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FLAT CONFORMAL STRUCTURES ON
3-MANIFOLDS, I: UNIFORMIZATION OF CLOSED

SEIFERT MANIFOLDS

MICHAEL KAPOVICH

Abstract

This is the first in a series of papers where we prove an existence theorem
for flat conformal structures on finite-sheeted coverings over a wide class
of Haken manifolds

Introduction

Aflat conformal structure on a manifold M (of dimension n > 2) is a
maximal atlas

with conformal transition maps φχf o φ~ι . From more classical point of
view a flat conformal structure (FCS) is a conformal class of conformally
Euclidean Riemannian metrics on M. This definition is equivalent to the
former one (see [34], [39], e.g.). The best-known way to construct FCS is
by uniformization: If a Kleinian group Γ acts freely and discontinuously
on a domain D c S " , then a flat conformal structure Kγ naturally arises
on the factor manifold M = D/Γ. For this structure Kγ the covering
p: D —> M is a conformal map. Such structures are called uniformizable,
and Γ is called the uniformizing group. Five 3-dimensional geometries
[56] are conformally Euclidean: S 3, E 3 , M2 x R, S2 x R, M3.

The abundance of FCS in the dimension 3 is provided by the following
well-known result of Thurston.

Theorem H [51], [53], [57], [58], [59]. Let M be a closed atoroidal
Haken 3-manifold. Then M admits a hyperbolic structure.

According to Kulkarni [38] FCS exists on connected sum of conformally
flat manifolds. On the other hand, Goldman [9] has shown that any closed
3-manifold M, modeled on Sol- or Nil-geometry, does not admit a flat
conformal structure.
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This paper is the first in a series of three establishing existence of FCS
on a wider class of 3-manifolds than provided by the theorems of Thurston
and Kulkarni; namely,

Theorem 5.1. Let M be a closed Haken 3-manifold with unsolvable
fundamental group such that the canonical composition of M from hyper-
bolic and Seifert components does not include gluing hyperbolic manifolds
with hyperbolic or Euclidean ones. Then some finite-sheeted covering of M
admits a uniformizable flat conformal structure.

Remark 1. Remind that a Euclidean manifold (in the sense of [56])
is a compact manifold TV such that int(N) admits a complete Euclidean
structure (i.e., a flat Riemannian metric). There are only two Euclidean
3-manifolds with boundary, all of them are covered by S1 x S1 x [0, 1].
Therefore, if a closed 3-manifold M is obtained by gluing hyperbolic and
Euclidean components H and E, then a 2-sheeted covering of M is
obtained by gluing two copies of the manifold H.

The first Russian version of Theorem 5.1 was published in [23], where
the condition on hyperbolic-Euclidean gluing was mistakenly dropped. A
corrected exposition (in Russian) may be found in [25], where we consider
the case of graphmanifolds.

Theorem 5.1 combined with the Kulkarni's result on conformal con-
nected sum (see above) makes the following conjecture [23] probable.

Conjecture 1. Let M be a closed 3-manifold satisfying the Thurston
Geometrization Conjecture [57], i.e., M is the result of toroidal gluing and
connected sum of manifolds possessing geometric structures. Suppose also
that the decomposition of M into connected sum of prime components
does not include Sol- or Nil-manifolds. Then some finite-sheeted covering
of M admits an uniformizable flat conformal structure (see [23]).

For Seifert manifolds we can obtain a more precise result than given by
Theorem 5.1. Namely, in the present paper we prove

Theorem 2.1. Let S(g, e) be a total space of a circle bundle over a
closed orientable surface S of a genus g having Euler number e e Z
such that 0 < e < {g - 1)/11. Then S{g, e) admits a uniformizable FCS.

An analogous result was independently obtained in the joint work of
Gromov, Lawson, and Thurston [14] (see also [36], [37] for further dis-
cussion). Later in [28] it was shown that the condition e < exp(8000#7μ)
is necessary for existence of uniformizable FCS on S(g, e), where μ is
the Margulis constant for the four-dimensional hyperbolic space of the
curvature = - 1 .

If e = 0, then a flat conformal structure on S{g, e) always exists, but
for e Φ 0, g = 1 the manifold S(g, e) does not admit any FCS, since
such manifolds are always Nil [9].
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Limit sets of groups H(g, e) uniformizing S(g, e) are tame unknotted
topological circles in (Corollary 2.3). Such groups are called pseudofuch-
sian. In Corollary 2.2 we use pseudofuchsian groups H(g, e) to construct
examples of uniformly quasiconformal actions not topologically equivalent
to conformal actions. The examples of such kind were constructed also
by Tukia [62], Freedman and Skora [7], and Martin [45] (see §2.9). Fur-
thermore, Isachenko [18], applying Theorems 5.1 and 6.1, constructed an
example of discrete uniformly quasiconformal action on S3 of a group Γ
which is not isomorphic to any subgroup of Isom(H4) (and does not even
admit nonsolvable representations).

Theorems 2.1 and 5.1 present other interesting examples of pathological
properties of flat conformal structures: disconnectedness of the moduli
space C(M) of all FCS on the manifold M = S(g, e). Namely, we have

Theorem 2.2. Let M be a manifold S(g, e), e Φ 0, and let C{M)
be the moduli space of flat conformal structures on the manifold M. Then
C(M) consists of at least [{g - l)/(lle)] connected components.

Furthermore, for each n > 5 there are examples of compact rc-dimen-
sional manifolds Mn such that the space C(Mn) consists of infinitely
many connected components (see [29]).

In [31, Theorem 6.1] we construct an example of closed orientable 3-
manifold M which does not admit any FCS but has conformally flat finite-
sheeted covering MQ . The manifold M is obtained by gluing two bound-
ary components of some Seifert manifold. This is the first example of
orientable 3-manifold which does not admit any FCS but has unsolvable
fundamental group.

It is interesting to compare this result with Thurston's Realization Con-
jecture.

Conjecture 2. (See [52].) Let TV be a compact manifold modeled on
some of eight three-dimensional geometries (X, G). Let F be a finite
group acting smoothly on N. Then this action of F is isometric in some
{X, G)-structure on TV.

This conjecture was proven in many cases (see [52], [33]).
Consider now the deck-transformation group F of the covering Mo —>

M constructed in Theorem 6.1 of [31]. The group F is finite and acts
smoothly on the manifold MQ. Then Theorem 6.1 states that the action
of F is not conformal in any flat conformal structure on Mo. So the
naive analog of Thurston's Realization Conjecture is not valid for the flat
conformal geometry (which is not a geometry in Thurston's sense!).

It should be mentioned that the class of 3-manifolds possessing FCS is
wider than that discussed in Theorem 5.1. First we can use the conformal
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connected sum. Furthermore, let M{, M2 be compact 3-manifolds with
hyperbolic interiors. Then dM. admits a canonical conformal structure
(7 = 1,2). Suppose that f:dMχ->dM2is isotopic to a conformal map
of the boundary tori. Then the conformal structures on Mχ, M2 are glued
by / to uniformizable FCS on M = M{ U, M2 . This fact can be deduced
directly from the Maskit Combination Theorem; see also [38], [39], [14].

However such gluing is impossible if the sewing map is not isotopic to
a conformal one. Hence, to find a FCS on M{Ur M2 in the general case
we have to deform hyperbolic structures on M. in the space of all FCS so
that for new FCS C τ the holonomy homomorphisms restricted to dM.
are discrete and faithful representations pQ. , which are not conformally
conjugate to the holonomy of the initial structures. For some hyperbolic
manifold such deformation is impossible (see [27], where we consider the
case of 2-bridge knots' complements).

Remark 2. The infinitesimal variation of pdjτ is always trivial. How-
ever there are examples of nontrivial local deformation of pd τ [27].

One can try to find an FCS K on M looking at deformations of hy-
perbolic structures on M. such that the holonomy representations pjτ

have invariant round spheres S . Such deformations correspond to the
hyperbolic Dehn surgery [60, §5] and images of pdτ contain loxodromic
elements. However this implies that Sι = S2 . Therefore, the holonomy
group of K is conjugate to a subgroup of SO(3, 1) which follows that
M is hyperbolic itself (see [24]). Such conclusion is definitely wrong and
this naive approach fails.

However, Theorem 6.1 suggests looking for such deformations of flat
conformal structures on some finite-sheeted coverings over Λf..

Conjecture 3 [23]. Let Λf be a closed hyperbolic 3-manifold, and let
p: πχM —• 5Ό(3, 1) be its holonomy representation. Then [p] is not
locally rigid in Hom(π{M, SO(4, ί))/SO(4, 1) iff M contains an in-
compressible surface which is not a virtual fiber in a fiber bundle over

s1.
Remark 3. The existence of an incompressible surface above implies

that FCS on M is not unique [10].
If this conjecture is true, then it relates three different phenomena which

appear only for finite-sheeted coverings over 3-manifolds: (1) existence of
FCS, (2) existence of incompressible surfaces that are not virtual fibers
(Waldhausen-Gabai Conjecture), (3) nonrigidity of holonomy representa-
tions [p] above in H o m ^ M , SO{4, l))/SO(4, 1). Conjecture 3 was
proved in [27] in several cases (see [27] for further discussion).
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FIGURE 1

In this paper we avoid these very complicated nonrigidity problems
using the abundance of deformations of flat conformal structures on Seifert
manifolds.

Manifolds combined from hyperbolic and Seifert components can be
uniformized in essentially different ways. One way is presented by the
proof of Theorem 5.1 (see Example 2). Another way can be found in [14]
where there are constructed discrete groups G whose limit sets are wild
knots, and G uniformizes (S3\AΓ)U(ΣxS1) where K is the tubular neigh-
borhood of an arbitrary nontrivial knot, and Σ is a compact surface with
one boundary component and sufficiently large genus. Moreover, some
Haken 3-manifolds combined from hyperbolic and Seifert components
can be uniformized by discrete groups whose limit sets are wild Cantor
sets [11], [13], [49]. Even hyperbolic 3-manifolds can be uniformized in a
very pathological way [2].

Idea of the proof of Theorem 5.1. We present here two examples which
explain forthcoming constructions and illustrate arising difficulties.

Example 1. Let Z. = Σ. x S , j = 1, 2, where Σ is a surface of
genus gj Φ 0 and has connected boundary. The decomposition of Z.
into the direct product introduces a natural meridian-longitude basis in
πx(dZj). Suppose that the manifold M is obtained by gluing Z via a
homeomorphism f:dZχ-+dZ2 which is defined (in the natural bases)
by a matrix A € GL2(Z) with a2χ = 1, det(^) = - 1 . If the numbers gk

are sufficiently large with respect to |# | , then there exist groups Hχ =
H(g\, l^ 2 2 | ) , H2 = H(g2, \an\) uniformizingthe manifolds S(gχ, | a 2 2 | ) ,
S(g2,\an\) (Theorem 2.1).

We can find fundamental domains Φy for H., which are homeomor-
phic to unknotted solid tori so that the complements of Φ p Φ 2 define
a simplest link in link of index 1 in S3 (Figure 1). Let T be a two-
dimensional torus in the interior of Φ = cl(Φt n Φ 2 ) which is isotopic to
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boundary components; let Ί*j be the component of S3\Γ which lies in
Φj . Applying the Klein-Maskit Combination Theorem (Theorem 1.1) we
see that Φ is a fundamental domain for the group

G = H(gι,\a22\)*H(g29\an\).

The factor manifold Φ/G can be obtained by gluing faces of Φ by gen-
erators of Hχ, H2; thus

Φ/G = cl(Φχ\Tχ)/Hχ Uτcl(Φ2\T°2)/H2.

However every component cl(Φj\Tj)/Hj is homeomorphic to Z- = Σj x

S1 (j =1,2). Then Φ/G = Zχ UTZ2 . Looking at the gluing map / here
we see that the fiber of Zχ is identified with a loop on dZ2 , which goes
once around dΣ2 and aχχ times along the fiber of Z 2 (after appropriate
choice of the orientation). The same consideration for the fiber of Z 2

shows that the matrix of the gluing map / ' is

l'= (±an I~(±a22±axχ)\
V 1 τa22 J

More careful choice of H (we can conjugate them by orientation revers-
ing Moebius transformations) gives the manifold Φ/G homeomorphic to
M. However it is impossible to avoid the condition \a2l \ = 1 (for the cir-
cumscribed construction of the group G). Proving Theorem 5.1 we find
a finite-sheeted covering over M such that the corresponding coefficients
a2ι are equal to 1 for every pair of adjacent Seifert components.

Example 2. Let Gχ be a torsion-free discrete subgroup of PSL(2, C),
and p: H —• H /Gχ = M{ be the universal covering; the manifold Mχ

is compact and contains a simple closed geodesic γ. Suppose that some
component γ c p~\γ) has the hyperbolic stabilizer (g) in Gχ , i.e., g
preserves a hyperbolic half-plane P in H3 with the boundary γ. Then
for some ε > 0 the geodesic γ has an open ε-neighborhood Uε(γ) which
is homeomorphic to the solid torus. It is not hard to notice that the interior
of the manifold

M*x=Mχ\Uε(γ)

is hyperbolic [32]. Consider the unit ball c M3 as a model for H3 we
can take Pγ to be contained in the Euclidean disc Δ with the boundary
circle C D γ .

Consider Δ as a model for H 2 . Let Σ° be a hyperbolic surface with
infinite area, genus r, and one ideal boundary component. Let Σc c Σ°
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be the Nielsen core, i.e., the intersection of all compact convex subsurfaces
homotopy equivalent to Σ . Assume that

(i) length(y) = length(<9Σc),

(ii) arccos(l/cosh(ί)) = arcsin(l/cosh(ε)),

and the ^-neighborhood Uδ(dΣc) of dΣc is homeomorphic to the annu-
lus.

Put Σ = Σc\Uδ(dΣc). We can choose a uniformization A D Σ ^ Σ

such that Σ is contained in Ue(γ) Π Pγ and dΣ ΠdUε(γ) = dUε(γ) n Pγ

(condition (ii)).

Remark 4. The geodesic dΣc c Σ° is covered by Δ n d ^ H 3 .

Let Γ c Isom(H2) be the uniformizing group, Σ/Γ is Σ. Extend Γ to

the group G2 of conformal transformations of S 3 . Then we have:
(1) the circle C is invariant under G2 ,
(2) (g) c [G2, G2] corresponds to πχ{dΣc) c π{(Σc) (due to condition

(i))
If S1 is the circle with any homogeneous Riemannian metric, then the

Riemannian structure of direct product on Σ x S1 is conformally flat. We
can choose the length of S1 so that Σ x S 1 is conformally equivalent to
Ω/G2 , where the domain Ω\C can be obtained by rotation of Σ around
C. Ω n C is the intersection of the discontinuity domain of G2 with γ .
Then the group G generated by Gχ, G2 uniformizes a manifold M which
is obtained by gluing M* and Σ x S 1 along the boundary tori. Conditions
(i), (ii) guarantee that dM* and d(Σ x S1) are Moebius equivalent.

However only few sewings may be realized in such way, and the hyper-
bolicity of g is the vry restrictive condition. That is why we have to waive
utilzing groups G2 with invariant circles. Instead we use discrete groups
that will be constructed in [30, Theorem 4.1] after small deformations
of pseudofuchsian groups. These groups provide the first type of build-
ing blocks for the proof of Theorem 5.1; they uniformize finite-sheeted
coverings of Seifert components in the canonical decomposition of M.

The second type of building blocks is a class of "hyperbolic" groups.
These groups uniformize incomplete hyperbolic structures on interiors of
hyperbolic components of the canonical splitting of M . An example of
such uniformization is given by the group G{ in Example 1 (incomplete
hyperbolic manifold is Mx\γ). The "hyperbolic" groups will be obtained
by small deformations of nonuniform lattices in PSL2(C), i.e., confi-
nite discrete subgroups of PSL2(C). The main problem is to find small
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deformations of lattices and pseudofuchsian groups such that a conformal
gluing of uniformized hyperbolic and Seifert manifolds is possible.

For this purpose we choose deformations of lattices such that their
parabolic subgroups Z φ Z become Z θ Z f l , generated by loxodromic
and elliptic transformations, [30, §3]. At the same time cyclic parabolic
subgroups of pseudofuchsian groups become loxodromic ones, which are
conjugated to subgroups of the corresponding Z θ Z ^ , as given in [30].
The elliptic elements above disappear after transition to finite-index sub-
groups [30]. In [30, §3] we state also some auxiliary results concerning
constructions of some pseudofuchsian groups and deformation problems
for lattices and free Kleinian groups. In [31] we present a direct construc-
tion of a Kleinian group uniformizing a finite-sheeted covering of M. The
main tool here is Klein-Maskit Combination Theorems and some results
of Hempel, McCullough, and Miller related to the residual finiteness prop-
erty of 3-manifold groups. These results together with some basic facts
about Kleinian groups and flat conformal structures are collected in § 1.

1. Definitions and some basic facts of the theory

of Kleinian groups and related topics

1.1. Let Mobn be the group of all orientation-preserving Moebius

transformations of the ^-sphere Sn = Rn = Rn U {oc} . This group is iso-

morphic to connected component of 1 in the Lorentz group SO(n + 1 , 1).

The fixed-point set of γ e Mobn is denoted by Fix(y) = {x e Sn: γ(x) =

x} . For a group Γ c Mobrt the discontinuity set R(Γ) is equal to

{ X G S W : the point x possesses a neighborhood U(x) such that the

intersection U(x) Π γ(U(x)) is empty for all but finite elements y € Γ}.

The complement Sn\R(Γ) = L(Γ) is the limit set of the group Γ. A
subgroup Γ c MobΛ is said to be Kleinian if R(Γ) is not empty. So,
Kleinian groups are discontinuous groups of Moebius transformations; we
do not require L(Γ) to be infinite.

Any Moebius transformation γ e Mob^ may be canonically extended
to an element γ e Mobn+1 this extension agrees with the embedding
SO{n + 1, 1) c SO(n + 2, 1). The element γ has a closed invariant ball

B«+i c sπ+i w i t h t h e b o u n d a r y g i . t h e interior of Bn+ι plays the role of

a model for the hyperbolic space H"+ 1 .

An element γ is said to be loxodromic if Fix(j>) ΠBA2+1 = {p φ q} c Sn .

An element γ is said to be parabolic if Fix(y) Π En+ι = {p} c Sn and γ
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is said to be elliptic in either case: Fix(y) Π intB"+ 1 Φ 0 .
If a loxodromic element γ is conjugate in Mobn to a homothety q: x —•

/ex, x e Rn, then 7 is said to be a hyperbolic element. A subgroup
Γ c Mobn is said to be loxodromic (or elliptic or parabolic) if every element
7 G Γ\{1} is loxodromic (or elliptic or parabolic respectively).

For a closed connected hypersurface S in Rn the compact component
int(S) of Rn\S is called the interior of this hypersurface. Analogously,

ext(S) = sVl(int(S))

is called the exterior of it.
Let Σ c S3 be a Euclidean sphere of codimension 1. Spherical polygon

on Σ is a closed domain bounded by a finite collection of disjoint simple
loops so that each loop is a finite union of circular arcs.

The standard annulus is the subset of the Euclidean plane: ΛR = {z e
C: 1 < \z\ < R} where 1 < R < 00.

A fundamental set for the Kleinian group G is a subset Φ of R(G)
such that the orbit G Φ coincides with R(G) and g(Φ)ΠΦ = 0 for any

If cl(Φ) is bounded by a collection of spherical polygons, then Φ is
called a fundamental polyhedron for G. In this case these spherical poly-
gons are called to be faces of Φ.

For a group G its commutator subgroup is denoted by [G, G].

Let h e Mobn be a loxodromic element; then the axis Ah of h is the

geodesic in H Λ + 1 which joins the fixed points of h .
Let h be a loxodromic transformation of S , and / be any h-invariant

open arc of circle Sf that passes through Fix(Λ).

Definition 1. The pair (h , /) = h is called a directed loxodromic trans-

formation. Two directed transformations hχ, h2 are said to be conjugate

if there exists a transformation / € Mob3 such that (1) f(hχ)f~x = h2

and (2) / ( / 2 ) ^ 1

Assume that the complex plane is included in E in the standard way:
C = {(jCj, x2, 0), xχ -f x2i £ C} . Then a loxodromic transformation h
is conjugate in Mob3 to an element h* preserving C, A*: z »-> k(h) - z ,
z e C, k(h) E C*. The complex number k(h) is independent of choice of
h* up to the conjugation k(h) »-> k(h) and the inversion k(h) H-> (k(h))~ι

we shall suppose that Im(fc(A)) > 0 and \k{h)\ < 1 .
Definition 2. The complex number k(h) is the complex coefficient of

the loxodromic transformation h .
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Let (M, d) be a metric space, X c M, Y c M. Then we put

d(X, Y) = inf{</(jc, y), (x, y) e X x Y},

and dist(X, Y) = sup{inf{</(jc, y), y e Y}, x e X} .

Let g e M6bn be an element such that g(oo) Φ oo . Then the isometric
sphere of the element g is the set I(g) = {x e Rn, det(Dg(x)) = 1},
where Dg(x) is the Jacobian matrix for the map g . Let G be a Kleinian
group such that oo e R(G). Then the set

is called the isometric fundamental polyhedron of the group G.
If # € Mobn is arbitrary element, then I(g~l) = g(I(g)). Let / be

a round sphere in Rn with center at the point O then P is a Euclidean
hyperplane in Rn such that InP = 0. Consider the Moebius transforma-
tion g = Rp o Jj: S" -> SΛ where i?p is the reflection in P, and /7 is the
inversion in / . Then g is a hyperbolic transformation. Suppose that φ
is a nontrivial rotation with center at Rp(O). Then 0o g is a loxodromic
transformation which is not hyperbolic. To obtain a parabolic transfor-
mation consider the case where P is tangent to / and φ(P Π /) = P Π / .
Then φ o Rp o Jj is parabolic. It can be shown that in all cases above

1

1.2. Combination theorems. The definitions and statements of this sec-
tion are rather long and messy. Nice illustrative examples can be found in
[42], [46]. The main idea here is the following: given two Kleinian groups
Γj, Γ2 c MobΛ we are to find some conditions so that (a) the group
Γ = (Γj, Γ2> generated by the elements of Γ{ and Γ2 is also Kleinian
and (b) the factor manifold R(Γ)/Γ can be obtained by some "cut and
paste operation" with the manifolds R(Γ.)/Γ..

Definition 3. Let / be a subgroup of a group G c Mob^ , and B be
a subset of S . Then B is said to be precisely invariant under J in the

group G if
(1) J(B) = B and
(2) for any g € G\J we have g(B) ΠB = 0.
Definition 4. Let / be a cyclic loxodromic or trivial subgroup of G c

Mob3. Then a compact manifold B, which is precisely invariant under
/ c G., i s c a l l e d a (G, J)-block ifBn R{G) = B n R ( J ) .

Examples. Suppose that 7 is a trivial group, and B c R(G) is con-
tained inside of a fundamental domain of G. Then B is a (G, J)-block.
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Next, let B = cl Ue(y), and G = Gχ be the group as in Example 2; then
J = (γ). Thus B is a (G, /)-block. These are two basic examples that
we need.

Theorem 1.1 (First Maskit Combination Theorem). Let J be a cyclic
loxodromic or trivial subgroup of discrete groups Gχ, G2c Mob 3. Assume
that J φGχy J φG2 and there is a closed embedded surface W dividing
S3 into two compact submanifolds Bχ, B2, where Bm is a (J, Gm)-block,
m = 1, 2. Let Dm be a fundamental set for Gm such that

(1) DmnBm is a fundamental set for action of J in Bm ,

(2) D{nw = D2nw,

(3) Dm n B3m has nonempty interior, m = 1, 2.

Set D = (Dχ n B2) U (Zλ> Π Bχ) and G = (Gx, G2). Then the following
statements hold.

(i) G = G{*j G2—free product with amalgamation over J.
(ii) The group G is Kleinian.

(iii) D is a fundamental set for G.

Let Qm be the union of the Gm-translates of int(2?m), and let Rm be the
complement of Qm . Then

(iv) R(G)/G = (RιnR(Gι))/GιU{R2Γ)R(G2))/G2 where these manifolds
are identified along their common boundary (W Π R(G))/J.

Now we consider the Second Combination Theorem. We shall assume

that / e Mob3, and J{, J2 are cyclic loxodromic (or trivial) subgroups

of a Kleinian group Go c Mob3. Two compact manifolds Bχ, B2 c S3

are jointly f-blocked if Bm is (Jm, G0)-block (m = 1,2), / maps the

exterior of Bχ onto the interior of B2, and f Jχ - f~ = J2. If Bχ

and B2 are jointly /-blocked, then let A be equal to e x t ^ Ufi2), AQ =

§\G0(BχUB2).
Examples. Let / be a trivial group, and Bm c R(GQ) be contained

inside of a fundamental domain of G so that / maps the exterior of B{

onto the interior of B2. Then Bm are jointly /-blocked. For another

example consider a compact hyperbolic surface M2 which has two totally

geodesic boundary components Eχ, E2 of equal length. Let M c H

be the universal cover of M2 then £ 7 is a component of the preimage

of Ej in M2 (7 = 1,2). Denote by J} the stabilizer of E} in Go =

πχ(M2) c Mob3. Assume that H2 is realized as a half-plane in E 3 , and

for j = 1, 2 let B c M3 be a closed Euclidean ball such that
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(a) BjΠλP^Ej,

(b) dBj is orthogonal to M2 .
Then there is a Moebius transformation / such that Bχ, B2 are jointly
/-blocked.

In this paper we shall always have Bχ n B2 = 0 .
Theorem 1.2 (Second Maskit Combination Theorem). Let Jχ, J2 c

Go, and f e Mob3 be as above. Assume that Bχ and B2 are jointly

f-blocked compact submanifolds of S 3, and that AQ Φ 0 . Let Do be a

fundamental set for Go such that

(1) Dof)Bm is a fundamental set for action of Jm on Bm.
(2) f(D0 n Wχ) = D0ΠW2 where Wm = dBm .
We set G = (Go, f), D = DQΠ{AuWχ). Then the following statements

hold

(i) G * G0*f is the HNN-extension of GQ by f ' .
(ii) G is Kleinian.

(iii) D is a fundamental set for G.
(iv) The set AQ is precisely invariant under GQ in G.

Let Q = clA0ΠR(G0); then R(G)/G is equal to Q/Go, where the
two boundary components (Wχ nR(Gχ))/Jχ and (W2 ΠR{G2))/J2 are
identified, this identification being given by / .

Remark 5. We do not formulate combination theorems in the greatest
generality, but our formulations suffice for the purposes of this article.

Theorems 1.1 and 1.2 are due to Klein and Maskit. Our formulations
repeat [46], who considered only the case n = 2, but we drop all two-
dimensional assertions of [46, §VΠ, Theorem C.2, Theorem E.5]. Proofs
of Theorems 1.1 and 1.2 follow word by word the proofs of [46, §VII,
Theorem C.2, Theorem E.5].

Other generalizations [19], [41, pp. 169-170], [1, Theorem 4.2, 4.5] of
combination theorems to higher dimensions also repeat Maskit's original
arguments [48].

1.3. 3-Manifolds. We suppose that reader is familiar with basic con-
cepts of three-dimensional topology such as incompressible surfaces and
canonical decomposition of a Haken manifold into hyperbolic and Seifert
manifolds (we shall consider the last as total spaces of fiber bundles over
2-dimensional orbϊfolds [56]); see [16], [20], [56], [60, §13] for references.

For construction of finite-sheeted coverings of 3-manifolds we shall fre-
quently use the following results of Hempel [17] and McCullough and
Miller [49].

Theorem 1.3. Let Γ be a finitely generated subgroup of PSL(2, C) =
Mob2 . Then for all but finite primes p e N the group Γ contains a normal
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torsion-free subgroup Γo of finite index such that the intersection of Γo with
any maximal parablic subgroup P c Γ equals the subgroup {γp: γ e P} .

Theorem 1.4 [50, Proposition 4.1]. Let M be a compact Seifert fiber
space over an orbifold O, p\O-+O be a finite-sheeted covering where O
is an orbifold, and p is in the sense of orbifold theory, and n eN, such that
for any component bcdO the restriction p to b is a n-sheeted covering.
Then there exists a compact Seifert fiber space M with the base 0 and a
covering p: M —> M^such that the induced map of bases is p: O —> O, and
the regular fiber of M n times covers the regular fiber of M.

Let the manifold M be obtained by gluing finitely many components
Mj by identification of connected incompressible boundary surfaces Sk .

Suppose that we have a system of regular finite-sheeted coverings q.: M. ->

Mj such that for every Skj and every component q~l(Skj) the subgroup
defining the coverings

depends only on Skj and not on the adjacent manifolds.
Theorem 1.5 [17], [50, Proposition 1.1]. Under the above conditions

there exists a finite-sheeted covering p: N —• M such as the restriction of
p to every component N. covering M. is equivalent to q-:

NDNJ -> N.

ΪP H
M D M —• M

Let S be a closed surface, Dl9 -- , D2r pairwise disjoint closed discs in
S and Σ = 5\(int Dχ U U int Dlr). Then for any positive integer n there
exists an n-sheeted ramified cyclic covering p0: S —• S such that exactly
one branch point of order n lies in every disc Dt (see, e.g. [5]).

Definition 5. Denote the restriction of the covering p0 to the surface

Σ = Σ\p~\intDι U U intZ)2r) by p. Let M be the product Σ x S 1 .

Then the covering p.M^M, that corresponds to p by Theorem 1.4, is

the standard n2-sheeted covering of the manifold M.
1.4. Flat conformal structures.
Suppose (M, K) is an ^-manifold with a flat conformal structure K .

Denote by p : M —• M the universal covering M ; π{(M) is the group
of deck transformations of p . Then (M, K) admits a development map
dev: M -> S" . This map can be characterized by the following properties:
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(a) dev is conformal with respect to the FCS lifted to M from (M, K),
(b) devo# = p(g) odev, where p is a homomorphism of nγ{M) in

Mobw which is called the holonomy representation of (M, K).
The group p(π{(M)) is called the holonomy group of K.
If (M, K) is uniformizable, then the holonomy p(πχ(M)) is just the

uniformizing group G, and dev opγ = p, where p Γ : dev(M) = D —> Λf
is the uniformization, and Γ is the uniformizing group. In general, de-
velopment maps can be very complicated (in the worst case they can be
onto Sn). However there are some simple cases where one can guaran-
tee that dev is not so bad. For example, suppose that M is compact,
and A: is a hyperbolic FCS, i.e., dev(M) c Hπ c Sn and p{πχ(M)) c
Isom(HΛ) c MobΛ this is equivalent to the assumption that the confor-
mally Euclidean Riemannian metric on M is conformally equivalent to a
hyperbolic one. Then the classical theorem of differential geometry implies
that the corresponding hyperbolic metric is complete, and dev: M —> Ή.n

is a diffeomorphism. In particular, the holonomy group p{πχ(M)) = G is
discrete, and G is the uniformizing group for (M, K).

Generalizations of this simple fact can be found in [35], [12], [22],
[21], [40]. In particular, if M is compact, and dev is not surjective, then
the development map is a covering on its image and (with several simple
exceptions) the holonomy group is discrete.

Warning. Even in the this case K can be nonuniformizable. However,
(M, K) is "commensurable" with a uniformizable flat conformal manifold
via a pair of finite-sheeted coverings.

In this series of articles we have dealt only with uniformizable struc-
tures. The following question remains open: Does the existence of a flat
conformal structure on a compact manifold imply the existence of an uni-
formizable one? Probably the answer is "yes" in dimension 3 and "no"
in higher dimensions. See [9], [10], [15], [24], [41], [49], [55] for further
discussion.

2. Uniformization of Seifert manifolds

2.1. Let M be a Seifert manifold with zero Euler number and hyper-

bolic base. Then there exist certain H2 x R-structures on M (see [56]);

hence M = HI x R/Γ, where Γ is a torsion-free discrete group of isome-

tries of I 2 x l . This group may be chosen so that its cyclic normal sub-

group is generated by the displacement t: (z, φ) ^> (z, φ + 2π), where

z G M 2 , φ e l . Let q: M 2 xM->H 2 xS 1 = {(x{,x2, x3) G l 3 : JC2+JC2 > 0
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with the Riemannian metric ds2 = \dxί^ j{x\ + x\)2} = S3\S* be the uni-
versal covering. The deck transformation group of this covering is (t).
This map induces a homomorphism q%: Γ —• Γo c Mob3. The group Γo

acts freely and discontinuously on H2 x S 1, and the manifold H2 x Sι /Γo

is homeomorphic to H2 x R/Γ = M. So the manifold M admits a flat
conformal structure which is uniformized by a "Fuchsian" group Γ. Since
the geometries E3 and S2 x R can be realized in E3 as (M3, \dx\2) and
(R3\{0}, \dx\2/\x\2), any Seifert manifold with zero Euler number admits
a uniformizable FCS. In contrast to that, any Seifert manifold with nonzero
Euler number and Euclidean base orbifold admits no FCS (see [9]).

The main purpose of this section is to prove the following.
Theorem 2.1. Let S(g, e) be the total space of the circle bundle over

the closed orientable surface S of genus g, whose Euler number e e
Z satisfies 0 < e < (g — 1)/11. Then the manifold S(g, e) admits a
uniformizable flat conformal structure.

2.2. We need the following description of the manifold S(g, e). Let

Σ^ = Sg\int(B2), where B2 is a closed disc, x e dB2, JV = Σg x S1 ,

t = {x} x S1 c dyy , and β = dB2 x {φ} , where φ e S1 and T = dB2 x S1

is the boundary of JV . Let &~ = B2 x S1 be a solid torus, τ = {x} x S1 c

and K = dB x {φ} c dί7~. We shall denote the corresponding
elements of nχ(T) and nx^T) by the same symbols: t, β,τ,κ. The
manifold S(g, e) is obtained by gluing of JK and F so that the loop /
is identified with τ and the loop β is identified with K f .

2.3. Proof of Theorem 2.1. Our main purpose is to construct a Kleinian
group H = H(g, 1) such that R(H)/H = M(H) is homeomorphic to
S(g, 1), where g = 12. A fundamental polyhedron Φ for the action of
H on R{H) is homeomorphic to a solid torus and satisfies the following
properties

(a) Faces Qχ, R[, Q[, R{, ,Qg9 R'g ,Q'g,Rg,Q{ of Φ are M o e -
bius equivalent to standard annuli. Two consecutive faces in this list in-
tersect each other in Euclidean circles; all other pairs of faces have empty
intersection (see Figure 2, next page).

The faces of Φ are paired by Moebius transformations Aγ: Qx -> Q[ ,
B{:RX ->R[, .. ,Ag: Qg^Q'g,

 B

g ' R

g ^ ^ g which generate H. Let
x0 be a point of the circle Q{Γ\Rg,

x{ = B;1 OA;1 OB { OA { (X 0 ) = [A{, B{](X0) eQ2nR{,

and so on,

x = [ A g , B ] o . o [ A x , B x ] ( x 0 ) E ί n β Γ
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φ

FIGURE 2

(b) We require x to equal x0 and the sum of dihedral angles of the
polyhedron Φ to equal 2π. Then Φ is a fundamental domain for the
group

H=(Aχ,Bχ, Ag,Bg:[Ag9Bg]

To see this it is sufficient to continue the polyhedron Φ to the hyperbolic
space M4 = R4 = {(xχ, x2, xc3, x4): x4 > 0} (each sphere is continued
to a geodesic hyperplane) and apply the Poincare theorem on fundamental
polyhedra [46].

Let aχ be a simple closed curve on (λ which connects points xQ and

1 'Aχ Bχ Aχ(x0), and let curveγχ C Rχ connect the point Aχ(xQ) with x
a\ = Aχ(aχ), and γ[ = Bχ(γχ) (see Figure 2). By analogy we construct
the curves a2, a2 , y2, γ2, , α^ , α^, ŷ  , y'g . Their union >/ is a simple
closed curve on 9 Φ .

(c) Suppose that the linking number e of the curve η and the axis
of the solid torus §3\Φ equals 1. It is easy to see that this condition is
equivalent to the following one: the loop η is homotopic on dΦ to the
loop / + k , where t = Qχ n R , and ithe class [k] generates the kernel of
πχ(dΦ) —• 7Γj(Φ), under appropriate choices of orientation on the above
loops.

2.4. Now we show that conditions (a)-(c) suffice for H to uniformize
the manifold S(g, 1). Let Γ ' c Φ b e a torus which is parallel to ΘΦ, and
& be the component of Φ\Γ' lying between dΦ and T1. The manifold
M{H) = R{H)/H is homeomoφhic to Φ/H. Let q: Φ -^ M(H) be the
natural projection, JV — q{^), β = q{β') where β' is a loop on T'
parallel to η in Φ\SF. The manifold Jf is homeomorphic to Σ^ x S 1,
and the manifold M(H) is obtained by gluing JV and the solid torus
&~ = q{Φ\£F) essentially in the same way as in §2.2, where we put \e\ = 1 .
Therefore we have M{H) = S(g9l).
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FIGURE 3

2.5. Construction of the polyhedron Φ for g = 12, e = 1. Notice that
on the twisted strip Lχ (Figure 3) the linking number of the boundary
curve η and the "middle line" λ equals 1. In Figure 3 the strip L2 is
drawn so that it is equivalent to L{ and has no "overlaps". Our aim is to
cover L2 by spheres to satisfy conditions (a)-(c) of §2.3. Let Π', Π" be
the horizontal and vertical planes respectively (see Figure 3).

We single out two parts of the strip L2: the part L'2, which is the
connected component of L2 n Π' not intersecting Π" , and the part L2 =
L2\L'2 . Let / = Π' Π Π" , and let Λ' c Π" be the axis of symmetry of the
substrip L2 , and O = / Π Λ'. We consider / and A' as the coordinate
axes in the plane Π'.

Let Oχ and O2 be points on the plane Π' with coordinates (0,1)
and (2,1) respectively; then lχ c Π' is a straight line passing through
the points Oχ and O2 . Next we put a = 7τ/8, ε = π/24 and the point
^ G Π' having the coordinates (1, 1 -tan(α/2)). Let of be the straight
line orthogonal to Πr and containing O . We choose Q{ to be the sphere
with center C{ and radius r — tan(α/2)/cos(β/2) (the same letter Q{

will denote the face of the polyhedron Φ that lies on this sphere). Spheres
R\ , Q[ , R{ , and Q2 arise by rotating the sphere Q{ around the axis Q2

with the angles a, 2a, 3a, 4a . By analogy, the spheres R{2, Q[2, Rf

{2,
and Qn arise by rotating Q{ around the axis of with the same angles
(see Figure 4, next page). It is easy to see that the angles between the
neighboring spheres equal ε and the centers of R{ and Q{ lie on the axis
/. In this way we have "covered" the strip L'.
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FIGURE 4

Let Jχ be the inversion in the sphere Qx , and σχ be the symmetry

in the plane that passes through O2 and the center of R\ then we put

Aχ - σχ o Jχ . Similarly, let Iχ be an inversion in the sphere Rχ , θχ

be a symmetry in the plane that passes through O2 and the center of

Q[, Bχ = θχ o Iχ . It is easy to see that Λχ{Qχ) = Q[ , Bχ(Rχ) = R\ ,

Aχ(Qχ ΠR'X) = R\ n Qί and so on.

Now we consider the strip L" . Let A" c Π" be a straight line orthog-

onal to / and passing through the point O. We shall consider (/, Λ")

as coordinate axes on Π" (Figure 4); / is directed to the "right" and A"

has direction "down". Let O3 = (2, 1), O4 = (0, 1) be the points on the

plane Π " , and ζ)f , ζ)f straight lines passing through Q3, QA orthogo-

nally to Π" . Then the spheres R*2 , Q'2 , R2, , R4, Q5 arise by rotating

Q2 around Qf with angles α , 2α, 3α, ••• , l l α , 12α. All these spheres

are orthogonal to Π" and have angles of intersection equal to ε . Finally,

the spheres R'5, (?s, and i? 5 arise by rotating Q5 around O4 with angles

a, 2a, 3a . The center of the sphere R5 lies on the line /.
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FIGURE 5

The system of spheres Q6, R'6, >- , Q'l{, R{{ is obtained from the
family Qn , Rf

{2 , , Q5, R5 via the symmetry in the line Λ'. The
angle between any two neighboring spheres equals ε. The intersection
exί(Qx)Π Πext(i?12) is precisely the polyhedron Φ we were looking for.
The final configuration is given in Figure 5.

The sum of dihedral angles is equal to 48ε = 2π. The generators
A2, B2, , A{2, B{2 may be chosen in the same way as Aχ and Bχ :
A( = o^J., 2?. = Θ^I. where Ji and 7z are inversions in Q{ and R{ the
transformations σi and θi are symmetries in the Euclidean perpendicular
bisectors of the lines joining centers of Qt, β and Rt, /?' respectively.

Let x0 e Qx Π l{ be the point closest to O2 . It is easy to see that

[Al2,Bl2]o-..o[Al9B{](x0) = x Q 9

and the curve η on dΦ, constructed according to §2.3, has the linking

number 1 with the axis λ of the solid torus S \ Φ .
Thus, the group H = H( 12, 1) is constructed.
2.6. Here we will show that for any g and e such that 1 < \e\ <

(g—1)/11, there exists a group H(g,e) uniformizing the manifold S(g,e).
Let H be a subgroup in the group //(12, 1) of the index j . Then we
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have H = H{\ \j + 1, j) by Lemma 3.5 of [56] and the Riemann-Hurwitz
formula. Therefore, for any given e = j > 0 we have constructed a group
H(g, e) with g = \\e+\ or equivalently e = (g- 1)/11 . So to complete
the proof of Theorem 2.1 we only have to construct the group H(g, e)
with # = 1 \e + /: for any k > 0.

Denote by Π the Euclidean plane that passes through the line l{ or-
thogonally to Π', and let B be that component of R \Π which contains
the sphere Qn . Next we put Π = Π u {oo} and ~B = cl(B) U {oo} . De-
note by h the hyperbolic transformation [AlQ, B{Q] o o [A{, B{]. The
fixed point set of h is the intersection of the straight line lχ and the circle
C c Π ' with center Oχ and radius 1 - r2 sin2(ε/2). It is easy to see that
the sphere Π is precisely invariant in the group H( 12, 1) with respect to

w.
We can choose a subgroup H of any prescribed index e in H(\2, 1)

such that H D (An, Bn, A{2, Bl2). So the group H is the Maskit com-
bination of the groups (Aχι, Bn, Al2 , Bl2) and G(\ \e - 1, e).

To construct //(1 le + 1 + k, e) for any k > 0 it is sufficient to replace
the subgroup (A{1, Bn, Aι2, Bχ2) by a free Fuchsian group F2^k) of
rank2(2 + fc) such that

(1) the circle C is invariant under the action of this group,
(2) (h)c[F2(2+k),F2(2+k)),

(3) the ball R \J? is precisely invariant in F2(2+k) w ^ ^ r e s P e c t t 0 (^)
The groups F,2+Ic)k and G(lle - 1, e) satisfy the conditions of the

Maskit Combination Theorem (Theorem 1.1) with the amalgamated sub-
group (h). Therefore the group {F2{i+k) > G(\\e - \, e)) uniformizes the
manifold S{\\e - \+2 + k, e) = S{\\e+\+k, e) which is obtained by
gluing S1 x Σ2+k and S1 x Σlϊe_{ . For more details see [30, 3.2-3.4].

So Theorem 2.1 is proved.
2.7. Let H(g, e) be the extension of the group H(g, e) into the space

H 4 ; the manifold E4/H(g, e) is homeomorphic to the 2-plane bundle
over Sg with Euler number e. This may be seen as follows. Choose a
fundamental polyhedron Φ for H(g, e) such that dΦ consists of annuli
lying on Euclidean spheres (cf. §2.3). The convex hull Φ of Φ in I is
a fundamental polyhedron for the action of H(g, e) in H4 . The polyhe-
dron Φ admits a natural M2-fibration which is invariant under the action
of H(g, e). This fibration projects to a fibration of

M(H(g, e)) = M4 U R(H(g, e))/H(g, e),

whose restriction to dM(H(g, e)) is a circle fibration over S(g, e).



FLAT CONFORMAL STRUCTURES ON 3-MANIFOLDS 211

So for any g and e such that 0 < e < (g - 1)/11 the total space
E(g, e) of 2-plane fiber bundle over 5 with the Euler number e admits
a complete hyperbolic structure.

Remark 6. As shown by Kuiper [36], [37], the condition 0 < e <
2(g - l)/3 is sufficient for existence of FCS on S(g, e) and complete
hyperbolic structure on E(g, e) (see also [44]) however we will not go
into details.

Corollary 2.1. Any Seifert fiber space with hyperbolic base is virtually
conformally flat, i.e., has a finite-sheeted covering space which admits a
FCS.

Proof. It is sufficient to consider only orientable Seifert manifolds M
with nonzero Euler numbers. Consider the short exact sequence

1 _ > Z - > π 1 ( A ί ) Λ F - > 1

where F is a discrete subgroup of Isom(M2). Hence the group F contains
a finite-index subgroup FQ isomorphic to πχ(S ) where g > 12. The

group Go = φ~ι(FQ) has the presentation

( a x , b χ , , a g , b g , t : [ a t , t] = [ b j , t] = [ a { , b { ] - [ a g , b g ] Γ e = \ ) ,

where e Φ 0. If we put τ = f , then the subgroup

Gf

0 = ( a ι , b ι , - > , a g , b g , τ : [ a { , bx] [ a g 9 b g ] = τ)

has a finite index in πx(M) and defines a covering MQ -> M such that
MQ admits a flat conformal structure (by Theorem 2.1).

2.8. Application to quasiconformal groups. We recall that a group Γ of
homeomorphisms acting on Sn is said to be (uniformly) quasiconformal
if there exists a number K < oo such that each element γ e Γ is K-
quasiconformal map (see [62], [44]).

If n = 2, then every quasiconformal group is topologically conjugate
to some group of Moebius transformations [61]. The papers [61], [62],
[7] give examples disproving the conjecture that the analogous statement
is true for n > 2. Articles [7] and [44] provide discrete examples of such
groups.

Below we show how to construct an analogous example of action of the
group Znxπ{(S ) on S 3 . Let H - H(\2, 1) be the group constructed in
Theorem 2.1. Let ψ\ M(H) —> M(H) be an order- n diffeomorphism iso-
topic to the identity (it exists due to the S -action on M(H) = 5(12, 1)).
This diffeomorphism admits a lift φ: R(H) -> R(H) of order n . The re-
striction of φ to the compact fundamental domain Φ of the group H is



212 MICHAEL KAPOVICH

smooth and hence is Λ>quasiconformal for some K > 1 . For any h e H
we have h o φ = φ o Λ therefore the map ^ is Λ^-quasiconformal itself.
It is sufficient to repeat the considerations of Maskit [46] to prove that φ
admits a homeomorphic continuation / to the sphere S 3 .

Furthermore, considerations of Bers [4, Lemma 2] imply that the map /
is .SΓ-quasiconformal. The group Γ = (//,/) is isomorphic to Znxπγ(S )

and defines a AΓ-quasiconformal action on S . We may apply the above
reasoning to construct an S1-action on S , which is //-equivariant and
L{H) is the fixed-point set for this S1-action. Hence the homeomorphism
/ is topologically conjugate to some Euclidean rotation (see [54]), and
L(H) is a tame unknotted topological circle in S 3 . Any element of Γ\(/)
is "hyperbolic" in the sense of [8], and hence is topologically conjugate to
some Moebius transformation. Consequently any element of Γ is confor-
mal up to topological conjugation; however the following statement holds.

Corollary 2.2 [23]. The group Γ is not topologically conjugate to any
subgroup of Mob3.

Proof. Suppose that such a conjugation g exists; then under the action
of the group G = g-Γ-g~ι c Mob3 the Euclidean circle Fix(g-f'g~l) is
invariant. The manifold M{G) = R(G)/G is homeomorphic to M(T) —
R(Γ)/Γ and has a nonzero Euler number. However this contradicts the
existence of an i 2 x l structure on the manifold M(g H g~ι) (see
§2.1). q.e.d.

For another interesting example of quasiconformal group see [31, 6.5].
Using similar techniques as in the proof of Corollary 2.2, we also obtain:
Corollary 2.3. Let M be a closed Seifert manifold with a hyperbolic

base. Let Γ be a Kleinian group such that M = Ω/Γ, where Ω is an
invariant component of R(T), and Γ acts freely on Ω. Then Ω = R(Γ),
and the limit set L(Y) = S3\Ω is a tame unknotted topological circle.

See [22] for the case of zero Euler number. This corollary answers a
question of Kuiper [36].

2.10. Flat conformal structures on manifolds S(g, e), e Φ 0 pro-
vide us another interesting example of pathology—disconnectedness of
the moduli space C(M) of all FCS on the manifold M = S(g, e). Def-
initions of topology on this space may be found in [43], [6]. Let v(e, g)
denote the greatest integer [g - 1/1 le].

Theorem 2.2. Let M be a manifold S(g, e). Then the space C(M)
consists of at least v(e, g) connected components.

We only sketch the proof of this theorem since a detailed proof would
lead us too far from the main subject of this paper. For the complete
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proof see [26]. Below we indicate v(g9 e) structures on M, which lie in
different components of C(M).

Consider the set of manifolds % = {S(n e, g): 0 < n < v{e, g)} . All
manifolds of I? admit uniformizable FCS Kn , by Theorem 2.1. It is easy
to see that there exists a covering p : S(g, e) —> S(g, e w), and hence the
structures Kn lift to structures ATn on the manifold S(g, e). Then the
holonomy groups of the structures Kn are the groups H(g, n e). The
groups H(g, m-e) and H(g, Λ e) cannot be deformed one to other in the
space of all pseudofuchsian groups (if n Φ m). Therefore, results of [22],
[23] imply that the structures Kn and Km lie in different components of
C(M). Another way to prove this statement is to distinguish the connected
components containing Kn and Km by the ^/-invariants associated with
conformally Eucidean metrics [26].
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