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ETERNAL SOLUTIONS TO THE RICCI FLOW

RICHARD S. HAMILTON

1. The result

We consider solutions to the Ricci flow equation

on a manifold X of dimension n . We say the solution is eternal if it is
defined for all time -oo < t < oo. We are interested in solutions which
are complete (which is a way of saying they are also defined for "all" of
space) and which have their Riemannian curvature uniformly bounded for
all space and time. This is a serious restriction; by the work of W. X. Shi
[2] we know then that all the covariant derivatives of the curvature are
bounded.

Examples of eternal solutions which are complete with bounded curva-
ture are provided by solitons. These are solutions which move under a
one-parameter family of diffeomorphisms. If this comes from exponenti-
ating a vector field V{, then we have a soliton when

since the metric changes by its Lie derivative along the vector field. When
the vector field is the gradient of a function we say we have a gradient
soliton. If V{ - Zλ/, the equation for a gradient soliton is

so the Ricci tensor is the Hessian of a function. In dimensions 2 and 3 for
sure, and probably in all higher dimensions too, there exists a complete
gradient soliton with bounded curvature and strictly positive curvature
operator which is rotationally symmetric around an origin; it can be found
by solving an ODE.

Eternal solutions with bounded curvature are important because they
occur as models for slowly forming singularities. Our main result is the
following start at a classification.
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1.1. Main theorem. Any complete simply connected eternal solution
to the Ricci flow with uniformly bounded curvature and strictly positive
curvature operator where the scalar curvature R assumes its maximum is
necessarily a gradient soliton.

The proof comes from considering the Harnack inequality for the Ricci
flow (see [1]) where we study a quadratic form which vanishes on solitons
and is weakly positive on any solution. The condition that R assumes its
maximum implies that this quadratic form has a large null space. We can
then use the strong maximum principle to see that the only way this can
happen is when we are on a soliton.

2. The Harnack inequality

In our paper [1] we prove a Harnack inequality for the Ricci flow. There
we only assume the solution exists on 0 < t < T, and we derive an
estimate with terms l/t in it. There is an interesting but simple procedure
for getting rid of them when our solution is eternal. If we have a solution
on a < t < T, we can replace t by t-a in the Harnack inequality. Then
if a —• -oo, the expression l/(t - a) —> 0 and disappears! That proves
the following result.

2.1. Theorem. Suppose we have a complete eternal solution to the Ricci
flow with uniformly bounded curvature and nonnegative curvature operator.
Let

Kb = ^ab ~ \DaDbR + 2RacbdRcd - RacRbc

and

and consider the quadratic form

Z = Mab Wa Wb + 2Pabc Vab Wc + Rabcd Uah Ucd

where Wa is a one-form and Uab is a two-form. Then Z is weakly positive,
so Z > 0 for any choice of W and V.

(Note we have just dropped the term \Rab from the definition of Mab

in [1].)
We shall also need the following computations, which are the basis of

the proof of the Harnack inequality. They come from [1] by dropping all
terms with l/t.

2.2. Computation. At a point where

(Dt-A)Wa = 0, (Dt-A)Uab = 0,

D W, = 0 and D V. = l(R ,W - R WΛ
a o a be 2 V an c ac b>
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we have

(Dt - Δ)Z = 2RacbdMcdWaWb - 2PacdPMcWaWb

+ ^PlbeUabWe + 4RaecfRbedfUabUcd

2.3. Computation. At a point where the quadratic form Z can be
written as a sum of squares of linear forms

^ - LJ^Λa ^a + Jab Uab) '
M

the quadratic form

Q = 2R UM W Wu - IP ,PUA W Wu

*^ acbd cd a b acd bdc a b

is given by

MN

which is also a sum of squares of linear forms.

3. The idea

We now give the idea of the proof, depending on a lemma which we

prove later. The quadratic form Z is defined on the space of W θ U in

Λ1 ΘΛ2 . If the curvature operator ^abCd^ab^cd *s stI*ictly positive, then Z
a b C d a b c d

is strictly positive on the subspace Λ2 C Λ1 ΘΛ2 where W = 0. Therefore
its null space has dimension at most dim Λ1 = n . If we write U = V Λ W
so that

and sum over an orthonormal basis of Wa 's

F) R
iVMV)= +2DaR.Va + RabVaVb

w

and by letting V - 0 we get

w
At a point where R assumes its maximum, we will have dR/dt = 0, and
hence letting W run through a basis Ea we have Z(Ea Θ 0) > 0 for each
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a, so Z(Ea Θ 0) = 0 for each a . Thus Z has a null space of dimension
exactly n at this point.

We then want to argue from the strong maximum principle that at any
earlier time the null space of Z has dimension n at every point. This is
Lemma 4.1. We can then find a smooth tensor Labc with Labc + Lbac = 0
such that for any Wa if

Uab = LabcWc

then W θ U is the null space of Z . Since the null space of Z satisfies

and

we find that

McdLabcPabd = ° a n d Pcde+RabcdLabe =

We can however do even better. Since the null space of Z cannot contract,
we see from Computations 2 and 3 that the null space of Z must be
contained in the null space of Q. Now W Θ U lies in the null space of
Z precisely when

for all M, and this happens whenever U h — L h W , which shows us

Λc -~

But then W e U also lies in the null space of Q, so

Ya1*>a - γa

N

cxfwa - 2Y?cYb

N

cuab = o

for all M and TV. Writing U in terms of L and W and writing X in
terms of L and Y and simplifying algebraically give

yMyNj _γNγMτ \ΎγMγNJ - f)
1ec Jab^abc 1 ec Jab ^acb + L1ac 1bc^abe ~ U

for all M and N.
Now from the definition of X and Y

~ Z^
rMyM
ab cd

M

and since the curvature operator is strictly positive the Y^b can be chosen
as an orthogonal basis for the two-forms. In fact we can take

Yab = λ Eab
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where E^b is an orthonormal basis for the two-forms, and (λ ) are
the eigenvalues of the curvature operator. Then dividing the previous
expression by λ λ gives

6C ub cibc €c ub ubc uc be ubβ

We now multiply by E Ers and sum over M and N, using

M

and simplifying to conclude that

2 L — 2 L — 2 L — 2 L

&pe rsq sqe rsp sre pqs όse pqr

&qs pre &qr pse &ps qre &pr qse

for any choice of p, q, r, s , and e .
3.1. Lemma. There exists a Va such that

Proof. This follows algebraically from the above relation, and is in fact
equivalent to it. To see this, take the trace on q and s . This gives

(« " 2)Lpre ~ Lrep ~ Lepr = XpSre " Xr%pe

when Xp = Lpqq is the trace. Now we cyclically permute p, r, and e
and sum to conclude that

and so

at least when n φ 4. It is also true when n = 4, as we see differently.
We only need to check it for p , r, e all distinct, so take p = 1, q = 2 ,
r = 3, s = e = 4 in the original formula and get L 1 2 3 = 0. Then surely
L 1 2 3 + L 2 3 1 + L 3 1 2 = 0 also, and this is good enough.

Now if we substitute this in the formula above for the trace, we get

which gives

for V = -^r[Xp - This proves the lemma, q.e.d.
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The lemma produces our desired smooth vector field along which the
solution is supposed to flow. Substituting back in our formulas for the null
space of Z gives

Now if we differentiate the second expression and use the first and the
relations

Mbc=DaPabc+RbdceRde a n d DaRabcd = Pcdb

(which hold on any Riemannian manifold) we find that everything simpli-
fies to

Now we let
Tab-DaVb-Rab

and observe that RabcdTbd = 0.
3.2. Lemma. The tensor Tab is symmetric.
Proof. Let Tab = Sab + Aab be its decomposition into symmetric and

antisymmetric parts. Then

Rabcd'Pbd = Rabcd^bd + Rabcd^bd

is also such a decomposition. Therefore RabcdAbd = 0. Using the Bianchi
identity we find that this is equivalent to RabcdAcd = 0 and since the
curvature operator is strictly positive we must have Acd = 0, so Tab is
symmetric.

In dimension three we could already conclude that Tab = 0 from
Rabcd Tbd = 0. For in a basis where Tab is diagonal we get the equations

I + ^2323^33 =

II + i ?2323722 =

and the coefficient matrix has determinant

so the only solution is

In higher dimensions this does not suffice, and we have to work harder. A
lot harder.

First note that



ETERNAL SOLUTIONS TO THE RICCI FLOW

so that when the manifold is simply connected we can solve globally for a
function / with

D f=V .

We then have the equations

(2) J W = Kb + τab,
( 3 ) Pabc = RabcdDdf>

(4) Mbc + Daf.Pabc = V

and we now work from here. Differentiate (2) and switch derivatives and
use (3) to show that

so that Tab is a Codazzi tensor. Now apply the operator (Dt - Δ) to (2)
and let

(6) (Dt-A)f = h

and use the commutation formula

(Dt - A)DaDbf = DaDb{Dt - A)f+2RacbdDcDdf

and
(Dt-A)Rab = 2RacbdRcd

to compute that

(7) (Dt-A)Tab = DaDbh.

If we differentiate (5) again to get

and switch Da and Db we have

DaDcTbd ~ DbDaTcd = RabceTde + RabdeTce

and then if we cyclically permute a , b , c and sum, and use the Bianchi
identity on Rabce , we get

^ce +

If we then trace on a and d we get

(8) RbeTce =

which shows Rab and Tab commute.
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Going back to (7), by the commutator formula

(*>, - A)DaTtc = Da(D> - A)T

bc + 1R

adbPJec + 2*adceD

d

T

be

and this gives

(D, - A)DJbc = DaDbDch + 2RadbeDcTde + 2RadceDbTde .

Now switch a and b and subtract. We then have

Going back and differentiating (1) gives

and doing this on the other term also shows that

RabcdDdh = 2Tde(D

b

Radce ~ DaRbdce)

and by the second Bianchi identity

(9)

Now from [1] we recall the evolution formulas

(Dt - A)Rabcd = ΊRaebfRcedf ~ 2RaebfRdecf

+ 2RaecfRbedf ~ 2RaedfRbecf >

= 2RadbePdec + 2RadcePdbe

+ 2RbdcePade " 2RdeDdRabce '

= 2RacbdKd + 2Rcd[DcPdab + DcPdba]
+ 2PacdPbcd ~ 4PacdPbdc + 2RcdRceRadbe '

When we apply the evolution operator (D( - Δ) to formula (3) there are
many cancellations, after which we just recover (9), so we obtain no new
information. But if we apply (Dt — Δ) to (4) and use the given identities,
then after many cancellations we are left with one new term! Namely we
get

0° ) RabcdTbeTde = Q

which looks just like (1) but is in fact much better since the matrix Tah

now is squared.
3.3. Lemma. The tensor Tab = 0.

Proof. Choose a basis where Tab is diagonal. Then

Rabcd ^be ̂ de ~ ®
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implies that for a = c = 1

R\2\2T22 + Rn\3>Tn + '" + R\n\nTnn = °

and since i? 1 2 1 2 > 0, Rm3 > 0, ••• , Rlnln > 0 we get Tn = 0, Γ33 =
0, . , Tnn - 0. Similarly all the diagonal entries are zero, q.e.d.

We now have Da Vb = Rab , so the metric is in fact a Ricci soliton.

4. The strong maximum principle

We now prove the lemma we need to make the previous argument work.
4.1. Lemma. If the quadratic form Z has null space of dimension

strictly less than n at some point at t — 0, then it has rank strictly less
than n at every point for any time t > 0.

Proof This will be a consequence of the usual strong maximum prin-
ciple, which assures us that if we have a function F > 0 which solves

(Dt -A)F = 0

for t > 0 and if we have F > 0 at some point when t = 0, then we have
F > 0 everywhere as soon as t > 0.

Suppose now that Z has null space of dimension strictly less than n
at some point X at t = 0. By picking X in general position we may
assume the dimension of the null space is constant in a neighborhood of
X . We can then choose a smooth vector field Ya with support in this
neighborhood so that Ya Φ 0 at the point X but Ya is orthogonal to
the null space of Z , in the sense that if Z vanishes on Wa Θ Uhc then
YaWa = 0. We then define a matrix by

at t = 0, and allow Fab to evolve by the heat equation

Since Fab > 0 as a matrix at / = 0, it will remain so for t > 0 by the
maximum principle. Let F = Faa be the trace. Then F > 0 at the point
X° at t = 0, so F > 0 everywhere as soon as t > 0. But this means Fab

has rank at least one.

The quadratic form Fab Wa Wb vanishes on the null space of Z , so
by multiplying Fab by ε > 0 sufficiently small we can arrange things so
that Z > Fab Wa Wb at / = 0. Now we claim that this inequality will be
preserved for t > 0. Whereupon we are done; inasmuch as Rabcd Uab Ucd >
0 for Uab φ 0, so if WaΘ Ubc lies in the null space of Z we must have
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Wa ψ 0, which shows the dimension of the null space of Z cannot exceed
the dimension of the null space of Fab .

Note that RacbdFcd > 0 since Fcd > 0 and Racbd has positive sectional
curvature. Therefore the following result will suffice.

4.2. Theorem. Let Fab be uniformly bounded with Fab > 0 and satisfy

(Dt-A)Fab<2RacbdFcd.

Suppose Z > FabWaWb when t = 0. Then this remains true for t > 0.
Proof We modify the Harnack expression Z by letting

where we let

Kbcd = Rabcd + Ϊ

where φ and ψ are functions we will choose later and then let go to zero.
We compute the modifications to the evolution of Z in Computation 2.2
from the introduction of Fab , φ and ψ . This gives us the following result,
using C as a constant to bound \Rm\, \DRm\, \D2Rm\ and \Fab\, and
we assume ψ < 1.

4.3. Lemma. We have

(Dt-A)Z = 2RacbdMcd Wa Wb - 2PacdPbdc Wa Wb

ibeuabyyc ^ *^aecf*bedfUabUcd

[(Dί-A)φ]\W\2 + [Dιψ]\U\2-E

E < C{φ + ψ)\W\2 + Cψ\U\2

where the error E is bounded by

at a point where

(Dt-A)Wa = 0,

DaWb = 0 and DQUbc = {{RabWc - RacWb).

Proof Few new terms can occur since we do not have to worry about
space derivatives falling on Wa or ψ. The only trick is to bound the
cross-term

cΨ\υ\\w\ <cΨ\u\2 + cΨ\w\2

which is obvious.
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Now to make the argument work we need to have

(Dt - Δ)φ > C(φ + ψ) and Dtψ > Cψ .

This is easy to achieve. We take ψ = δeΛt with δ small and A > C.
Then we take φ = δeAt f{x) where / is the function constructed with
f(x) —> oo as x —> oo but all the covariant derivatives of / bounded
from Lemma 5.1 in [1], and A is large compared to C before and to C
bounding Δ / . We then have ψ > δ > 0 and φ —> oo when X —• oo.
Since Mab , Fab and Pabc are bounded while Rabcd is positive, it is clear
that Z is strictly positive outside of a compact set. If Z ever becomes
zero, there will be a first time t° this happens, and a point X° and an
eigenvector W® and t/^ where Z is zero. Extend Wa and ί7fl̂  to
sections with Wa = W^0 and C/̂  = C/̂  at (ΛΓ°, t°) and so that

(Dt-A)Wa = 0, (Dt-A)Ubc = 0,

DaWb = 0 and ^ 1 / ^ = i ( J ? β , » ; - Λ ^ , )

at (X° 9 t°). Then Computation 2.3 shows us that (Dt - Δ)Z > 0 at

(ΛΓ°, /°). However D?Z < 0 and ΔZ > 0 there, so we have a contra-

diction. Therefore Z can never become zero. We now let δ —> 0 in

the choice of φ and ψ (note 4̂ remains the same) and we recover the

theorem.
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