LINKING AND HOLOMORPHIC HULLS

H. ALEXANDER

1. Introduction

If X and Y are disjoint compact oriented smooth submanifolds of a smooth oriented manifold M and are homologous to zero in M, then the linking number of X and Y, denoted $\operatorname{link}(X, Y)$ (or by $\operatorname{link}(X, Y ; M)$ for clarity) is equal to the intersection number of V and Y, where (V, X) is a compact oriented submanifold with boundary in M. This can be taken as one of the several equivalent definitions of linking number; here the dimensions a, k, m of X, Y, and M respectively, satisfy $a+k=m-1$. We say that X and Y are linked if $\operatorname{link}(X, Y)$ is not zero. Our object is to apply this linking notion of Gauss to the geometry of holomorphic hulls. For example, in the case that the underlying manifold M is \mathbf{C}^{n}, our results say that the polynomially convex hull of one of the sets X or Y has a nonempty intersection with the other set, provided that X and Y are linked.

Now take M to be a Stein manifold and let X be a compact subset of M. Then the holomorphic hull of X is

$$
\widehat{X}=\{p \in M:|f(p)| \leq \max \{|f(q)|: q \in X\} \text { for all } f \in A(M)\}
$$

where $A(M)$ is the space of all holomorphic functions on $M . \hat{X}$ is a compact subset of M. In special cases arising from the maximum principle, (\hat{X}, X) is a smooth manifold with boundary which is foliated by complex manifolds with boundaries in X. In general however, \widehat{X} is not so nice and may not contain any complex manifolds, or even continuous ones. Nevertheless the perception persists that the pair (\hat{X}, X) behaves like a manifold with boundary. This is the motivation for what follows. To adapt the above data on linking to this context we replace (V, X) with (\hat{X}, X) where now X is an arbitrary compact subset of M. As before Y is an oriented manifold disjoint from X and homologous to zero in M. Then, when X and Y are linked in an appropriate sense, the previous consequence that V and Y have a nonzero intersection number will be

[^0]replaced by the cruder statement that \hat{X} and Y have a nonempty intersection. To adapt the hypothesis of the manifolds X and Y being linked to the setting in which X is an arbitrary compact set it suffices to require that Y not be homologous to zero in $M \backslash X$; when X is a manifold as above this is equivalent to $\operatorname{link}(X, Y)$ being nonzero.

Theorem 1. Let M be a Stein manifold of (complex) dimension n and X a compact subset. Let Y be a compact oriented submanifold of M of (real) dimension k, disjoint from X, and homologous to zero in M. Suppose that Y is not homologous to zero in $M \backslash X$. Suppose that either
(a) $0 \leq k<n-1$, or
(b) $k=n-1$ and $H^{n}(M, \mathbf{C})=0$.

Then \hat{X} has a nonempty intersection with Y.
Remarks. 1. Suppose that X and Y are now linked manifolds in M of dimensions a and k, respectively. Then, as $a+k=2 n-1$, the smaller of a and k is at most $n-1$. Hence the hull of the set corresponding to the smaller of a and k has a nonempty intersection with the other set, unless, in case (b), the smaller is $n-1$ and $H^{n}(M, \mathbf{C}) \neq 0$.
2. The cohomology condition in (b) is needed. Consider for M the product in \mathbf{C}^{n} of n copies of C^{*}, the punctured plane. Let X be the n-torus in M, i.e., the product of n unit circles. Choose Y as a $k=n-1$ sphere in M disjoint from X and such that X and Y are linked in M; for example, Y could be a small sphere in the normal space to X at some point. Then, as $\widehat{X}=X$, the intersection of \hat{X} and Y is empty. Of course, $H^{n}(M, \mathbf{C}) \neq 0$.

Corollary 1. Suppose that $\mathbf{C}^{n}=S \oplus T$ is an orthogonal decomposition of \mathbf{C}^{n} into real linear spaces S and T of real dimension s and k respectively with $s>n$ and let $\pi: \mathbf{C}^{n} \rightarrow S$ be the orthogonal projection to S. Let E be a compact subset of S and let $f: E \rightarrow T$ be a continuous map and let $\operatorname{Gr}(f)$ be the graph of f in \mathbf{C}^{n}. Let D be a relatively compact component of the complement of E in S. Then $\widehat{\operatorname{Gr}(f)}$, the polynomially convex hull of $\operatorname{Gr}(f)$, covers D, i.e.,

$$
\pi(\widehat{\operatorname{Gr}(f)}) \supseteq D .
$$

The special case of the corollary when S is complex linear and D is a ball appeared in [3] with two proofs and a third proof was given by Ahern and Rudin [1]. The second proof in [3], due to J.-P. Rosay, is closest to the methods of this paper. The case $n=2$ and $s=3$ where f is a realvalued function on a 2-manifold is of interest. When D is convex with smooth boundary, a very precise description of the hull is due to Bedford and Klingenberg [7]: the hull is a disjoint union of analytic disks. In other
cases, the structure of the hull is less well understood, as, for example, when D is a solid torus.

Another phenomenon of linking is the relationship of linking at the boundary of a domain to intersections in the domain. The prototype of such results is the following. Cf. [10, Proposition, p. 383].

Proposition. Let (V, X) and (W, Y) be oriented submanifolds with boundary in \mathbf{R}^{n} such that V and W are contained in the open unit ball B and such that their boundaries are contained in the unit sphere bB. Suppose that X and Y are disjoint and that V and W intersect transversally, if at all. Then

$$
I(V, W)=\operatorname{link}(X, Y ; b B)
$$

Remarks. We are assuming that the linking number is defined. This means that $\operatorname{dim}(V)+\operatorname{dim}(W)=n$. Here $I(V, W)$ denotes the (signed) intersection number of V and W. In the case that V and W are complex manifolds in \mathbf{C}^{n} with their natural orientations, then the intersection number is just the number of points in the intersection. For example, if V and W are complex linear spaces of complex dimension n meeting transversally at the origin in $\mathbf{C}^{2 n}$, it follows that their boundaries X and Y, which are disjoint $2 n-1$ spheres in the boundary of the unit ball, satisfy $\operatorname{link}\left(X, Y ; S^{4 n-1}\right)=1$. With $n=1$, this fact is used in the standard computations of the Hopf invariant of the Hopf fibration (see [8, pp. 235-239]).

The following is the statement corresponding to the proposition in the case when X is an arbitrary compact set in a Stein manifold and with V replaced by a holomorphic hull of X.

Theorem 2. Let M be a Stein manifold of complex dimension at least 2 , and D a smoothly bounded relatively compact strictly pseudoconvex domain in M. Let X be a compact subset of $b D$. Let Y be a k dimensional compact oriented smooth submanifold of bD with $0 \leq k \leq$ $n-2$ which is homologous to zero in $b D$ and which is disjoint from X, i.e., $Y \subseteq G: \equiv b D \backslash X$, and suppose that there is a $(k+1)$-dimensional submanifold W of D such that $Y=b W$. Let \hat{X} be the $\mathscr{O}_{\bar{D}}$ hull of X. Suppose that Y links X in $b D$ in the sense that Y is not homologous to zero in G. Then \widehat{X} has a nonempty intersection with W.

As a consequence we obtain the following corollary originally obtained by the author with E. L. Stout [4] by a different method, extending the Euclidean space case of [2]; also see [6]. The corollary was also proved by Lupaccioulu [9] who obtained more general results related to Theorem 2 in the case of pseudoconcave manifolds. Our approach is perhaps more
geometric. With more elaborate hypotheses, the strict pseudoconvexity of D in Theorem 2 could be relaxed.

Corollary 2. Let M, D, X and \widehat{X} be as in Theorem 2. Each component of $D \backslash \widehat{X}$ contains in its boundary exactly one component of $b D \backslash X$.

Proof. Without loss of generality we can suppose that D is connected. Then $b D$ is connected, since D is Stein and $n \geq 2$. It suffices to prove the following. If p and q are points in distinct components of $b D \backslash X$ and if W is a simple smooth curve in D joining p to q, then W has a nonempty intersection with \widehat{X}. Let Y be $b W=\{q,-p\}$, a 0 dimensional submanifold of $d D$. The connectedness of $b D$ implies that Y is homologous to zero in $b D$. Since p and q lie in different components of $b D \backslash X, Y$ is not homologous to 0 in $b D \backslash X$. Thus we can apply Theorem 2 to conclude that \widehat{X} meets W.

2. Proof of Corollary 1

Set $X=\operatorname{Gr}(f)$. We argue by contradiction and suppose that there exists $p \in \pi(\hat{X}) \backslash D$. Set $Q=\pi^{-1}(\{p\})$, a real k-plane in \mathbf{C}^{n}. Then $\hat{X} \cap Q$ is empty. Hence $\widehat{X} \cap Y$ is empty for all geometric k-spheres Y in \mathbf{C}^{n} of sufficiently large radius R, which are tangent to Q at $(p, 0) \in S \times T=\mathbf{C}^{n}$. It is evident and straightforward to check that Y "links" X, i.e., Y does not bound in $\mathbf{C}^{n} \backslash X$, if R is sufficiently large. Since $k=2 n-s<n$, Theorem 1 implies that \hat{X} meets Y. Contradiction.

3. Poincaré duals and linking

We next recall some of the basic facts needed about Poincaré duals and linking. A very nice reference for all of this is the book of Bott and Tu [8]. Our manifolds will be smooth and oriented; for such a manifold M the q th de Rham cohomology group will be denoted by $H^{q}(M)$, and the de Rham cohomology with compact support by $H_{c}^{q}(M)$. For a noncompact oriented manifold M of dimension m, Poincaré duality states that

$$
H^{k}(M)=\left(H_{c}^{m-k}(M)\right)^{*}
$$

and also, if M is of finite type,

$$
\left(H^{k}(M)\right)^{*}=H_{c}^{m-k}(M)
$$

If Y is a closed oriented submanifold of M of dimension k, then its Poincaré dual is a closed $m-k$ form η_{Y} on M with the property that

$$
\begin{equation*}
\int_{Y} \alpha=\int_{M} \alpha \wedge \eta_{Y} \tag{*}
\end{equation*}
$$

for all closed k forms α with compact support in M. Sometimes to avoid ambiguity we denote the Poincaré dual by η_{Y}^{M}. The form is not uniquely determined, but its cohomology class $\left[\eta_{Y}\right] \in H^{m-k}(M)$ is unique and is also referred to as the Poincare dual.

Three basic properties of the Poincare duals are:
(i). Localization. For any tubular neighborhood of Y in M there is a Poincaré dual η_{Y} with support in that neighborhood.
(ii) If the oriented submanifolds Y and W of M meet transversally, then

$$
\eta_{Y} \wedge \eta_{W}=\eta_{Y \cap W}
$$

(iii) If $f: M^{\prime} \rightarrow M$ is an orientation-preserving map, and Y is an oriented submanifold of M, then, assuming appropriate transversality,

$$
f^{*}\left(\eta_{Y}\right)=\eta_{f^{-1}(Y)} .
$$

In particular, if A and Y are oriented submanifolds of M intersecting transversally, and f is an inclusion map $i: A \hookrightarrow M$, then (iii) gives

$$
\left.\eta_{Y}\right|_{A}=i^{*}\left(\eta_{Y}\right)=\eta_{A \cap Y}^{A} .
$$

Let Y be a compact oriented submanifold of M. By localization, we can take η_{Y} with compact support in M. We can then ask whether (*) remains valid if we drop the hypothesis that α have compact support in M. By Poincaré duality, this is so, provided that M has finite type. However, even if M does not have finite type, we can find a particular η_{Y} such that
(**) $\quad \int_{Y} \alpha=\int_{M} \alpha \wedge \eta_{Y} \quad$ for all closed k-forms α on M.
To see this we choose a tubular neighborhood N of Y in M. Then N is of finite type and so there is a "compact Poincaré dual" (see [8, p. 51]) $\eta_{Y}^{\prime N}$ of Y in N such that

$$
\int_{Y} \beta=\int_{N} \beta \wedge \eta_{Y}^{\prime N}
$$

for all closed k forms β in $N ; \quad \eta_{Y}^{\prime N}$ is a closed $(m-k)$-form with compact support in N. Now define η_{Y} as the extension to M of $\eta_{Y}^{\prime N}$ by 0 outside of N. Then for any closed k-form α on M we have

$$
\int_{Y} \alpha=\int_{N} \alpha \wedge \eta_{Y}^{\prime N}=\int_{M} \alpha \wedge \eta_{Y}
$$

Thus (**) holds.
Suppose furthermore that Y is homologous to zero in M and let η_{Y} be chosen so that $(* *)$ holds. Then we claim that $\left[\eta_{Y}\right]=0$ in $H_{c}^{m-k}(M)$. By Poincaré duality it suffices to show that

$$
\int_{M} \alpha \wedge \eta_{Y}=0
$$

for all closed forms α on M. This follows from (**) because the integral over Y is zero by Stokes' theorem, since Y is homologous to zero in M. Thus there exists a $(m-k-1)$-form ω_{Y} with compact support in M such that $\eta_{Y}=d \omega_{Y}$.

Suppose that X and Y are disjoint oriented compact submanifolds of M, which are homologous to zero and satisfying $s+k=m-1$ with dimensions s and k respectively. Then $\operatorname{link}(X, Y)$ is defined and can be computed as follows. Choose η_{X} and η_{Y} with compact and disjoint supports. By the last paragraph we have ω_{X} with compact support in M such that $d \omega_{X}=\eta_{X}$. Then

$$
\operatorname{link}(X, Y)=\int_{M} \omega_{X} \wedge \eta_{Y}
$$

4. Proof of Theorem 1

We argue by contradiction and suppose that \hat{X} is disjoint from Y. Then there exists a relatively compact \mathscr{O}_{M}-convex domain Ω in M containing \widehat{X} and such that $\bar{\Omega}$ is disjoint from Y. Let η_{Y} be a Poincaré dual of Y in $M \backslash X$ such that $\operatorname{spt}\left(\eta_{Y}\right)$ is disjoint from $\bar{\Omega}$ and (**) holds for k-forms α in $M \backslash X$. Extending by 0 we can view η_{Y} as a closed form in M. As in $\S 3$, since Y is homologous to zero in M, there exists a ($2 n-k-1$)-form ω_{Y} with compact support in M such that $d \omega_{Y}=\eta_{Y}$. Let D_{1} be a relatively compact subdomain in M containing $\bar{\Omega} \cup \operatorname{spt}\left(\omega_{Y}\right)$ such that $b D_{1}$ is smooth. Choose a relatively compact subdomain D_{2} of
Ω such that X is contained in D_{2} and $b D_{2}$ is smooth. Set $D=D_{1} \backslash \bar{D}_{2}$. Then $\operatorname{spt}\left(\eta_{Y}\right) \subseteq D$ and $b D=b D_{1} \cup\left(-b D_{2}\right)$. As Y is not homologous to zero in $M \backslash X$ there exists, by de Rham's theorem, a closed k-form α on $M \backslash X$ such that $0 \neq \int_{Y} \alpha$.

We have

$$
\begin{aligned}
0 & \neq \int_{Y} \alpha=\int_{M \backslash X} \alpha \wedge \eta_{Y} \quad(\mathrm{by}(* *)) \\
& =\int_{D} \alpha \wedge \eta_{Y}=\int_{D} \alpha \wedge d \omega_{Y} \\
& =(-1)^{k} \int_{D} d\left(\alpha \wedge \omega_{Y}\right)=(-1)^{k} \int_{b D} \alpha \wedge \omega_{y} \quad(\text { Stokes }) \\
& =(-1)^{k} \int_{b D_{1}} \alpha \wedge \omega_{Y}+(-1)^{k} \int_{-b D_{2}} \alpha \wedge \omega_{Y} \\
& =(-1)^{k} \int_{-b D_{2}} \alpha \wedge \omega_{Y} \quad\left(\operatorname{spt}\left(\omega_{Y}\right) \cap b D_{1}=\varnothing\right)
\end{aligned}
$$

Now in case (a), $k<n-1$ and so $2 n-k-1>n$. Hence $H^{2 n-k-1}(\Omega)=0$ since Ω is Stein [5]. On $\Omega, d \omega_{Y}=\eta_{Y}=0$. Hence there is a $(n-k-2)$ form σ on Ω such that $\omega_{Y}=d \sigma$ on Ω. Thus

$$
\int_{-b D_{2}} \alpha \wedge \omega_{Y}=\int_{-b D_{2}} \alpha \wedge d \sigma=(-1)^{k} \int_{b D_{2}} d(\alpha \wedge \sigma)=0
$$

by Stokes. This contradicts the choice of α.
In case (b), $2 n-k-1=n$. Since (M, Ω) is a Runge pair, it follows from [5] that the natural restriction map $H^{n}(M) \rightarrow H^{n}(\Omega)$ is surjective. As $H^{n}(M)=0$, we have $H^{n}(\Omega)=0$, and the argument of case (a) can be applied to arrive at the same contradiction.

5. Proof of the Proposition

Extend V and W to a neighborhood N of \bar{B} and choose Poincaré duals η_{V} and η_{V} in N such that $\operatorname{spt}\left(\eta_{V}\right) \cap \operatorname{spt}\left(\eta_{W}\right)$ is a compact subset of B. Then $\eta_{V} \wedge \eta_{W}=\eta_{V \cap W}^{B}$ is a Poincaré dual of $V \cap W$. In particular, $\int_{B} \eta_{V \cap W}^{B}=I(V, W)$.

Let $j: b B \rightarrow N$ be the inclusion map. We may assume that N is a ball. Hence there exists an $(n-k-1)$-form ω_{V} in N such that $d \omega_{V}=\eta_{V}$. Set $\eta_{X}^{b B}=j^{*}\left(\eta_{V}\right)$ and $\eta_{Y}^{b B}=j^{*}\left(\eta_{W}\right)$. These are Poincaré duals on $b B$
with disjoint supports. Set $\omega_{X}^{b B}=j^{*}\left(\omega_{V}\right)$. Then on $b B$, we have

$$
d\left(\omega_{X}^{b B}\right)=d\left(j^{*}\left(\omega_{V}\right)\right)=j^{*}\left(d \omega_{V}\right)=j^{*}\left(\eta_{V}\right)=\eta_{X}^{b B}
$$

Thus

$$
\begin{aligned}
\operatorname{link}(X, Y ; b B) & =\int_{b B} \omega_{X}^{b B} \wedge \eta_{Y}^{b B} \\
& =\int_{b B} j^{*}\left(\omega_{V}\right) \wedge j^{*}\left(\eta_{W}\right) \\
& =\int_{b B} j^{*}\left(\omega_{V} \wedge \eta_{W}\right)=\int_{b B} \omega_{V} \wedge \eta_{W} \\
& =\int_{B} d\left(\omega_{V} \cap \eta_{W}\right) \quad(\text { Stokes }) \\
& =\int_{B} d \omega_{V} \wedge \eta_{W} \quad\left(\eta_{W} \text { is closed }\right) \\
& =\int_{B} \eta_{V} \wedge \eta_{W}=\int_{B} \eta_{V \cap W} \\
& =I(V, W)
\end{aligned}
$$

6. Proof of Theorem 2

By replacing M by an appropriate Stein neighborhood of \bar{D} in M we can assume that (M, D) is a Runge pair, that \widehat{X} is the \mathscr{O}_{M}-convex hull of X and that W extends to be a submanifold of M which intersects $b D$ transversally in Y.

We argue by contradiction and suppose that \hat{X} is disjoint from W. Then there is a relatively compact \mathscr{O}_{M} convex domain Ω containing \hat{X} such that $\bar{\Omega}$ is disjoint from W. Let η_{W} be a Poincaré dual on M with support disjoint from $\bar{\Omega}$. Since $2 n-k-1>n$ and M is Stein, $H^{2 n-k-1}(M)=0$. Hence there exists a $(2 n-k-2)$-form ω_{W} on M such that $d \omega_{W}=\eta_{W} .\left(\eta_{W}\right.$ is a closed $(2 n-(k+1))$-form on M.)

Let $j: G \rightarrow M$ be the inclusion map. Set $\eta_{Y}^{G}=j^{*}\left(\eta_{W}\right)$ and $\omega_{Y}^{G}=$ $j^{*}\left(\omega_{W}\right)$. Then η_{Y}^{G} is a Poincaré of Y in G with compact support in G such that $(* *)$ holds on G, at least if we choose the support of η_{W} close to Y.

As Y does not bound in G there exists a closed k-form α on G such that $\int_{Y} \alpha \neq 0$, by de Rham.

Choose a relatively compact domain E_{1} of $\Omega \cap b D$ such that $b E_{1}$ is smooth and $X \subseteq E_{1}$. Set $E=b D \backslash E_{1}$. Then $Y \subseteq E \subseteq G$ and
$b E=-b E_{1} \subseteq \Omega \cap G$. Thus we have

$$
\begin{gathered}
0 \neq \int_{Y} \alpha=\int_{E} \alpha \wedge \eta_{Y}^{G} \quad\left(\text { by }(* *) ; \operatorname{spt}\left(\eta_{Y}^{G}\right) \subseteq E\right) \\
=\int_{E} \alpha \wedge d \omega_{Y}^{G}=(-1)^{k} \int_{E} d\left(\alpha \wedge \omega_{Y}^{G}\right) \\
=(-1)^{k} \int_{b E} \alpha \wedge \omega_{Y}^{G} \quad(\text { Stokes })
\end{gathered}
$$

We now consider two cases. First suppose $k<n-2$. Then $2 n-k-2>n$ and therefore $H^{2 n-k-2}(\Omega)=0$, as Ω is Stein. Since $d \omega_{Y}=\eta_{Y}=0$ on Ω, there exists a ($2 n-k-3$)-form σ on Ω such that $d \sigma=\omega_{Y}$ on Ω. Set the inclusion map $i: \Omega \cap b D \rightarrow \Omega$ and set $\sigma^{\prime}=i^{*}(\sigma)$. Then, on $b E$, $d \sigma^{\prime}=i^{*}\left(\omega_{Y}\right)=\omega_{Y}^{G}$ and so

$$
\begin{aligned}
\int_{b E} \alpha \wedge \omega_{Y}^{G} & =\int_{b E} \alpha \wedge d \sigma^{\prime} \\
& =(-1)^{k} \int_{b E} d\left(\alpha \wedge \sigma^{\prime}\right)=0 \quad \text { (Stokes) }
\end{aligned}
$$

this contradicts the choice of α.
In the second case $k=n-2$ and $2 n-k-2=n$. Since (M, Ω) is a Runge pair, the natural restriction $H^{n}(M) \rightarrow H^{n}(\Omega)$ is surjective [5]. Since ω_{W} is closed on Ω, we conclude there exists a closed n-form ϕ on M and an $(n-1)$-form θ on Ω such that

$$
\omega_{W}=\phi+d \theta
$$

on Ω. Hence

$$
\begin{aligned}
\int_{b E} \alpha \wedge \omega_{Y}^{G} & =\int_{b E} \alpha \wedge \phi+\int_{b E} \alpha \wedge d \theta \\
& =\int_{E} d(\alpha \wedge \phi)+(-1)^{k} \int_{b E} d(\alpha \wedge \theta)
\end{aligned}
$$

by Stokes' theorem. Again by Stokes the last integral vanishes. Also the integral over E vanishes since $\alpha \wedge \phi$ is closed because α and ϕ are closed (and defined on E). This again contradicts the choice of α and completes the proof.

References

[1] P. Ahern \& W. Rudin, Hulls of 3-spheres in C^{3}, Contemporary Math., Vol. 137, Amer. Math. Soc., Providence, RI, 1992, 1-28.
[2] H. Alexander, A note on polynomial hulls, Proc. Amer. Math. Soc. 33 (1972) 389-391.
[3] __, Polynomial hulls of graphs, Pacific J. Math. 147 (1991) 201-212.
[4] H. Alexander \& E. L. Stout, A note on hulls, Bull. London Math. Soc. 22 (1990) 258-260.
[5] A. Andreotti \& R. Narasimhan, A topological property of Runge pairs, Ann. of Math. (2) 76 (1962) 499-509.
[6] R. F. Basener, Complementary components of polynomials hulls, Proc. Amer. Math. Math. Soc. 69 (1978) 230-232.
[7] E. Bedford \& W. Klingenberg, On the envelope of holomorphy of a 2-sphere in C^{2}, J. Amer. Math. Soc. 4 (1991) 623-646.
[8] R. Bott \& L. Tu, Differential forms in algebraic topology, Graduate Texts in Math., Vol. 52, Springer, New York, 1982.
[9] G. Lupacciolu, Topological properties of q-convex sets, Trans. Amer. Math. Soc., to appear.
[10] W. Fulton, Intersection theory Ergeb. Math. Grenzgeb., Vol. 2, Springer, New York, 1984.

University of Illinois at Chicago

[^0]: Received July 30, 1992. The author was supported in part by a grant from the National Science Foundation.

