NONUNIFORM HYPERBOLIC LATTICES AND EXOTIC SMOOTH STRUCTURES

F. T. FARRELL & L. E. JONES

0. Introduction

Let Θ_m denote the group of homotopy *m*-spheres where m > 4. Elements in Θ_m are equivalence classes of oriented manifolds homeomorphic to S^m . Two such manifolds Σ_1^m and Σ_2^m are equivalent provided there exists an orientation-preserving diffeomorphism between them. In this paper, \mathbb{D}^{m+1} and S^m respectively denote the unit ball and unit sphere in \mathbb{R}^{m+1} ; i.e.,

(0.01)
$$\mathbb{D}^{m+1} = \{ x \in \mathbb{R}^{m+1} \mid |x| \le 1 \}, \\ S^m = \partial \mathbb{D}^{m+1} = \{ x \in \mathbb{R}^{m+1} \mid |x| \le 1 \}.$$

Kervaire and Milnor proved in [13] that Θ_m is a finite abelian group.

Let M^m be a smooth *m*-dimensional manifold. A possible way to change its smooth structure, without changing its homeomorphism type, is to take its connected sum $M^m \# \Sigma^m$ with a homotopy sphere Σ^m . We showed in [9] that it is sometimes possible to change the smooth structure on a closed (real) hyperbolic manifold M^m in this way and still to have a negatively curved Riemannian metric on $M^m \# \Sigma^m$. But when M^m is noncompact (and connected), this method *never* changes the smooth structure ture on M^m . (See the proof of Corollary 1.5 for an argument verifying this statement.)

We use a different method in this paper, which can sometimes change the smooth structure on a noncompact manifold M^m . The method is to remove an embedded tube $S^1 \times \mathbb{D}^{m-1}$ from M^m and then reinsert it with a "twist". To be more precise, pick a smooth embedding $f: S^1 \times \mathbb{D}^{m-1} \to M^m$ and an orientation-preserving diffeomorphism $\varphi: S^{m-2} \to S^{m-2}$. Then a new smooth manifold $M_{f,\varphi}$ is obtained as a quotient space of the disjoint union

(0.02)
$$S^{1} \times \mathbb{D}^{m-1} \amalg M^{m} - f(S^{1} \times \operatorname{Int} \mathbb{D}^{m-1}),$$

Received September 9, 1991. Both authors were supported in part by the National Science Foundation.

where we identify points (x, v) and $f(x, \varphi(v))$ if $(x, v) \in S^1 \times S^{m-2}$. (Here, Int \mathbb{D}^{m-1} denotes the interior of \mathbb{D}^{m-1} ; i.e., it is $\mathbb{D}^{m-1} - S^{m-2}$.) The smooth manifold $M_{f,\varphi}$ is canonically homeomorphic to M^m but is not always diffeomorphic to M^m . We obtain the following result in this way. In this paper, \mathbb{H}^m denotes real hyperbolic *m*-space, and $\mathrm{Iso}(\mathbb{H}^m)$ its group of isometries.

Theorem 0.1. Let *m* be any integer such that $\Theta_{m-1} \neq 1$, and ε be any positive real number. Then there exists an *m*-dimensional complete Riemannian manifold M^m with finite volume and all its sectional curvatures contained in the interval $[-1-\varepsilon, -1+\varepsilon]$, and satisfying the following. M^m is not diffeomorphic to any complete Riemannian locally symmetric space; but it is homeomorphic to \mathbb{H}^m/Γ where Γ is a torsion-free nonuniform lattice in $Iso(\mathbb{H}^m)$.

Let us recall some qualitative facts about Θ_n . Kervaire and Milnor [13] and Browder [4] showed that Θ_{2n-1} is nontrivial for every integer n > 2 which does not have the form $n = 2^i - 1$. On the other hand Θ_{12} is trivial. Therefore if M^{12} is a closed hyperbolic manifold, $M^{12} \# \Sigma^{12}$ must be diffeomorphic to M^{12} where Σ^{12} is any homotopy 12-sphere. The results in [9] consequently fail to yield an exotic smooth structure on a negatively curved 12-manifold which is homeomorphic to a (real) hyperbolic manifold. But our present technique does. In particular, we have the following result.

Theorem 0.2. Let *m* be any integer such that either Θ_m or Θ_{m-1} is not trivial; e.g., *m* can be any integer greater than 6 provided it has neither of the following two forms; $m = 2^j - 2$ nor $m = 2^j - 3$, where $j \in \mathbb{Z}$. Then there exists a closed Riemannian manifold M^m whose sectional curvatures are all pinched within ε of -1 and such that

- 1. dim $M^m = m$;
- 2. M^m is homeomorphic to a real hyperbolic manifold;
- 3. M^m is not diffeomorphic to any Riemannian locally symmetric space. We end this introduction with the following comments. The exotic Riemannian manifolds M^m constructed in this paper via Theorem 4.2 and Addendum 4.3 are all different from those exotic Riemannian manifolds \mathcal{N}^m previously constructed via [9, Proposition 1.2]. That is, the only time M^m is diffeomorphic to \mathcal{N}^m is when they are both diffeomorphic to a locally symmetric space and hence neither is exotic.

Finally, the results of this article should be useful in extending those of [10].

We wish to thank Ronnie Lee, whose question motivated this paper.

1. Exotic smooth structures

Let (M^m, f, φ) be a triple where M^m is a smooth manifold, $f: S^1 \times \mathbb{D}^{m-1} \to M^m$ is a smooth embedding (i.e., a *tube*) and $\varphi: S^{m-2} \to S^{m-2}$ is an orientation-preserving diffeomorphism. (We assume throughout this paper that dim $M^m = m > 6$.) This data determines the new smooth manifold $M_{f,\varphi}$ constructed in §0. Recall that $M_{f,\varphi}$ is canonically homeomorphic to M^m . The purpose of this section is to give useful sufficient conditions which guarantee that $M_{f,\varphi}$ is not diffeomorphic to M^m .

Recall that two smooth structures N_0 and N_1 on a topological manifold N are concordant if there exists a smooth structure \overline{N} on $N \times [0, 1]$ such that N_i , for i = 0, 1, is the induced smooth structure on $N \times i$. Two concordant structures are diffeomorphic. (See [14, pp. 24, 113-116].) The tube f determines a framed simple closed curve $\alpha: S^1 \to M^m$ where $\alpha(y) = f(y, 0)$ for each $y \in S^1$. The framing of α consists of the vector fields X_1, X_2, \dots, X_{m-1} where $X_i(y)$ is the vector tangent to the curve $t \mapsto f(y, te_i)$ at t = 0. Here e_i denotes the point in \mathbb{R}^{m-1} whose *i*-th coordinate is 1 and all other coordinates are 0. We use α to denote the curve equipped with this framing. It is called the *core* of f. The concordance class of $M_{f,\varphi}$ depends only on M^m , the core α of f, and the (pseudo-)isotopy class of φ denoted by x. We consequently denote the concordance class of $M_{f,\varphi}$ by $M(\alpha, x)$. Recall that the isotopy classes of orientation-preserving diffeomorphisms of S^{m-2} are in one-one correspondence with the elements in the abelian group Θ_{m-1} which is also identified with $\pi_{m-1}(\operatorname{Top}/0)$; therefore, $x \in \Theta_{m-1}$.

Assume now that M^m is a complete (connected) Riemannian manifold with finite volume and whose sectional curvatures are all -1. The universal cover of M^m is real hyperbolic *m*-space \mathbb{H}^m and $\pi_1 M^m$ is identified via the group of all deck transformations with a torsion-free lattice $\Gamma \subseteq \text{Iso }\mathbb{H}^m$. We say that an element $\gamma \in \pi_1 M$ is *cuspidal* if there are arbitrarily short closed curves in M^m which are freely homotopic to a curve representing γ . This condition is equivalent to either $\gamma = 1$ or γ corresponds to a nonsemisimple matrix under the identifications

(1.0)
$$\pi_1 M = \Gamma \subset \operatorname{Iso} \mathbb{H}^m = O^+(m, 1, \mathbb{R}) \subset \operatorname{GL}_{m+1}(\mathbb{C}).$$

Note that the identity $1 \in \pi_1 M$ is the only cuspidal element when M is compact.

We now state the main result of this section. Recall that a π -manifold is a smooth manifold whose tangent bundle is stably trivial. Throughout

this paper \mathbb{Z} denotes the ring of all (rational) integers and \mathbb{Z}_+ denotes its additive group.

Theorem 1.1. Let M^m be a complete (connected) Riemannian manifold with finite volume and all sectional curvatures -1. Let α be a framed simple closed curve in M^m and $[\alpha] \subset \pi_1 M$ be the fundamental group element it determines. Assume that M^m is a π -manifold and there exists a homomorphism $\eta: \pi_1 M \to \mathbb{Z}_+$ such that

- 1. $\eta([\alpha]) = 1$ and
- 2. $\eta(\gamma)$ is divisible by the order of Θ_{m-1} for every cuspidal element γ in $\pi_1 M$.

Then M is diffeomorphic to a manifold in the concordance class $M(\alpha,x)$ only when x = 0.

The proof of this result requires some preliminaries. Represent $M(\alpha, x)$ by the manifold $M_{f,\varphi}$ and let $g: M_{f,\varphi} \to M$ be the canonical homeomorphism. Mostow's rigidity theorem [19], as extended by G. Prasad [21] to the finite volume situation, can be used together with its topological analogue [8, Corollary 10.3] and the topological analogue of Bieberbach's work on flat Riemannian manifolds [6], [7] to reduce Theorem 1.1 to the assertion that g is topologically concordant to a diffeomorphism only when x = 0. See the proof of [9, Lemma 2.1] for how to accomplish this reduction.

By [14, Theorem 10.1] there is an identification of the concordance classes of smooth structures on (the topological manifold) M and the homotopy classes of maps from M to Top/O, denoted by [M, Top/O], with the hyperbolic structure on M corresponding to the class of the constant map. The identification of Θ_m and $\pi_m(\text{Top}/O)$, with S^m corresponding to 0 also follows from [14, Theorem 10.1]. Let $\hat{\alpha}: M^m \to S^{m-1}$ be the result of applying the Pontryagin-Thom construction to the framed 1-manifold α . It is explicitly described by

(1.1.1)
$$\hat{\alpha}(f(y, v)) = q(v),$$

where $(y, v) \in S^1 \times \mathbb{D}^{m-1}$, and $q: \mathbb{D}^{m-1} \to \mathbb{D}^{m-1} / \partial \mathbb{D}^{m-1} = S^{m-1}$ is the canonical quotient map; if $y \notin \text{ image } f$, then

$$\hat{\alpha}(y) = q(\partial \mathbb{D}^{m-1}).$$

The naturality of [14, Theorem 10.1] yields the following result.

Lemma 1.2. The map $x \mapsto M(\alpha, x)$ is the homomorphism $\hat{\alpha}^*$: $\pi_{m-1}(\operatorname{Top} / O) \to [M, \operatorname{Top} / O]$ under the identifications of the previous paragraph.

Hence Theorem 1.1 is equivalent to the assertion that $\hat{\alpha}^*$ is injective. We now embark on verifying this assertion.

Given an embedding $h: N \to \mathcal{N}$ where N and \mathcal{N} are manifolds of the same dimension with N compact, there is a dual map $h': \mathcal{N}/\partial \mathcal{N} \to N/\partial N$ defined by

(1.2.1)
$$\begin{aligned} h'(h(y)) &= y, & \text{if } y \in \operatorname{Int} N, \\ h'(y) &= \infty, & \text{otherwise.} \end{aligned}$$

Here ∞ denotes the point corresponding to ∂N in the decomposition space $N/\partial N$. We also, when convenient, abbreviate $N/\partial N$ to N/∂ .

Proposition 1.3. Let N^m be a closed π -manifold, and $h: S^1 \times \mathbb{D}^{m-1} \to N^m$ be a tube with core $\alpha: S^1 \to N$. Assume there exists a map $\psi: N^m \to S^1$ such that the composite $\psi \circ \alpha: S^1 \to S^1$ has degree ± 1 . Then

$$(h')^* : [S^1 \times \mathbb{D}^{m-1}/\partial, \operatorname{Top}/O] \to [N, \operatorname{Top}/O]$$

is monic.

Proof. Recall that Top /O is an ∞ -loop space (see [2, p. 215]). Let Y denote the (m+1)-fold delooping of Top /O; i.e., $\Omega^{m+1}Y = \text{Top }/O$. Recall there is a natural bijection between $[\Sigma^{m+1}X, Y]$ and $[X, \Omega^{m+1}Y] = [X, \text{Top }/O]$. Here [,] denotes the homotopy classes of (base-point-preserving) maps and X is a space (with base point). Consequently, to prove Proposition 1.3, it suffices to show that

(1.3.1)
$$(\Sigma^{m+1}h')^*: [\Sigma^{m+1}(S^1 \times \mathbb{D}^{m-1}/\partial), Y] \to [\Sigma^{m+1}N, Y]$$

is monic. Consider the codimension-0 embedding

(1.3.2)
$$h \times \mathrm{id} \colon (S^1 \times \mathbb{D}^{m-1}) \times \mathbb{D}^{m+1} \to N^m \times \mathbb{D}^{m+1}$$

and observe that $(h \times id)'$ factors through $\Sigma^{m+1}(h')$. Hence it suffices to show that

(1.3.3)
$$(h \times \mathrm{id})'^* \colon [S^1 \times \mathbb{D}^{m-1} \times \mathbb{D}^{m+1} / \partial, Y] \to [N \times \mathbb{D}^{m+1} / \partial, Y]$$

is monic. Let $F: N^m \times \mathbb{D}^{m+1} \to S^1 \times \mathbb{D}^{2m}$ be a codimension-0 embedding such that the composites $p \circ F$ and $\psi \circ q$ are homotopic, where p and qrespectively denote the projections onto the first factors of $S^1 \times \mathbb{D}^{2m}$ and $N^n \times \mathbb{D}^{m+1}$. Note that F exists because N is a π -manifold. Using the fact that $(F \circ (h \times id))' = (h \times id)' \circ F'$, we easily see that

(1.3.4)
$$(h \times \mathrm{id})' \circ F' \colon (S^1 \times \mathbb{D}^{2m})/\partial \to (S^1 \times \mathbb{D}^{m-1} \times \mathbb{D}^{m+1})/\partial$$

is a homotopy equivalence. This completes the proof of Proposition 1.3. q.e.d.

An elaboration of this argument yields the following extension.

Addendum 1.4. Let N^m be a compact connected π -manifold with (possibly) nonempty boundary. Let $h: S^1 \times \mathbb{D}^{m-1} \to \operatorname{Int}(N^m)$ be a tube with core $\alpha: S^1 \to N^m$. Suppose there exists a map $\psi: N^m \to S^1$ satisfying the following two properties.

- 1. The composite $\psi \circ \alpha : S^1 \to S^1$ has degree ± 1 .
- 2. For any map $\beta: S^1 \to \partial N$, the degree of $\psi \circ \beta: S^1 \to S^1$ is divisible by the order of the group Θ_{m-1} .

Then the composite

$$h^{\prime *} \circ p^* : \Theta_{m-1} = \pi_{m-1}(\operatorname{Top} / O) \to [\operatorname{Int} N^m, \operatorname{Top} / O]$$

is monic, where $p: S^1 \times \mathbb{D}^{m-1}/\partial \to \mathbb{D}^{m-1}/\partial$ is determined by projection onto the second factor of $S^1 \times \mathbb{D}^{m-1}$.

Proof. We can assume that $\psi \circ \alpha$ has degree one by composing ψ with a degree-one self map of S^1 if necessary. Let $F: N^m \times \mathbb{D}^{m+1} \to S^1 \times \mathbb{D}^{2m}$ be an embedding as in the proof of Proposition 1.3. We can easily arrange that F satisfies the following two additional properties:

(1.4.1) Image
$$F \cap (S^1 \times S^{2m-1}) = F(\partial N^m \times \mathbb{D}^{m+1})$$

(1.4.2)
$$F(h(u, v), w) = (u, (v/2, w/2))$$

for all $u \in S^1$, $v \in \mathbb{D}^{m-1}$ and $w \in \mathbb{D}^{m+1}$. Let $k: S^1 \times \mathbb{D}^{m-1} \to N^m$ denote the composition of h with the inclusion map $\operatorname{Int}(N^m) \subset N^m$. The argument given before shows that

$$(k \times \mathrm{id})^{\prime *} : [S^1 \times \mathbb{D}^{m-1} \times \mathbb{D}^{m+1} / \partial, Y] \to [N^m \times \mathbb{D}^{m+1} / \partial, Y]$$

is monic. (Note that $\partial(N^m \times \mathbb{D}^{m+1}) = \partial N^m \times \mathbb{D}^{m+1} \cup N^m \times S^m$.)

Let s denote the order of Θ_{m-1} , and $\Phi: S^1 \times \mathbb{D}^{2m}/\partial \to S^1 \times \mathbb{D}^{2m}/\partial$ be the map induced by the function $(z, u) \mapsto (z^s, u)$ where $z \in S^1$ and $u \in \mathbb{D}^{2m}$. Likewise let

$$P: S^1 imes \mathbb{D}^{m-1} imes \mathbb{D}^{m+1} / \partial o \mathbb{D}^{m-1} imes \mathbb{D}^{m+1} / \partial$$

be determined by projection onto the last two factors of $S^1 \times \mathbb{D}^{m-1} \times \mathbb{D}^{m+1}$. Property (1.4.2) yields the following identity

(1.4.3)
$$P \circ (F \circ (k \times \mathrm{id}))' \circ \Phi = P \circ (F \circ (k \times \mathrm{id}))'.$$

Let $\sigma: \partial N^m \times [0, 1] \to N^m$ be a collaring of N^m . To complete the proof, it suffices to show that the equation

(1.4.4)
$$(\sigma \times id)'^*(a) = (k \times id)'^*(P^*(b))$$

only has solutions a and b when the element $b \in \Theta_{m-1}$ is zero.

To show that b = 0, apply $(F' \circ \Phi)^*$ to (1.4.4) and use identity (1.4.3) yielding

(1.4.5)
$$((F \circ (\sigma \times \mathrm{id}))' \circ \Phi)^*(a) = (F \circ (k \times \mathrm{id}))'^*(P^*(b)).$$

It can be shown, using hypothesis 2 of Addendum 1.4, that

$$((F \circ (\sigma \times id))' \circ \Phi)^*(a)$$

is divisible by s. (Hint. The map $F \circ (\sigma \times id)$: $\partial N^m \times [0, 1] \times \mathbb{D}^{m+1} \to S^1 \times \mathbb{D}^{2m}$ lifts to the connected s-sheeted cover of $S^1 \times \mathbb{D}^{2m}$.) Since $(F \circ (k \times id))'^*$ is an isomorphism, $P^*(b)$ is also divisible by s. But P^* is a monomorphism onto a direct summand; therefore, $b \in \Theta_{m-1}$ is divisible by s and hence b = 0. This completes the proof of Addendum 1.4. q.e.d.

Recall that M^m is the interior of a compact smooth manifold \overline{M}^m and observe that the cuspidal elements in $\pi_1 M = \pi_1 \overline{M}$ are precisely those representable by curves in \overline{M} which are freely homotopic to curves in $\partial \overline{M}$. If we set $N^m = \overline{M}^m$ and h = f, then $\hat{\alpha} = p \circ h'$ and hence Addendum 1.4 verifies the assertion, made in the sentence following Lemma 1.2, that $\hat{\alpha}^*$ is injective. This completes the proof of Theorem 1.1.

The first comment made at the end of the Introduction is explained by the following remark.

Corollary 1.5. Let M^m be a manifold satisfying the hypotheses of Theorem 1.1. Let the homotopy sphere Σ^m represent an element in Θ_m and $x \in \Theta_{m-1}$. If $M^m \# \Sigma^m$ is diffeomorphic to a manifold in the concordance class $M(\alpha, x)$, then $M^m \# \Sigma^m$ is diffeomorphic to M^m .

Proof. Let $M_{f,\varphi}$ be a manifold in $M(\alpha, x)$ where α is the core of f and the isotopy class of φ is x. Further, suppose $M^m \# \Sigma^m$ is diffeomorphic to $M_{f,\varphi}$. We first consider the case where M^m is not compact; then every map $M^m \to S^m$ is homotopic to a constant map. But the concordance class of $M^m \# \Sigma^m$ is in the image of

$$\hat{\gamma}^*: [S^m, \operatorname{Top}/O] \to [M^m, \operatorname{Top}/O],$$

where $\hat{\gamma}: M^m \to S^m$ is the result of the Pontryagin-Thom construction applied to a framed point $\gamma: * \to M^m$. Therefore $M^m \# \Sigma^m$ is concordant and hence diffeomorphic to M^m . (This argument, showing that $M^m \# \Sigma^m$ is diffeomorphic to M^m , is valid for any noncompact connected manifold M^m .) We now assume that M^m is compact. Let $\gamma: \mathbb{D}^m \to S^1 \times \mathbb{D}^{m-1}$ be an orientation-preserving embedding. Also, let the maps $q: S^1 \times \mathbb{D}^{m-1}/\partial \to \mathbb{D}^{m-1}/\partial \to \mathbb{D}^{m-1}/\partial \to S^1 \times \mathbb{D}^{m-1}/\partial$ be respectively determined by projection onto the second factor of $S^1 \times \mathbb{D}^{m-1}$ and the inclusion

$$\mathbb{D}^{m-1} = 1 \times \mathbb{D}^{m-1} \subset S^1 \times \mathbb{D}^{m-1}.$$

Lemma 1.2 yields that $M(\alpha, x) = f'^*(q^*(x))$. By looking at [9, Proof of Proposition 1.2], we also see that $M \# \Sigma^m$ and $M \# (-\Sigma^m)$ are in the concordance classes of $f'^*(\gamma'^*(y))$ and $f'^*(\gamma'^*(-y))$, respectively, where $y \in \Theta_m$ is the concordance class of Σ^m . The argument proving [9, Addendum 2.3] yields that $M_{f,\varphi}$ is concordant to either $M \# \Sigma^m$ or $M \# (-\Sigma^m)$; therefore, either $f'^*(q^*(x))$ is equal to $f'^*(\gamma'^*(y))$ or to $f'^*(\gamma'^*(-y))$. Now f'^* is monic by Proposition 1.3 in which we set $N^m = M^m$ and h = f. Consequently, $q^*(x) = \gamma'^*(z)$ for some $z \in \Theta_m$. Since the composite $q \circ \omega = id$, we have

(1.5.1)
$$x = \omega^*(q^*(x)) = (\gamma' \circ \omega)^*(z).$$

The map $\gamma' \circ \omega: S^{m-1} \to S^m$ is homotopic to a constant. Therefore, (1.5.1) implies that x = 0, which completes the proof of Corollary 1.5. q.e.d.

We end this section with a corollary of the Mostow-Prasad strong rigidity theorem.

Proposition 1.6. Let M^m , with m > 2, be a complete (connected) Riemannian manifold with finite volume and all sectional curvatures -1. Let N^m be a complete Riemannian locally symmetric space. If M and Nare homeomorphic, then they are isometrically equivalent (after rescaling the metric on N by a positive constant).

Proof. This is an immediate consequence of the Mostow-Prasad strong rigidity theorem when N has finite volume [19, §24] and [21]; cf. [16, p. 334, Theorem 7.24]. Note that N must have finite volume when M is compact. Hence we now assume that M is not compact.

To show that N has finite volume, in this case, we argue as follows. Let \widetilde{N} be the universal cover of N; then

(1.6.1)
$$\widetilde{N} = \mathbb{E}^k \times H_1,$$

where \mathbb{E}^k is k-dimensional flat Euclidean space and H_1 is a symmetric space of noncompact type. (The DeRham decomposition of \tilde{N} has no compact factor since N is aspherical.) We proceed to show that k = 0.

Let

(1.6.2)
$$\Gamma \subseteq \operatorname{Iso}(\mathbb{E}^k \times H_1) = \operatorname{Iso}(\mathbb{E}^k) \times \operatorname{Iso}(H_1)$$

be the group of all deck transformations of $\widetilde{N} \to N$. (We denote by Iso(X) the group of all isometries of a Riemannian manifold X.) Recall that $Iso(\mathbb{E}^k)$ is a semidirect product $\mathbb{R}^k \rtimes O(k)$. Hence the abelian Lie group \mathbb{R}^k is a closed normal connected subgroup of $Iso(\mathbb{E}^k \times H_1)$. Let

(1.6.3)
$$\pi: \operatorname{Iso}(\mathbb{E}^k \times H_1) \to \operatorname{Iso}(\mathbb{E}^k \times H_1)/\mathbb{R}^k$$

be the natural map and $U = \overline{\pi(\Gamma)}$ denote the closure of $\pi(\Gamma)$. The identity component U^0 of U is solvable by [22, Theorem 8.24]. If U^0 is not trivial, then $\pi(\Gamma) \cap U^0$ is a nontrivial normal solvable subgroup of $\pi(\Gamma)$, and Γ would consequently contain a nontrivial normal abelian subgroup. But this is impossible since Γ is isomorphic to a torsion-free lattice in $O^+(m, 1, \mathbb{R})$. Hence, $\pi: \Gamma \to \pi(\Gamma)$ is monic and $\pi(\Gamma)$ is a discrete subgroup of $\operatorname{Iso}(H_1)$. By looking at the cohomological dimension of Γ , it is now easily seen that k = 0.

Note that $\Gamma \cap \operatorname{Iso}(H_1)^0$ contains a free abelian subgroup A of rank m-1 since M^m has at least one cusp. Suppose A contains an element γ with nontrivial semisimple Jordan component s. Since A centralizes s, H_1 contains a proper A-invariant totally geodesic subspace H_2 which must be flat by [15] and have codimension one since H_2/A is compact. This forces $\tilde{N} = H_1 = \mathbb{H}^2$. But this is impossible since dim $\tilde{N} > 2$. We therefore conclude that A contains only unipotent elements. Hence [16, Proposition 1.5] shows that A is contained in the unipotent radial $R_u(P)$ of a parabolic subgroup P of $\operatorname{Iso}(H_1)$. For cohomological dimension reasons, A is cocompact in $R_u(P)$. This forces the \mathbb{R} -split rank of $\operatorname{Iso}(H_1)$ to be 1 and $R_u(P)$ to be abelian by [22, p. 34, Corollary 2]. Hence $H_1 = \mathbb{H}^m$ after rescaling the metric on H_1 by a positive constant. It is now a routine exercise to see that H_1/Γ has finite volume. This completes the proof of Proposition 1.6.

2. Negative curvature and $M(\alpha, x)$

The symbol M^m will denote, for the rest of this paper, a complete (connected) Riemannian manifold of finite volume (possibly compact) and with all sectional curvatures -1. Also α will denote a simple orthonormally framed geodesic in M^m . It determines an immersion $\bar{\alpha}: S^1 \times \mathbb{R}^{m-1} \to M^m$ defined by

F. T. FARRELL & L. E. JONES

(2.0)
$$\bar{\alpha}(y; t_1, t_2, \cdots, t_{m-1}) = \exp_{\alpha(y)} \left(\sum_{i=1}^{m-1} t_i e_i(\alpha(y)) \right),$$

where $y \in S^1$, $t_i \in \mathbb{R}$ and $e_1, e_2, \cdots, e_{m-1}$ is the orthonormal framing of α . For each nonnegative real number r and each subset $T \subseteq \mathbb{R}^s$, let rT denote the subset of \mathbb{R}^s defined by

(2.0.1)
$$rT = \{ry \mid y \in T\}.$$

We say that α is the core of a geometric tube of radius r if the restriction of $\bar{\alpha}$ to $S^1 \times r \mathbb{D}^{m-1}$ is a smooth embedding. Denote the arc length of α by $|\alpha|$ and let the orthogonal matrix $A_{\alpha} \in O(m-1, \mathbb{R})$ be the holonomy around α . It is explicitly defined as follows where we regard $\alpha: \mathbb{R} \to M$ as a periodic function of period 2π and speed $|\alpha|/2\pi$. Let $\bar{e}_1, \bar{e}_2, \cdots, \bar{e}_{m-1}$ be the parallel vector fields along α satisfying $\bar{e}_i(0) = e_i(0)$ for $i = 1, 2, \cdots, m-1$. Define a matrix $A_{\alpha}(t) \in O(m-1, \mathbb{R})$, for each $t \in \mathbb{R}$, by

(2.0.2)
$$e_i(t) = \sum_j (A_\alpha(t))_{ij} \bar{e}_j(t),$$

and then set $A_{\alpha} = A_{\alpha}(2\pi)$. We call the correspondence $t \mapsto A_{\alpha}(t)$ the holonomy function associated to α . The purpose of this section is to prove the following result.

Theorem 2.1. Given real numbers ε , l > 0, an integer m > 6 and a map $A(t): \mathbb{R} \to O(m-1, \mathbb{R})$, there exists a real number r > 0 such that the following statement is true for any pair (M^m, α) as above but subject to the following extra constraints:

1.
$$|\alpha| = l$$

2. $A_{\alpha}(t) = A(t)$ for all $t \in \mathbb{R}$;

3. α is the core of a geometric tube of radius 2r.

For any $x \in \Theta_{m-1}$, there exists a complete negatively curved Riemannian manifold N^m of finite volume in the concordance class $M(\alpha, x)$ and such that all the sectional curvatures of N^m lie in the interval $[-1-\varepsilon, -1+\varepsilon]$.

The following is the strategy used to prove this result. Pick a representative diffeomorphism $\varphi_x \colon S^{m-2} \to S^{m-2}$ for each element x in the *finite* group Θ_{m-1} . Let $f \colon S^1 \times \mathbb{D}^{m-1} \to M^m$ be the tube defined by

(2.1.1)
$$f(y, v) = \bar{\alpha}(y, 2rv).$$

The core of f is the geodesic α equipped with the framing $2re_1$, $2re_2$, \cdots , $2re_{m-1}$. But it is easily seen that M_{f,φ_x} is a smooth manifold in the concordance class $M(\alpha, x)$. It is the underlying smooth manifold of the posited Riemannian manifold N^m . To put the Riemannian metric on M_{f,φ_x} , we express it as the union of three manifolds

(2.1.2)
$$M^m - f(S^1 \times \operatorname{Int} \mathbb{D}^{m-1}), \quad S^1 \times \frac{1}{2} \mathbb{D}^{m-1}, \quad S^1 \times (\mathbb{D}^{m-1} - \frac{1}{2} \operatorname{Int} \mathbb{D}^{m-1}).$$

The Riemannian metric on M^m induces the Riemannian metrics on the first two submanifolds via the inclusion map and the embedding f, respectively. The third submanifold, which can be identified with the cylinder $(S^1 \times S^{m-2}) \times [\frac{1}{2}, 1]$, thus inherits a Riemannian metric on its top and bottom boundary components. We taper these Riemannian metrics together over the interior. The larger r is, the close to -1 is pinched the sectional curvatures in this tapered Riemannian metric. This tapering is accomplished by using Lemma 2.2 which we proceed to formulate.

Let $S^{m-2} \times \mathbb{R}$ denote the Riemannian symmetric space which is the metric product of S^{m-2} and the flat line \mathbb{R} . Let ψ be the isometry of S^{m-2} induced by $A(2\pi)$; i.e.,

(2.1.3)
$$\psi(y) = yA(2\pi), \qquad y \in S^{m-2},$$

and let $T: \mathbb{R} \to \mathbb{R}$ be the translation T(y) = y + l, $y \in \mathbb{R}$. Then $\psi \times T$ is an isometry of $S^{m-2} \times \mathbb{R}$. Let \mathcal{N}^{m-1} denote the orbit space of $S^{m-2} \times \mathbb{R}$ under the action of the infinite cyclic group of isometries generated by $\psi \times T$. It is a compact Riemannian locally symmetric space. Let $\pi: S^{m-2} \times \mathbb{R} \to \mathcal{N}^{m-1}$ denote the covering projection, and $\omega: \mathcal{N}^{m-1} \to (\frac{l}{2\pi})S^1$ be the map induced by projection onto the second factor of $S^{m-2} \times \mathbb{R}$. Here the circle $(\frac{l}{2\pi})S^1$ is identified with the orbit space of \mathbb{R} under the action of the group generated by T. Consider the cylinder $\mathcal{N}^{m-1} \times [1, 2]$. Let ξ and γ be the distributions respectively tangent to the foliations $\{\mathcal{N}^{m-1} \times t \mid t \in [1, 2]\}$ and $\{y \times [1, 2] \mid y \in \mathcal{N}^{m-1}\}$. Let ξ_1 and ξ_2 be the subdistributions of ξ respectively tangent to the foliations

(2.1.4)
$$\{ \pi(S^{m-2} \times y) \times t \mid y \in \mathbb{R}, t \in [1, 2] \} \text{ and } \\ \{ \pi(y \times \mathbb{R}) \times t \mid y \in S^{m-2}, t \in [1, 2] \}.$$

Let B be any Riemannian metric on $\mathcal{N}^{m-1} \times [1, 2]$ satisfying

F. T. FARRELL & L. E. JONES

(2.1.5) (1)
$$\xi \perp \gamma$$
 and
(2) $B\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) \equiv 1$,

where t is the second coordinate in the product structure $\mathcal{N}^{m-1} \times [1, 2]$. Given a positive real number r, construct a new Riemannian metric B_r on $\mathcal{N}^{m-1} \times [1, 2]$ by requiring the following properties:

(1)
$$\xi \perp \gamma$$
;
(2) $B_r\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) = r^2$;
(2.1.6) (3) $B_r(u, v) = \sinh^2(rt)B(u, v)$, if $u, v \in \xi_1$;
(4) $B_r(u, v) = \sinh^2(rt)B(u, v)$, if $u \in \xi_1$ and $v \in \xi_2$;
(5) $B_r(u, v) = \sinh^2(rt)B(u, v) + d\omega(u) \cdot d\omega(v)$, if $u, v \in \xi_2$.

Lemma 2.2. Let P denote an arbitrary 2-plane tangent to $\mathcal{N}^{m-1} \times [1, 2]$. Then

$$\lim_{r\to\infty}K_{B_r}(P)=-1$$

uniformly in P, where $K_{B_r}(P)$ denotes the sectional curvature of P relative to B_r .

Before proving Lemma 2.2, we use it to prove Theorem 2.1 by implementing in detail the strategy outlined after the statement of this theorem. Define a diffeomorphism $\widehat{\Psi}: \mathbb{R} \times S^{m-2} \to S^{m-2}$ by the formula

(2.2.0.1)
$$\widehat{\Psi}(t, y) = \left(yA(t), \frac{l}{2\pi}t\right).$$

(Recall that $A_{\alpha}(t) = A(t)$.) It induces a diffeomorphism $\Psi: S^1 \times S^{m-2} \to \mathcal{N}^{m-1}$ since $\psi(y) = yA(2\pi)$; cf. (2.0.2) and (2.1.3).

Fix a Riemannian metric B(,) on $\mathcal{N}^{m-1} \times [1, 2]$ satisfying (2.1.5) together with the following additional properties where $B^{t}(,)$ denotes the induced Riemannian metric on the hypersurface $\mathcal{N}^{m-1} \times t$, $t \in [1, 2]$:

- (1) B^1 is the given locally symmetric metric on \mathcal{N}^{m-1} .
- (2.2.0.2) (2) B^2 is the pullback of B^1 under the composite diffeomorphism $\Psi \circ (\operatorname{id} \times \varphi_x) \circ \Psi^{-1}$.
 - (3) B^t is constant in t near t = 1, 2.

If $s \in \mathbb{R}$ and $u = (t, y) \in S^1 \times \mathbb{R}^{m-1}$, define $s \cdot u = (t, sy)$. Let $h, h_x: \mathcal{N}^{m-1} \times (0, 2] \to M^m$ be the two embeddings defined by

(2.2.0.3)
$$h(y, t) = f(\frac{1}{2}t \cdot \Psi^{-1}(y)) \text{ and } \\ h_x(y, t) = f(\frac{1}{2}t \cdot \operatorname{id} \times \varphi_x(\Psi^{-1}(y))),$$

where $y \in \mathcal{N}^{m-1}$ and $t \in (0, 2]$. (Recall f was defined in (2.1.1).) Note that M_{f,φ_x} can be constructed by gluing $\mathcal{N}^{m-1} \times [1, 2]$ to $M^m - h(\mathcal{N}^{m-1} \times (1, 2))$ along the maps

(2.2.0.4)
$$\begin{aligned} h: \mathcal{N}^{m-1} \times 1 \to M^m - h(\mathcal{N}^{m-1} \times (1, 2)), \\ h_x: \mathcal{N}^{m-1} \times 2 \to M^m - h(\mathcal{N}^{m-1} \times (1, 2)). \end{aligned}$$

Put a Riemannian metric \langle , \rangle on $M_{f, \varphi_{z}}$ as follows. It is the given hyperbolic metric on $M^m - h(\mathcal{N}^{m-1} \times (1, 2))$; while, restricted to $\mathcal{N}^{m-1} \times (1, 2)$ $[1, 2], \langle , \rangle$ is the Riemannian metric $B_{r}(,)$ of (2.1.6) constructed using the Riemannian metric B(,) fixed in (2.2.0.2). We leave the reader an exercise to show that these two Riemannian metrics fit together. Use the following hints. The Jacobi fields in \mathbb{H}^m can be explicitly calculated. This calculation shows that \mathbb{H}^m is isometric to the warped product $\mathbb{H}^m \times_{\rho} \mathbb{R}$ where $g(p) = \cosh(\rho(p))$, $p \in \mathbb{H}^{m-1}$, and $\rho(p)$ denotes the distance between p and a fixed point $p_0 \in \mathbb{H}^{m-1}$. The set of points $p_0 \times \mathbb{R}$ is a geodesic line, and $\mathbb{H}^{m-1} \times 0$ is a totally geodesic subspace (isometric to \mathbb{H}^{m-1}) meeting this line perpendicularly at $p_0 \times 0$. Furthermore, \mathbb{H}^{m-1} – p_0 is isometric to the warped product $(0, +\infty) \times_h S^{m-2}$ where $h(t) = \sinh(t)$, $t \in (0, +\infty)$. Now use (2.2.0.2) and (2.1.6) together with the trigonometric identity $\cosh^2(t) = \sinh^2(t) + 1$ to show the metrics agree at $\mathcal{N}^{m-1} \times 1$. To show they agree at $\mathcal{N}^{m-1} \times 2$ use, in addition, the following matrix identity. Let P denote the $(m-1) \times (m-1)$ matrix whose only nonzero entry is $P_{m-1,m-1} = 1$, and let A be any $(m-1) \times (m-1)$ matrix whose bottom row is $(0, 0, \dots, 0, 1)$. Then $A^t P A = P$ where A^{t} denotes the transpose of A. The conclusion of Theorem 2.1 now follows from Lemma 2.2.

Proof of Lemma 2.2. Smooth coordinate functions $x_1, \dots, x_{m-2}, x_{m-1}, t$ defined in an open neighborhood of a point $(p_0, t_0) \in \mathcal{N}^{m-1} \times [1, 2]$ are said to form a regular coordinate system about (p_0, t_0) if there exist coordinate functions y_1, y_2, \dots, y_{m-1} , s defined in an open

neighborhood of a point $(q_0, t_0) \in (S^{m-2} \times \mathbb{R}) \times [1, 2]$ such that

- (1) $\pi(q_0) = p_0;$
- (2) the composite $x_i \circ (\pi \times id) = y_i$, for $i = 1, 2, \dots, m-1$;
- (3) s and t are the [1, 2] coordinates in the two product structures;
- (2.2.1) (4) y_{m-1} is the \mathbb{R} coordinate in the product structure $S^{m-2} \times \mathbb{R} \times [1, 2]$; and
 - (5) y_i is constant on each leaf of the foliation

$$\{z \times \mathbb{R} \times [1, 2] \mid z \in S^{m-2}\}$$
 provided $1 \le i \le m-2$.

It is easy to find a regular coordinate system about a given point in $\mathcal{N}^{m-1} \times [1, 2]$. By composing the coordinate functions y_1, y_2, \dots, y_m for this system with members from a precompact set of isometries of the symmetric space $S^{m-2} \times \mathbb{R} \times \mathbb{R}$, we construct a family of regular coordinate systems (one for each point $(p_0, t_0) \in \mathcal{N}^{m-1} \times [1, 2]$) satisfying the following properties:

- (1) $B(,) = g_{ij} dx_i dx_j + dt^2$. We denote these functions by $g_{ij}^{(p_0, t_0)}()$ when we need to make explicit the dependence of the functions $g_{ij}()$ on the (base) point (p_0, t_0) .
- (2) The closure of the set

 $\{g_{ij}^{(p_0,\,t_0)}(p_0\,,\,t_0)\,|\,(p_0\,,\,t_0)\in\mathcal{N}^{m-1}\times[1\,,\,2]\}$

(2.2.2)

is a compact space K of positive definite symmetric matrices.

(3) There is a positive real number C, which is independent of (p₀, t₀), such that for all integers k, s ≥ 0, with k + s ≤ 2, the following inequalities hold:

$$\left|\frac{\partial^{k+s}g_{ij}^{(p_0,t_0)}}{\partial x_1\cdots \partial x_{i_k}\partial t^s}(p_0,t_0)\right| < C.$$

For each positive real number r, define a new coordinate system \bar{x}_i , \bar{t} about (p_0, t_0) by setting

(2.2.3)
$$\overline{t} = rt$$
 and $\overline{x}_i = \sinh(rt_0)x_i$.

We then have the following equalities:

(2.2.4)
$$\begin{aligned} d\bar{t} &= r \, dt \,, \qquad d\bar{x}_i = \sinh(rt_0) \, dx_i \,, \\ \frac{\partial}{\partial \bar{t}} &= \frac{1}{r} \frac{\partial}{\partial t} \,, \qquad \frac{\partial}{\partial \bar{x}_i} = \frac{1}{\sinh(rt_0)} \frac{\partial}{\partial x_i} \,. \end{aligned}$$

From (2.2.4) and the definition (2.1.6) of B_r in terms of B it follows that

$$B_{r}(,) = \bar{g}_{ij} d\bar{x}_{i} d\bar{x}_{j} + d\bar{t}^{2},$$

where $\bar{g}_{ij} = \frac{\sinh^{2}(rt)}{\sinh^{2}(rt_{0})}g_{ij}, \text{ if } 1 \le i, j \le m-2;$
(2.2.5)
 $\bar{g}_{i,m-1} = \bar{g}_{m-1,i} = \frac{\sinh^{2}(rt)}{\sinh^{2}(rt_{0})}g_{i,m-1}, \text{ if } 1 \le i \le m-2;$

$$\bar{g}_{m-1,m-1} = \frac{\sinh^2(rt)}{\sinh^2(rt_0)}g_{m-1,m-1} + \frac{1}{\sinh^2(rt_0)}.$$

Let $X_{i_1, j_1, \dots, j_k, s}$ denote the partial derivatives (0th through 2nd order)

(2.2.6)
$$\frac{\partial^{k+s} \bar{g}_{ij}}{\partial \bar{x}_{i_1} \cdots \partial \bar{x}_{i_k} \partial \bar{t}^s} (p_0, t_0).$$

In particular, $X_{ij} = \bar{g}_{ij}(p_0, t_0)$. It follows from properties (2.2.2), (2.2.4) and (2.2.5) that

(2.2.7)
$$\lim_{r \to \infty} X_{i,j;i_1,\cdots,i_k;s} = 0^k 2^s g_{ij}^{(p_0,t_0)}(p_0,t_0)$$

uniformly in (p_0, t_0) . Here $0^0 = 1$ and $0^k = 0$ if $k \ge 1$. Choose an orthonormal basis $\{v_1, v_2\}$ for the 2-plane P and write

(2.2.8)
$$v_i = a_{ik} \partial / \partial \bar{x}_k + a_{im} \partial / \partial \bar{t}$$

where we sum over the index k. It is a consequence of the classical relation between the coefficients of the curvature tensor and of the first fundamental form (cf. [12, §§5.3 and 6.2]) that $K_{B}(P)$ is a polynomial

f() in the set of variables $\{X_{i,j;i_1,\cdots,i_k;s,}a_{ij}, \det(X_{ij})^{-1}\}$. The set \mathscr{L} of limiting values (as $r \to +\infty$) of these variables

(2.2.9)
$$\mathscr{L} = \{0^{k} 2^{s} g_{ij}^{(p_{0}, t_{0})}(p_{0}, t_{0}), a_{ij}, \det(g_{ij}^{(p_{0}, t_{0})}(p_{0}, t_{0}))^{-1}\}$$

is a precompact (i.e., bounded) subset of the domain of f because of (2.2.2) and (2.2.7). It consequently suffices to show that $f \mid \mathcal{L} \equiv -1$ in order to complete the proof of Lemma 2.2.

Fix a point $(p_0, t_0) \in \mathcal{N}^{m-1} \times [1, 2]$. Let x_1, x_2, \dots, x_{m-1} be the standard coordinates on \mathbb{R}^{m-1} and let A(,) be the flat Riemannian metric on \mathbb{R}^{m-1} described by

where $g_{ij}(,)$ is an abbreviated notation for $g_{ij}^{(p_0, t_0)}(,)$. Now form the warped product $\mathbb{R} \times_{\eta} \mathbb{R}^{m-1}$, where $\eta \colon \mathbb{R} \to \mathbb{R}$ is the function $\eta(t) = e^t$ and \mathbb{R} has its standard (flat) Riemannian metric. (See [20, pp. 204–211] for the definition and properties of the warped product.) Let t be the first coordinate in the product structure $\mathbb{R} \times \mathbb{R}^{m-1}$. Then the Riemannian metric $\overline{A}(,)$ on the warped product $\mathbb{R} \times_{\eta} \mathbb{R}^{m-1}$ is explicitly described by the formula

(2.2.11)
$$\overline{A}(,) = \hat{g}_{ij} dx_i dx_j + dt^2,$$

where $\hat{g}_{ij}(x_1, \dots, x_{m-1}, t) = e^{2t}g_{ij}(p_0, t_0)$. The sectional curvatures of $\mathbb{R} \times_{\eta} \mathbb{R}^{m-1}$ are easily calculated using [20, Proposition 4.2, p. 210]. They are all -1. Consider the point $0 = (0; 0, 0, \dots, 0) \in \mathbb{R} \times \mathbb{R}^{m-1}$. The value of the partial derivatives (0th through second order) of \hat{g}_{ij} at 0 are equal to the limiting values of $X_{i,j;i_1,\dots,i_k;s}$ as $r \to +\infty$; i.e., are $0^k 2^s g_{ij}(p_0, t_0)$. We consequently have that the value of f restricted to \mathscr{S} is identically -1. This completes the proof of Lemma 2.2.

3. Relevant group theory

We intend to use the results of \S 1 and 2 to construct the Riemannian manifolds posited in Theorems 0.1 and 0.2. We will use examples due to Millson [17] and a theorem of Sullivan [23]. Some specific group-theoretic facts are needed to enable us to assemble these results. The purpose of this section is to state and prove these results in group theory.

Let $\overline{\mathbb{Q}} \subseteq \mathbb{C}$ denote the algebraic closure (inside the complex numbers \mathbb{C}) of the field of rational numbers \mathbb{Q} .

Lemma 3.1. Let $\Gamma \subseteq \operatorname{GL}_n(\overline{\mathbb{Q}})$ be a finitely generated subgroup, and $A, B \in \Gamma$ be a pair of noncommuting elements. Also assume that A is a semisimple matrix in $\operatorname{GL}_n(\mathbb{C})$. Then there exists a homomorphism $\varphi \colon \Gamma \to G$ where G is a finite group such that $\varphi(B)$ is not an integral power of $\varphi(A)$; i.e., the equation $\varphi(B) = \varphi(A)^n$ has no integral solution n.

Proof. Since Γ is finitely generated, there exists an algebraic number field $k \subseteq \overline{\mathbb{Q}}$ such that $\Gamma \subseteq \operatorname{GL}_n(k)$. (Recall that an algebraic number

field is a finite field extension of \mathbb{Q} .) We can even pick k so that A is diagonalizable over k since the eigenvalues of A are also in $\overline{\mathbb{Q}}$. Hence, we may assume, after applying an inner automorphism, that A is represented by a diagonal matrix in $\operatorname{GL}_n(k)$ under the embedding $\Gamma \subseteq \operatorname{GL}_n(k)$. But B is not a diagonal matrix since the set of all diagonal matrices form an abelian subgroup of $\operatorname{GL}_n(k)$; in particular, $B_{ij} \neq 0$ for some pair of unequal indices i and j. Let \mathcal{O} be the ring of all algebraic integers inside of k. Recall the following properties of \mathcal{O} :

Ø is a Dedekind domain.
 Ø is a finitely generated free Z-module.
 Ø ⊗_Z Q = k.

Using property 3 and the fact that Γ is finitely generated, we conclude that $\Gamma \subseteq \operatorname{GL}_n(\mathscr{O}[\frac{1}{m}])$ where $m \in \mathbb{Z}$ and $m \neq 0$. In particular, $B_{ij} = bm^s$ where $b \in \mathscr{O}$, $b \neq 0$ and $s \in \mathbb{Z}$. Use property 1 to pick a maximal ideal \mathfrak{A} in \mathscr{O} such that both $b \notin \mathfrak{A}$ and $m \notin \mathfrak{A}$. Let $\psi : \mathscr{O}[\frac{1}{m}] \to \mathscr{O}/\mathfrak{A}$ be the canonical factor homomorphism. Note that \mathscr{O}/\mathfrak{A} is a finite field by property 2 and that $\psi(bm^s) \neq 0$. Let $\psi : \operatorname{GL}_n(\mathscr{O}[\frac{1}{m}]) \to \operatorname{GL}_n(\mathscr{O}/\mathfrak{A})$ be the induced group homomorphism. Then the posited φ is the composite of the inclusion of Γ into $\operatorname{GL}_n(\mathscr{O}[\frac{1}{m}])$ with ψ . q.e.d.

A closed geodesic $\gamma: S^1 \to M^m$ is said to be *t*-simple if $\dot{\gamma}: S^1 \to TM$ is simple, i.e., a one-to-one function. Recall M^m has the same meaning here as it has in §2 and m > 6. Also TM denotes the tangent bundle of M. Let $1 \in S^1 \subseteq \mathbb{R}^2 = \mathbb{C}$ be the complex number one.

Corollary 3.2. Assume M^m is orientable and $\gamma: S^1 \to M^m$ is a tsimple closed geodesic. Let $x_0 = \gamma(1)$ and $A \in \pi_1(M, x_0)$ be the homotopy class of γ . Let B be any other element in $\pi_1(M, x_0)$ which is not an integral power of A. Then there exists a homomorphism $\varphi: \pi_1(M, x_0) \to$ G where G is a finite group and such that $\varphi(B)$ is not an integral power of $\varphi(A)$.

Proof. The group Γ of all deck transformations of the universal covering space \mathbb{H}^m of M^m can be identified with $\pi_1(M, x_0)$. Using the fact that A leaves invariant a geodesic line in \mathbb{H}^m , one sees that A and B do not commute. Since Γ acts via isometries on \mathbb{H}^m , we can identify Γ as a lattice in the Lie group $\mathrm{SO}^+(m, 1, \mathbb{R}) \subseteq \mathrm{GL}_{m+1}(\mathbb{R})$ such that A is represented by a diagonalizable matrix in $\mathrm{GL}_{m+1}(\mathbb{C})$. We can apply the weak arithmeticity result of Garland and Raghunathan [11] which generalizes to nonuniform lattices earlier results of Selberg; cf. [22, Proposition 6.6], and Calabi [5]. There consequently exist an algebraic number field

 $k \subseteq \mathbb{R}$ and an element $g \in SO^+(m, 1, \mathbb{R})$ such that

$$g\Gamma g^{-1} \subseteq \mathrm{SO}^+(m, 1, k) \subseteq \mathrm{GL}_{m+1}(\overline{\mathbb{Q}}).$$

The composite of the inner automorphism determined by g with the embedding $SO^+(m, 1, k) \subseteq GL_{m+1}(\overline{\mathbb{Q}})$ hence gives an embedding of Γ into $GL_{m+1}(\overline{\mathbb{Q}})$ which satisfies the hypotheses of Lemma 3.1. An application of Lemma 3.1 thus completes the proof of Corollary 3.2.

Corollary 3.3. Let $\gamma: S^1 \to M^m$ be an orthonormally framed t-simple closed geodesic, and r be a positive real number. Then there exist a (connected) finite sheeted cover $p: \widetilde{M} \to M$ and an orthonormally framed simple closed geodesic $\alpha: S^1 \to \widetilde{M}$ such that

1. $p \circ \alpha = \gamma$ and

2. α is the core of a geometric tube of radius r.

Proof. Note first that we can assume M^m is orientable since γ lifts to the oriented cover of M^m when M^m is nonorientable.

Let $x_0 = \gamma(1)$, and \tilde{x}_0 be a lift of x_0 to the universal cover $q: \mathbb{H}^m \to M^m$; i.e., $q(\tilde{x}_0) = x_0$. Identify $\pi_1(M, x_0)$ with the group Γ of all deck transformations of $q: \mathbb{H}^m \to M^m$ via these choices, and let $A \in \Gamma$ correspond to the homotopy class of α in $\pi_1(M, x_0)$. Let L be a geodesic segment of finite length such that $\tilde{x}_0 \in L$ and $q(L) = \gamma(S^1)$. A compactness argument shows that these are only a finite number of elements B_1, B_2, \cdots, B_n in Γ such that, for each index $1 \leq i \leq n$, the following hold:

1. B_i is not an integral power of A, and

2. some point on $B_i(L)$ is within distance 2r + |L| of L where |L| denotes the length of L.

Now apply Corollary 3.2 to obtain a group homomorphism $\varphi: \pi_1(M, x_0) \to G$ where G is a finite group and such that none of the elements $\varphi(B_i)$ is an integral power of $\varphi(A)$, where $i = 1, 2, \dots, n$. Let S be the cyclic subgroup of G consisting of all the integral powers of $\varphi(A)$, and let $p: \widetilde{M} \to M$ be the covering space corresponding to the subgroup $\varphi^{-1}(S) \subseteq \pi_1(M, x_0)$. It is now routine to verify that $p: \widetilde{M} \to M$ satisfies the properties posited in Corollary 3.3.

Lemma 3.4. Assume M^m is orientable and $\varphi \colon \pi_1(M^m) \to \mathbb{Z}_+$ is an epimorphism. Then there is a t-simple closed geodesic $\gamma \colon S^1 \to M^m$ such that $\varphi([\gamma]) \neq 0$ where $[\gamma]$ denotes the free homotopy class of γ .

Proof. Recall that every conjugacy class of a nonidentity element in $\pi_1 M^m$ is represented by a closed geodesic when M^m is compact. So

Lemma 3.4 is obviously true when M^m is compact. We argue as follows in the general situation.

Identify $\pi_1 M^m$ with the group of all deck transformations of the universal covering space $p: \mathbb{H}^m \to M^m$. Since Γ acts via isometries on \mathbb{H}^m , we can further identify it to a lattice in $\mathrm{SO}^+(m, 1, \mathbb{R}) \subseteq \mathrm{GL}_{m+1}(\mathbb{R})$. The individual elements $\beta \in \Gamma - \{1\}$ are partitioned into two disjoint classes *semisimple* and *cuspidal* depending on whether the matrix representing β in $\mathrm{GL}_{m+1}(\mathbb{C})$ is semisimple (i.e., diagonalizable) or not. We now recall a few facts about the Jordan decomposition of β ; cf. [19, p. 10]. It decomposes uniquely as a product $\beta = pku$ where p, k, u are pairwise commuting matrices in $\mathrm{SO}^+(m, 1, \mathbb{R})$ with u unipotent and both p and k semisimple with positive real and length 1 eigenvalues, respectively. When $p \neq 1$, it has exactly two eigenvalues λ and λ^{-1} different from 1, and each eigenvalue has a one-dimensional eigenspace. It is a consequence of [19, Lemma 5.2(i)] that if $p \neq 1$, then u = 1; hence, β is cuspidal if and only if p = 1. Also [19, Lemma 5.2(i)] yields the following useful criterion.

(3.4.1) If trace $\beta > m+1$, then β is semisimple.

On the geometric side, the elements in $\Gamma - \{1\}$ whose conjugacy class is represented by a closed geodesic are precisely the semisimple elements, while the cuspidal elements are those representable by curves of arbitrarily short arc length.

We proceed to find a semisimple element $\beta \in \Gamma$ with $\varphi(\beta) \neq 0$. Pick an element $c \in \Gamma$ such that $\varphi(c) \neq 0$. If c is semisimple, then we are done. Hence assume that c is cuspidal. Using the fact that the set of all closed geodesics is dense in the set of all geodesics [19, Lemma 8.3'], we can find a semisimple element $\beta \in \Gamma - \{1\}$ such that trace $(\beta^n c) \rightarrow$ $+\infty$ as $n \rightarrow +\infty$. (Hint: β should "point towards" the cusp.) Hence $\beta^n c$ is also semisimple by (3.4.1), when n is sufficiently large. Note that $\varphi(\beta^n c) = n\varphi(\beta) + \varphi(c)$. Therefore either $\varphi(\beta) \neq 0$ or $\varphi(\beta^n c) \neq 0$. Thus we have accomplished the goal stated in sentence one of this paragraph.

Note that for every closed geodesic β there exist an integer *n* and a *t*-simple closed geodesic γ such that β is the composite $\gamma \circ P_n$ where $P_n: S^1 \to S^1$ is the function $z \to z^n$. Hence we can find a *t*-simple closed geodesic γ with $\varphi([\gamma]) \neq 0$. q.e.d.

We will need the following technical fact about the group $SO^+(m, 1, \mathbb{Z})$ in order to prove Theorem 0.1.

Proposition 3.5. Given a semisimple element $A \in SO^+(m, 1, \mathbb{Z})$ of infinite order and a positive integer n, there exist a finite group G and a

homomorphism ψ : SO⁺(m, 1, Z) \rightarrow G with the following properties:

1. The order of $\psi(A)$ is divisible by n.

2. Let β be any unipotent element in $SO^+(m, 1, \mathbb{Z})$ such that $\psi(B) = \psi(A)^s$ where $s \in \mathbb{Z}$; then n divides s.

Fix an algebraic number field k such that k contains all the eigenvalues of A as well as all the *n*th roots of unity. Note that A has real eigenvalues λ and λ^{-1} with $\lambda > 1$, and its other eigenvalues are complex numbers of length 1. Furthermore, the eigenspaces corresponding to λ and λ^{-1} are both one-dimensional. Let \mathscr{O} denote the ring of all algebraic integers in k, and let units \mathscr{O} denote the group of units of this ring. Notice that units \mathscr{O} contains all the eigenvalues of A and all the *n*th roots of unity. Fix a positive (rational) prime q which divides n, and let Ω denote a specific choice of a primitive qth root of unity. The proof of Proposition 3.5 requires the following preliminary result.

Lemma 3.6. Given a positive (rational) integer s, there exists a prime ideal \mathfrak{A} in \mathfrak{O} such that the coset $\lambda + \mathfrak{A}$ is a unit in the finite field $\mathfrak{O}/\mathfrak{A}$ and its order is divisible by q_s^s .

We now complete the proof of Proposition 3.5 using Lemma 3.6, and after that we prove Lemma 3.6. Let $n = q_1^{s_1} q_2^{s_2} \cdots q_r^{s_r}$ be the prime factorization of n where the numbers q_i are distinct positive primes and each $s_i > 0$. We will use Lemma 3.6 to construct finite groups G_i and homomorphisms ψ_i : SO⁺ $(m, 1, \mathbb{Z}) \rightarrow G_i$, for $i = 1, 2, \cdots, r$, with the following two properties:

- 1. The order of $\psi_i(A)$ is divisible by $q_i^{s_i}$.
- (3.6.1) 2. Let B be any unipotent element in SO⁺(m, 1, Z) such that $\psi_i(B) = \psi_i(A)^s$, then $q_i^{s_i}$ divides s.

The proof of Proposition 3.5 is completed by setting $G = G_1 \times G_2 \times \cdots \times G_r$ and $\psi = \psi_1 \times \psi_2 \times \cdots \times \psi_r$.

It remains to construct G_i and ψ_i satisfying (3.6.1). Let \mathfrak{A}_i be the prime ideal \mathfrak{A} posited in Lemma 3.6 relative to setting $q = q_i$ and $s = s_i$. Let $G_i = SL_{m+1}(\mathscr{O}/\mathfrak{A}_i)$, and ψ_i be the composite of the inclusion $SO^+(m, 1, \mathbb{Z}) \subseteq SL_{m+1}(\mathscr{O})$ with the group homomorphism

$$\eta_i \colon SL_{m+1}(\mathscr{O}) \to SL_{m+1}(\mathscr{O}/\mathfrak{A}_i)$$

induced by the coset homomorphism $x \mapsto x + \mathfrak{A}_i$, $x \in \mathscr{O}$.

We must now show that (3.6.1) is satisfied. Note first that $\lambda + \mathfrak{A}_i$ is an eigenvalue of the matrix $\psi_i(A)$. Consequently, $\psi_i(A)$ is conjugate to a

blocked upper triangular matrix \mathscr{A} of the form

(3.6.2)
$$\left(\begin{array}{c|c} \lambda + \mathfrak{A}_i & \bigstar \\ \hline 0 & \bigstar \end{array}\right),$$

where the top diagonal block is a 1×1 matrix whose entry is $\lambda + \mathfrak{A}_i$. Hence the order of \mathscr{A} is divisible by the order of the unit $\lambda + \mathfrak{A}_i$ in the field $\mathscr{O}/\mathfrak{A}_i$. Lemma 3.6 now shows that $q_i^{s_i}$ divides the order of $\psi_i(A)$ since \mathscr{A} and $\psi_i(A)$ have the same order. This verifies property 1 of (3.6.1).

To verify property 2, note that $\psi_i(A)^s$ is conjugate to \mathscr{A}^s . Hence \mathscr{A}^s is a unipotent matrix; i.e., all its eigenvalues are 1. But $\lambda^s + \mathfrak{A}_i$ is clearly an eigenvalue of \mathscr{A}^s . The order of $\lambda + \mathfrak{A}_i$ in units $(\mathscr{O}/\mathfrak{A}_i)$ therefore divides s. A second application of Lemma 3.6 now shows that $q_i^{s_i}$ divides s. This completes the proof of Proposition 3.5.

Proof of Lemma 3.6. Recall that \mathscr{O} satisfies the three properties of (3.1.1). For each element $x \in \mathscr{O}$, let (x) denote the principal ideal it generates; i.e., $(x) = x\mathscr{O}$. Each ideal in \mathscr{O} is the product of prime ideals since \mathscr{O} is a Dedekind domain. In particular, we have that

$$(\mathbf{3.6.3}) \qquad \qquad (\mathbf{\Omega}-1) = \mathfrak{A}_1^{m_1} \mathfrak{A}_2^{m_2} \cdots \mathfrak{A}_r^{m_r},$$

where each \mathfrak{A}_i is a prime ideal and each m_i is a nonnegative (rational) integer. Let

(3.6.4)
$$\nu = \max\{m_1, m_2, \cdots, m_r\} + 1.$$

Recall that prime ideals are all maximal in Dedekind domains; i.e., if \mathfrak{A} is a prime ideal, then \mathscr{O}/\mathfrak{A} is a field. Furthermore, \mathscr{O}/\mathfrak{A} has finite cardinality since the additive group of \mathscr{O} is finitely generated. We see that $\mathscr{O}/\mathfrak{A}^n$ is a finite ring for each nonnegative (rational) integer *n* by arguing in this way. We can clearly make the following assumption in proving Lemma 3.6; namely,

$$(3.6.5) qs > cardinality of $\mathscr{O}/\mathfrak{A}_{i}^{\nu}$$$

for each $i = 1, 2, \cdots, r$.

There is now the following fact which we will verify after first using it to complete the proof of Lemma 3.6.

Claim 3.7. There exist a prime ideal \mathfrak{A} in \mathscr{O} and a positive (rational) integer j such that $b^j - \Omega \in \mathfrak{A}$ but $\Omega - 1 \notin \mathfrak{A}$, where $b = \lambda^{q^{s-1}}$.

As observed above, \mathcal{O}/\mathfrak{A} is a finite field. Claim 3.7 can be rephrased as the following statement about elements in this field

$$(3.7.1) bJ + \mathfrak{A} = \Omega + \mathfrak{A} \neq 1 + \mathfrak{A}.$$

Consequently, $b^j + \mathfrak{A}$ has order q in units $(\mathscr{O}/\mathfrak{A})$. But since $b^j = \lambda^{jq^{s-1}}$, the order of $\lambda + \mathfrak{A}$ must be divisible by q^s . This proves Lemma 3.6.

We now proceed to formulate and verify an auxiliary result needed to prove Claim 3.7. Fix a \mathbb{Z} -basis for \mathscr{O} . Then multiplication determines a faithful representation

(3.7.2)
$$\eta: \mathscr{O} \to M_n(\mathbb{Z}),$$

where $M_n(\mathbb{Z})$ is the ring of all $n \times n$ matrices with entries in \mathbb{Z} and $n = [k : \mathbb{Q}]$. Composing η with the determinant function det: $M_n(\mathbb{Z}) \to \mathbb{Z}$ defines a norm on \mathscr{O} . Denote by N(x) the norm of an element $x \in \mathscr{O}$. Assertion 3.8.

 $\limsup_{j\to+\infty}|N(b^j-\Omega)|=+\infty.$

To verify this assertion, we start by analyzing the eigenvalues of the two matrices $\eta(\lambda)$ and $\eta(\Omega)$. Since the field $\mathbb{Q}(\lambda)$ is contained in k, we see that λ is an eigenvalue of $\eta(\lambda)$ and also that $\eta(\lambda)$ is diagonalizable in $M_n(\mathbb{C})$. Since λ is a root of the characteristic polynomial of A, this polynomial also annihilates $\eta(\lambda)$. The eigenvalues of $\eta(\lambda)$ are consequently a subset of the eigenvalues of A (not counting their multiplicities). By the same reasoning, $\eta(\Omega)$ is also diagonalizable in $M_n(\mathbb{C})$ and its eigenvalues are all primitive qth roots of unity.

Note that $\eta(\Omega)$ and $\eta(\lambda)$ are simultaneously diagonalizable in $M_n(\mathbb{C})$ since $\Omega \lambda = \lambda \Omega$. We consequently have the following formula for the norm of $b^j - \Omega$:

(3.8.1)
$$N(b^j - \Omega) = \prod_{i=1}^n (\lambda_i^j - \Omega_i),$$

where $\lambda_1 = b$, each $\lambda_i \in \{b, b^{-1}\} \cup S^1$, and each $\Omega_i \in S^1 - \{1\}$ with $\Omega_i^q = 1$. Observe the following two facts:

(3.8.2)
1.
$$\lim_{j \to +\infty} |b^j - z| = +\infty, \text{ and}$$
2.
$$\lim_{j \to +\infty} |b^{-j} - z| = 1$$

for each complex number $z \in S^1$. Furthermore, there exists an infinite set \mathcal{S} of positive integers such that

$$(3.8.3) \qquad \qquad |\lambda_i^j - 1| \le \sin(\pi/q)$$

for each $j \in \mathcal{S}$, and such that $\lambda_i \in S^1$ for each index *i*. One now easily shows that

(3.8.4)
$$\lim_{\substack{j \in \mathcal{S} \\ j \to +\infty}} |N(b^{j} - \Omega)| = +\infty$$

by using facts (3.8.2) and (3.8.3) in conjunction with formula (3.8.1). Thus Assertion 3.8 is verified.

We now establish Claim 3.7 via proof by contradiction; hence we assume Claim 3.7 is false. The prime factorization of each ideal $(b^j - \Omega)$, j > 0, consequently has the following form:

(3.8.5)
$$(b^j - \Omega) = \mathfrak{A}_1^{m_{1,j}} \mathfrak{A}_2^{m_{2,j}} \cdots \mathfrak{A}_r^{m_{r,j}}$$

where each $m_{i,j}$ is a nonnegative (rational) integer. (Recall the prime ideals \mathfrak{A}_i come from the factorization (3.6.3).) Suppose all the numbers $m_{i,j} < \nu$; then there would only be a finite number of distinct ideals in the list $(b^j - \Omega)$, j > 0. Consequently only a finite number of integers in the set $\{N(b^j - \Omega) | j > 0\}$, contradicting Assertion 3.8. (Note that if (x) = (y), then $N(x) = \pm N(y)$.) Hence there exists a pair of positive numbers i, j such that $m_{i,j} \ge \nu$. Consider the finite ring $R = \mathscr{O}/\mathfrak{A}_i^{\nu}$. Then the following is true about certain elements in R:

(3.8.6)
$$b^{j} + \mathfrak{A}_{i}^{\nu} = \Omega + \mathfrak{A}_{i}^{\nu} \neq 1 + \mathfrak{A}_{i}^{\nu}.$$

Therefore $b^j + \mathfrak{A}_i^{\nu}$ has order q in units R. Recall again that $b^j = \lambda^{jq^{s-1}}$. Hence the order of the element $\lambda + \mathfrak{A}_i^{\nu}$ in units R must be divisible by q^s . In particular, the cardinality of $\mathscr{O}/\mathfrak{A}_i^{\nu}$ must be greater than q^s which contradicts assumption (3.6.5). This proves Claim 3.7.

4. Proof of Theorem 0.1 and 0.2

Recall that in this section, as in the previous two, M^m still denotes a complete (connected) Riemannian manifold with finite volume (possibly compact), all sectional curvatures -1 and dim $M^m = m > 6$. Our object is to combine §§1, 2 and 3 with earlier work of Millson [17] and Sullivan [23] to prove Theorems 0.1 and 0.2 formulated in the introduction. We start by recalling Sullivan's result.

Theorem 4.1 (Sullivan [23]). Each lattice Γ in $O^+(m, 1, \mathbb{R})$ contains a torsion-free subgroup of finite index $\widehat{\Gamma}$ such that $\mathbb{H}^m/\widehat{\Gamma}$ is a π -manifold.

The following is a consequence of Theorem 4.1 and results from the previous sections.

Theorem 4.2. Assume that M^m is closed and has positive first Betti number. Given $\varepsilon > 0$ and an infinite order element $y \in H_1(M^m, \mathbb{Z})$, there exist a (connected) finite sheeted covering space $p: \mathcal{M}^m \to M^m$ and a simple framed geodesic α in \mathcal{M}^m with the following properties:

1. Some multiple of the homology class represented by α maps to a nonzero multiple of y via $p_*: H_1(\mathcal{M}^m, \mathbb{Z}) \to H_1(\mathcal{M}^m, \mathbb{Z})$.

2. There is no manifold diffeomorphic to $N^m \# \Sigma^m$ in the concordance class $\mathscr{M}(\alpha, x)$ provided N^m is a Riemannian locally symmetric space, Σ^m represents an element in Θ_m and x is a nonzero element in Θ_{m-1} .

3. Each concordance class $\mathcal{M}(\alpha, x)$ contains a complete and finite volume Riemannian manifold whose sectional curvatures are all in the interval $[-1-\varepsilon, -1+\varepsilon]$.

Proof. Theorem 4.1 yields a (connected) finite sheeted covering space $p_1: \mathcal{M}_1 \to M$ such that \mathcal{M} is a π -manifold for every covering space \mathcal{M} of \mathcal{M}_1 . There is clearly an orthonormally framed *t*-simple closed geodesic α_1 in \mathcal{M}_1 whose homology class $[\alpha_1]$ satisfies the following two conditions:

- (4.2.1) 1. Some integral multiple of $p_{1*}[\alpha_1]$ is a nonzero multiple of y.
 - 2. There is a homomorphism $\eta_1 \colon \pi_1 \mathcal{M}_1 \to \mathbb{Z}_+$ with $\eta_1([\alpha_1]) = 1$.

Let l denote the length of α_1 , and $A_{\alpha_1}: S^1 \to O(m-1)$ be the holonomy function associated to α_1 via formula (2.0.2). Let r be the positive real number posited in Theorem 2.1 relative to the given data ε , l, m and $A(t) = A_{\alpha_1}(t)$. Next apply Corollary 3.3, with $M = \mathscr{M}_1$ and $\gamma = \alpha_1$, to get a covering space $p_2: \mathscr{M} \to \mathscr{M}_1$ and an orthonormally framed simple closed geodesic α in \mathscr{M} such that $p_2 \circ \alpha = \alpha$ and α_1 is the core of a geometric tube of radius 2r. We now set $p = p_2 \circ p_1: \mathscr{M}^m \to \mathscr{M}^m$. Condition 1 of Theorem 4.2 is obviously satisfied. If we let $\eta: \pi_1 \mathscr{M} \to \mathbb{Z}_+$ in Theorem 1.1 be the composite of η_1 with $p_{2\#}: \pi_1 \mathscr{M} \to \pi_1 \mathscr{M}_1$, then condition 2 is an immediate consequence of Theorem 1.1 together with Corollary 1.5 and Proposition 1.6. Theorem 2.1 shows that condition 3 is satisfied since $A_{\alpha} = A_{\alpha_1}$ and the length of α is the same as the length of α_1 . This proves Theorem 4.2.

The pattern of the above proof yields the following weaker version when M^m is not compact.

Addendum 4.3. Assume that M^m is a π -manifold (not necessarily compact), γ is a t-simple framed closed geodesic in M, and $\lambda: \pi_1 M^m \to \mathbb{Z}_+$ is a homomorphism such that

- 1. $\lambda([\gamma]) = 1$ where $[\gamma]$ denotes the free homotopy class of γ and
- 2. $\lambda(\beta)$ is divisible by the order of Θ_{m-1} for each cuspidal element β in $\pi_1 M^m$.

Given a positive real number ε , there exist a (connected) finite sheeted covering space $p: \mathcal{M}^m \to \mathcal{M}^m$ and a simple framed geodesic α in \mathcal{M}^m

such that the composite $p \circ \alpha = \gamma$, and conditions 2 and 3 of Theorem 4.2 are satisfied.

We next recall some examples due to Millson which we then use together with Theorem 4.2 and Addendum 4.3 to prove Theorem 0.2 and 0.1.

Theorem 4.4 (Millson [17]). For each integer n > 1, there exist two complete (connected) finite volume Riemannian manifolds K^n and N^n of dimension n which satisfy the following properties:

1. All the sectional curvatures of both K^n and N^n are -1.

2. Both K^n and N^n have positive first Betti number.

3. K^n is compact.

4. N^n is not compact.

5. $\pi_1 N^n$ is isomorphic to a finite index subgroup of SO⁺(n, 1, Z).

Proof of Theorem 0.2. When Θ_m is nontrivial, this result follows from [9, Theorem 1.1] and Proposition 1.6. When Θ_{m-1} is nontrivial, it follows from Theorem 4.2 by setting M^m (in Theorem 4.2) equal to the manifold K^m of Theorem 4.3.

Proof of Theorem 0.1. Define two sequences of positive integers a_n and b_n as follows. Let a_n be the order of the finite group Θ_n and let b_n be the least common multiple of the orders of the holonomy groups of lattices in the Lie group of all rigid motions of Euclidean *n*-dimensional space. Bieberbach [1] showed that b_n exists and divides the order of the finite group $\operatorname{GL}_{n}(\mathbb{Z}_{2})$ because of Minkowski's theorem [18]. Let N^{m} be the Millson manifold in Theorem 4.4. Because of Theorem 4.1, there is a finite sheeted (connected) covering space $p: \mathcal{N}^m \to N^m$ such that every covering space of \mathcal{N}^{m} is a π -manifold. There is an epimorphism $\varphi: \pi_1 \mathscr{N}^m \to \mathbb{Z}_{\perp}$ since N^m has positive first Betti number. Because of Lemma 3.4, there is a *t*-simple framed closed geodesic ω in \mathcal{N}^m such that $\varphi([\omega]) \neq 0$ where $[\omega]$ denotes the fundamental group element corresponding to ω . (Note that $[\omega]$ is well defined up to conjugacy.) Let $A \in SO^+(m, 1, \mathbb{Z})$ denote the semisimple matrix corresponding to $[\omega]$ under an identification of $\pi_1 \mathcal{N}^m$ with a subgroup of SO⁺ $(m, 1, \mathbb{Z})$. Let ψ : SO⁺ $(m, 1, \mathbb{Z}) \rightarrow G$ be a homomorphism satisfying the conclusions of Proposition 3.5 relative to A and $n = a_{m-1}b_{m-1}$. Note that $g^{b_{m-1}}$ is unipotent for every cuspidal element $g \in \pi_1 \mathcal{N}^m$. Hence conclusion 2 of Proposition 3.5 yields the following fact.

(4.4.1) If $\psi(B) = \psi(A)^s$ where B is a cuspidal element of $\pi_1 \mathcal{N}^m$, then a_{m-1} divides s.

Consider the homomorphism $\varphi \times \psi \colon \pi_1 \mathscr{N}^m \to \mathbb{Z}_+ \times G$ and let \mathscr{C}

denote the infinite cyclic subgroup of $\mathbb{Z}_+ \times G$ generated by $(\varphi \times \psi)(A) = (\varphi(A), \psi(A))$. Let $q: M^m \to \mathcal{N}^m$ be the covering space corresponding to $(\varphi \times \psi)_{\#}^{-1}(\mathscr{C})$, and $\lambda: \pi_1 M^m \to \mathbb{Z}_+$ be the composite of $q_{\#}, \varphi \times \psi$ and the identification of \mathscr{C} with \mathbb{Z}_+ determined by making $(\varphi(A), \psi(A))$ correspond to $1 \in \mathbb{Z}_+$. Let γ be a lift of ω to M^m . Since the conditions of Addendum 4.3 are clearly satisfied, the examples posited in Theorem 0.1 can now be drawn from the conclusions of Addendum 4.3.

References

- L. Bieberbach, Über die Bewegungsgruppen des n-dimensional Euklidischen Räumes mit einen endlichen Fundamentalbereich, Göttingen Nachr. (1910) 75–84.
- [2] J. M. Boardman & R. M. Vogt, Homotopy invariant structures on topological spaces, Lecture Notes in Math., Vol. 347, Springer, Berlin, 1973.
- [3] A. Borel & Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962) 485-535.
- [4] W. Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. (2) 90 (1969) 157–186.
- [5] E. Calabi, On compact Riemannian manifolds with constant curvature. I, Differential geometry, Proc. Sympos. Pure Math., Vol. 3, Amer. Math. Soc., Providence, RI, 1961, 155-180.
- [6] F. T. Farrell & W. C. Hsiang, The topological-Euclidean space form problem, Invent. Math. 45 (1978) 181-192.
- [7] _____, Topological characterization of flat and almost flat Riemannian manifolds M^n $(n \neq 3, 4)$, Amer. J. Math. 105 (1983) 641–672.
- [8] F. T. Farrell & L. E. Jones, A topological analogue of Mostow's rigidity theorem, J. Amer. Math. Soc. 2 (1989) 257–370.
- [9] <u>_____</u>, Negatively curved manifolds with exotic smooth structures, J. Amer. Math. Soc. 2 (1989) 899–908.
- [10] ____, Smooth non-representability of $\operatorname{Out} \pi_1 M$, Bull. London Math. Soc. 22 (1990) 485-488.
- [11] H. Garland & M. S. Raghunathan, Fundamental domains for lattices in (ℝ-)rank1, Semisimple Lie groups, Ann. of Math. (2) 92 (1970) 279-326.
- [12] N. Hicks, Notes on differential geometry, Van Nostrand, Princeton, NJ, 1965.
- [13] M. Kervaire & J. W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963) 504–537.
- [14] R. C. Kirby & L. C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Math. Studies, No. 88, Princeton University Press, Princeton, NJ, 1977.
- [15] B. Lawson & S. T. Yau, Compact manifolds of nonpositive curvature, J. Differential Geometry 7 (1972) 211-228.
- [16] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Springer, Berlin, 1991.
- [17] J. Millson, On the first Betti number of a constant negatively curved manifold, Ann. of Math. (2) 104 (1976) 235–247.
- [18] H. Minkowski, Zur Theorie der positiven quadratischen Formen, J. Reine Angew. Math. 101 (1887), 196–202.
- [19] G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Math. Studies, Vol. 78, Princeton University Press, Princeton, NJ, 1973.
- [20] B. O'Neill, Semi-Riemannian geometry, Academic Press, New York, 1983.

- [21] G. Prasad, Strong rigidity of Q-rank 1 lattices, Invent. Math. 21 (1973) 255-286.
- [21] G. Fladad, Shong Fightly of Q value 1 futures, inform Fight 21 (1975) 255 266.
 [22] M. Raghunathan, Discrete subgroups of Lie groups, Springer, Berlin, 1972.
 [23] D. Sullivan, Hyperbolic geometry and homeomorphisms, Geometric Topology (J. Cantrell, ed.), Academic Press, New York, 1979, 543-555.

STATE UNIVERSITY OF NEW YORK, BINGHAMTON

STATE UNIVERSITY OF NEW YORK, STONY BROOK