ^ ^ Γ < 1, (4) gives

^ (l +δ2m~lΓl <l-δ2m.

Furthermore by construction each Q e β is contained in (?(5) for some

Q € S with 2~ ( i V + 2 )^(β) < e(Q) < e(Q), so the proof is complete.

3. zΛestimates

The main zΛestimates are as follows.

3 . 1 . T h e o r e m ( M a i n L 2 e s t i m a t e s ) . Suppose y , τ , α € ( 0 , 1) are

g i v e n . T h e r e a r e ε 0 = ε o ( C ( O )

 9 J t 9 γ , τ ) , β o = β o ( C { O ) ) € ( 0 , 1 ) s u c h t h a t

if e <ε0, C = C o x R w e ^ ε ( C ( 0 ) ) , M e ^ ( C ( 0 ) ) , and U, u are as

in Lemma 2.6 with β = β0, then the following inequalities hold for all
Z = (ζ,η)e B3/4 with ΘM(Z) > θc(o)(O):
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(i)

lMnBy\X-Z\"

JunBv

(ii) / \u(x,y)-ξ\x,y)\2

<cΓ ^

J{x=(χ,y)ecnBγ:\x\>τ} \X - Z\n+2~a " JMΠB1

where ξ±(x, y) means orthogonal projection of (ξ, 0) onto (TχC)±, and

C = C(γ, a, C ( 0 ) , Jί) > 0 is a positive constant not depending on τ

notice that ξ±(x, y) = Σyΐα &ef(χ»30 depends only on ω = \x\~ιx and

not on \x\ or y.
Before we prove the theorem we state and prove an important corollary.

3.2. Corollary. Let a,τ,δ e ( 0 , £) be given. There are εQ =

ε o (C ( O ) ,^ f , τ ) , β0 = βo{C{O)) e (0, 1) such that if C e ^ ε ( C ( 0 ) ) , Λ/ €

jVε{C ) with ε < min{ε 0, δ}, u is as in Lemma 2.6 with β = β0 and

γ = 1 f and hypothesis (**) of Remark 1.14 λtf/ώ w/ίA <J0 = δ, then

/{(^,>;)=(' ω,y)€Cn51/2 : r>τ} rδ

4a
MΠB1/2 rδ JMΠB1

where C = C(α, ̂ f, C ( 0 ) ), r̂  = max{r, δ} (= max{|x|, 5}), κ(x, y) =

Σ!jLkiKj(r,y)ef with Kj : (0, 1) x B?(0) -+ R satisfying sup|^. | 2 <

C fMnB d2, ana? e^(x9y) is the orthogonal projection of e. onto

d2

3.3. Remark. Notice that (ii) implies

f d2<Cδ'-a[
JMn{Bι

δ

+k xRm)ΠBι/2 JM^

with C independent of δ, so that the part of M Π Bχ.2 close to the

subspace {0} x Rm contributes little to fMnB d2 if the hypotheses of

Corollary 3.2 hold with δ small enough (depending only on C ( 0 ) , Jί).
Proof of Z 2. To prove (ii), note that (i) of Theorem 3.1 implies that

d2

MnBp(0,z)
< c f d\ p e ( δ , \ ) ,

JλfnBi
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for each z e B™2, because by (**) of Remark 1.14 for any such z we

have Z e {X : ΘM(X) > θc«»(0)} with \Z - (0, z)\ < δ. Since we

can cover Bι/2 Π iϊjjj x Rm by N < C(n,k)p~m balls Bp(0, Zj) with

\Zj\ < \ such that the collection {Bp(0, Zj)} decomposes into < C(n, k)

pairwise disjoint subcollections, this implies that

<cί
JM

d2<cί d2

and the required result (with 2a in place of a) follows by multiplying by

p~ι+a and integrating with respect to p.

To prove (i), for p e (δ, \) let B (0, z ) be the same cover as we used

above in the proof of (ii). By inequality (ii) of Theorem 3.1 for each j

we have ξ. = ({],-•-, ξ™) e Rm such that

r l+k r

(3) P I \u{rω,y)-y^ξjei\ <C d ,

where ΣΪJl(ξj)2 < CSMnB/ and Uτ = {(x,y) € C π ΰ 1 / 2 : |x| >

τ}. Thus if for each fixed (r,y) we let κ'(r,y) be selected so that

Σ'iL
k

i(κi(r,y))2<CSMnBιd
2 and

l+k p l+k

^ 2

~ l+k p l+k

/ \u{rω9y+)-^2κι(r9y)e^\2dω = iΩf \u(rω, y) - Y^λιef\2dω,

where the inf is over all λ e Rl+k with Σ ί = ? ( ^ ) 2 < C fMnB d2, and

Σ = C o Π 5 / + / c " 1 , then from (3) it follows that

(4) /
JuτΠBp(ΌtZj)..

Summing over y in (4) we thus get

l+k
'/ \ -L ι2 ^ ^ / i2r

/
| ( , y )

uτΠ(Bι

p

+^xRm)

and again the required inequality is obtained by multiplication by p~ + α

and integrating with respect to p.

Theorem 3.1 will be proved by combining the two Lemmas 3.4 and 3.9
below.

3.4. Lemma. Suppose α, γ9 τ e (0,1). There are ε0 = εo(C ( O ),^#, τ, y)

β0 = βo(C{O)) > 0 such that if C = C x R m e ^ ( C ( 0 ) ) , M e ( o )
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with ε < ε0, θ M (0) > θ c ( 0)(0), and U, u are as in Lemma 2.6 with
β = βo,then

I
JuunBγ \ a n / JMπBγ

<cί
JM

d\

where C = C(C{0) ,a,γ)f R = R(x, y) = \J\x\2 -h \y\2, (x, yγ~ means
orthogonal projection of the radial vector (x, y) onto the normal space
{T{Xyy)M)L ofM at (x,y),and d(X) = dist(X, C).

Proof. Recall (see, e.g., [1] or [19]) the following version of the mono-
tonicity identity for M € Jΐ namely, if M e Jt with UM D Bp, then

/ 1 λ n— 1 f τ>—n-2ι, \-L|2 d f ,—M nι2 ^ / n N n—1
(1) np I R \(x,y) \ = -?- I |V R\ -nθM(0)p

JMΠBP

 aP JMΠBP

^ n

p ) - \C{0)ΠBp\), a.e. pe(09l].

If ψ: R —• [0, 1] is a decreasing C 1 function with ψ = 1 on (-oo,
(1 + y)/2) and ψ = 0 on ((3 + y)/4, oo), by multiplication by ^2(/>) and
integration with respect to p this implies

C ψ\τ)τn-χ f R-n-2\(x,yf\2dτ < f ψ2(R) - f ψ
JO JMnBτ JMnB{ JC{0)nBι

Since ψ = 1 on [γ, (1 + γ)/2], this gives

(2) y-^f R—\χ,yf\2<[ Ψ\*)-L Ψ
1 JMΠB,, JMΠB, Jcf^ΠB,

2(R).

1 1
Now we use (2.5) with ψ = ψ(R), so that D iψ = x ψ /R and D iψ =

y ψ /R. Then (2.5) yields
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(3)

lψ(R)ψ'(R)

ij=x

<C \(χ, θf\2(ψf)2 - 2 / R-l

<C ί \(x,0)±\2(ψ2(R) + (ψ'(R))2)-2[ r2R-χψ{R)ψ\R\
JMnBγ JMΠB1

where (Λ:, 0 ) X means orthogonal projection of (x, 0) onto (Γ(jc y^M)1'
for any point (x, y) e M, and we use the fact that

l+k l+k

gijxixj = r 2

+ Σ (SU ~ tij)*'*? = r2- K*. 0 ) X ! 2

If (x,y) = (x', y) + W(A:', y) € G = graphw, then

(4) (x, 0)-1 = u{x',y) + (P(JC5);) - β ^ j X x , 0),

where P(Λ. j and β. / ̂ x denote respectively the orthogonal projection

onto (T^^M)1- and (Γ^ jC)" 1 . Since |Vιι| < 1, we have \\P{χy) -

β(jc',y)ll ^ C|VM(y, y)|, C = C(/i, fc), and hence from (3) and (4) it
follows that

/ (' + \ Σ i
(5) JMnB> \ U

+ C ί τ2-2 f r2R-lψ(R)ψ'(R),
JMΠB9\G JGΠB1GnB{

where G = graph u and γ = (3 + γ)/4. Now since Co is a smooth cone
with volume element rι~ιdrdω where dω denotes the volume element
of Σ, by a one-dimensional integration by parts we deduce that

rφ(r)φ'(r),

provided φ e C°°(0, oo) with φ = constant in a neighborhood of 0 and
φ = 0 in a neighborhood of oo. Using this with p(r) = ^(i?), i? =

+ |y|2 for each fixed y and then noting that φ{r) = r~ιψ'(R), after
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an integration with respect to y we conclude that

(6) / f ψ\R) = -2 / r2R~ιψ{R)ψ\R).
JCnBλ JCπBλ

We also need to note that the volume element of G is y/gr ~ dr dω,

where yfg = 1 + E, with \E\ < C(r~2\u\2 + |Vw|2), and that r, R at

a point (JC, y) 4- u(x9 y) e G are given by r2 = \x\2 + \u(x, y)\2 and

R2 = |JC|2 + |M(JC , y)\2 + |y|2 respectively. Thus for example

f r2R-lψ(R)ψ'(R)= ί

where r\ = \x\2 + \u(x, y)\2 and R2

u(x, y) = \x\2 + \u(x, y)\2 + |y | 2, and
by using (6) in (5), and keeping in mind that \u(x, y)\ < \x\ in U by
definition, we deduce that

r r

J+ Ψ\R)- Ψ
JMΠB1 JCΠBι

<C ί (|w|2 + r2|Vw|2) + C f

MΓ\Bγ ~

r2

'UnB. JMΠB?\G

and by (2) and Lemma 2.6 with γ in place of γ we obtain

Next we establish the required bound for fMnB R n 2+ad2 . First notice

that d: Rn+k -+ R, defined by d{X) = dist(X, C), is a homogeneous
degree 1 function of \X\ with Lipschitz constant < 1, as a function of
X = (x, y) is independent of the ^-variable, and is smooth in x in the
conical region

\ = {(x,y) G R"+/c\{0} x R m : dist(JT, C) < εo|;c|}

provided ε0 is small enough, depending only on C ( 0 ) . Thus we can easily

construct a smooth homogeneous degree 1 function d: Rn+k —• R with

d = d in the conical region Kε and with C~ιd{X) < d{X) < Cd(X)

and LipJ < C everywhere, where C = C(C ( 0 ) ).

Now in the identity (1.1) take Φ(X) = ζ2R~n+ad2X/R2, where ζ e

C°°(Rn+k) with ζ = 1 on B{ι+γ)/2, ζ = 0 outside B{, and |VR"+"ci < C,
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C = C(γ). Notice that d2/R2 is smooth and homogeneous degree zero
away from the singular axis {0} x Rm , and hence

n+k ?2

w ΣA4=°
; = I

 R

Of course since Lip d < C and d < CR we also have

(9) \vr+"d/R\ <2C/R.

Since div^ X = n and \VMR\ < |VR"+ R\ < 1, (1.1) in combination with
(8) implies

a L s ζ2R~n-"-2+ad2

and by Cauchy's inequality and (9) this yields

f R-"-2+ad2 < C ί (ζ2R-"-2+a\(x,y)±\2 + R-"+ad2\VMζ\2),
JMnBγ JMΠBy

with C = C(C ( 0 ) , a). Using (7) with (1 + γ)/2 in place of γ, we then
have the required inequality.

It remains only to prove the bound

do, / (^)
UΠBγ \ ϋ K / JMΓ\B1

This is proved as follows. First we note that the expression (x, y) ap-
pearing in the inequality (7) can be written on graph u as {x+ u(x, y), y)"L,
where x denotes the nearest point projection of x onto Co . Now with
R = \{xf ,y)\ a n d Φ(x,y) = (x,y) = {x + u{x ,y),y) w e s e e t h a t , b e -

cause Φ maps C into M, we must have dΦ(χf, y)/dR e T,χ y)M, and

hence {d(Φ(x , y)/R)/dR)± is the same as -R~2(x, y)1". But on the
other hand, since R~ι(χf, y) is homogeneous of degree zero with respect
to R, the expression d{Φ(x , y)/R)dR is just d{u{x , y)/R)/dR, and
hence we obtain the identity
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However, u(x , y) is n o r m a l t o C at (x, y), a n d \\P{Xiy) - Q{x'>y)\\ <

provided β0 = βo(C{O)) is sufficiently small where P{x^y), Q(x^y

are as in (4). Thus

( i i ) \(χ,yf\ >\
u{x'9y)

ΘR y R
and the remaining inequality (10) follows from (7) and (11).

In the following lemma we are going to consider a point Z + (ξ, η) e

singΛf n B3,4, where M G Λ^(C ( 0 )). Notice that then by Lemma 2.6 we

have \ξ\ = dist(Z, {0} χRm)<δ, with δ = δ(ε, C(0)) -+ 0 as e j 0. If

we take suitable ε0 = ε 0(C ( 0 )), θ = 0(C(O)) 6 (0, 1), and if C = Co x Rm e

g;o(C(O)) and X = (x, y) e Rn+k with |x| > θ~\\ξ\+d(X)), then

(3.5) d i s t ( X , τ z C ) = \(x, y)-(x , y)-ξ±\+R,

where x' is the nearest point projection of x onto C o , τ z the translation

Xt-+X-Z, ξ± is the orthogonal projection of ({, 0) onto (T{χ,)0)C)± ,

and

(3.6) |Λ| < q x f 1 | ί | 2 , C = C(C ( 0 ) ).

Since | ( x , y ) - ( x ' , > ; ) | = dist(X,C),

(3.7) I dist(X, τ z C ) | > 1^1 - dist(X, C) - \R\.

Notice also that by the triangle inequality,

(3.8) I dist(X, τ z C) - dist(X, C)| < | ί |

for all X e Rn+fc , because τ z C = τ κ > 0 ) C .

3.9. Lemma. There is ε0 = εo(C ( o )

 9Jt)>0 such that ifC = CQxRme

&ε{C{0)) and ¥ ^ ( C ( 0 ) ) with ε<ε0, then for any Z e singM n ί 1 / 2

with Θ M (Z) > θc(0)(0) we have the inequality

dist2(Z , { 0 } χ f ) + ί d\<C ί d2, C = C(C(0), Jt),

έ/z(JΓ) Ξ dist(Z, τ z C), wzϊΛ τ z ί/ẑ  translation X ^ X -Z .
z

Proofof3.9. Since M e ^ (C(0)) and the cross section C^0) has only

the isolated singularity at 0, we must have a constant δχ (C ( 0 ) , ^f) such
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that for every a e Rι+k , p e (0, \) and Z e singΛf n i? 1 / 2 , there exists

εo = εo(/?,C(o)) so that

(1) \a \>δχ\a\ on a set of measure > δχp
n in M Γ\Bp(Z);

here, as in (3.5), a±(X) is the orthogonal projection of a onto (7yC0)

for X = (x,y) e MΠ Bχ with |JC| > Cd{X). Indeed if no such ^

exists we would have (1) failing with δ = j ~ ι and with sequences a €

SM~l, εj I 0, Mj9 Cj e ^ . ( C ( o ) ) , Zj in place of a, e0, M, C and

Z respectively. Thus lα^l < j"ι\dj\ except on a set of measure < j~xpn

in MjΓ\Bp(Zj). After passing to a subsequence we have a- —• α € S +

which together with Lemma 2.6 shows that Z. —> (0, z) for some z with

|z| < j . Then from 1.3(b) and Lemma 2.6 it follows that a± = 0 on CQ0) ,

where α " 1 ^ , y) denotes the orthogonal projection of a onto (Γ(jc ^ C ^ ) " 1

for {x,y) e C ( 0 ) . But this would imply that C ^ is invariant under

translations in the direction a, contradicting the fact that singC^ = {0} .

Thus (1) is established. We use (1) with a = ξ, where Z = (ξ, η) is as

in the statement of the lemma.
With p0 e (0, i) and ε0 = eo{po, C ( 0 ) , JF) > 0 sufficiently small, (1)

with p = p0 yields

\ξx\2<cf
MnBpg(Z)

with θ = 0(C(O)) e (0, 1). Thus by (1.5), (3.6), and (3.7) we have

f d2

MnBi

(2) \ξ\2pn

0<cί d2

z + Cp-2\ξ\4 + C f d2

JMnBp((Z) JMnBi

But by applying Lemma 3.4 with ηz χ.2M in place of M and using (3.8)
we obtain

(3) A, / dz<C I dz<C d + C\ξ\ .
MΠBPQ{Z)

Notice that here C = C(C ( 0 ) , Jί) does not depend on p0 . Thus combin-
ing (2) and (3) yields

(4)

\ξ\2pn

0 <2C f d2 + C(pn

0

+2-a + p-2\ξ\2)\ξ\2, C = C(C ( 0 ) , Jt).
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Since by Lemma 2.6 (see the discussion preceding the lemma) we know
already that

lίl < δ(eQ9 C ( 0 ) , Jt)9 with δ{ε, C ( 0 ) , Jt) j 0 as ε [ 0,

by choosing p0 suitably small (depending on C ( 0 ) , Jt) from (4) it follows
that

\ζ\2<cj^d2

provided ε0 = ε o (C ( O ) , Jί) is sufficiently small, and by (3.8) we also have

< l ί d2 + C\ξ\2.

The required inequalities are thus proved.

d \ \
MΠBι JMΠB1

Proof of Theorem 3.1. First select Z = (ξ, η) e B3/4 with ΘM{Z) >

θc(0)(0). Note that by Lemma 3.9 we have

(1) |£ | 2 = dist 2(Z, {0} x Rm) < C / d2, C = C(C ( 0 ) ,
JMΠBι

Also, by applying Lemma 3.4 to ηz ι/4M, and using (3.8), we obtain

(2) ί ^z < C ί d1

JMnBl/4(Z) \X-Z\n+2~a ~ JMΠB, '

where dz(X) = dist(^Γ, τ z C ) , τ z as in (3.5). Of course this implies

ί dKί K-a<cf d\
MΠBι/4(Z) \X - Z\ JMΠBι

and since dz(X) < d{X) + \ξ\ by (3.8), this together with (1) gives that

(3) / d ' < C ί d\
JMΠBιμ(Z) \X - Z\ JMΠBι

/ C ί
MΠBιμ(Z) \X - Z\ JMΠBι

Next we prove the last inequality in Theorem 3.1. Notice that by (3.5)

and (3.6) we have

dz((x, y) + u(x, y)) = \u(x,y)-ξ±\ + R,

where \R\ < τ~ιC\ξ\2 for (x,y)eUτ, and hence (2) implies

f
Ju

\u(x,y)-ξ

'τΠB1/4(Z) \X~Z\

±\2

\"+2-°\X-Z\n+Δ~a
 JMΠB,

d2.
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Since \X - Z\ > τ in Uτ, assuming (as we may) that ε0 < τ 2 , we thus
deduce

τ~2ia4 ί 1 „ < τ~4\ξ\4 f < C\ξ\2

JuτnBυ4(Z) \X - Z\ JCΠB1/4(Z) \X - Z |

<C f

where C = C(C ( 0 ) , Jt) notice that C does not depend on τ . Hence the
last inequality in Theorem 3.1 is proved.

4. Linear asymptotics

Let C(0) = Cjo) x Rm € Jt be as in §1, let «5̂ (o) be the Jacobi-field
operator of §1, and let Σ o = CQ0) Π . S ^ ^ " 1 . Here we consider solutions v

of the equation Jϊ?c(0)V = 0, subject to L2 restrictions of the type given

for u in Theorem 3.1. For example, for Lemma 4.2 below we assume

(4.1) ί ^f^~ < oo

for some a e (0, 2), where κ(x, y) = Y!*=x Kj(r, y)ej , with K. bounded.

Our first aim here is to analyze the homogeneous degree 1 solutions of
= 0 subject to (4.1); the main result is as follows.

4.2. Lemma. If v e C 2(C ( 0 ) (C^)"1) is a homogeneous degree 1
solution of £?c(0)V = 0 on C ( 0 ) , and v satisfies (4.1) for some a < 2, then,
for l>2,

l+k

v ? y) Z_^y »ι i ψ\ )
i = l

/or ^ornβ I/J , , ι//+A: e Rm and some φ e C°°(Σ0 (C{°Y). If I = I
the same conclusion holds under the additional hypothesis that

d2

lim r Y^ υ(rω9 y) = 0

for each i = 1 , ,/ + /:, uniformly for \y\<\.

4.3. Remarks. (1) Of course φ must be an eigenfunction of -LΣ

with eigenvalue / - 1 if / > 2.

(2) In case / = 1, when Σo consists of a finite collection of points

{ωχ, , ωN} , the statement φ € C°°(Σ0 (C ( 0 ) ) x ) should be taken to
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mean that φ is any map Σ o -> Rn+k such that φ{ω) e ( Γ ^ ^ ^ ' 0 1 ) 1 at
each of the points ω = ω. of Σ o .

(3) No conclusion like that in Lemma 4.2 above can be drawn without
the additional hypothesis if / = 1, m > 2. In fact in this case if p
is an arbitrary Coc(Sm~ι) function with Jsm-ιp{ω)dω = 0, then there
is a homogeneous degree 1 solution υ of Lc^v = 0 having the form

v(rω, y) = rψ(y/r)e±, where e e Rl+k is arbitrary, and ψ € C°°(Rm)
with \z\~ιψ(z) ~p(\z\~ιz) as \z\ —• oo more precisely,

\\z\-ιψ{z)-p{\z\-ιz)\<C\z\-1 f o r | z | > 1.

One can check that then the L2 restriction (4.1) holds with κ(z) =
p(\z\~ιz)e± . On the other hand we can easily verify (although we shall
not make use of it here) that the additional hypothesis is not needed in
case / = m = 1.

We first dispense with the case / = 1 of Lemma 4.2.

Proof of Lemma 4.2 for 1=1. In case 1=1, Σ o is a finite set of

points {ω{, , ωN} in Sι+k , so C ( o ) is just a union ( J ^ H., where

Hj = {{rω^y) : r > 0, ye Rn~1} is an Ai-dimensional half-space in

Rn+k with ΘHj = {0} x R*"1 for each j = 1, •• , N. The equation

«£̂ (0)v = 0 in this case is simply Av = (Avι, ••• , Aυn+k) = 0, with

v = (vι,-- , vn+k) normal to //y on H. for each = 1, ,N. Thus

in this case v is a homogeneous degree 1 function satisfying

Av' = 0 on Hj, ι = l , . . . , n + /c, = 1, ,N,

and

/ 3+a\v(rωy)κ(rωy)\2(1) / / Γ3+a\v(rωj,y)-κ(rωj,y)\2dydr<cx>9

Jo JB? J J

with

sup|κr'| <oo,
k=\

together with the additional hypothesis that lim r j 0 -^p γ^=ι v(r(θj, y) =

0. By the reflection principle this means that

d N

iΣ
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extends via even relection in the r-variable to a homogeneous degree zero
harmonic function on all of Rn , and hence must be constant. Thus

N n-\

7=1 7=1

for some a,b. e Rι+k x {0}. For each j = 1, , N, let P.\ Rι+k x

{0} -> Ruk x {0} denote the orthogonal projection of Rι+k x {0} onto
the orthogonal complement of the H-dimensional subspace containing the
half-space Hj.. (1) evidently implies

2

(2)
no

Q Γ ί
Jo y ^ - 1

= 0,

where k(r, y) = (κι, , κx+k, 0), with κι as in (1). Notice that in
N

particular (2) implies that each bt is in the subspace {Σj=\ Pj(c) : c

1 A-lc

x {0}}, so in fact (2) can be written

lim/? a / /
N n-\

7=1

dydr =

for suitable cέ e R x {0} . But then

hmp >
1=1

dydr

î 1^ I dydr = 0,
z=l

because /c is bounded. Thus

lim/?"1 Γ ί
pio Jo JBΊ~

for each j = 1, , N, and, by (1) again,

•77 ,
/ ft / i?"— *

dydr = 0

dydr =
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for each j = 1, , N. Since v(ra)j, y) = ΣJΪΓ/ ylPjci *s harmonic on

{(r, y): r > 0, y e R""1}, it follows (for example by using a Green's rep-

resentation formula on the half-ball) that v{rWj, y) extends continuously

to r = 0, with boundary values Σ^j/ ylPjCt - Thus we can make an odd

reflection (with respect to the r variable) of υ(rcύj, y) - X^Γ/ ΫPfi > and
hence conclude, since t> is homogeneous of degree 1, that

n-\

v { r ω . , y) = r a . + ^ / ^ - ( c . ) , j = l , - , N ,

for some α ; G P^R1"^ x {0}), which is the required result.

Before we begin the proof of Lemma 4.2 for the case / > 2, we need
some preliminary discussion. First note that if λ{ < λ2 are the eigen-
values of -J2^ as in § 1, and <p{, φ2, are a corresponding orthonormal
set of eigenfunctions, then Vj = (v , ?>7)L2(Σ) satisfies the equation

on C ( 0 ). Notice that if φ. (with eigenvalue 0) is one of the eigenfunctions

of the space spanned by ef, , ef+k, then (4.1) implies that v = v.
satisfies the bound

(4.4)

where κ(r, y) = Kj(r, y) = {K , φj)L2,Σ } , whereas if φ. is not in the sub-

space spanned by eλ , ••• , eι+k , then (even if the eigenvalue correspond-

ing to ψj is zero—i.e., the same as the eigenvalue of the e x ) v = v

satisfies

(4.5) f -J^— < oo.

Thus we want to analyze real-valued homogeneous degree 1 solutions v e
C2((0, oo) x Rm) of the equation

l Λ t Λ 1 d ( ι-ιdv
(4 6) 7^d-r{

r d
subject to the restrictions (4.5), and in case λ = 0 we also need to analyze
solutions v in the space spanned by ef , , ef+k subject to the weaker
restriction (4.4).
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Notice that any such homogeneous degree 1 solution can be expressed
v(r, y ) = rv{\, y/r) t h a t is, w r i t i n g ψ(z) = υ(l, z ) , z e R m , w e h a v e

v(r,y) = rψ(y/r),

where ψ e C°°(Rm). By direct computation (4.6) is equivalent to the
linear elliptic equation

m m

(4.7) Aψ + Σ z'JDfljψ - (I - 1 ) £ z l D i ¥ + (l-l-
1,7=1 *"=1

and the L2 restrictions (4.5), (4.4) are easily seen to imply

(4.8) Γ r~l~a f \ψ(rω)\2dωdr < oo

and

(4.9)
/

°° i Γ

rλ~a

Jsm-χ

ψ{rω)
- κ{rώ) dωdr < oo,

r

where s u p ( 0 ) O o ) x R . \κ\ < oo.

In view of the above discussion, Lemma 4.2 for / > 2 is now evidently
a direct consequence of the following lemma.

4.10. Lemma, (i) Suppose / > 2 and λ e R. // ψ e C°°(RW) satisfies
(4.7) and (4.8), then ψ = 0 for I - 1 - λ φ 0 and ψ = const, for
l - l - λ = 0.

(ii) Suppose l>2andλ = 0.Ifψ£ C°°(Rm) satisfies (4.7) and (4.9),
then ψ(z) = a- z for some a e Rm .

Proof We first consider λ > 0 and note that each partial derivative
υ = Djψ satisfies the equation

m m

(1) £ (<5,7 + z'^DfijV - (/ - 3) ̂  z '^t; - Aw = 0,

as one easily checks by direct differentiation in (4.7). We would like to
assert that, with the notation Aσ p = B™(0)\B™(0) for any 0 < σ < p,

(2) s u p \Dψ\<Cp~l s u p \ψ\, p>\,
AP/2,P ΛpH>2P

but this is not in general true for solutions of (4.7) except in the case m =

1. On the other hand if m > 2, then for any eigenfunction φ. of - Δ ^ - i

corresponding to a homogeneous degree j harmonic polynomial on Rm ,
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we can write ψj{z) = yj{r)<Pj(ω), where y.(r) = Jsm-ι ψ(rω)φj(ω)dω
satisfies the ODE

on (0, oo) and remains bounded as r [ 0. Notice that then ψ. is still
a solution of (4.7) on Rm\{0}. In fact since ψ. is bounded near 0, it
extends across z = 0 to give a C°°(Rm) solution; furthermore by using
elementary ODE estimates for γ., we easily check that in fact (2) does
hold (with constant C depending on 7) with ψ. in place of ψ. Also, ψ.
certainly satisfies (4.8) (respectively (4.9)) if ψ does, and if we establish
the lemma with each such ψ., then the lemma also follows for ψ. In
other words, we can without loss of generality assume that the inequality
(2) does hold.

Now if m > 2, we introduce spherical coordinates z = r ω , r = \z\,
ω = \z\~ι in Rm\{0} , and note that (1) can be written in the form

8 d ( dv\ λg
dr\* dr) i + r*

w h e r e y = r l f l " 1 ( l + r 2 ) " ( / + w ) / 2 + 2 . S ince ( l / r ) V ^ - i V i s b o u n d e d a s r j O ,
t h i s c a n b e w r i t t e n i n w e a k f o r m

Γί .
Jo Jsm-1 r

VCGCC°°(RW).

Now replace ζ by vζ2, where ζ = ζ(r) is a C°°(O, oo) function which
is constant in a neighborhood of r = 0 and vanishes identically for suf-
ficiently large r. Then after an application of Cauchy's inequality (3)
implies

Γ ί
Λ) Jsm~ι

gζ2

<C Γ g(ζ')2 ί v2dωdr.
h Jsm~ι

Now we are going to use the "logarithmic cut-off trick". Let p > 2 be arbi-
trary, and let ζ(r) = max{2 - (logr )/(log/?), 0} , where r = max{r, p} .

Notice that then ζ = 1 on [0, p], ζ = 0 on (p2, 00), and (ζ'f <

r~2(\ogp)~2 on (/?, p2). Thus using this choice of ζ in (4), noting that
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g < r3'1, and using also (2), we obtain

(5) JO

f r'ι~ι ί ψι{rω)dωdr
Jp/2 JSm~ι

P

(lOg/)) Jp/2

(lθg/9)2 Jp/2

2C

p2p _3 /* 2

/ r I ψ (rω)dωdr (since/> 2)
Jp/2 Jsm-1

Jo/2 JSm-"(log/,)2Λ/2 h ^ V ΨV ' ' ™ l o g / > '

where κQ is any upper bound for \κ\. Letting p | oo, and using (4.9),
we see that this implies Vv = 0 in case λ = 0 and i; = 0 in case λ > 0.
Notice that in case λ = 0 we get ψ = a- z + b for fixed <z e Rw , b e R.
If the stronger estimate (4.8) holds, then evidently a = 0 and ψ = b. So
the lemma is proved if m > 2 and A > 0.

For m = 1, / > 2, and A > 0, the argument is similar: We can write
(1) in the form

{gv{z))-Ji-2v = 0,

where g = (1 + z ) — (/ — /3)/2, which in weak form is

L
Replacing £ by ζ2v, where £ = ζ(\z\) is the same logarithmic cut-off
function as before, we get (as in the case m > 2)

fhπΦΛί 2
-p \ 1 + Z / (lθg/>) Jp/2<\z\<2p2

and the proof is concluded essentially as before.
For m = 1, / > 2, and λ < 0 we note that the equation for ψ can be

written
(1 + z2)ψ" -{I- \)zψ + (/ - 1 - λ)ψ = 0,

and by using series expansions near ±oo one easily checks that any solu-
tion ψ which is not identically zero satisfies

(6) liminfp-χ~2q- f \ψ(z)\2>0,
P-*°° Jp/2<\z\<p
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where q_ = Re (l + (/ - 2)/2 - yj({l - 2)/2)2 +λ\ . Since λ < 0 and

/ > 2, clearly we have q_ > 1, so that (6) contradicts the growth restric-
tion (4.8).

For m > 2, / > 2, and λ < 0 we let y .(r), p. be as described above,
and note that γ. satisfies the ODE

ίΛ 2X // (m-\ ,Ί 1N \ / /j(j + m - 2 ) . . Λ _
(I + r )7y + ί — (/ " l)r) 7j - [^—p. " + A - / + IJ ̂ . = 0,

and again by taking series expansion near oo, we see that any solution γ.
which is not identically zero satisfies

liminf/Γ1"2*- Γ | y / r ) | 2 > 0 ,
P^°° Jp/2 J

and again this contradicts the growth restriction (4.8), because q_ > 1.
Thus the proof of Lemma 4.10, and hence the proof of Lemma 4.2, is
complete.

Now we show that Lemma 4.2 leads to decay estimates for an appro-
priate class of solutions of the equation S^v = 0 on C (0) Π Bχ. We

here need to consider solutions which are orthogonal on C (0) Π Bχ to the
solutions of Lemma 4.2. Thus we assume that

(4.11) ί v(rω,y)rφ(ω) = 0, ί υ(rω, y)yi(ejf = 0,
JC{O)ΠB1 JC^ΠBι

 J

for each solution w = rφ(ω) of o2 (̂0) = 0 and each / = 1, ••• , m,

jr = l , - ,/H-fc, where (e.)± is the orthogonal projection of the unit

vector e. onto (TωO°^)±. (Notice that then (e.γ~ is a function of ω
alone; it does not depend on r, y.) Notice that (4.11) is equivalent to

(4.11') min [ \υ - ψ\2 = f
ψe^Jci0)nBι Jc{0)nB

\2

where Sf is the linear space spanned by the homogeneous degree one

solutions of Lemma 4.2; that is, 3* is spanned by the solutions yι{ej)
± ,

i= 1, ••• , m , j= 1, ••• ,/ + fc, rφ(ω).
Then we have:

4.12. Lemma. Let β{, β2 > 1, a e (0, 2) be given constants, and

suppose v e\ C°° {C{0) ΠB { (C^)"1) is a solution of the equation S^υ = 0

on Cf)Bι satisfying (4.11) and also
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/where κ{rω, y) = Σ £ f κ, (r, y)e,x, wiίA supΣ t ί I * / ^ ^/c^'αβ, M '

and ef = ^ ( ω ) denoting the orthogonal projection of et onto

< r = |ΛΓ|, ω=\x\~1x. Then,forl>2,

-. f 2
Λ '

with β = β{a, βx, β2, C(0)) > 1. The same holds in case I = 1 subject to
the additional assumption

ω€Σ0

uniformly for \y\<\.

Proof The proof is based on the results of Lemma 4.2. Suppose the
lemma is false. Then there is a sequence v. of C°° solutions of ^f^v = 0

in C ( 0 ) OBl, with each v. satisfying (4.11) and the iΛbound (*) in the
statement of the lemma, but such that

2

where t —> 0 as 7 —• oo. Notice that (*) =>, for each δ > 0 ,

(2) j^s Rm \Vj\2<Cδ'-a j ^ B \v/.

Notice also that by the usual L2 theory we have fixed bounds on all the

derivatives of \\υΆ^iV on compact subsets of C ( 0 ) Π Bλ . Then by (2)
J Li J *

we have a subsequence w of ll^ll^ 1^ which converges strongly in the

L2 norm on C ( 0 ) Π 5 1 / 2 , and furthermore the limit is with respect to the

C2-norm on fixed compact subsets K c C ( 0 ) ΠB x . 2 . Let the limit function

be v of course υ satisfies 2fc^v = 0 on C ( 0 ) n i 1 / 2 , and, by virtue of
()(*), we have

,2 ι+k ι+k

L, „ n M ^ , { , y )

and, by (1), v extends to be a homogeneous of degree 1 on C ( 0 ) . But
now, in case / > 2, Lemma 4.2 implies that

l+k

υ{x, y) = Y^y - η.ef + rφ(ω),
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and this contradicts (4.11) unless v = 0. Thus we deduce that w con-

verges uniformly to zero on compact subsets of C ( 0 ) Π Bχ.2, which (by

direct radial integration, keeping in mind that | | ^ ; | | L 2 ( 5 , = 1 and that the

L2 norm of Wj over C ( 0 ) Π Bι/2 Π Bl

δ

+k x Rm is small by (*)), we deduce
that, contrary to (1),

with C > 1 independent of j .
In case / = 1, Jzί̂ o) is just the Laplacian on C ( 0 ) (see the discussion

in the proof of Lemma 4.2), and the given conditions guarantee that each
of the functions v. is such that

wf\r,y)= Σ —Vj(rω,y)
ω€ΣQ

 y

extends to a harmonic function on 5"/4(0) which is even in the r-variable,

and hence the limit function v has the property that Σ ω € Σ dυ(rω,y)/dyp

extends, via even reflection in the r-variable to a harmonic function on

B",4(0). Thus υ satisfies the conditions of Lemma 4.2 for / = 1, and the

proof can be completed as for the case / > 2.
For the next lemma, we need one further piece of notation. As in

(4.11'), let 3? be the space of solutions described in Lemma 4.2, and for
each p e (0, 1] let

(4.13) Vp = υ-ψp,

where ψ e Sf is selected such that

\v - ψJ = m i n / \v ~ ψ\ -p ψeJ?Jό°>nBβ

(Notice that then (4.11) holds with Bp in place of B{.) Then we have
the following:

4.14. Lemma. Suppose θ e (0, | ) , βχ, β2 > 0, a e (0, 2), that v is

a solution of ^f^υ = 0 on C ( 0 ) Π Bχ, and that, for each p e [θ, \], v

also satisfies

f\ /+2-α f \Vp~~Kp\ .(1) ' U ^ ^
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where
ι+k

κ

P(χ > y) = Σ K(r' ^ fl/M/ s £ p Kf - Jc()nB
ΐ = 1 P p

Suppose also that in case I = 1 we have the additional condition that

d2

lim r Y^ v(rω, y) = 0

r
n Jc p

uniformly for \y\ < ^ and i = 1, , m.

β / \υθ\ < Cθμ /

where the notation is as in (4.13) and μ = μ(C ( 0 ) , βx, β2, a) e (0, 1),

C = C{C{0), β{, β2, a) > 0. /n particular, μ, C do not depend on θ.

Remark. Of course since υ = v - ψ , with yr homogeneous of

degree one (in fact with ψ e .2?), we have

d(v/R) _ d(vβ/R)

dR ~^ΪΓ

Proof. By Lemma 4.12 for I > 1 we have

with β depending only on a, βχ, β2, C ( 0 ' . Notice that then by (ii)

2-n (d(v/R)\2 , f 2-n (d(v/R)\2

BJ \-dR-) ^{ββJ /c<o> * {-air) '

and hence, by adding fcwnB R2 n(d{υ/R)/dR)2 to each side of the last

inequality ("hole filling"), we have

R2-n fd(v/R)\2 f 2-n [d(v/R)\2

where γ e (0, 1) is a fixed constant determined by βλ, β2, C^0). Starting
with p = j , this can be iterated v times, where v > 1 is such that

6 ( 4 " " " 1 , 4 " " ] , thus giving

2-n (d(v/R)\2

 μ f 2-n (d(v/R)\
R {-OR-) ~θ LnB

R {~dΐΓ)
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with μ such that θμ = γ. Hence the proof is completed by using (ii) with
p = 1 and (1) with p = θ.

5. Proofs of Lemma 1 and Theorem 1

All constants C in this section are understood to depend only on C ( o ) ,
J!, unless otherwise explicitly indicated.

5.1. Proof of Lemma 1. Let θ e (0, \) be given, let 0 < ε. < δ j 0

be arbitrary, and let M. e SK£ (C(0)) and Cy e # e (C(0)) be such that the

alternative (i) of Lemma 1 is false (so (**) of Remark 1.14 is true) with

Mj, Cj in place of M, C and ε., <5. in place of ε 0 , δQ respectively.

We aim to prove that we can find γ — y(C ( 0 ), Jί, θ) (independent of

j) and Cj e ^γε{C{0)) such that for infinitely many j

(1) θ'n~2 ί d)<Cθai d]9
JMJΠBΘ JMJΠB1

with C = C(C ( 0 ),Λf) independent of (9, where dj(X) = dist(X, C y ),

and dj(X) = dist(X, Cp for I G ¥ . In view of the arbitrariness of the

sequences this will establish the lemma. Now by definition of 9^ (C(0))

(see Definition 1.12), we can find # = e x p ^ , A e S? as in Definition

1.12 with \AΛ < e, and qTιC, e &F (C ( o ) ).

Let β0 = βo(C{O)) be as in Corollary 3.2, and let τy | 0 sufficiently

slowly (depending on θ) to ensure that the conclusions of Lemma 2.6 hold

(for j sufficiently large) with β = β0, γ = \ and with Q~lCj9 τJ9 εj9

ηQ pqJlMj in place of C , τ , εQ, M respectively, for all p e [0, 1].

Then Lemma 2.6 gives Uj € C2(Uj\ {qJιCj)
±), where (7y = {(x,y) e

q^CjΠByt .Wϊτj} and

q~ιMj Π ByA\{(x, y): \x\ > τy.} c graphUj C qJιMj,

and such that (for sufficiently large j) the estimates of Theorem 3.1 and

Corollary 3.2 hold with u}., q~lMj, QJlCj, τj9 Zj in place of u, M,

C, τ , ε0 respectively. We also agree to choose τ to converge to zero at

a slower rate than (fMnB d2)ι/2 thus

(2)
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Now let p e [ f f , | ] . The estimates of Theorem 3.1 and Corollary 3.2

(applied to η0 pq~xM with a = \) tell us that, for j sufficiently large,

with κpj(rω,y) =

'-ι/2ί %ζ. p'-
~lfor δ > 2Θ~ δj,

and

(6) / R2-"(?h!μ) <cP-"-2 [ <ή.

Next, let

1/2

(7) / . i i -.2βj=(ί d]

For each compact K c £^({0} x R m ) , by Lemma 2.6 and standard elliptic
estimates [12] we know that

(8) s u p | v V . | < C , J ' < 3 ,
KnC J

for sufficiently large j depending on K, where C = C(C ( 0 ) , A^).

Since ^ ' c , . e f (C(o)) with β. | 0, by (2.2) we have, for a suitable
j J ** j J

sequence τ. (which, by a new choice of our original sequence if necessary,
we may take to be the same as the original sequence τ . ) ,

(9) gJιCj Π Bx\(B!+k x Rm) c graph ψ.,

where ψ. e C 2(C ( 0 ) n Bχ\{B1^ x Rm) (C ( 0 ) ) x ) with \ψ.\c2 < Cβj ̂  0.

So now (8) and (9) imply that Vj(x+ψj(x)) converges, on each compact

subset of C ( 0 ) ΠBχ, in the C2-norm to a limit function v e C 2(C ( 0 ) nBχ),
with -2̂ (0)t> = 0. Also the estimate (5) for u. then evidently guarantees
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that the convergence is strong convergence with respect to the iΛnorm on

C ( 0 ) Π B for each p < \ , because (5) tells us in particular that

Pl~l/2 ί \Vj\2<δl-l/\ δ>CδJ9δ<p<±
JUjnBp/2n(Bι

δ

+kχRm) z

In view of this, the remaining inequalities above yield directly

where κp(rω, y) = Σ!^ κ'p(r, y)ef , with

(11) sup Σ{κι

p)
2<Cp-H I \v\\

and

JC^ΠBP/2 \ dR J H J

We emphasize that in the last three inequalities C does not depend on θ.
Notice also that (5) additionally implies that

(13) pl~1/2 ί d2<Cδl~l/2β2

JMjnBp/2n(Bl

δ+
kχRm)

for δ > 2θ~ιδj, so we also have (using again the strong convergence of

Vj(x + ψj(x)) i n C{0) Γ\Bp f o r p<\) t h a t

(14) limί
JM

Now all of the above was computed relative to an arbitrary sequence C e

^ (C ( 0 ) ), and (since c, | 0) is equally valid if we choose a new cylinders

Cj e &γε (C(o)) (where γ > 1 is arbitrary) in place of C y . Of course

in this case we get new quantities d., ϋj, ϋ in place of d., u , υ
respectively, but, for j sufficiently large depending on γ, the estimates
above remain equally valid, with constants C only depending on C ( 0 ) , J?
as before; notice particularly that the constants C do not depend on γ.
So let Sf be the linear subspace of solutions of *S?c(o)W = 0 described
in (4.11;). Because of the integrability condition tf for the cross section
C^o), by (2.3) we know that, for each β > 0 and for each ψ e & with
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supc ( 0)n i ? i \ψ\ < β, we can find Cj e § ^ ( C ( 0 ) ) (γ = γ(C{0), β) > 1) such

that the new function ύ. (i.e., the function corresponding to u. when C.

is replaced by C. in the above discussion) satisfies a relation of the form

*j((x> y) + Ψj(x>y)) = Uj((x9y) + ^.(x, y)) - βjΨ + Rj

for (JC , y) G C ( 0 ) Π 5 3 / 4 with |JC| > τ ; , where τy | 0, and A/1 I^7Ί -^ 0 as
7 —• oo. Thus ϋ = v - ψ and in place of (10), (11), and (12) we obtain,
for any constant /? > 0 and ψ e£? with sup \ψ\ < β,

oo)' ,<•*»/• iv-ψ,-y2<c( w-Ψ\\
Jc{0)nB γ ' Jc{0)nB

where κψtP(rω9y) = Σ/=ί•^Jί,/>(
Γ» y ) ^ > w i t h

(11/ sup E ( < 5 , ) 2 < cP~nfci0)nB \v ~ Ψ\2>

and

ci0)ΠBp/2 \ OK ) Jc{0)ΠBp

where C = C(C ( 0 ) , ^ # ) , and the inequalities are valid for arbitrary p e
[θ, j] and arbitrary β > 0 we emphasize that the constant C is indepen-
dent of β, 0. Notice that in (12/ we used the fact that d(υ/R)/ΘR =
d((v - ψ)/R)/dR, which is true because ψ is homogeneous of degree
one by definition of J ? . Notice also that in place of (14) we obtain the
identity

(14/ K m / β~2dj=ί(0) \v-ψ\\ P<\,
JM{ΠBn

 J J JOO)ΠBn

 4/ M . n ^ y y y c ( 0 ) n ^

where dj{X) = dist(X, Cy ) , X e M..

Now (see (4.13)) for p e [θ, \], we have by definition that υp = υ-ψp

with

\V ~ Ψn\2 = i l l f / \V ~ ψf >
P Ψ^Jc^ΠBp

and hence (since fc(0)nB \v\2 < 1) we have

| ^ | 2 < C 0 - 2 π , C = C(C(0)).
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Thus by elliptic estimates and homogeneity of ψ we have supc(0)π5 \ψp\<

Cθ~n for p e [θ, \], and we can apply the above with β = Cθ~n , γ =

y(C ( 0 ), θ), and ψ = ^ in order to conclude from (10)', (11) ;, and (12)'

that, at least for / > 2, v satisfies all the estimates needed to apply Lemma

4.14 (with a = \). So we conclude that there is a = α(C ( 0 ) , Jt) e (0, 1)

and C = C(C ( 0 ) , Jt) such that

(15) θ~n'2 ί \vθ\
2<Cθa[ \vA2<Cθ\

where we used the fact that Jc(0)nB \v{\
2 < fc(0)nB \v\2 < 1 by construction.

On the other hand by virtue of (14)' with p = θ (and with ψ = ψθ), we
have

lim / β. 2d) = f \υt

and hence (15) implies

θ~n~2 ί d) < 2β2Cθa

JMJΠB,

2
01 '

for all sufficiently large j , which is (1) as required.
Notice that the same proof will apply also to the case / = 1 if we can

check the condition

as required in order to apply Lemma 4.14. To check (16), we proceed as
follows. Choose ζ = ζ(r, y) to be smooth for 0 < r < oo, y £ Rm such
that ζ(r, y) = 0 for r2 + |y|2 > \ and dζ/dr = 0 in a neighborhood of
r = 0. Notice that then in particular we have

(17) Dqζ(\x\,y) = 0 f o r | j c | < τ , q=l, - , l + f c ,

for suitable τ > 0. For / e {1, , 1 + A:}, α E {1, , m} we have by
(1.1) that

(18) I v V . v ς = ίerVζa = 0, M =qJXM
JMj JMJ

where £fl = dζ/dya . Let ^j7^ denote the matrix of the orthogonal projec-

tion of Rn+k onto T{Xίy)Mj , let C?7. = graph(wy|ί7; n Bι/2), with CΛ, u.
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corresponding to U, u as in 2.6 with M in place of M, and note that,

by Lemma 2.6, M n Bι/2\Gj c {(Jt, y): |JC| < τ} for all sufficiently large

j . Since

(19) / \S?x'-VCa\=l
JMAG: JMΛC

and DDζa = 0 V/? = 1, , 1 + k, |JC| < τ , we have for |x| < τ that

n+k

,-g

n-l

Σc.
/ 7 = 1

\

n-l

p=ί

So, for j large enough, (19) together with (1.5) and Theorem 3.1 gives

(20) ί ivx' vςi
JMXG;

Λ i P=\

\

n-l
1/2

Now let ω^ , , or. be unit vectors in the direction of the singular

rays of the y'-dimensional cross section C^ of the cylinder C^ xR"" 1 =

qJlCj, and write

N

Uj(τ) = Uj Π {(x, y) e R1+fc x Rm : |x| > τ} = \J U{/\τ),

where
?( f n~l > τ}.uy'(τ) = {(x,ωγ9y):yeRa

Also, define

Gj{x) = graph(«7.|t/7 (τ)), G^\τ) = graph(w;|ί7Jz)(τ)).

Next note that \e^ιn\ > ^\DΛJ>UJ\ on t/ (τ) for j sufficiently large (de-
pending on τ), and hence the first estimate of Theorem 3.1 implies that

(21) DyaVGL2(C{0)ΠBι/2).
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( 1 ) =

where {hpq)p q^r2 ... ι+ky is the inverse of the n x n matrix

+ Dpu-Dqύ)p q(f.{2~ \+k} > a n c * hj is the determinant of this matrix.
Now

+ | u / , y)Uj • dujdy"

and hence after an integration with respect to yα , we can write

<»>

a

Also

(24) IΛ' ^ ^ X . ^ I ^ C I V M ^ I 2 , I^ΛJ' - 1| < C|VMj.|
2 on ^ ( 1 ) ,

as one checks from the fact that (hj9) is the inverse of
i ( 3 > ( 2 ) i ( 2 2 )

by standard elliptic estimates we get, for j sufficiently large (depending
on τ),
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(25) < C f λ (|Vu,|2 + |M,|(|V2

My| + |V«y|))(|VfI + V2C|)
i{/;

(l)(3r/4) J J

<c

where C depends on τ but not on j . Also, since G^ is given by x'

u'(x,0,y), i = 2, • , 1 + k, for / > 2 we have
(26)

4

where |Λy| < QVu/ sup(|Z>Ca| + \D2(ζa\), and ζaV is the gradient oper-

ator on qJXCj • Combining (25) and (26) yields

l+A:

where βJXRj -+ 0 as j —> oo. This is an invariant expression relative

to orthogonal transformations of R , and hence it holds without the
assumption afp = eχ, and a similar formula holds for each θj\τ). Thus

!

7 ( τ ) ί = 1 JUjiτ)

• 0

conclude that
with β.ιR. —• 0 as j' ^ oo. Combining this with (20) and using (18) we

P ι+k r

17 M ; /=1 JUj

where jS"1^- -> 0 as j -* oo, and |57 | < C/r. Since v e L2{C{0) ΠBι/2)

and Dyv e L2(C{0) ΠBι/2) by (21), we can multiply by βjι and first take
limits in j and then let τ [ 0, thus giving
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whenever dζ/dr = 0 in some neighborhood of r = 0 and ζ e C™(B"/4).

Since ζ is a function of r, y only, after an integration by parts, the

above equation can be written fH ϋ Aζa = 0, where H is the half-space

{(r, y) e R" : r > 0}, and v(r,y) = Σ*=ι v{rWj, y). In view of the

arbitrariness of ζ, this evidently implies

δatkΔζ = 0, \h\<1-,

provided ζ is smooth with dζ/dr = 0 in a neighborhood of r = 0 and

C Ξ 0 for yjr2 + \y\2 > \ , where δahζ(r, y) - ζ(r,y+heι+k+a)-ζ(r, y).
This in turn clearly yields that

(27) J(δathϋ)Aζ O9 |Λ|<

Now for any function ζ e Cc°°(5"/4) with ζ{r,y) = ζ{-r,y) we can

find a sequence ζk such that the derivatives of ζk up to and including

order 2 are bounded independent of k, ζk —• ζ in the C 2 norm locally

in 5jz

/4\{0} x R"" 1 , and dζjdr = 0 for \r\ < τk with τk > 0 and

τ^ I 0. Thus using the dominated convergence theorem we in fact deduce

that (27) holds for any ζ e C™(Bn

ι/4) with ζ(-r, y) = ζ(r, y). Of course

then

(28) ί (δahv) Aζ = 0,
J Rn '
Jΰ\/4

where ϋ is the even extension ϋ(r9y) = β ( - r , y). On the other hand

we trivially have (28) if ζ(r, j;) = — ζ(—r, y) (even if ζ does not have

compact support). Since any ζ e C™{B*/4) can be written as the sum

ϊ(ζ(r,y) + ζ(-r,y)) + \{ζ{r9 y) - ζ(-r, y)), we conclude that in fact
(28) holds for any ζ e C™(Bι/A), and Weyl's lemma tells us that δa hv

is a smooth harmonic function on Bχ,4 for \h\ < \ .

Since by (21) h~xδa hv -• DyOv in L2{Bn

χj4) as h -• 0, it then follows
that DyaV also extends to give a harmonic function which is even in the
r-variable. In particular we have (16) as required. Hence the proof is
complete.

5.2 Proof of Theorem 1. Choose θ e (0, \) such that

(1) Cθa<l/4,
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where C and a are as in Lemma 1. Let sing, M — {X e Bχj2: ΘM(X) >

θC(0)(0)}, and let ε 0 , δ0 (depending only on C ( 0 ) , J!) be small enough to

ensure the conclusions of Lemma 1 with the above choice of θ . We also

assume ε0 is less than the ε0 of Theorem 3.1 when a and γ of Theorem

3.1 are both equal to \ and τ = 10~~2. Let M satisfy the hypotheses of

Theorem 1 with Cε < ε0, where C = C(C{0) ,J?)>1 is to be chosen (>

the choice of γ of Lemma 1), and define Ej,, j' = 0, 1, , as follows.

Eo is the set of X e sing, M such that ηχ pM satisfies alternative (i)

of Lemma 1 for some p € (θ, 1], and, for j > 1, let E. be the set of

X e sing, M such that ηχ pM does not satisfy alternative (i) of Lemma

1 (hence does satisfy (**) of Remark 1.14) if p = θι, / = 0, ••• , j ,
and such that ηχ M does satisfy the alternative (i) of Lemma 1 when

p = ΘJ+1. Finally, E^ is the set of X e sing, M such that ηχ M does
not satisfy alternative (i) of Lemma 1 (and hence does satisfy (**) of
Remark 1.14) for all p = θιf, i = 0, 1, 2, .

First note that if Eo Φ 0 then, keeping in mind (1.5) and the fact that,
by Lemma 2.6, singMniίj c the ^(ε)-neighborhood of {0} x Rm , with
δ[ε) I 0 as ε j 0, we trivially have the conclusion of Theorem 1 with
5 = 0 and T = sing A/ Π Bχ. Thus from now on we assume

(2) Eo = 0.

Next we want to show that E^ c L, with L as in the statement of the
theorem. We are going to show that the theorem holds with S = E^ and
T = (sing, M\EJ U (singM n B{\Bι/2).

Take Xo e E^. Using the definition of E^, we see that, provided

γε < ε0 with γ = y(C ( 0 ), Jί) is sufficiently large, we can iterate Lemma

1, inductively choosing C o , C 1 ? ••• , with Co = C ( 0 ) , Cz e &γε (C ( 0 ) ),

and q. = exp^ / 5 with At e S? [S? as in Definition 1.12) \A.\ < γεQ

and q~lCi e Wγε (C(0)) as the inductive step we apply Lemma 1 with

q~lηX(j θiM in place of M, giving C + 1 e ^ o ( C ( O ) ) , such that

θ (<+i)(«+2) j ^ ^ dist2(^r, C/+1) < -θ~'(n+2) j

<2~2iJ d i s t 2 ( X , C ( 0 ) ) < 2 - V ,

where Mo = τχ M (τx the translation X <-* X - Xo), and

(4) Hausdorff distance (C,. n B{, C J + 1 n Bχ) < γε2~'
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subject to the inductive hypothesis that this holds with j < i-1 in place of

i notice that we need to check at each stage that q~lηx ΘiM eJ^ (C ( 0 ) ),

but this is an easy consequence of Lemma 1 since Cε < ε0. Notice also

that (3) actually implies (4) for suitable γ = y(C(0) , ΛT , 0) by virtue of

the remark following Lemma 2.6.

In particular (4) implies that there exists C^ e i* ε(C ( 0 )) such that

Hausdorff distance (C ΠBχ,Cχ ΠB{)< 2yε2~~ι

and

<r / ( B + 2 ) ί dist 2(*, c , ) < ζ ί dist2(*, c ( 0 ) ) ,
JM0ΠBθi ° 2 JMOΠB1

for each i = 1, 2, . Thus

p~n~2 f d i s t 2 ( Z 5 C , ) < Cp2μ [ d i s t 2 ( Z , C ( 0 ) )
JMOΠBP ° JMQΠB1

for all p e (0, 1], with μ = μ(θ) chosen so that θ2μ = \ .

By definition there is qx <Ξ SO(RΛ+*) such that qxCx e ^L(C ( 0 )) and
ΛQ Λ.Q Λg /t

(5) | ^ o - l | < C e ,

and by applying the first estimate in Theorem 3.1 (with qy ηY nM in
0 0 ' "

place of M) we have, for p e (0, 1],

(6) p-χ~μ d i s t ^ τ ^ s i n g , M)nBp, {0} x Rm) < Cε,
P

where τχ is the translation X ι-> X - Xo. Also, again by a standard

argument based on (3), (4),

(7)

Since this is valid (with fixed constant C = C(C ( 0 ) , Jt)) for any Xo, Yo e
E^ , we can then write

(8) E^ c g r a p h s = {(x, υ(x)) :x€[-$, \f},

where Ϊ; : [-^ , ^ ] m -^ ΊS(!+k satisfies

(9) | v | c . . . < C β , C = C(C ( 0 ) ).

So L = graph u has the properties stated in Theorem 1, assuming we take
S = E^. Now in view of (2) and the definition of E , we have

oo

(10) sinĝ  M\ graph v = (J Ey

7=1
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Also, we note that for points Xo e E. we can apply precisely the same
iterative argument (based on repeated use of Lemma 1) as we used for
E^, except that now we conclude (3), (4) only for / = 1, , j , and
correspondingly (6) is only valid for p > ΘJ. That is, we can still select
fixed qχ and Cx (no longer unique) such that (5) holds and

(11) p " d i s t ( ^ τχ (sing,M) n B p , {0} x Rm) < Cε, ΘJ < p < 1.

Notice that in particular, in view of (5) this gives

p~X dist(sing, Mn Bp(X0), Xo + ({0} x R m )) < Cε,

ΘJ <p<l, X0£Ej.

Also by definition of E. we have the additional fact that

(13) V Z 0 € ^ ,

3Y e Xo + ({0} x B™(0)) with BSΘJ(Y) Π sing, M = 0 ,
SΘ

where <J0 = (J 0 (^ ( 0 ) > ^) ^s a s i n Lemma 1. By combining (12) and (13)
it is now straightforward to check that E. can be covered by a collection

31. of cubes R = {ζ,η) + [-θj/2, 0 y /2] Λ + A : , where (ξ,η)e Ej ,

(R/+/c x (

C « , η) + ( [-Cεθ y , Cε0 y] / +* x [-θ 7/2, 0 7/2]m),

and R has a subcube (ξ', ι/;) + [-2δθj, 25θ7]n + / c such that

(15) (RM x (//' + [-2δθj, 25^']m)) Π sing, M = 0,

with δ = 2~N, N = N(C{0) ,Jt)>4.

Thus we can apply Lemma 2.7 to the collection f̂ of cubes in Rw

which are obtained by orthogonal projections ΠRmR onto {0}xRm of the
cubes R in the collection ( J 0 ^ &• a n d with F the orthogonal projection
onto {0} x Rm of U ^ i Ej Then Lemma 2.7 gives a collection & of
cubes in {0} x Rm with

(16) 2

and with the property that for each P e & there is a Qe@ with

(17) PcQ{5) and (δ/4)e(Q) < e(P) < e(Q).

Now for each such P = ή + [-/?, /?]"* G ^ and corresponding β = ΠRmi?
as in (17), where R e \J^Lχ3l has center (ζ9η) e [jj^Ej, select an
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(n + /fc)-cube R with ΠRmR = P and with center (ξ, ή) such that ξ = ζ.

Let 31 be the collection of such cubes R. Then by (12), (15), (16), and

(17) we have for ε sufficiently small depending on Jί, C ( 0 ) ,

(18) \JEJC \JR,

and, by (14), for each R e M with center ({, η) e Rl+k x Rm ,
OO

(19) \jEjΓiRc(ξ+[-C*e(R)9 Cεe(R)]ί+k)xRm, C = C(C ( 0 )

7=1

Now the rest of Theorem 1 follows from the fact that for each a > 0 we
can find balls {Bp{Xj)} such that X. e {0} x [-\ , \]m and

("β1 , βl)
l+* X [-i, ^Γ C U ^ . ( ^ ) ' Σωm^7 ^ ! + α '

7=1 ' 7=1

where εχ = ελ (a, n, fc) € (0, \). Applying this to appropriate scalings and
translations of {0} x [- \ , \]m , and using (18) and (19), it then follows that
we can replace our covering 31 by a covering by balls with the required
properties. Hence the proof of Theorem 1 is complete.

6. Proofs of Theorems 2' and 4, and Corollary 3

6.1. Proof of Theorem 2 ; . Let m be as in (1.15), and let sing^Λf
denote the set of X e singΛf such that there exists a tangent cone C e
Tan^M with C = q(CQxRm) for some q e SO(Rπ + f c). Notice that by
(1.10) we have

(1) dim(sing M\ sing^ M) < m - 1.

Let
Sa = singα M(= sing, Mn{X: βM(X) = a}),

Xo e Sa , ε > 0, and let C ( o ) = q(C{°] x Rm) e Tan^ M. By the definition

of Tan^ M and the compactness 1.3(b), for each ε > 0 we can find

σ = σ(ε) > 0 such that Bσ(XQ) c UM and such that MQ = ηχ σΛf

satisfies UM D BR^ and

(2) ' / w - e c ( 0 ) ( 0 ) < ί (e) , / dist2(X,
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where δ(ε) and R(ε) are as in Lemma 2.4. Let

S+ = {XG singM0 : ΘMQ(X) > a} (D {η^σSJ Π Bx).

Notice that S* is closed in UM by upper semicontinuity of ΘM (X)

(which is true by (1.5)). For given p0 e (0, \) take a finite cover of

S* ΠB{ by balls 5 σ (Y.) with σ, < /?0 such that

(3)

where μp is the outer measure defined by

taken over all countable collections {B (Xj)} of balls with A c \J B (Xj)

and Pj < pQ V7 . Of course we may assume S%Γ\BσχY.) Φ 0 for each /,

otherwise we can drop the Bσ(Yi) which do not satisfy this. For each /

choose Zt e S*Γ)Bσ (Y^ and apply Lemma 2.4 to Mo. Then, for suitably

small ε > 0 (depending only on Jί, K), either there exists a cylindrical

cone C = q(C0 x Rw) e Jt with θ c ( 0 ) = a and

(4) <7Z~
2~" / d i s t 2 ( X , C ) < ε 2

J

or else

(4)' {X € B2σ{Zi): ΘM {X) > a} c {X : dist(X, H) < ε}

for some (m - l)-dimensional affine space H containing Z{. Notice that
here we use the fact that by (2.1) and (2) we can choose ε (depending
only on Jί, K) to ensure that θ c (0) = a in (4); we henceforth assume
that ε > 0 is so chosen.

In the case of (4) we consider two subcases, namely, 4(i): 3Zt e S* with

|7. - Zf.| < σJA, and 4(ii): Bσ (Y.) n5 α

+ = 0 . In case 4(i) we can apply

Theorem 1 to ηz 2σ Mo to give an embedded C 1 submanifold L^ and

balls {Bσr(Yu)}j=ί j 2,... such that, for some δ0 = δo(J?, C(0)) e (0, ^ ) ,

(5)
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Also, applying Lemma 2.6 to ηz 2σ
Mo yields that S* Γi~Bσ{Yi) is con-

tained in the <ϊ(ε)-neighborhood of Z. + #({0} x Rm) with' δ(ε) j 0 as

ε I 0, δ depending only on C ( 0 ) and Jf. Therefore, for ε small enough

(depending on C ( 0 ) , Jί only) we can cover S^'Bσ{Yi)\Bσ/2{Zi) by balls

{Bdι{Yu)} such that

^^<(l + 2- m 5 0 )(σΓ-2-V)
i

Thus, using this in combination with (5), we obtain a collection {Bσ (Y^)}

satisfying

(6)

= (1 - 2~2mδ )σm,

βrm{L(ί))<ωmσ™.

In case 4(ii) we can still use the fact that S* Π Bσ(Yi) is contained

in the ^(ε)-neighborhood of Zi + q({0} x R) m and hence (since

%?m(Z{ + ^({0} x Rm) Π B (Yj)) < ω m ( J l ) " ^ 2 ^ in case 4(ii)), we can

cover 5 + n f i n (7;) by balls Bn (Y..) such that (6) holds with L(l) = 0.

Of course we can also trivially find a cover Bσ (Y^) such that (6) holds

with Lr = 0 in case (4)' holds. Thus we have shown that we can in all
cases select a cover {Bσ (Yu)} for S+ Π δ σ (Y ) such that (6) holds.

Repeating this process (starting with any one of the balls Bσ (Y^) in

place of Bσ (Yt) and again using Theorem 1), we get embedded submani-

folds Lij and balls {Bσ {Yijq)} such that, with δo = 2~2mδo,

(7) _ w . J

Notice that by combining (6) and (7) we have
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- (')s: n*,((r,)\ ( > U ( U ^ ) ) C UB.JY.J,),

After repeating this argument (TV - 2) times more we get a collection of

balls {Bσ (YN .)} and C1 submanifolds LN t such that

Since TV is arbitrary this gives μσ(S* nΈι\\Ji NLN .) = 0 for each σ e

(0,/>0) so - r m ( S ^ n Λ Λ U / ^ ^ , , ) = 0, and μ^ΠBj) <

(μPo(S+ Π Λj) + l)$-1 for each σ € (0, p0), so ^ m ( ^ α

+ n Bχ) <

(μ (S* ΠJ?j)+ lj^o"1 < oo as required. In view of the arbitrariness

of XQ, this completes the proof.

6.2. Proof of Theorem 4. Without loss of generality we can assume

that Xo = 0. Let ε > 0 be arbitrary for the moment, and pick p small

enough so that the cube [-/?, p]n+k is contained in UM and

p~n~2 f dist2(X,C)
JMn[-p,p]n+k

<ε\

For small enough ε, (1.17) guarantees that the slice M = {(x, y) e
z,p

[-p/2, p/2]n+ Π M : y = z} is not a smooth manifold for any z e
(-p/2, p/2)m . Then Sard's theorem yields that for ^ - a l m o s t all z e
{-p/2, p/2)m we must have

(1) Sp = s i n g M Π {(x, z):xe (-p/2, p/2)l+k} φ<Z>.

By (1.10), we know that ^""-almost all Z = (x, z) eSp are such that

(2) tf(CoxRm)eTanzM

for some cylinder C = q(C0 x Rm) e Jt(q e SO(R"+fc)). Also, since
the set of densities θ c (0) corresponding to such C is discrete by (2.1),
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from (1.16) and (1.5), it follows that p > 0 can be chosen to ensure that
θ c (0) = μ for all such cylinders C = q(C0 x R m ) , where μ is as in (1.16).
Thus the alternative (i) of Lemma 1 always fails in this case, so by the
same argument as in the proof of Theorem 1, there is σ > 0 such that, if
tt holds for all C = Co x Rw € Jt with θ c (0) = μ and ε is appropriately
small, then

(3) S°pΠ(-p/2,p/2)n+kc graphs,

for some embedded Cι'μ manifold of dimension m, where S° de-
notes the set of points Z in Sp such that (2) above holds, and w e

CUμ((-p/2, p/2)m;{0} x (-p/2, p/2)M) satisfies

(4) M c i . , .<Cε.

However since there is at least one point of S°pΠ{(x, z) e (-p/2, ρ/2)M}

for ^-almost all z e (-p/2, p/2)m , it is evident that

S°p Π (-p/2, p/2)n+ = graphs ,

and hence
singMΠ (-p/2, p/2)n+k = graph w U K,

for some set K disjoint from graph w . Now we claim Bσ Π K = 0
for suitably small σ > 0. Otherwise we can find a sequence {Z.} c K
with Z} —> 0. For sufficiently large j we can choose X. e graphs
with \Xj - Zj\ = min|X - Z.\ over all X e graphs . Since ΘM(X) >
μ for all X in graph w sufficiently close to 0 and since by (1.5) μ <
{ωnσ)~ι^n{MnBσ) < μ + ε(σ), where ε(σ) | 0 as σ | 0, and since
Z. , X, , —• 0, it follows from (1.5) that ηγ ,γ - ,M -+ M with θ-(0) >

J J ^ Λjt\Λj Z,j\ M

μ and Urn ^oo(ωnp
n)~ι^n(MnBp) = μ. Thus by a well-known argument

involving the monotonicity formula we deduce that M is actually a cone
with vertex at 0. On the other hand, by another application of (1.5) we
have θjjj(Jf) > μ (and hence is equal to μ) at each point of {0} x Rm ,
and (see the discussion subsequent to (1.9), and (1.9;)) we conclude that
M is invariant under translations J H I + ( 0 , Z ) , Z e Rm. But by
construction there exists Z e singM\{0} x Rm , and hence dim sing M >
m+1, which contradicts the definition of m . Hence the proof of Theorem
4 is complete.

6.3. Proof of Corollary 3. Since θγ(X0) < 2 we can choose σQ > 0

such that Bσ (XQ) c U and (ωnσζ)'ι\\V\\(Bσ (Xo)) < 2. Notice that then
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V is multiplicity 1 in fact by (1.5) there is σ e (0, σ0) such that

W\\(BΛY))
(1) sup ^ < 2 - ε0 for some ε0 > 0.

YeBσ{x0), pe(0,σ) conp

Let 2^ be the class of all varifolds gί/y>/>#(VL Bσ(X0)), where Y e

R2+k, p > 0, and q e SO(R2 + / c). Also, given any open W c Rn+Ic

we let ^Q(W) be the set of all varifold limits, taken in IV 9 of conver-
gent sequences (# ηγ #V) L W (thought of as varifolds in W) with

UT=ιf]ZjQjriYi,pBσ(
Jχ0) D W9 and let <V = {jwT,{W). By virtue of

the compactness and regularity theorems [1] the set Jt consisting of all

the regular sets (in W) of all varifolds in ^Q(W), taken over all open

W c R , is a multiplicity 1 class in the sense of §1, provided we take
UM = W whenever M = regT for Ύ e %(W). Furthermore by the

analysis of [3] the only cylindrical cones Co x R""1 possible in this class

are given by the cones Co consisting of a union of three coplanar rays

emanating from the origin in Rk+ι, and meeting at equal angles of 2π/3 .

Notice also that V L Bσ(X0) e %(Bσ(X0)). Now the corollary is proved

by virtue of Theorem 4 and (1.10) in case n > 3 .
To prove the additional claim in case n = 2 we proceed as follows. Let

M = reg(V L Bσ(XQ)) (e Jt). By virtue of (1.10) we have exactly two
possibilities: either

(i) Tan^ M contains a cylindrical cone #(CoxR) with Co as described
above, or

(ii) XQ e ^0{M) so that no elements of = Tan^ M are cylindrical.
In case (i) we can directly apply Corollary 2 in order to deduce that for
some p > 0, singM ΠB (XQ) is a properly embedded C l α Jordan arc
with endpoints in dB (Xo), so there is nothing further to prove in this
case.

For case (ii) we first observe that each of the cones C e Tan y M must
Λo

have at least one ray of singular points. Indeed since 0 e singC (by virtue
of the regularity theorem [1] and the fact that Xo £ singΛf) otherwise
C would have an isolated singularity at 0. However then Σ = Cn Sk+ι

would be a smooth embedded compact one-dimensional submanifold of
S , and Σ would have to be a finite union of a pairwise-disjoint great
circles: Σ = [}N

j=ι Σj , where each Σj is a great circle. If TV = 1 this would
give singC = 0 , a contradiction. If N > 2, then ΘM(XO) = θ c (0) > 2,
again a contradiction. Hence each C e sing AT has at least one singular
ray as claimed.
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So, in case (ii), take C e Tan^ M, and let rχ, , rN be the singular
rays of C. In view of the fact that along each of these rays C has normal
cross section consisting of three coplanar rays meeting at angles of 2π/3
(by the above discussion of cylindrical cones in Jt), and in view of the
fact that θ c ( y ) < 2 - ε0 (by (1)), it is easy to check using (1.5) that there
is a fixed constant θ > 0, depending only on J! and ε 0 , such that

(2) dist(r. Π S M , r'. n S M ) > θ, iφj,

and in particular N is bounded above by a fixed integer depending only

on J?. Also by definition of Tan χ M there is a p0 > 0 such that for

each p e (0, />0) there is a cone C^ € Tan^ M such that

(3) p'4 f d i s t 2 ( X , C ) < ε 2 .
JMΠBP(X0)

Equations (2) and (3) evidently imply that the number N of singular rays
r. in a cone C e TanF Λf is a constant. Furthermore if Y φ 0 is on

J Λ0

one of the singular rays r. of C, then for suitable δ > 0, C Π Bδ(Y)
is a union of three half-discs meeting along the common boundary r. Π
Bδ(Y) at angles of 2π/3. Thus (cf. the argument at the beginning of
§6.2), for almost all p e (0, p0), dB n Af contains at least TV singular
points Z j , , Z ^ , one in the ε(/?)-neighborhood of each r. Π 5 5 ^ , j =
1, ••• , N, where ε(/?) | 0 as p | 0. Therefore by applying Theorem
4 to 7/y M (and making using of the estimate (4) in §6.2 in the proof

j , p

of Theorem 4), we deduce that there are exactly N properly embedded

locally C ' α Jordan arcs Tχ, , Γ^, each with one endpoint in dBσ

and with one endpoint at Xo, where σ e (0, p0) is chosen suitably small,
such that singM n ~Bσ = U^Li Γ, τ h e f a c t t h a t t h e Γ/ h a v e finite length
follows directly from the fact that (by estimate (4) of §6.2) Γ\ n Bp\Bp/2

has length < p for sufficiently small p. (In fact (4) of §6.2 gives length
Γj Π Bp\Bp/2 < (1 + ε(p))p/2, where ε(p) | 0 as p | 0.)

7. Concluding remarks

The main discussion centered on the properties of the singular set. How-
ever, an examination of the relevant arguments will show that in fact we
obtained various results about asymptotics of M on approach to the sin-
gular set. For instance, the proof of Theorem 1 shows that, for given
δ > 0, if we select X e singα M such that there exists σ = σ(X, M) > 0
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with

(7.1) 8,(11(1?, Π ηXpsingaM)) D qp({0} x Rm)nBι

for all p e (0, σ), where Π is the orthogonal projection of Rn+ onto an

ra-dimensional subspace ^({0} x R m ) , qp e SO(R"+A:), then, provided

δ = δ(C{0), Jt) is sufficiently small,

(7.2) p~n~2 ί dist2(X,C)
JMΠBP

n~2 ί d i s t 2 ( X , C ) , 0<p<σ,
JMnBσ

P

£)σ
J

for some fixed cylindrical cone C = ^(CQ0 ) X Rm) e Jt, μ = μ(Jf) e
(0, 1). That is, we have the following:

7.3. Theorem. Suppose a > 1 is given, and C ( 0 ) = C^0) x f e /
with θc(0)(0) = α is such that \\ holds. If M £ Jt, X e singαM, and
there is σ > 0 such that (7.1) holds for all p e (0, σ), then (7.2) holds.

Remarks. (1) Notice that, for any given δ > 0, the hypothesis (7.1)
is automatically satisfied (with q independent of p) for some σ > 0 at
any point X at which singα M has an approximate m-dimension tangent
plane #({0} x RM) in the sense of [19]; since we have shown singQM
is countably m-rectifiable, we have (7.1) (hence (7.2)) at ^ m - a . e . X e
singα M.

(2) Notice that in particular this means that C is the unique tangent
cone of M at any such point X.

We also note here that if the hypotheses are as in Theorem 4, then the
proof of Theorem 4 shows that (7.2) holds uniformly for X e singΛf n
Bp(X0) for suitable p > 0, and it is standard that this implies there is a

Cι'a diffeomorphism of Bp/2(XQ) onto itself which takes ΉnBp/2(X0)

onto Bp/2 Π C ( 0 ) .

Finally we want to point out that all of the above extends in a straight-
forward manner to a Riemannian setting. Indeed in view of the Nash
embedding theorem it is enough to consider classes Jί as in §1, except
that in place of (1.1) we have

f
J M JM

for some function HM satisfying sup^ \HM\ < AM, where AM is a
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constant. Then in place of (1.5) we have that

is an increasing function of X so long as B IX) c UM, and the L2-

estimates of §3 generalize to this setting with "error term" CAM on the

right (or with CAMp on the right in case of estimates taken over the ball

Bp rather than Bx). Then the proof of Lemma 1 easily generalizes to the

case when (l.l ') is assumed with AM < βj in place of (1.1), provided

we use β. = (fMnB d) + CAM)ι/2 in place of (JMnB d2)1'2 in that
J j 1 J j j \ J

argument. Then we can conclude that if the hypotheses are as in Lemma

1, except that (l.l ') is assumed in place of (1.1), and if AM < ε0, then

either alternative (i) of Lemma 1 holds, or there is C e &ε (C(0)) such

that

X, C) <Cθa I [ dist2(X, C) + ΛM ) .
MΠBΘ \JMnBι J

The reader should keep in mind that all elements of ^ ( C ( 0 ) ) (and all
elements of TanχM) still satisfy (1.1), at least away from the singular
axis {0} x Rm .

Of course once this modified version of Lemma 1 has been proved, then
the proof of Theorem 1 carries over; the proof merely needs to be modified
to allow additional terms like CσAM2~2x on the right side of inequalities
like those in (3) and (4) of the proof of Theorem 1. The reader can easily
check that this makes no essential difference to the argument. Then the
proofs of Theorems 2, 2f, 3, 4 and their corollaries carry over with the
same proofs as before. Thus in conclusion we have:

7.4. Theorem. Theorems 2, 2f, 3, 4 are all valid in case the class
M consists of submanifolds M satisfying (l.l ') in place of (1.1). In
particular, mod 2 minimizing currents T in any complete Riemannian
manifold have interior singular sets as in Corollary 1 o/§l.
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