# NONUNIFORM HYPERBOLIC LATTICES AND EXOTIC SMOOTH STRUCTURES 

F. T. FARRELL \& L. E. JONES

## 0. Introduction

Let $\boldsymbol{\Theta}_{m}$ denote the group of homotopy $m$-spheres where $m>4$. Elements in $\Theta_{m}$ are equivalence classes of oriented manifolds homeomorphic to $S^{m}$. Two such manifolds $\Sigma_{1}^{m}$ and $\Sigma_{2}^{m}$ are equivalent provided there exists an orientation-preserving diffeomorphism between them. In this paper, $\mathbb{D}^{m+1}$ and $S^{m}$ respectively denote the unit ball and unit sphere in $\mathbb{R}^{m+1}$; i.e.,

$$
\begin{align*}
& \mathbb{D}^{m+1}=\left\{x \in \mathbb{R}^{m+1}| | x \mid \leq 1\right\}, \\
& S^{m}=\partial \mathbb{D}^{m+1}=\left\{x \in \mathbb{R}^{m+1}| | x \mid \leq 1\right\} . \tag{0.01}
\end{align*}
$$

Kervaire and Milnor proved in [13] that $\Theta_{m}$ is a finite abelian group.
Let $M^{m}$ be a smooth $m$-dimensional manifold. A possible way to change its smooth structure, without changing its homeomorphism type, is to take its connected sum $M^{m} \# \Sigma^{m}$ with a homotopy sphere $\Sigma^{m}$. We showed in [9] that it is sometimes possible to change the smooth structure on a closed (real) hyperbolic manifold $M^{m}$ in this way and still to have a negatively curved Riemannian metric on $M^{m} \# \Sigma^{m}$. But when $M^{m}$ is noncompact (and connected), this method never changes the smooth structure on $M^{m}$. (See the proof of Corollary 1.5 for an argument verifying this statement.)

We use a different method in this paper, which can sometimes change the smooth structure on a noncompact manifold $M^{m}$. The method is to remove an embedded tube $S^{1} \times \mathbb{D}^{m-1}$ from $M^{m}$ and then reinsert it with a "twist". To be more precise, pick a smooth embedding $f: S^{1} \times \mathbb{D}^{m-1} \rightarrow$ $M^{m}$ and an orientation-preserving diffeomorphism $\varphi: S^{m-2} \rightarrow S^{m-2}$. Then a new smooth manifold $M_{f, \varphi}$ is obtained as a quotient space of the disjoint union

$$
\begin{equation*}
S^{1} \times \mathbb{D}^{m-1} \amalg M^{m}-f\left(S^{1} \times \operatorname{Int} \mathbb{D}^{m-1}\right), \tag{0.02}
\end{equation*}
$$

[^0]where we identify points $(x, v)$ and $f(x, \varphi(v))$ if $(x, v) \in S^{1} \times S^{m-2}$. (Here, Int $\mathbb{D}^{m-1}$ denotes the interior of $\mathrm{D}^{m-1}$; i.e., it is $\mathbb{D}^{m-1}-S^{m-2}$.) The smooth manifold $M_{f, \varphi}$ is canonically homeomorphic to $M^{m}$ but is not always diffeomorphic to $M^{m}$. We obtain the following result in this way. In this paper, $\mathbb{H}^{m}$ denotes real hyperbolic $m$-space, and Iso $\left(\mathbb{H}^{m}\right)$ its group of isometries.

Theorem 0.1. Let $m$ be any integer such that $\Theta_{m-1} \neq 1$, and $\varepsilon$ be any positive real number. Then there exists an m-dimensional complete Riemannian manifold $M^{m}$ with finite volume and all its sectional curvatures contained in the interval $[-1-\varepsilon,-1+\varepsilon]$, and satisfying the following. $M^{m}$ is not diffeomorphic to any complete Riemannian locally symmetric space; but it is homeomorphic to $\mathbb{H}^{m} / \Gamma$ where $\Gamma$ is a torsion-free nonuniform lattice in Iso $\left(\mathbb{H}^{m}\right)$.

Let us recall some qualitative facts about $\Theta_{n}$. Kervaire and Milnor [13] and Browder [4] showed that $\Theta_{2 n-1}$ is nontrivial for every integer $n>2$ which does not have the form $n=2^{i}-1$. On the other hand $\Theta_{12}$ is trivial. Therefore if $M^{12}$ is a closed hyperbolic manifold, $M^{12} \# \Sigma^{12}$ must be diffeomorphic to $M^{12}$ where $\Sigma^{12}$ is any homotopy 12 -sphere. The results in [9] consequently fail to yield an exotic smooth structure on a negatively curved 12 -manifold which is homeomorphic to a (real) hyperbolic manifold. But our present technique does. In particular, we have the following result.

Theorem 0.2. Let $m$ be any integer such that either $\Theta_{m}$ or $\Theta_{m-1}$ is not trivial; e.g., $m$ can be any integer greater than 6 provided it has neither of the following two forms; $m=2^{j}-2$ nor $m=2^{j}-3$, where $j \in \mathbb{Z}$. Then there exists a closed Riemannian manifold $M^{m}$ whose sectional curvatures are all pinched within $\varepsilon$ of -1 and such that

1. $\operatorname{dim} M^{m}=m$;
2. $M^{m}$ is homeomorphic to a real hyperbolic manifold;
3. $M^{m}$ is not diffeomorphic to any Riemannian locally symmetric space.

We end this introduction with the following comments. The exotic Riemannian manifolds $M^{m}$ constructed in this paper via Theorem 4.2 and Addendum 4.3 are all different from those exotic Riemannian manifolds $\mathscr{N}^{m}$ previously constructed via [9, Proposition 1.2]. That is, the only time $M^{m}$ is diffeomorphic to $\mathscr{N}^{m}$ is when they are both diffeomorphic to a locally symmetric space and hence neither is exotic.

Finally, the results of this article should be useful in extending those of [10].

We wish to thank Ronnie Lee, whose question motivated this paper.

## 1. Exotic smooth structures

Let $\left(M^{m}, f, \varphi\right)$ be a triple where $M^{m}$ is a smooth manifold, $f: S^{1} \times$ $\mathbb{D}^{m-1} \rightarrow M^{m}$ is a smooth embedding (i.e., a tube) and $\varphi: S^{m-2} \rightarrow S^{m-2}$ is an orientation-preserving diffeomorphism. (We assume throughout this paper that $\operatorname{dim} M^{m}=m>6$.) This data determines the new smooth manifold $M_{f, \varphi}$ constructed in $\S 0$. Recall that $M_{f, \varphi}$ is canonically homeomorphic to $M^{m}$. The purpose of this section is to give useful sufficient conditions which guarantee that $M_{f, \varphi}$ is not diffeomorphic to $M^{m}$.

Recall that two smooth structures $N_{0}$ and $N_{1}$ on a topological manifold $N$ are concordant if there exists a smooth structure $\bar{N}$ on $N \times[0,1]$ such that $N_{i}$, for $i=0,1$, is the induced smooth structure on $N \times i$. Two concordant structures are diffeomorphic. (See [14, pp. 24, 113-116].) The tube $f$ determines a framed simple closed curve $\alpha: S^{1} \rightarrow M^{m}$ where $\alpha(y)=f(y, 0)$ for each $y \in S^{1}$. The framing of $\alpha$ consists of the vector fields $X_{1}, X_{2}, \cdots, X_{m-1}$ where $X_{i}(y)$ is the vector tangent to the curve $t \mapsto f\left(y, t e_{i}\right)$ at $t=0$. Here $e_{i}$ denotes the point in $\mathbb{R}^{m-1}$ whose $i$-th coordinate is 1 and all other coordinates are 0 . We use $\alpha$ to denote the curve equipped with this framing. It is called the core of $f$. The concordance class of $M_{f, \varphi}$ depends only on $M^{m}$, the core $\alpha$ of $f$, and the (pseudo-)isotopy class of $\varphi$ denoted by $x$. We consequently denote the concordance class of $M_{f, \varphi}$ by $M(\alpha, x)$. Recall that the isotopy classes of orientation-preserving diffeomorphisms of $S^{m-2}$ are in one-one correspondence with the elements in the abelian group $\Theta_{m-1}$ which is also identified with $\pi_{m-1}(\operatorname{Top} / 0)$; therefore, $x \in \Theta_{m-1}$.

Assume now that $M^{m}$ is a complete (connected) Riemannian manifold with finite volume and whose sectional curvatures are all -1 . The universal cover of $M^{m}$ is real hyperbolic $m$-space $\mathbb{H}^{m}$ and $\pi_{1} M^{m}$ is identified via the group of all deck transformations with a torsion-free lattice $\Gamma \subseteq$ Iso $\mathbb{H}^{m}$. We say that an element $\gamma \in \pi_{1} M$ is cuspidal if there are arbitrarily short closed curves in $M^{m}$ which are freely homotopic to a curve representing $\gamma$. This condition is equivalent to either $\gamma=1$ or $\gamma$ corresponds to a nonsemisimple matrix under the identifications

$$
\begin{equation*}
\pi_{1} M=\Gamma \subset \text { Iso } \mathbb{H}^{m}=O^{+}(m, 1, \mathbb{R}) \subset \mathrm{GL}_{m+1}(\mathbb{C}) \tag{1.0}
\end{equation*}
$$

Note that the identity $1 \in \pi_{1} M$ is the only cuspidal element when $M$ is compact.

We now state the main result of this section. Recall that a $\pi$-manifold is a smooth manifold whose tangent bundle is stably trivial. Throughout
this paper $\mathbb{Z}$ denotes the ring of all (rational) integers and $\mathbb{Z}_{+}$denotes its additive group.

Theorem 1.1. Let $M^{m}$ be a complete (connected) Riemannian manifold with finite volume and all sectional curvatures -1 . Let $\alpha$ be a framed simple closed curve in $M^{m}$ and $[\alpha] \subset \pi_{1} M$ be the fundamental group element it determines. Assume that $M^{m}$ is a $\pi$-manifold and there exists a homomorphism $\eta: \pi_{1} M \rightarrow \mathbb{Z}_{+}$such that

1. $\eta([\alpha])=1$ and
2. $\eta(\gamma)$ is divisible by the order of $\Theta_{m-1}$ for every cuspidal element $\gamma$ in $\pi_{1} M$.
Then $M$ is diffeomorphic to a manifold in the concordance class $M(\alpha, x)$ only when $x=0$.

The proof of this result requires some preliminaries. Represent $M(\alpha, x)$ by the manifold $M_{f, \varphi}$ and let $g: M_{f, \varphi} \rightarrow M$ be the canonical homeomorphism. Mostow's rigidity theorem [19], as extended by G. Prasad [21] to the finite volume situation, can be used together with its topological analogue [8, Corollary 10.3] and the topological analogue of Bieberbach's work on flat Riemannian manifolds [6], [7] to reduce Theorem 1.1 to the assertion that $g$ is topologically concordant to a diffeomorphism only when $x=0$. See the proof of [9, Lemma 2.1] for how to accomplish this reduction.

By [14, Theorem 10.1] there is an identification of the concordance classes of smooth structures on (the topological manifold) $M$ and the homotopy classes of maps from $M$ to Top $/ O$, denoted by $[M$, Top $/ O$ ], with the hyperbolic structure on $M$ corresponding to the class of the constant map. The identification of $\Theta_{m}$ and $\pi_{m}(\operatorname{Top} / O)$, with $S^{m}$ corresponding to 0 also follows from [14, Theorem 10.1]. Let $\hat{\alpha}: M^{m} \rightarrow S^{m-1}$ be the result of applying the Pontryagin-Thom construction to the framed 1 -manifold $\alpha$. It is explicitly described by

$$
\begin{equation*}
\hat{\alpha}(f(y, v))=q(v) \tag{1.1.1}
\end{equation*}
$$

where $(y, v) \in S^{1} \times \mathbb{D}^{m-1}$, and $q: \mathbb{D}^{m-1} \rightarrow \mathbb{D}^{m-1} / \partial \mathbb{D}^{m-1}=S^{m-1}$ is the canonical quotient map; if $y \notin$ image $f$, then

$$
\hat{\alpha}(y)=q\left(\partial \mathbb{D}^{m-1}\right) .
$$

The naturality of [14, Theorem 10.1] yields the following result.
Lemma 1.2. The map $x \mapsto M(\alpha, x)$ is the homomorphism $\hat{\alpha}^{*}$ : $\pi_{m-1}(\operatorname{Top} / O) \rightarrow[M, \operatorname{Top} / O]$ under the identifications of the previous paragraph.

Hence Theorem 1.1 is equivalent to the assertion that $\hat{\alpha}^{*}$ is injective. We now embark on verifying this assertion.

Given an embedding $h: N \rightarrow \mathscr{N}$ where $N$ and $\mathscr{N}$ are manifolds of the same dimension with $N$ compact, there is a dual map $h^{\prime}: \mathscr{N} / \partial \mathscr{N} \rightarrow$ $N / \partial N$ defined by

$$
\begin{array}{cl}
h^{\prime}(h(y))=y, & \text { if } y \in \operatorname{Int} N  \tag{1.2.1}\\
h^{\prime}(y)=\infty, & \text { otherwise }
\end{array}
$$

Here $\infty$ denotes the point corresponding to $\partial N$ in the decomposition space $N / \partial N$. We also, when convenient, abbreviate $N / \partial N$ to $N / \partial$.

Proposition 1.3. Let $N^{m}$ be a closed $\pi$-manifold, and $h: S^{1} \times \mathbb{D}^{m-1} \rightarrow$ $N^{m}$ be a tube with core $\alpha: S^{1} \rightarrow N$. Assume there exists a map $\psi: N^{m} \rightarrow$ $S^{1}$ such that the composite $\psi \circ \alpha: S^{1} \rightarrow S^{1}$ has degree $\pm 1$. Then

$$
\left(h^{\prime}\right)^{*}:\left[S^{1} \times \mathbb{D}^{m-1} / \partial, \text { Top } / O\right] \rightarrow[N, \text { Top } / O]
$$

is monic.
Proof. Recall that Top $/ O$ is an $\infty$-loop space (see [2, p. 215]). Let $Y$ denote the $(m+1)$-fold delooping of Top $/ O$; i.e., $\Omega^{m+1} Y=$ Top $/ O$. Recall there is a natural bijection between $\left[\Sigma^{m+1} X, Y\right]$ and $\left[X, \Omega^{m+1} Y\right]=$ [ $X, \mathrm{Top} / O$ ]. Here [ , ] denotes the homotopy classes of (base-pointpreserving) maps and $X$ is a space (with base point). Consequently, to prove Proposition 1.3, it suffices to show that

$$
\begin{equation*}
\left(\Sigma^{m+1} h^{\prime}\right)^{*}:\left[\Sigma^{m+1}\left(S^{1} \times \mathbb{D}^{m-1} / \partial\right), Y\right] \rightarrow\left[\Sigma^{m+1} N, Y\right] \tag{1.3.1}
\end{equation*}
$$

is monic. Consider the codimension-0 embedding

$$
\begin{equation*}
h \times \mathrm{id}:\left(S^{1} \times \mathbb{D}^{m-1}\right) \times \mathbb{D}^{m+1} \rightarrow N^{m} \times \mathbb{D}^{m+1} \tag{1.3.2}
\end{equation*}
$$

and observe that $(h \times \mathrm{id})^{\prime}$ factors through $\Sigma^{m+1}\left(h^{\prime}\right)$. Hence it suffices to show that

$$
\begin{equation*}
(h \times \mathrm{id})^{\prime *}:\left[S^{1} \times \mathbb{D}^{m-1} \times \mathbb{D}^{m+1} / \partial, Y\right] \rightarrow\left[N \times \mathbb{D}^{m+1} / \partial, Y\right] \tag{1.3.3}
\end{equation*}
$$

is monic. Let $F: N^{m} \times \mathbb{D}^{m+1} \rightarrow S^{1} \times \mathbb{D}^{2 m}$ be a codimension-0 embedding such that the composites $p \circ F$ and $\psi \circ q$ are homotopic, where $p$ and $q$ respectively denote the projections onto the first factors of $S^{1} \times \mathbb{D}^{2 m}$ and $N^{n} \times \mathbb{D}^{m+1}$. Note that $F$ exists because $N$ is a $\pi$-manifold. Using the fact that $(F \circ(h \times \mathrm{id}))^{\prime}=(h \times \mathrm{id})^{\prime} \circ F^{\prime}$, we easily see that

$$
\begin{equation*}
(h \times \mathrm{id})^{\prime} \circ F^{\prime}:\left(S^{1} \times \mathbb{D}^{2 m}\right) / \partial \rightarrow\left(S^{1} \times \mathbb{D}^{m-1} \times \mathbb{D}^{m+1}\right) / \partial \tag{1.3.4}
\end{equation*}
$$

is a homotopy equivalence. This completes the proof of Proposition 1.3. q.e.d.

An elaboration of this argument yields the following extension.

Addendum 1.4. Let $N^{m}$ be a compact connected $\pi$-manifold with (possibly) nonempty boundary. Let $h: S^{1} \times \mathbb{D}^{m-1} \rightarrow \operatorname{Int}\left(N^{m}\right)$ be a tube with core $\alpha: S^{1} \rightarrow N^{m}$. Suppose there exists a map $\psi: N^{m} \rightarrow S^{1}$ satisfying the following two properties.

1. The composite $\psi \circ \alpha: S^{1} \rightarrow S^{1}$ has degree $\pm 1$.
2. For any map $\beta: S^{1} \rightarrow \partial N$, the degree of $\psi \circ \beta: S^{1} \rightarrow S^{1}$ is divisible by the order of the group $\boldsymbol{\Theta}_{m-1}$.
Then the composite

$$
h^{\prime *} \circ p^{*}: \Theta_{m-1}=\pi_{m-1}(\operatorname{Top} / O) \rightarrow\left[\operatorname{Int} N^{m}, \text { Top } / O\right]
$$

is monic, where $p: S^{1} \times \mathbb{D}^{m-1} / \partial \rightarrow \mathbb{D}^{m-1} / \partial$ is determined by projection onto the second factor of $S^{1} \times \mathbb{D}^{m-1}$.

Proof. We can assume that $\psi \circ \alpha$ has degree one by composing $\psi$ with a degree-one self map of $S^{1}$ if necessary. Let $F: N^{m} \times \mathbb{D}^{m+1} \rightarrow S^{1} \times \mathbb{D}^{2 m}$ be an embedding as in the proof of Proposition 1.3. We can easily arrange that $F$ satisfies the following two additional properties:

$$
\begin{gather*}
\text { Image } F \cap\left(S^{1} \times S^{2 m-1}\right)=F\left(\partial N^{m} \times \mathbb{D}^{m+1}\right),  \tag{1.4.1}\\
F(h(u, v), w)=(u,(v / 2, w / 2)) \tag{1.4.2}
\end{gather*}
$$

for all $u \in S^{1}, v \in \mathbb{D}^{m-1}$ and $w \in \mathbb{D}^{m+1}$. Let $k: S^{1} \times \mathbb{D}^{m-1} \rightarrow N^{m}$ denote the composition of $h$ with the inclusion map $\operatorname{Int}\left(N^{m}\right) \subset N^{m}$. The argument given before shows that

$$
(k \times \mathrm{id})^{\prime *}:\left[S^{1} \times \mathbb{D}^{m-1} \times \mathbb{D}^{m+1} / \partial, Y\right] \rightarrow\left[N^{m} \times \mathbb{D}^{m+1} / \partial, Y\right]
$$

is monic. (Note that $\partial\left(N^{m} \times \mathbb{D}^{m+1}\right)=\partial N^{m} \times \mathbb{D}^{m+1} \cup N^{m} \times S^{m}$.)
Let $s$ denote the order of $\Theta_{m-1}$, and $\Phi: S^{1} \times \mathbb{D}^{2 m} / \partial \rightarrow S^{1} \times \mathbb{D}^{2 m} / \partial$ be the map induced by the function $(z, u) \mapsto\left(z^{s}, u\right)$ where $z \in S^{1}$ and $u \in \mathbb{D}^{2 m}$. Likewise let

$$
P: S^{1} \times \mathbb{D}^{m-1} \times \mathbb{D}^{m+1} / \partial \rightarrow \mathbb{D}^{m-1} \times \mathbb{D}^{m+1} / \partial
$$

be determined by projection onto the last two factors of $S^{1} \times \mathbb{D}^{m-1} \times \mathbb{D}^{m+1}$. Property (1.4.2) yields the following identity

$$
\begin{equation*}
P \circ(F \circ(k \times \mathrm{id}))^{\prime} \circ \Phi=P \circ(F \circ(k \times \mathrm{id}))^{\prime} . \tag{1.4.3}
\end{equation*}
$$

Let $\sigma: \partial N^{m} \times[0,1] \rightarrow N^{m}$ be a collaring of $N^{m}$. To complete the proof, it suffices to show that the equation

$$
\begin{equation*}
(\sigma \times \mathrm{id})^{\prime *}(a)=(k \times \mathrm{id})^{\prime *}\left(P^{*}(b)\right) \tag{1.4.4}
\end{equation*}
$$

only has solutions $a$ and $b$ when the element $b \in \Theta_{m-1}$ is zero.

To show that $b=0$, apply $\left(F^{\prime} \circ \Phi\right)^{*}$ to (1.4.4) and use identity (1.4.3) yielding

$$
\begin{equation*}
\left((F \circ(\sigma \times \mathrm{id}))^{\prime} \circ \Phi\right)^{*}(a)=(F \circ(k \times \mathrm{id}))^{\prime *}\left(P^{*}(b)\right) \tag{1.4.5}
\end{equation*}
$$

It can be shown, using hypothesis 2 of Addendum 1.4, that

$$
\left((F \circ(\sigma \times \mathrm{id}))^{\prime} \circ \Phi\right)^{*}(a)
$$

is divisible by $s$. (Hint. The map $F \circ(\sigma \times \mathrm{id}): \partial N^{m} \times[0,1] \times \mathbb{D}^{m+1} \rightarrow$ $S^{1} \times \mathbb{D}^{2 m}$ lifts to the connected $s$-sheeted cover of $S^{1} \times \mathbb{D}^{2 m}$.) Since $(F \circ(k \times \mathrm{id}))^{\prime *}$ is an isomorphism, $P^{*}(b)$ is also divisible by $s$. But $P^{*}$ is a monomorphism onto a direct summand; therefore, $b \in \Theta_{m-1}$ is divisible by $s$ and hence $b=0$. This completes the proof of Addendum 1.4. q.e.d.

Recall that $M^{m}$ is the interior of a compact smooth manifold $\bar{M}^{m}$ and observe that the cuspidal elements in $\pi_{1} M=\pi_{1} \bar{M}$ are precisely those representable by curves in $\bar{M}$ which are freely homotopic to curves in $\partial \bar{M}$. If we set $N^{m}=\bar{M}^{m}$ and $h=f$, then $\hat{\alpha}=p \circ h^{\prime}$ and hence Addendum 1.4 verifies the assertion, made in the sentence following Lemma 1.2, that $\hat{\alpha}^{*}$ is injective. This completes the proof of Theorem 1.1.

The first comment made at the end of the Introduction is explained by the following remark.

Corollary 1.5. Let $M^{m}$ be a manifold satisfying the hypotheses of Theorem 1.1. Let the homotopy sphere $\Sigma^{m}$ represent an element in $\Theta_{m}$ and $x \in \boldsymbol{\Theta}_{m-1}$. If $M^{m} \# \Sigma^{m}$ is diffeomorphic to a manifold in the concordance class $M(\alpha, x)$, then $M^{m} \# \Sigma^{m}$ is diffeomorphic to $M^{m}$.

Proof. Let $M_{f, \varphi}$ be a manifold in $M(\alpha, x)$ where $\alpha$ is the core of $f$ and the isotopy class of $\varphi$ is $x$. Further, suppose $M^{m} \# \Sigma^{m}$ is diffeomorphic to $M_{f, \varphi}$. We first consider the case where $M^{m}$ is not compact; then every map $M^{m} \rightarrow S^{m}$ is homotopic to a constant map. But the concordance class of $M^{m} \# \Sigma^{m}$ is in the image of

$$
\hat{\gamma}^{*}:\left[S^{m}, \text { Top } / O\right] \rightarrow\left[M^{m}, \text { Top } / O\right]
$$

where $\hat{\gamma}: M^{m} \rightarrow S^{m}$ is the result of the Pontryagin-Thom construction applied to a framed point $\gamma: * \rightarrow M^{m}$. Therefore $M^{m} \# \Sigma^{m}$ is concordant and hence diffeomorphic to $M^{m}$. (This argument, showing that $M^{m} \# \Sigma^{m}$ is diffeomorphic to $M^{m}$, is valid for any noncompact connected manifold $M^{m}$.)

We now assume that $M^{m}$ is compact. Let $\gamma: \mathbb{D}^{m} \rightarrow S^{1} \times \mathbb{D}^{m-1}$ be an orientation-preserving embedding. Also, let the maps $q: S^{1} \times \mathbb{D}^{m-1} / \partial \rightarrow$ $\mathbb{D}^{m-1} / \partial$ and $\omega: \mathbb{D}^{m-1} / \partial \rightarrow S^{1} \times \mathbb{D}^{m-1} / \partial$ be respectively determined by projection onto the second factor of $S^{1} \times \mathbb{D}^{m-1}$ and the inclusion

$$
\mathbb{D}^{m-1}=1 \times \mathbb{D}^{m-1} \subset S^{1} \times \mathbb{D}^{m-1}
$$

Lemma 1.2 yields that $M(\alpha, x)=f^{*}\left(q^{*}(x)\right)$. By looking at [9, Proof of Proposition 1.2], we also see that $M \# \Sigma^{m}$ and $M \#\left(-\Sigma^{m}\right)$ are in the concordance classes of $f^{\prime *}\left(\gamma^{\prime *}(y)\right)$ and $f^{\prime *}\left(\gamma^{\prime *}(-y)\right)$, respectively, where $y \in \Theta_{m}$ is the concordance class of $\Sigma^{m}$. The argument proving [9, Addendum 2.3] yields that $M_{f, \varphi}$ is concordant to either $M \# \Sigma^{m}$ or $M \#\left(-\Sigma^{m}\right)$; therefore, either $f^{\prime *}\left(q^{*}(x)\right)$ is equal to $f^{\prime *}\left(\gamma^{\prime *}(y)\right)$ or to $f^{\prime *}\left(\gamma^{\prime *}(-y)\right)$. Now $f^{\prime *}$ is monic by Proposition 1.3 in which we set $N^{m}=M^{m}$ and $h=f$. Consequently, $q^{*}(x)=\gamma^{\prime *}(z)$ for some $z \in \Theta_{m}$. Since the composite $q \circ \omega=$ id, we have

$$
\begin{equation*}
x=\omega^{*}\left(q^{*}(x)\right)=\left(\gamma^{\prime} \circ \omega\right)^{*}(z) \tag{1.5.1}
\end{equation*}
$$

The map $\gamma^{\prime} \circ \omega: S^{m-1} \rightarrow S^{m}$ is homotopic to a constant. Therefore, (1.5.1) implies that $x=0$, which completes the proof of Corollary 1.5. q.e.d.

We end this section with a corollary of the Mostow-Prasad strong rigidity theorem.

Proposition 1.6. Let $M^{m}$, with $m>2$, be a complete (connected) Riemannian manifold with finite volume and all sectional curvatures -1 . Let $N^{m}$ be a complete Riemannian locally symmetric space. If $M$ and $N$ are homeomorphic, then they are isometrically equivalent (after rescaling the metric on $N$ by a positive constant).

Proof. This is an immediate consequence of the Mostow-Prasad strong rigidity theorem when $N$ has finite volume [19, §24] and [21]; cf. [16, p. 334, Theorem 7.24]. Note that $N$ must have finite volume when $M$ is compact. Hence we now assume that $M$ is not compact.

To show that $N$ has finite volume, in this case, we argue as follows. Let $\widetilde{N}$ be the universal cover of $N$; then

$$
\begin{equation*}
\widetilde{N}=\mathbb{E}^{k} \times H_{1} \tag{1.6.1}
\end{equation*}
$$

where $\mathbb{E}^{k}$ is $k$-dimensional flat Euclidean space and $H_{1}$ is a symmetric space of noncompact type. (The DeRham decomposition of $\widetilde{N}$ has no compact factor since $N$ is aspherical.) We proceed to show that $k=0$.

Let

$$
\begin{equation*}
\Gamma \subseteq \operatorname{Iso}\left(\mathbb{E}^{k} \times H_{1}\right)=\operatorname{Iso}\left(\mathbb{E}^{k}\right) \times \operatorname{Iso}\left(H_{1}\right) \tag{1.6.2}
\end{equation*}
$$

be the group of all deck transformations of $\widetilde{N} \rightarrow N$. (We denote by Iso $(X)$ the group of all isometries of a Riemannian manifold $X$.) Recall that Iso $\left(\mathbb{E}^{k}\right)$ is a semidirect product $\mathbb{R}^{k} \rtimes O(k)$. Hence the abelian Lie group $\mathbb{R}^{k}$ is a closed normal connected subgroup of $\operatorname{Iso}\left(\mathbb{E}^{k} \times H_{1}\right)$. Let

$$
\begin{equation*}
\pi: \operatorname{Iso}\left(\mathbb{E}^{k} \times H_{1}\right) \rightarrow \operatorname{Iso}\left(\mathbb{E}^{k} \times H_{1}\right) / \mathbb{R}^{k} \tag{1.6.3}
\end{equation*}
$$

be the natural map and $U=\overline{\pi(\Gamma)}$ denote the closure of $\pi(\Gamma)$. The identity component $U^{0}$ of $U$ is solvable by [22, Theorem 8.24]. If $U^{0}$ is not trivial, then $\pi(\Gamma) \cap U^{0}$ is a nontrivial normal solvable subgroup of $\pi(\Gamma)$, and $\Gamma$ would consequently contain a nontrivial normal abelian subgroup. But this is impossible since $\Gamma$ is isomorphic to a torsion-free lattice in $O^{+}(m, 1, \mathbb{R})$. Hence, $\pi: \Gamma \rightarrow \pi(\Gamma)$ is monic and $\pi(\Gamma)$ is a discrete subgroup of Iso $\left(H_{1}\right)$. By looking at the cohomological dimension of $\Gamma$, it is now easily seen that $k=0$.

Note that $\Gamma \cap \operatorname{Iso}\left(H_{1}\right)^{0}$ contains a free abelian subgroup $A$ of rank $m-1$ since $M^{m}$ has at least one cusp. Suppose $A$ contains an element $\gamma$ with nontrivial semisimple Jordan component $s$. Since $A$ centralizes $s, H_{1}$ contains a proper $A$-invariant totally geodesic subspace $H_{2}$ which must be flat by [15] and have codimension one since $H_{2} / A$ is compact. This forces $\tilde{N}=H_{1}=\mathbb{H}^{2}$. But this is impossible since $\operatorname{dim} \tilde{N}>2$. We therefore conclude that $A$ contains only unipotent elements. Hence [16, Proposition 1.5] shows that $A$ is contained in the unipotent radial $R_{u}(P)$ of a parabolic subgroup $P$ of $\operatorname{Iso}\left(H_{1}\right)$. For cohomological dimension reasons, $A$ is cocompact in $R_{u}(P)$. This forces the $\mathbb{R}$-split rank of Iso $\left(H_{1}\right)$ to be 1 and $R_{u}(P)$ to be abelian by [22, p. 34, Corollary 2]. Hence $H_{1}=$ $\mathbb{H}^{m}$ after rescaling the metric on $H_{1}$ by a positive constant. It is now a routine exercise to see that $H_{1} / \Gamma$ has finite volume. This completes the proof of Proposition 1.6.

## 2. Negative curvature and $M(\alpha, x)$

The symbol $M^{m}$ will denote, for the rest of this paper, a complete (connected) Riemannian manifold of finite volume (possibly compact) and with all sectional curvatures -1 . Also $\alpha$ will denote a simple orthonormally framed geodesic in $M^{m}$. It determines an immersion $\bar{\alpha}: S^{1} \times$ $\mathbb{R}^{m-1} \rightarrow M^{m}$ defined by

$$
\begin{equation*}
\bar{\alpha}\left(y ; t_{1}, t_{2}, \cdots, t_{m-1}\right)=\exp _{\alpha(y)}\left(\sum_{i=1}^{m-1} t_{i} e_{i}(\alpha(y))\right) \tag{2.0}
\end{equation*}
$$

where $y \in S^{1}, t_{i} \in \mathbb{R}$ and $e_{1}, e_{2}, \cdots, e_{m-1}$ is the orthonormal framing of $\alpha$. For each nonnegative real number $r$ and each subset $T \subseteq \mathbb{R}^{s}$, let $r T$ denote the subset of $\mathbb{R}^{s}$ defined by

$$
\begin{equation*}
r T=\{r y \mid y \in T\} \tag{2.0.1}
\end{equation*}
$$

We say that $\alpha$ is the core of a geometric tube of radius $r$ if the restriction of $\bar{\alpha}$ to $S^{1} \times r \mathbb{D}^{m-1}$ is a smooth embedding. Denote the arc length of $\alpha$ by $|\alpha|$ and let the orthogonal matrix $A_{\alpha} \in O(m-1, \mathbb{R})$ be the holonomy around $\alpha$. It is explicitly defined as follows where we regard $\alpha: \mathbb{R} \rightarrow M$ as a periodic function of period $2 \pi$ and speed $|\alpha| / 2 \pi$. Let $\bar{e}_{1}, \bar{e}_{2}, \cdots, \bar{e}_{m-1}$ be the parallel vector fields along $\alpha$ satisfying $\bar{e}_{i}(0)=$ $e_{i}(0)$ for $i=1,2, \cdots, m-1$. Define a matrix $A_{\alpha}(t) \in O(m-1, \mathbb{R})$, for each $t \in \mathbb{R}$, by

$$
\begin{equation*}
e_{i}(t)=\sum_{j}\left(A_{\alpha}(t)\right)_{i j} \bar{e}_{j}(t) \tag{2.0.2}
\end{equation*}
$$

and then set $A_{\alpha}=A_{\alpha}(2 \pi)$. We call the correspondence $t \mapsto A_{\alpha}(t)$ the holonomy function associated to $\alpha$. The purpose of this section is to prove the following result.

Theorem 2.1. Given real numbers $\varepsilon, l>0$, an integer $m>6$ and $a$ map $A(t): \mathbb{R} \rightarrow O(m-1, \mathbb{R})$, there exists a real number $r>0$ such that the following statement is true for any pair $\left(M^{m}, \alpha\right)$ as above but subject to the following extra constraints:

1. $|\alpha|=l$;
2. $A_{\alpha}(t)=A(t)$ for all $t \in \mathbb{R}$;
3. $\alpha$ is the core of a geometric tube of radius $2 r$.

For any $x \in \Theta_{m-1}$, there exists a complete negatively curved Riemannian manifold $N^{m}$ of finite volume in the concordance class $M(\alpha, x)$ and such that all the sectional curvatures of $N^{m}$ lie in the interval $[-1-\varepsilon,-1+\varepsilon]$.

The following is the strategy used to prove this result. Pick a representative diffeomorphism $\varphi_{x}: S^{m-2} \rightarrow S^{m-2}$ for each element $x$ in the finite group $\Theta_{m-1}$. Let $f: S^{1} \times \mathbb{D}^{m-1} \rightarrow M^{m}$ be the tube defined by

$$
\begin{equation*}
f(y, v)=\bar{\alpha}(y, 2 r v) . \tag{2.1.1}
\end{equation*}
$$

The core of $f$ is the geodesic $\alpha$ equipped with the framing $2 r e_{1}, 2 r e_{2}$, $\cdots, 2 r e_{m-1}$. But it is easily seen that $M_{f, \varphi_{x}}$ is a smooth manifold in the concordance class $M(\alpha, x)$. It is the underlying smooth manifold of the posited Riemannian manifold $N^{m}$. To put the Riemannian metric on $M_{f, \varphi_{x}}$, we express it as the union of three manifolds

$$
\begin{equation*}
M^{m}-f\left(S^{1} \times \operatorname{Int} \mathbb{D}^{m-1}\right), \quad S^{1} \times \frac{1}{2} \mathbb{D}^{m-1}, \quad S^{1} \times\left(\mathbb{D}^{m-1}-\frac{1}{2} \operatorname{Int} \mathbb{D}^{m-1}\right) \tag{2.1.2}
\end{equation*}
$$

The Riemannian metric on $M^{m}$ induces the Riemannian metrics on the first two submanifolds via the inclusion map and the embedding $f$, respectively. The third submanifold, which can be identified with the cylinder $\left(S^{1} \times S^{m-2}\right) \times\left[\frac{1}{2}, 1\right]$, thus inherits a Riemannian metric on its top and bottom boundary components. We taper these Riemannian metrics together over the interior. The larger $r$ is, the close to -1 is pinched the sectional curvatures in this tapered Riemannian metric. This tapering is accomplished by using Lemma 2.2 which we proceed to formulate.

Let $S^{m-2} \times \mathbb{R}$ denote the Riemannian symmetric space which is the metric product of $S^{m-2}$ and the flat line $\mathbb{R}$. Let $\psi$ be the isometry of $S^{m-2}$ induced by $A(2 \pi)$; i.e.,

$$
\begin{equation*}
\psi(y)=y A(2 \pi), \quad y \in S^{m-2} \tag{2.1.3}
\end{equation*}
$$

and let $T: \mathbb{R} \rightarrow \mathbb{R}$ be the translation $T(y)=y+l, y \in \mathbb{R}$. Then $\psi \times T$ is an isometry of $S^{m-2} \times \mathbb{R}$. Let $\mathscr{N}^{m-1}$ denote the orbit space of $S^{m-2} \times \mathbb{R}$ under the action of the infinite cyclic group of isometries generated by $\psi \times T$. It is a compact Riemannian locally symmetric space. Let $\pi: S^{m-2} \times$ $\mathbb{R} \rightarrow \mathscr{N}^{m-1}$ denote the covering projection, and $\omega: \mathscr{N}^{m-1} \rightarrow\left(\frac{l}{2 \pi}\right) S^{1}$ be the map induced by projection onto the second factor of $S^{m-2} \times \mathbb{R}$. Here the circle $\left(\frac{l}{2 \pi}\right) S^{1}$ is identified with the orbit space of $\mathbb{R}$ under the action of the group generated by $T$. Consider the cylinder $\mathscr{N}^{m-1} \times[1,2]$. Let $\xi$ and $\gamma$ be the distributions respectively tangent to the foliations $\left\{\mathscr{N}^{m-1} \times t \mid t \in[1,2]\right\}$ and $\left\{y \times[1,2] \mid y \in \mathscr{N}^{m-1}\right\}$. Let $\xi_{1}$ and $\xi_{2}$ be the subdistributions of $\xi$ respectively tangent to the foliations

$$
\begin{array}{ll}
\left\{\pi\left(S^{m-2} \times y\right) \times t \mid y \in \mathbb{R},\right. & t \in[1,2]\} \quad \text { and } \\
\left\{\pi(y \times \mathbb{R}) \times t \mid y \in S^{m-2},\right. & t \in[1,2]\} \tag{2.1.4}
\end{array}
$$

Let $B$ be any Riemannian metric on $\mathscr{N}^{m-1} \times[1,2]$ satisfying
(1) $\xi \perp \gamma$ and
(2) $B\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) \equiv 1$,
where $t$ is the second coordinate in the product structure $\mathscr{N}^{m-1} \times[1,2]$. Given a positive real number $r$, construct a new Riemannian metric $B_{r}$ on $\mathscr{N}^{m-1} \times[1,2]$ by requiring the following properties:
(1) $\xi \perp \gamma$;
(2) $B_{r}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)=r^{2}$;
(3) $B_{r}(u, v)=\sinh ^{2}(r t) B(u, v)$, if $u, v \in \xi_{1}$;
(4) $B_{r}(u, v)=\sinh ^{2}(r t) B(u, v)$, if $u \in \xi_{1}$ and $v \in \xi_{2}$;
(5) $\quad B_{r}(u, v)=\sinh ^{2}(r t) B(u, v)+d \omega(u) \cdot d \omega(v)$, if $u, v \in \xi_{2}$.

Lemma 2.2. Let $P$ denote an arbitrary 2-plane tangent to $\mathscr{N}^{m-1} \times$ [1, 2]. Then

$$
\lim _{r \rightarrow \infty} K_{B_{r}}(P)=-1
$$

uniformly in $P$, where $K_{B_{r}}(P)$ denotes the sectional curvature of $P$ relative to $B_{r}$.

Before proving Lemma 2.2, we use it to prove Theorem 2.1 by implementing in detail the strategy outlined after the statement of this theorem. Define a diffeomorphism $\widehat{\Psi}: \mathbb{R} \times S^{m-2} \rightarrow S^{m-2}$ by the formula

$$
\begin{equation*}
\widehat{\Psi}(t, y)=\left(y A(t), \frac{l}{2 \pi} t\right) \tag{2.2.0.1}
\end{equation*}
$$

(Recall that $A_{\alpha}(t)=A(t)$.) It induces a diffeomorphism $\Psi: S^{1} \times S^{m-2} \rightarrow$ $\mathscr{N}^{m-1}$ since $\psi(y)=y A(2 \pi) ;$ cf. (2.0.2) and (2.1.3).

Fix a Riemannian metric $B($,$) on \mathscr{N}^{m-1} \times[1,2]$ satisfying (2.1.5) together with the following additional properties where $B^{t}($,$) denotes$ the induced Riemannian metric on the hypersurface $\mathscr{N}^{m-1} \times t, t \in[1,2]$ :
(1) $B^{1}$ is the given locally symmetric metric on $\mathscr{N}^{m-1}$.
(2) $B^{2}$ is the pullback of $B^{1}$ under the composite diffeomorphism $\Psi \circ\left(\mathrm{id} \times \varphi_{x}\right) \circ \Psi^{-1}$.
(3) $B^{t}$ is constant in $t$ near $t=1,2$.

If $s \in \mathbb{R}$ and $u=(t, y) \in S^{1} \times \mathbb{R}^{m-1}$, define $s \cdot u=(t, s y)$. Let $h, h_{x}: \mathscr{N}^{m-1} \times(0,2] \rightarrow M^{m}$ be the two embeddings defined by

$$
\begin{align*}
& h(y, t)=f\left(\frac{1}{2} t \cdot \Psi^{-1}(y)\right) \text { and }  \tag{2.2.0.3}\\
& h_{x}(y, t)=f\left(\frac{1}{2} t \cdot \operatorname{id} \times \varphi_{x}\left(\Psi^{-1}(y)\right)\right)
\end{align*}
$$

where $y \in \mathscr{N}^{m-1}$ and $t \in(0,2]$. (Recall $f$ was defined in (2.1.1).) Note that $M_{f, \varphi_{x}}$ can be constructed by gluing $\mathscr{N}^{m-1} \times[1,2]$ to $M^{m}-$ $h\left(\mathscr{N}^{m-1} \times(1,2)\right)$ along the maps

$$
\begin{align*}
& h: \mathscr{N}^{m-1} \times 1 \rightarrow M^{m}-h\left(\mathscr{N}^{m-1} \times(1,2)\right),  \tag{2.2.0.4}\\
& h_{x}: \mathscr{N}^{m-1} \times 2 \rightarrow M^{m}-h\left(\mathscr{N}^{m-1} \times(1,2)\right) .
\end{align*}
$$

Put a Riemannian metric 〈, 〉on $M_{f, \varphi_{x}}$ as follows. It is the given hyperbolic metric on ${ }^{\prime} M^{m}-h\left(\mathscr{N}^{m-1} \times(1,2)\right)$; while, restricted to $\mathscr{N}^{m-1} \times$ $[1,2],\langle$,$\rangle is the Riemannian metric B_{r}($,$) of (2.1.6) constructed using$ the Riemannian metric $B($,$) fixed in (2.2.0.2). We leave the reader an$ exercise to show that these two Riemannian metrics fit together. Use the following hints. The Jacobi fields in $\mathbb{H}^{m}$ can be explicitly calculated. This calculation shows that $\mathbb{H}^{m}$ is isometric to the warped product $\mathbb{H}^{m} \times{ }_{g} \mathbb{R}$ where $g(p)=\cosh (\rho(p)), p \in \mathbb{H}^{m-1}$, and $\rho(p)$ denotes the distance between $p$ and a fixed point $p_{0} \in \mathbb{H}^{m-1}$. The set of points $p_{0} \times \mathbb{R}$ is a geodesic line, and $\mathbb{H}^{m-1} \times 0$ is a totally geodesic subspace (isometric to $\mathbb{H}^{m-1}$ ) meeting this line perpendicularly at $p_{0} \times 0$. Furthermore, $\mathbb{H}^{m-1}-$ $p_{0}$ is isometric to the warped product $(0,+\infty) \times_{h} S^{m-2}$ where $h(t)=$ $\sinh (t), t \in(0,+\infty)$. Now use (2.2.0.2) and (2.1.6) together with the trigonometric identity $\cosh ^{2}(t)=\sinh ^{2}(t)+1$ to show the metrics agree at $\mathscr{N}^{m-1} \times 1$. To show they agree at $\mathscr{N}^{m-1} \times 2$ use, in addition, the following matrix identity. Let $P$ denote the $(m-1) \times(m-1)$ matrix whose only nonzero entry is $P_{m-1, m-1}=1$, and let $A$ be any $(m-1) \times(m-1)$ matrix whose bottom row is $(0,0, \cdots, 0,1)$. Then $A^{t} P A=P$ where $A^{t}$ denotes the transpose of $A$. The conclusion of Theorem 2.1 now follows from Lemma 2.2.

Proof of Lemma 2.2. Smooth coordinate functions $x_{1}, \cdots, x_{m-2}$, $x_{m-1}, t$ defined in an open neighborhood of a point $\left(p_{0}, t_{0}\right) \in \mathscr{N}^{m-1} \times$ $[1,2]$ are said to form a regular coordinate system about $\left(p_{0}, t_{0}\right)$ if there exist coordinate functions $y_{1}, y_{2}, \cdots, y_{m-1}, s$ defined in an open
neighborhood of a point $\left(q_{0}, t_{0}\right) \in\left(S^{m-2} \times \mathbb{R}\right) \times[1,2]$ such that
(1) $\pi\left(q_{0}\right)=p_{0}$;
(2) the composite $x_{i} \circ(\pi \times \mathrm{id})=y_{i}$, for $i=1,2, \cdots, m-1$;
(3) $s$ and $t$ are the $[1,2]$ coordinates in the two product structures;
(4) $y_{m-1}$ is the $\mathbb{R}$ coordinate in the product structure
$S^{m-2} \times \mathbb{R} \times[1,2] ;$ and
(5) $y_{i}$ is constant on each leaf of the foliation $\left\{z \times \mathbb{R} \times[1,2] \mid z \in S^{m-2}\right\}$ provided $1 \leq i \leq m-2$.
It is easy to find a regular coordinate system about a given point in $\mathscr{N}^{m-1} \times$ $[1,2]$. By composing the coordinate functions $y_{1}, y_{2}, \cdots, y_{m}$ for this system with members from a precompact set of isometries of the symmetric space $S^{m-2} \times \mathbb{R} \times \mathbb{R}$, we construct a family of regular coordinate systems (one for each point $\left.\left(p_{0}, t_{0}\right) \in \mathscr{N}^{m-1} \times[1,2]\right)$ satisfying the following properties:
(1) $B()=,g_{i j} d x_{i} d x_{j}+d t^{2}$. We denote these functions by $g_{i j}^{\left(p_{0}, t_{0}\right)}$ () when we need to make explicit the dependence of the functions $g_{i j}()$ on the (base) point $\left(p_{0}, t_{0}\right)$.
(2) The closure of the set

$$
\begin{equation*}
\left\{g_{i j}^{\left(p_{0}, t_{0}\right)}\left(p_{0}, t_{0}\right) \mid\left(p_{0}, t_{0}\right) \in \mathscr{N}^{m-1} \times[1,2]\right\} \tag{2.2.2}
\end{equation*}
$$

is a compact space $K$ of positive definite symmetric matrices.
(3) There is a positive real number $C$, which is independent of $\left(p_{0}, t_{0}\right)$, such that for all integers $k, s \geq 0$, with $k+s \leq 2$, the following inequalities hold:

$$
\left|\frac{\partial^{k+s} g_{i j}^{\left(p_{0}, t_{0}\right)}}{\partial x_{1} \cdots \partial x_{i_{k}} \partial t^{s}}\left(p_{0}, t_{0}\right)\right|<C .
$$

For each positive real number $r$, define a new coordinate system $\bar{x}_{i}, \bar{t}$ about ( $p_{0}, t_{0}$ ) by setting

$$
\begin{equation*}
\bar{t}=r t \quad \text { and } \quad \bar{x}_{i}=\sinh \left(r t_{0}\right) x_{i} \tag{2.2.3}
\end{equation*}
$$

We then have the following equalities:

$$
\begin{align*}
d \bar{t} & =r d t, & d \bar{x}_{i}=\sinh \left(r t_{0}\right) d x_{i} \\
\frac{\partial}{\partial \bar{t}} & =\frac{1}{r} \frac{\partial}{\partial t}, & \frac{\partial}{\partial \bar{x}_{i}}=\frac{1}{\sinh \left(r t_{0}\right)} \frac{\partial}{\partial x_{i}} \tag{2.2.4}
\end{align*}
$$

From (2.2.4) and the definition (2.1.6) of $B_{r}$ in terms of $B$ it follows that

$$
\begin{align*}
& B_{r}(,)=\bar{g}_{i j} d \bar{x}_{i} d \bar{x}_{j}+d \bar{t}^{2}, \\
& \qquad \text { where } \bar{g}_{i j}=\frac{\sinh ^{2}(r t)}{\sinh ^{2}\left(r t_{0}\right)} g_{i j}, \text { if } 1 \leq i, j \leq m-2 ; \\
& \bar{g}_{i, m-1}=\bar{g}_{m-1, i}=\frac{\sinh ^{2}(r t)}{\sinh ^{2}\left(r t_{0}\right)} g_{i, m-1}, \quad \text { if } 1 \leq i \leq m-2 ;  \tag{2.2.5}\\
& \bar{g}_{m-1, m-1}=\frac{\sinh ^{2}(r t)}{\sinh ^{2}\left(r t_{0}\right)} g_{m-1, m-1}+\frac{1}{\sinh ^{2}\left(r t_{0}\right)} .
\end{align*}
$$

Let $X_{i, j ; i_{1}, \cdots, i_{k} ; s}$ denote the partial derivatives (0th through 2nd order)

$$
\begin{equation*}
\frac{\partial^{k+s} \bar{g}_{i j}}{\partial \bar{x}_{i_{1}} \cdots \partial \bar{x}_{i_{k}} \partial \bar{t}^{s}}\left(p_{0}, t_{0}\right) . \tag{2.2.6}
\end{equation*}
$$

In particular, $X_{i j}=\bar{g}_{i j}\left(p_{0}, t_{0}\right)$. It follows from properties (2.2.2), (2.2.4) and (2.2.5) that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} X_{i, j ; i_{1}, \cdots, i_{k} ; s}=0^{k} 2^{s} g_{i j}^{\left(p_{0}, t_{0}\right)}\left(p_{0}, t_{0}\right) \tag{2.2.7}
\end{equation*}
$$

uniformly in $\left(p_{0}, t_{0}\right)$. Here $0^{0}=1$ and $0^{k}=0$ if $k \geq 1$.
Choose an orthonormal basis $\left\{v_{1}, v_{2}\right\}$ for the 2-plane $P$ and write

$$
\begin{equation*}
v_{i}=a_{i k} \partial / \partial \bar{x}_{k}+a_{i m} \partial / \partial \bar{t} \tag{2.2.8}
\end{equation*}
$$

where we sum over the index $k$. It is a consequence of the classical relation between the coefficients of the curvature tensor and of the first fundamental form (cf. [12, $\S \S 5.3$ and 6.2]) that $K_{B_{r}}(P)$ is a polynomial $f()$ in the set of variables $\left\{X_{i, j ; i_{1}, \ldots, i_{k} ; s,} a_{i j}, \operatorname{det}\left(X_{i j}\right)^{-1}\right\}$. The set $\mathscr{L}$ of limiting values (as $r \rightarrow+\infty$ ) of these variables

$$
\begin{equation*}
\mathscr{L}=\left\{0^{k} 2^{s} g_{i j}^{\left(p_{0}, t_{0}\right)}\left(p_{0}, t_{0}\right), a_{i j}, \operatorname{det}\left(g_{i j}^{\left(p_{0}, t_{0}\right)}\left(p_{0}, t_{0}\right)\right)^{-1}\right\} \tag{2.2.9}
\end{equation*}
$$

is a precompact (i.e., bounded) subset of the domain of $f$ because of (2.2.2) and (2.2.7). It consequently suffices to show that $f \mid \mathscr{L} \equiv-1$ in order to complete the proof of Lemma 2.2.

Fix a point $\left(p_{0}, t_{0}\right) \in \mathscr{N}^{m-1} \times[1,2]$. Let $x_{1}, x_{2}, \cdots, x_{m-1}$ be the standard coordinates on $\mathbb{R}^{m-1}$ and let $A($,$) be the flat Riemannian$ metric on $\mathbb{R}^{m-1}$ described by

$$
\begin{equation*}
A(,)=g_{i j}\left(p_{0}, t_{0}\right) d x_{i} d x_{j} \tag{2.2.10}
\end{equation*}
$$

where $g_{i j}($,$) is an abbreviated notation for g_{i j}^{\left(p_{0}, t_{0}\right)}($,$) . Now form the$ warped product $\mathbb{R} \times{ }_{\eta} \mathbb{R}^{m-1}$, where $\eta: \mathbb{R} \rightarrow \mathbb{R}$ is the function $\eta(t)=e^{t}$ and $\mathbb{R}$ has its standard (flat) Riemannian metric. (See [20, pp. 204-211] for the definition and properties of the warped product.) Let $t$ be the first coordinate in the product structure $\mathbb{R} \times \mathbb{R}^{m-1}$. Then the Riemannian metric $\bar{A}($,$) on the warped product \mathbb{R} \times{ }_{\eta} \mathbb{R}^{m-1}$ is explicitly described by the formula

$$
\begin{equation*}
\bar{A}(,)=\hat{g}_{i j} d x_{i} d x_{j}+d t^{2} \tag{2.2.11}
\end{equation*}
$$

where $\hat{g}_{i j}\left(x_{1}, \cdots, x_{m-1}, t\right)=e^{2 t} g_{i j}\left(p_{0}, t_{0}\right)$. The sectional curvatures of $\mathbb{R} \times{ }_{\eta} \mathbb{R}^{m-1}$ are easily calculated using [20, Proposition 4.2, p. 210]. They are all -1 . Consider the point $0=(0 ; 0,0, \cdots, 0) \in \mathbb{R} \times \mathbb{R}^{m-1}$. The value of the partial derivatives ( 0 th through second order) of $\hat{g}_{i j}$ at 0 are equal to the limiting values of $X_{i, j ; i_{1}, \cdots, i_{k} ; s}$ as $r \rightarrow+\infty$; i.e., are $0^{k} 2^{s} g_{i j}\left(p_{0}, t_{0}\right)$. We consequently have that the value of $f$ restricted to $\mathscr{L}$ is identically -1 . This completes the proof of Lemma 2.2.

## 3. Relevant group theory

We intend to use the results of $\S \S 1$ and 2 to construct the Riemannian manifolds posited in Theorems 0.1 and 0.2. We will use examples due to Millson [17] and a theorem of Sullivan [23]. Some specific group-theoretic facts are needed to enable us to assemble these results. The purpose of this section is to state and prove these results in group theory.

Let $\overline{\mathbb{Q}} \subseteq \mathbb{C}$ denote the algebraic closure (inside the complex numbers $\mathbb{C}$ ) of the field of rational numbers $\mathbb{Q}$.

Lemma 3.1. Let $\Gamma \subseteq \mathrm{GL}_{n}(\overline{\mathbb{Q}})$ be a finitely generated subgroup, and $A, B \in \Gamma$ be a pair of noncommuting elements. Also assume that $A$ is $a$ semisimple matrix in $\mathrm{GL}_{n}(\mathbb{C})$. Then there exists a homomorphism $\varphi: \Gamma \rightarrow$ $G$ where $G$ is a finite group such that $\varphi(B)$ is not an integral power of $\varphi(A)$; i.e., the equation $\varphi(B)=\varphi(A)^{n}$ has no integral solution $n$.

Proof. Since $\Gamma$ is finitely generated, there exists an algebraic number field $k \subseteq \overline{\mathbb{Q}}$ such that $\Gamma \subseteq \mathrm{GL}_{n}(k)$. (Recall that an algebraic number
field is a finite field extension of $\mathbb{Q}$.) We can even pick $k$ so that $A$ is diagonalizable over $k$ since the eigenvalues of $A$ are also in $\overline{\mathbb{Q}}$. Hence, we may assume, after applying an inner automorphism, that $A$ is represented by a diagonal matrix in $\mathrm{GL}_{n}(k)$ under the embedding $\Gamma \subseteq \mathrm{GL}_{n}(k)$. But $B$ is not a diagonal matrix since the set of all diagonal matrices form an abelian subgroup of $\mathrm{GL}_{n}(k)$; in particular, $B_{i j} \neq 0$ for some pair of unequal indices $i$ and $j$. Let $\mathscr{O}$ be the ring of all algebraic integers inside of $k$. Recall the following properties of $\mathcal{O}$ :

1. (O) is a Dedekind domain.
2. $\mathscr{O}$ is a finitely generated free $\mathbb{Z}$-module.
3. $\mathscr{O} \otimes_{\mathbb{Z}} \mathbb{Q}=k$.

Using property 3 and the fact that $\Gamma$ is finitely generated, we conclude that $\Gamma \subseteq \mathrm{GL}_{n}\left(\mathcal{O}\left[\frac{1}{m}\right]\right)$ where $m \in \mathbb{Z}$ and $m \neq 0$. In particular, $B_{i j}=b m^{s}$ where $b \in \mathscr{O}, b \neq 0$ and $s \in \mathbb{Z}$. Use property 1 to pick a maximal ideal $\mathfrak{A}$ in $\mathscr{O}$ such that both $b \notin \mathfrak{A}$ and $m \notin \mathfrak{A}$. Let $\psi: \mathscr{O}\left[\frac{1}{m}\right] \rightarrow \mathscr{O} / \mathfrak{A}$ be the canonical factor homomorphism. Note that $\mathscr{O} / \mathfrak{A}$ is a finite field by property 2 and that $\psi\left(b m^{s}\right) \neq 0$. Let $\hat{\psi}: \mathrm{GL}_{n}\left(\mathcal{O}\left[\frac{1}{m}\right]\right) \rightarrow \mathrm{GL}_{n}(\mathcal{O} / \mathfrak{A})$ be the induced group homomorphism. Then the posited $\varphi$ is the composite of the inclusion of $\Gamma$ into $\mathrm{GL}_{n}\left(\mathscr{O}\left[\frac{1}{m}\right]\right)$ with $\hat{\psi}$. q.e.d.

A closed geodesic $\gamma: S^{1} \rightarrow M^{m}$ is said to be $t$-simple if $\dot{\gamma}: S^{1} \rightarrow T M$ is simple, i.e., a one-to-one function. Recall $M^{m}$ has the same meaning here as it has in $\S 2$ and $m>6$. Also $T M$ denotes the tangent bundle of $M$. Let $1 \in S^{1} \subseteq \mathbb{R}^{2}=\mathbb{C}$ be the complex number one.

Corollary 3.2. Assume $M^{m}$ is orientable and $\gamma: S^{1} \rightarrow M^{m}$ is a $t$ simple closed geodesic. Let $x_{0}=\gamma(1)$ and $A \in \pi_{1}\left(M, x_{0}\right)$ be the homotopy class of $\gamma$. Let $B$ be any other element in $\pi_{1}\left(M, x_{0}\right)$ which is not an integral power of $A$. Then there exists a homomorphism $\varphi: \pi_{1}\left(M, x_{0}\right) \rightarrow$ $G$ where $G$ is a finite group and such that $\varphi(B)$ is not an integral power of $\varphi(A)$.

Proof. The group $\Gamma$ of all deck transformations of the universal covering space $\mathbb{H}^{m}$ of $M^{m}$ can be identified with $\pi_{1}\left(M, x_{0}\right)$. Using the fact that $A$ leaves invariant a geodesic line in $\mathbb{H}^{m}$, one sees that $A$ and $B$ do not commute. Since $\Gamma$ acts via isometries on $\mathbb{H}^{m}$, we can identify $\Gamma$ as a lattice in the Lie group $\mathrm{SO}^{+}(m, 1, \mathbb{R}) \subseteq \mathrm{GL}_{m+1}(\mathbb{R})$ such that $A$ is represented by a diagonalizable matrix in $\mathrm{GL}_{m+1}(\mathbb{C})$. We can apply the weak arithmeticity result of Garland and Raghunathan [11] which generalizes to nonuniform lattices earlier results of Selberg; cf. [22, Proposition 6.6], and Calabi [5]. There consequently exist an algebraic number field
$k \subseteq \mathbb{R}$ and an element $g \in \operatorname{SO}^{+}(m, 1, \mathbf{R})$ such that

$$
g \Gamma g^{-1} \subseteq \mathrm{SO}^{+}(m, 1, k) \subseteq \mathrm{GL}_{m+1}(\overline{\mathbb{Q}})
$$

The composite of the inner automorphism determined by $g$ with the embedding $\mathrm{SO}^{+}(m, 1, k) \subseteq \mathrm{GL}_{m+1}(\overline{\mathbb{Q}})$ hence gives an embedding of $\Gamma$ into $\mathrm{GL}_{m+1}(\overline{\mathbb{Q}})$ which satisfies the hypotheses of Lemma 3.1. An application of Lemma 3.1 thus completes the proof of Corollary 3.2.

Corollary 3.3. Let $\gamma: S^{1} \rightarrow M^{m}$ be an orthonormally framed $t$-simple closed geodesic, and $r$ be a positive real number. Then there exist a (connected) finite sheeted cover $p: \widetilde{M} \rightarrow M$ and an orthonormally framed simple closed geodesic $\alpha: S^{1} \rightarrow \widetilde{M}$ such that

1. $p \circ \alpha=\gamma$ and
2. $\alpha$ is the core of a geometric tube of radius $r$.

Proof. Note first that we can assume $M^{m}$ is orientable since $\gamma$ lifts to the oriented cover of $M^{m}$ when $M^{m}$ is nonorientable.

Let $x_{0}=\gamma(1)$, and $\tilde{x}_{0}$ be a lift of $x_{0}$ to the universal cover $q: \mathbb{H}^{m} \rightarrow$ $M^{m}$; i.e., $q\left(\tilde{x}_{0}\right)=x_{0}$. Identify $\pi_{1}\left(M, x_{0}\right)$ with the group $\Gamma$ of all deck transformations of $q: \mathbb{H}^{m} \rightarrow M^{m}$ via these choices, and let $A \in \Gamma$ correspond to the homotopy class of $\alpha$ in $\pi_{1}\left(M, x_{0}\right)$. Let $L$ be a geodesic segment of finite length such that $\tilde{x}_{0} \in L$ and $q(L)=\gamma\left(S^{1}\right)$. A compactness argument shows that these are only a finite number of elements $B_{1}, B_{2}, \cdots, B_{n}$ in $\Gamma$ such that, for each index $1 \leq i \leq n$, the following hold:

1. $B_{i}$ is not an integral power of $A$, and
2. some point on $B_{i}(L)$ is within distance $2 r+|L|$ of $L$ where $|L|$ denotes the length of $L$.

Now apply Corollary 3.2 to obtain a group homomorphism $\varphi: \pi_{1}\left(M, x_{0}\right)$ $\rightarrow G$ where $G$ is a finite group and such that none of the elements $\varphi\left(B_{i}\right)$ is an integral power of $\varphi(A)$, where $i=1,2, \cdots, n$. Let $S$ be the cyclic subgroup of $G$ consisting of all the integral powers of $\varphi(A)$, and let $p: \widetilde{M} \rightarrow M$ be the covering space corresponding to the subgroup $\varphi^{-1}(S) \subseteq$ $\pi_{1}\left(M, x_{0}\right)$. It is now routine to verify that $p: \widetilde{M} \rightarrow M$ satisfies the properties posited in Corollary 3.3.

Lemma 3.4. Assume $M^{m}$ is orientable and $\varphi: \pi_{1}\left(M^{m}\right) \rightarrow \mathbb{Z}_{+}$is an epimorphism. Then there is a t-simple closed geodesic $\gamma: S^{1} \rightarrow M^{m}$ such that $\varphi([\gamma]) \neq 0$ where $[\gamma]$ denotes the free homotopy class of $\gamma$.

Proof. Recall that every conjugacy class of a nonidentity element in $\pi_{1} M^{m}$ is represented by a closed geodesic when $M^{m}$ is compact. So

Lemma 3.4 is obviously true when $M^{m}$ is compact. We argue as follows in the general situation.

Identify $\pi_{1} M^{m}$ with the group of all deck transformations of the universal covering space $p: \mathbb{H}^{m} \rightarrow M^{m}$. Since $\Gamma$ acts via isometries on $\mathbb{H}^{m}$, we can further identify it to a lattice in $\mathrm{SO}^{+}(m, 1, \mathbb{R}) \subseteq \mathrm{GL}_{m+1}(\mathbb{R})$. The individual elements $\beta \in \Gamma-\{1\}$ are partitioned into two disjoint classes semisimple and cuspidal depending on whether the matrix representing $\beta$ in $\mathrm{GL}_{m+1}(\mathbb{C})$ is semisimple (i.e., diagonalizable) or not. We now recall a few facts about the Jordan decomposition of $\beta$; cf. [19, p. 10]. It decomposes uniquely as a product $\beta=p k u$ where $p, k, u$ are pairwise commuting matrices in $\mathrm{SO}^{+}(m, 1, \mathbb{R})$ with $u$ unipotent and both $p$ and $k$ semisimple with positive real and length 1 eigenvalues, respectively. When $p \neq 1$, it has exactly two eigenvalues $\lambda$ and $\lambda^{-1}$ different from 1 , and each eigenvalue has a one-dimensional eigenspace. It is a consequence of [19, Lemma 5.2(i)] that if $p \neq 1$, then $u=1$; hence, $\beta$ is cuspidal if and only if $p=1$. Also [19, Lemma 5.2(i)] yields the following useful criterion.

$$
\begin{equation*}
\text { If trace } \beta>m+1 \text {, then } \beta \text { is semisimple. } \tag{3.4.1}
\end{equation*}
$$

On the geometric side, the elements in $\Gamma-\{1\}$ whose conjugacy class is represented by a closed geodesic are precisely the semisimple elements, while the cuspidal elements are those representable by curves of arbitrarily short arc length.

We proceed to find a semisimple element $\beta \in \Gamma$ with $\varphi(\beta) \neq 0$. Pick an element $c \in \Gamma$ such that $\varphi(c) \neq 0$. If $c$ is semisimple, then we are done. Hence assume that $c$ is cuspidal. Using the fact that the set of all closed geodesics is dense in the set of all geodesics [19, Lemma 8.3'], we can find a semisimple element $\beta \in \Gamma-\{1\}$ such that trace $\left(\beta^{n} c\right) \rightarrow$ $+\infty$ as $n \rightarrow+\infty$. (Hint: $\beta$ should "point towards" the cusp.) Hence $\beta^{n} c$ is also semisimple by (3.4.1), when $n$ is sufficiently large. Note that $\varphi\left(\beta^{n} c\right)=n \varphi(\beta)+\varphi(c)$. Therefore either $\varphi(\beta) \neq 0$ or $\varphi\left(\beta^{n} c\right) \neq 0$. Thus we have accomplished the goal stated in sentence one of this paragraph.

Note that for every closed geodesic $\beta$ there exist an integer $n$ and a $t$-simple closed geodesic $\gamma$ such that $\beta$ is the composite $\gamma \circ P_{n}$ where $P_{n}: S^{1} \rightarrow S^{1}$ is the function $z \rightarrow z^{n}$. Hence we can find a $t$-simple closed geodesic $\gamma$ with $\varphi([\gamma]) \neq 0$. q.e.d.

We will need the following technical fact about the group $\mathrm{SO}^{+}(m, 1, \mathbb{Z})$ in order to prove Theorem 0.1.

Proposition 3.5. Given a semisimple element $A \in \mathrm{SO}^{+}(m, 1, \mathbb{Z})$ of infinite order and a positive integer $n$, there exist a finite group $G$ and $a$
homomorphism $\psi: \mathrm{SO}^{+}(m, 1, \mathbb{Z}) \rightarrow G$ with the following properties:

1. The order of $\psi(A)$ is divisible by $n$.
2. Let $\beta$ be any unipotent element in $\mathrm{SO}^{+}(m, 1, \mathbb{Z})$ such that $\psi(B)=$ $\psi(A)^{s}$ where $s \in \mathbb{Z}$; then $n$ divides $s$.

Fix an algebraic number field $k$ such that $k$ contains all the eigenvalues of $A$ as well as all the $n$th roots of unity. Note that $A$ has real eigenvalues $\lambda$ and $\lambda^{-1}$ with $\lambda>1$, and its other eigenvalues are complex numbers of length 1 . Furthermore, the eigenspaces corresponding to $\lambda$ and $\lambda^{-1}$ are both one-dimensional. Let $\mathscr{O}$ denote the ring of all algebraic integers in $k$, and let units $\mathscr{O}$ denote the group of units of this ring. Notice that units $\mathscr{O}$ contains all the eigenvalues of $A$ and all the $n$th roots of unity. Fix a positive (rational) prime $q$ which divides $n$, and let $\Omega$ denote a specific choice of a primitive $q$ th root of unity. The proof of Proposition 3.5 requires the following preliminary result.

Lemma 3.6. Given a positive (rational) integer $s$, there exists a prime ideal $\mathfrak{A}$ in $\mathcal{O}$ such that the coset $\lambda+\mathfrak{A}$ is a unit in the finite field $\mathcal{O} / \mathfrak{A}$ and its order is divisible by $q^{s}$.

We now complete the proof of Proposition 3.5 using Lemma 3.6, and after that we prove Lemma 3.6. Let $n=q_{1}^{s_{1}} q_{2}^{s_{2}} \cdots q_{r}^{s_{r}}$ be the prime factorization of $n$ where the numbers $q_{i}$ are distinct positive primes and each $s_{i}>0$. We will use Lemma 3.6 to construct finite groups $G_{i}$ and homomorphisms $\psi_{i}: \mathrm{SO}^{+}(m, 1, \mathbb{Z}) \rightarrow G_{i}$, for $i=1,2, \cdots, r$, with the following two properties:

1. The order of $\psi_{i}(A)$ is divisible by $q_{i}^{s_{i}}$.
2. Let $B$ be any unipotent element in $\mathrm{SO}^{+}(m, 1, \mathbb{Z})$ such that $\psi_{i}(B)=\psi_{i}(A)^{s}$, then $q_{i}^{s_{i}}$ divides $s$.

The proof of Proposition 3.5 is completed by setting $G=G_{1} \times G_{2} \times \cdots \times G_{r}$ and $\psi=\psi_{1} \times \psi_{2} \times \cdots \times \psi_{r}$.

It remains to construct $G_{i}$ and $\psi_{i}$ satisfying (3.6.1). Let $\mathfrak{A}_{i}$ be the prime ideal $\mathfrak{A}$ posited in Lemma 3.6 relative to setting $q=q_{i}$ and $s=$ $s_{i}$. Let $G_{i}=S L_{m+1}\left(\mathscr{O} / \mathfrak{A}_{i}\right)$, and $\psi_{i}$ be the composite of the inclusion $\mathrm{SO}^{+}(m, 1, \mathbb{Z}) \subseteq S L_{m+1}(\mathscr{O})$ with the group homomorphism

$$
\eta_{i}: S L_{m+1}(\mathscr{O}) \rightarrow S L_{m+1}\left(\mathscr{O} / \mathfrak{A}_{i}\right)
$$

induced by the coset homomorphism $x \mapsto x+\mathfrak{A}_{i}, x \in \mathscr{O}$.
We must now show that (3.6.1) is satisfied. Note first that $\lambda+\mathfrak{A}_{i}$ is an eigenvalue of the matrix $\psi_{i}(A)$. Consequently, $\psi_{i}(A)$ is conjugate to a
blocked upper triangular matrix $\mathscr{A}$ of the form

$$
\left(\begin{array}{c|c}
\lambda+\mathfrak{A}_{i} & \star  \tag{3.6.2}\\
\hline 0 & \star
\end{array}\right)
$$

where the top diagonal block is a $1 \times 1$ matrix whose entry is $\lambda+\mathfrak{A}_{i}$. Hence the order of $\mathscr{A}$ is divisible by the order of the unit $\lambda+\mathfrak{A}_{i}$ in the field $\mathscr{O} / \mathfrak{A}_{i}$. Lemma 3.6 now shows that $q_{i}^{s_{i}}$ divides the order of $\psi_{i}(A)$ since $\mathscr{A}$ and $\psi_{i}(A)$ have the same order. This verifies property 1 of (3.6.1).

To verify property 2 , note that $\psi_{i}(A)^{s}$ is conjugate to $\mathscr{A}^{s}$. Hence $\mathscr{A}^{s}$ is a unipotent matrix; i.e., all its eigenvalues are 1 . But $\lambda^{s}+\mathscr{A}_{i}$ is clearly an eigenvalue of $\mathscr{A}^{s}$. The order of $\lambda+\mathfrak{A}_{i}$ in units $\left(\mathscr{O} / \mathfrak{A}_{i}\right)$ therefore divides $s$. A second application of Lemma 3.6 now shows that $q_{i}^{s_{i}}$ divides $s$. This completes the proof of Proposition 3.5.

Proof of Lemma 3.6. Recall that $\mathcal{O}$ satisfies the three properties of (3.1.1). For each element $x \in \mathscr{O}$, let $(x)$ denote the principal ideal it generates; i.e., $(x)=x \mathscr{O}$. Each ideal in $\mathscr{O}$ is the product of prime ideals since $\mathscr{O}$ is a Dedekind domain. In particular, we have that

$$
\begin{equation*}
(\Omega-1)=\mathfrak{A}_{1}^{m_{1}} \mathfrak{A}_{2}^{m_{2}} \cdots \mathfrak{A}_{r}^{m_{r}} \tag{3.6.3}
\end{equation*}
$$

where each $\mathfrak{A}_{i}$ is a prime ideal and each $m_{i}$ is a nonnegative (rational) integer. Let

$$
\begin{equation*}
\nu=\max \left\{m_{1}, m_{2}, \cdots, m_{r}\right\}+1 \tag{3.6.4}
\end{equation*}
$$

Recall that prime ideals are all maximal in Dedekind domains; i.e., if $\mathfrak{A}$ is a prime ideal, then $\mathscr{O} / \mathfrak{A}$ is a field. Furthermore, $\mathscr{O} / \mathfrak{A}$ has finite cardinality since the additive group of $\mathscr{O}$ is finitely generated. We see that $\mathcal{O} / \mathfrak{A}^{n}$ is a finite ring for each nonnegative (rational) integer $n$ by arguing in this way. We can clearly make the following assumption in proving Lemma 3.6; namely,

$$
\begin{equation*}
q^{s}>\text { cardinality of } \mathscr{O} / \mathfrak{A}_{i}^{\nu} \tag{3.6.5}
\end{equation*}
$$

for each $i=1,2, \cdots, r$.
There is now the following fact which we will verify after first using it to complete the proof of Lemma 3.6.

Claim 3.7. There exist a prime ideal $\mathfrak{A}$ in $\mathcal{O}$ and a positive (rational) integer $j$ such that $b^{j}-\Omega \in \mathfrak{A}$ but $\Omega-1 \notin \mathfrak{A}$, where $b=\lambda^{q^{s-1}}$.

As observed above, $\mathscr{O} / \mathfrak{A}$ is a finite field. Claim 3.7 can be rephrased as the following statement about elements in this field

$$
\begin{equation*}
b^{j}+\mathfrak{A}=\boldsymbol{\Omega}+\mathfrak{A} \neq 1+\mathfrak{A} . \tag{3.7.1}
\end{equation*}
$$

Consequently, $b^{j}+\mathfrak{A}$ has order $q$ in units $(\mathcal{O} / \mathfrak{A})$. But since $b^{j}=\lambda^{j q^{s-1}}$, the order of $\lambda+\mathfrak{A}$ must be divisible by $q^{s}$. This proves Lemma 3.6.

We now proceed to formulate and verify an auxiliary result needed to prove Claim 3.7. Fix a $\mathbb{Z}$-basis for $\mathscr{O}$. Then multiplication determines a faithful representation

$$
\begin{equation*}
\eta: \mathscr{O} \rightarrow M_{n}(\mathbb{Z}), \tag{3.7.2}
\end{equation*}
$$

where $M_{n}(\mathbb{Z})$ is the ring of all $n \times n$ matrices with entries in $\mathbb{Z}$ and $n=$ $[k: \mathbb{Q}]$. Composing $\eta$ with the determinant function $\operatorname{det}: M_{n}(\mathbb{Z}) \rightarrow \mathbb{Z}$ defines a norm on $\mathscr{O}$. Denote by $N(x)$ the norm of an element $x \in \mathscr{O}$.

Assertion 3.8.

$$
\limsup _{j \rightarrow+\infty}\left|N\left(b^{j}-\Omega\right)\right|=+\infty
$$

To verify this assertion, we start by analyzing the eigenvalues of the two matrices $\eta(\lambda)$ and $\eta(\Omega)$. Since the field $\mathbb{Q}(\lambda)$ is contained in $k$, we see that $\lambda$ is an eigenvalue of $\eta(\lambda)$ and also that $\eta(\lambda)$ is diagonalizable in $M_{n}(\mathbb{C})$. Since $\lambda$ is a root of the characteristic polynomial of $A$, this polynomial also annihilates $\eta(\lambda)$. The eigenvalues of $\eta(\lambda)$ are consequently a subset of the eigenvalues of $A$ (not counting their multiplicities). By the same reasoning, $\eta(\Omega)$ is also diagonalizable in $M_{n}(\mathbb{C})$ and its eigenvalues are all primitive $q$ th roots of unity.

Note that $\eta(\Omega)$ and $\eta(\lambda)$ are simultaneously diagonalizable in $M_{n}(\mathbb{C})$ since $\Omega \lambda=\lambda \Omega$. We consequently have the following formula for the norm of $b^{j}-\Omega$ :

$$
\begin{equation*}
N\left(b^{j}-\Omega\right)=\prod_{i=1}^{n}\left(\lambda_{i}^{j}-\Omega_{i}\right) \tag{3.8.1}
\end{equation*}
$$

where $\lambda_{1}=b$, each $\lambda_{i} \in\left\{b, b^{-1}\right\} \cup S^{1}$, and each $\Omega_{i} \in S^{1}-\{1\}$ with $\Omega_{i}^{q}=$ 1. Observe the following two facts:

$$
\begin{align*}
& \text { 1. } \lim _{j \rightarrow+\infty}\left|b^{j}-z\right|=+\infty \text {, and }  \tag{3.8.2}\\
& \text { 2. } \lim _{j \rightarrow+\infty}\left|b^{-j}-z\right|=1
\end{align*}
$$

for each complex number $z \in S^{1}$. Furthermore, there exists an infinite set $\mathscr{S}$ of positive integers such that

$$
\begin{equation*}
\left|\lambda_{i}^{j}-1\right| \leq \sin (\pi / q) \tag{3.8.3}
\end{equation*}
$$

for each $j \in \mathscr{S}$, and such that $\lambda_{i} \in S^{1}$ for each index $i$. One now easily shows that

$$
\begin{equation*}
\lim _{\substack{j \in \mathscr{S} \\ j \rightarrow+\infty}}\left|N\left(b^{j}-\Omega\right)\right|=+\infty \tag{3.8.4}
\end{equation*}
$$

by using facts (3.8.2) and (3.8.3) in conjunction with formula (3.8.1). Thus Assertion 3.8 is verified.

We now establish Claim 3.7 via proof by contradiction; hence we assume Claim 3.7 is false. The prime factorization of each ideal $\left(b^{j}-\Omega\right), j>0$, consequently has the following form:

$$
\begin{equation*}
\left(b^{j}-\Omega\right)=\mathfrak{A}_{1}^{m_{1, j}} \mathfrak{A}_{2}^{m_{2, j}} \cdots \mathfrak{A}_{r}^{m_{r, j}} \tag{3.8.5}
\end{equation*}
$$

where each $m_{i, j}$ is a nonnegative (rational) integer. (Recall the prime ideals $\mathfrak{A}_{i}$ come from the factorization (3.6.3).) Suppose all the numbers $m_{i, j}<\nu$; then there would only be a finite number of distinct ideals in the list $\left(b^{j}-\Omega\right), j>0$. Consequently only a finite number of integers in the set $\left\{N\left(b^{j}-\Omega\right) \mid j>0\right\}$, contradicting Assertion 3.8. (Note that if $(x)=(y)$, then $N(x)= \pm N(y)$.$) Hence there exists a pair of positive$ numbers $i, j$ such that $m_{i, j} \geq \nu$. Consider the finite ring $R=\mathscr{O} / \mathfrak{A}_{i}^{\nu}$. Then the following is true about certain elements in $R$ :

$$
\begin{equation*}
b^{j}+\mathfrak{A}_{i}^{\nu}=\Omega+\mathfrak{A}_{i}^{\nu} \neq 1+\mathfrak{A}_{i}^{\nu} . \tag{3.8.6}
\end{equation*}
$$

Therefore $b^{j}+\mathfrak{A}_{i}^{\nu}$ has order $q$ in units $R$. Recall again that $b^{j}=\lambda^{j q^{s-1}}$. Hence the order of the element $\lambda+\mathfrak{A}_{i}^{\nu}$ in units $R$ must be divisible by $q^{s}$. In particular, the cardinality of $\mathscr{O} / \mathfrak{A}_{i}^{\nu}$ must be greater than $q^{s}$ which contradicts assumption (3.6.5). This proves Claim 3.7.

## 4. Proof of Theorem 0.1 and $\mathbf{0 . 2}$

Recall that in this section, as in the previous two, $M^{m}$ still denotes a complete (connected) Riemannian manifold with finite volume (possibly compact), all sectional curvatures -1 and $\operatorname{dim} M^{m}=m>6$. Our object is to combine $\S \S 1,2$ and 3 with earlier work of Millson [17] and Sullivan [23] to prove Theorems 0.1 and 0.2 formulated in the introduction. We start by recalling Sullivan's result.

Theorem 4.1 (Sullivan [23]). Each lattice $\Gamma$ in $O^{+}(m, 1, \mathbb{R})$ contains a torsion-free subgroup of finite index $\widehat{\Gamma}$ such that $\mathbb{H}^{m} / \widehat{\Gamma}$ is a $\pi$-manifold.

The following is a consequence of Theorem 4.1 and results from the previous sections.

Theorem 4.2. Assume that $M^{m}$ is closed and has positive first Betti number. Given $\varepsilon>0$ and an infinite order element $y \in H_{1}\left(M^{m}, \mathbb{Z}\right)$, there exist a (connected) finite sheeted covering space $p: \mathscr{M}^{m} \rightarrow M^{m}$ and
a simple framed geodesic $\alpha$ in $\mathscr{M}^{m}$ with the following properties:

1. Some multiple of the homology class represented by $\alpha$ maps to a nonzero multiple of $y$ via $p_{*}: H_{1}\left(\mathscr{M}^{m}, \mathbb{Z}\right) \rightarrow H_{1}\left(M^{m}, \mathbb{Z}\right)$.
2. There is no manifold diffeomorphic to $N^{m} \# \Sigma^{m}$ in the concordance class $\mathscr{M}(\alpha, x)$ provided $N^{m}$ is a Riemannian locally symmetric space, $\Sigma^{m}$ represents an element in $\Theta_{m}$ and $x$ is a nonzero element in $\Theta_{m-1}$.
3. Each concordance class $\mathscr{M}(\alpha, x)$ contains a complete and finite volume Riemannian manifold whose sectional curvatures are all in the interval $[-1-\varepsilon,-1+\varepsilon]$.

Proof. Theorem 4.1 yields a (connected) finite sheeted covering space $p_{1}: \mathscr{M}_{1} \rightarrow M$ such that $\mathscr{M}$ is a $\pi$-manifold for every covering space $\mathscr{M}$ of $\mathscr{M}_{1}$. There is clearly an orthonormally framed $t$-simple closed geodesic $\alpha_{1}$ in $\mathscr{M}_{1}$ whose homology class [ $\alpha_{1}$ ] satisfies the following two conditions:

1. Some integral multiple of $p_{1 *}\left[\alpha_{1}\right]$ is a nonzero multiple of $y$.
2. There is a homomorphism $\eta_{1}: \pi_{1} \mathscr{M}_{1} \rightarrow \mathbb{Z}_{+}$with $\eta_{1}\left(\left[\alpha_{1}\right]\right)=1$.

Let $l$ denote the length of $\alpha_{1}$, and $A_{\alpha_{1}}: S^{1} \rightarrow O(m-1)$ be the holonomy function associated to $\alpha_{1}$ via formula (2.0.2). Let $r$ be the positive real number posited in Theorem 2.1 relative to the given data $\varepsilon, l, m$ and $A(t)=A_{\alpha_{1}}(t)$. Next apply Corollary 3.3, with $M=\mathscr{M}_{1}$ and $\gamma=\alpha_{1}$, to get a covering space $p_{2}: \mathscr{M} \rightarrow \mathscr{M}_{1}$ and an orthonormally framed simple closed geodesic $\alpha$ in $\mathscr{M}$ such that $p_{2} \circ \alpha=\alpha$ and $\alpha_{1}$ is the core of a geometric tube of radius $2 r$. We now set $p=p_{2} \circ p_{1}: \mathscr{M}^{m} \rightarrow M^{m}$. Condition 1 of Theorem 4.2 is obviously satisfied. If we let $\eta: \pi_{1} \mathscr{M} \rightarrow \mathbb{Z}_{+}$in Theorem 1.1 be the composite of $\eta_{1}$ with $p_{2 \#}: \pi_{1} \mathscr{M} \rightarrow \pi_{1} \mathscr{M}_{1}$, then condition 2 is an immediate consequence of Theorem 1.1 together with Corollary 1.5 and Proposition 1.6. Theorem 2.1 shows that condition 3 is satisfied since $A_{\alpha}=A_{\alpha_{1}}$ and the length of $\alpha$ is the same as the length of $\alpha_{1}$. This proves Theorem 4.2.

The pattern of the above proof yields the following weaker version when $M^{m}$ is not compact.

Addendum 4.3. Assume that $M^{m}$ is a $\pi$-manifold (not necessarily compact), $\gamma$ is a $t$-simple framed closed geodesic in $M$, and $\lambda: \pi_{1} M^{m} \rightarrow \mathbb{Z}_{+}$ is a homomorphism such that

1. $\lambda([\gamma])=1$ where $[\gamma]$ denotes the free homotopy class of $\gamma$ and
2. $\lambda(\beta)$ is divisible by the order of $\Theta_{m-1}$ for each cuspidal element $\beta$ in $\pi_{1} M^{m}$.
Given a positive real number $\varepsilon$, there exist a (connected) finite sheeted covering space $p: \mathscr{M}^{m} \rightarrow M^{m}$ and a simple framed geodesic $\alpha$ in $\mathscr{M}^{m}$
such that the composite $p \circ \alpha=\gamma$, and conditions 2 and 3 of Theorem 4.2 are satisfied.

We next recall some examples due to Millson which we then use together with Theorem 4.2 and Addendum 4.3 to prove Theorem 0.2 and 0.1 .

Theorem 4.4 (Millson [17]). For each integer $n>1$, there exist two complete (connected) finite volume Riemannian manifolds $K^{n}$ and $N^{n}$ of dimension $n$ which satisfy the following properties:

1. All the sectional curvatures of both $K^{n}$ and $N^{n}$ are -1 .
2. Both $K^{n}$ and $N^{n}$ have positive first Betti number.
3. $K^{n}$ is compact.
4. $N^{n}$ is not compact.
5. $\pi_{1} N^{n}$ is isomorphic to a finite index subgroup of $\mathrm{SO}^{+}(n, 1, \mathbb{Z})$.

Proof of Theorem 0.2. When $\Theta_{m}$ is nontrivial, this result follows from [9, Theorem 1.1] and Proposition 1.6. When $\Theta_{m-1}$ is nontrivial, it follows from Theorem 4.2 by setting $M^{m}$ (in Theorem 4.2) equal to the manifold $K^{m}$ of Theorem 4.3.

Proof of Theorem 0.1. Define two sequences of positive integers $a_{n}$ and $b_{n}$ as follows. Let $a_{n}$ be the order of the finite group $\Theta_{n}$ and let $b_{n}$ be the least common multiple of the orders of the holonomy groups of lattices in the Lie group of all rigid motions of Euclidean $n$-dimensional space. Bieberbach [1] showed that $b_{n}$ exists and divides the order of the finite group $\mathrm{GL}_{n}\left(\mathbb{Z}_{3}\right)$ because of Minkowski's theorem [18]. Let $N^{m}$ be the Millson manifold in Theorem 4.4. Because of Theorem 4.1, there is a finite sheeted (connected) covering space $p: \mathscr{N}^{m} \rightarrow N^{m}$ such that every covering space of $\mathscr{N}^{m}$ is a $\pi$-manifold. There is an epimorphism $\varphi: \pi_{1} \mathscr{N}^{m} \rightarrow \mathbb{Z}_{+}$since $N^{m}$ has positive first Betti number. Because of Lemma 3.4, there is a $t$-simple framed closed geodesic $\omega$ in $\mathscr{N}^{m}$ such that $\varphi([\omega]) \neq 0$ where $[\omega]$ denotes the fundamental group element corresponding to $\omega$. (Note that [ $\omega$ ] is well defined up to conjugacy.) Let $A \in \mathrm{SO}^{+}(m, 1, \mathbb{Z})$ denote the semisimple matrix corresponding to $[\omega]$ under an identification of $\pi_{1} \mathscr{N}^{m}$ with a subgroup of $\mathrm{SO}^{+}(m, 1, \mathbb{Z})$. Let $\psi: \mathrm{SO}^{+}(m, 1, \mathbb{Z}) \rightarrow G$ be a homomorphism satisfying the conclusions of Proposition 3.5 relative to $A$ and $n=a_{m-1} b_{m-1}$. Note that $g^{b_{m-1}}$ is unipotent for every cuspidal element $g \in \pi_{1} \mathscr{N}^{m}$. Hence conclusion 2 of Proposition 3.5 yields the following fact.
(4.4.1) If $\psi(B)=\psi(A)^{s}$ where $B$ is a cuspidal element of $\pi_{1} \mathscr{N}^{m}$, then $a_{m-1}$ divides $s$.

Consider the homomorphism $\varphi \times \psi: \pi_{1} \mathscr{N}^{m} \rightarrow \mathbb{Z}_{+} \times G$ and let $\mathscr{C}$
denote the infinite cyclic subgroup of $\mathbb{Z}_{+} \times G$ generated by $(\varphi \times \psi)(A)=$ $(\varphi(A), \psi(A))$. Let $q: M^{m} \rightarrow \mathscr{N}^{m}$ be the covering space corresponding to $(\varphi \times \psi)_{\#}^{-1}(\mathscr{C})$, and $\lambda: \pi_{1} M^{m} \rightarrow \mathbb{Z}_{+}$be the composite of $q_{\#}, \varphi \times \psi$ and the identification of $\mathscr{C}$ with $\mathbb{Z}_{+}$determined by making $(\varphi(A), \psi(A))$ correspond to $1 \in \mathbb{Z}_{+}$. Let $\gamma$ be a lift of $\omega$ to $M^{m}$. Since the conditions of Addendum 4.3 are clearly satisfied, the examples posited in Theorem 0.1 can now be drawn from the conclusions of Addendum 4.3.

## References

[1] L. Bieberbach, Über die Bewegungsgruppen des n-dimensional Euklidischen Räumes mit einen endlichen Fundamentalbereich, Göttingen Nachr. (1910) 75-84.
[2] J. M. Boardman \& R. M. Vogt, Homotopy invariant structures on topological spaces, Lecture Notes in Math., Vol. 347, Springer, Berlin, 1973.
[3] A. Borel \& Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962) 485-535.
[4] W. Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. (2) 90 (1969) 157-186.
[5] E. Calabi, On compact Riemannian manifolds with constant curvature. I, Differential geometry, Proc. Sympos. Pure Math., Vol. 3, Amer. Math. Soc., Providence, RI, 1961, 155-180.
[6] F. T. Farrell \& W. C. Hsiang, The topological-Euclidean space form problem, Invent. Math. 45 (1978) 181-192.
[7] __, Topological characterization of flat and almost flat Riemannian manifolds $M^{n}$ ( $n \neq 3$, 4) , Amer. J. Math. 105 (1983) 641-672.
[8] F. T. Farrell \& L. E. Jones, A topological analogue of Mostow's rigidity theorem, J. Amer. Math. Soc. 2 (1989) 257-370.
[9] __, Negatively curved manifolds with exotic smooth structures, J. Amer. Math. Soc. 2 (1989) 899-908.
[10] __, Smooth non-representability of Out $\pi_{1} M$, Bull. London Math. Soc. 22 (1990) 485-488.
[11] H. Garland \& M. S. Raghunathan, Fundamental domains for lattices in ( $\mathbb{R}$-)rank 1 , Semisimple Lie groups, Ann. of Math. (2) 92 (1970) 279-326.
[12] N. Hicks, Notes on differential geometry, Van Nostrand, Princeton, NJ, 1965.
[13] M. Kervaire \& J. W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963) 504-537.
[14] R. C. Kirby \& L. C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Math. Studies, No. 88, Princeton University Press, Princeton, NJ, 1977.
[15] B. Lawson \& S. T. Yau, Compact manifolds of nonpositive curvature, J. Differential Geometry 7 (1972) 211-228.
[16] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Springer, Berlin, 1991.
[17] J. Millson, On the first Betti number of a constant negatively curved manifold, Ann. of Math. (2) 104 (1976) 235-247.
[18] H. Minkowski, Zur Theorie der positiven quadratischen Formen, J. Reine Angew. Math. 101 (1887), 196-202.
[19] G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Math. Studies, Vol. 78, Princeton University Press, Princeton, NJ, 1973.
[20] B. O'Neill, Semi-Riemannian geometry, Academic Press, New York, 1983.
[21] G. Prasad, Strong rigidity of $\mathbb{Q}$-rank 1 lattices, Invent. Math. 21 (1973) 255-286.
[22] M. Raghunathan, Discrete subgroups of Lie groups, Springer, Berlin, 1972.
[23] D. Sullivan, Hyperbolic geometry and homeomorphisms, Geometric Topology (J. Cantrell, ed.), Academic Press, New York, 1979, 543-555.

State University of New York, Binghamton
State University of New York, Stony Brook


[^0]:    Received September 9, 1991. Both authors were supported in part by the National Science Foundation.

