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INSTANTONS ON nCΨ2

N. P. BUCHDAHL

0. Introduction

On a complex surface equipped with an Hermitian metric the splitting
of the 2-forms into self-dual and anti-self-dual components is compatible
with the splitting into forms of different types induced by the complex
structure: Λ+ <g>C = Λ ° ' 2 θ Λ 2 ' 0 θ ω Λ ° ' ° , and A2_ <g>C = kerωΛ : Λ 1 ' ι ->

Λ ' , where ω is the positive (1, l)-form defined by the metric and the
complex structure. Thus a connection with anti-self-dual curvature on a
unitary bundle over such a surface automatically acquires a compatible
holomorphic structure by the Newlander-Nirenberg theorem. It is this key
fact which underlies Donaldson's result [12] showing the equivalence of
moduli of anti-self-dual connections and stable holomorphic bundles on
an algebraic surface, a result of central importance in the evolving gauge-
theoretic study of smooth 4-manifolds.

It is perhaps less well-known that the same fact can be used to describe
moduli of self-dual Yang-Mills connections ("instantons") on oriented 4-

~2

manifolds without complex structures: let C denote a modification of the
complex plane consisting of n blow-ups and let ω be a positive (1, 1)-
form on this space. An ω-anti-self-dual solution of the Yang-Mills equa-
tions is then a holomorphic bundle with hermitian connection whose cur-
vature F satisfies ω Λ F = 0. If the solution has finite L2 action and
ω is suitable asymptotically flat, the bundle and connection extend to the
one-point compactification by Uhlenbeck's theorem [30]. Since this one-
point compactification is diffeomorphic to a connected sum of n copies
of the reverse-oriented complex projective plane, flipping the orientation
yields a self-dual solution of the Yang-Mills equations on this last space,
that is, an instanton on nCΨ2.

There is a smooth orientation-reversing map π : P2 —• nCΨ2 collapsing
the line L^ at infinity to a point y^ (an "antiholomorphic blow-down").
Under this map the instanton on nCF2 pulls back to an extension of the
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holomorphic bundle and connection on C t o P 2 , and since the restriction
of the connection to L^ is flat, the bundle is holomorphically trivial there.
Thus there is a correspondence between instantons on nCΨ2 and certain
holomorphic bundles on the blown-up complex projective plane, and the
question then arises as to exactly which bundles occur in the latter category.
This is answered by the following theorem, which is the main result of this
paper:

Theorem 0.1. Let X be a compact complex surface biholomorphic to
a blow-up of P2 n times, and let L^ c X be a rational curve with self-
intersection + 1 . Let Y be a smooth 4-manifold diffeomorphic to nCΨ2

obtained by collapsing L^ to a point y^^Y and reversing the orientation,
and let π : X ->Y be the collapsing map. If g is any smooth metric on Y
such that π*g is compatible with the complex structure on X, then there
is a one-to-one correspondence between

(1) equivalence classes of g-selfdual Yang-Mills connections on a unitary
bundle E over Y, and

(2) equivalence classes of holomorphic bundles E on X topologically
isomorphic to π*E whose restriction to L^ is holomorphically trivial and
is equipped with a compatible unitary structure.

(As in [6], a unitary structure on a holomorphic bundle B over L^ is
a holomorphic isomorphism φ : B —• σ*ϊΓ where σ : L^ —• L^ is a
fixed-point-free antiholomorphic involution (the antipodal map), φ must
satisfy (σ*φ)* = φ and induce a positive form on holomorphic sections
of B over L^ .)

In the case where n = 0 or 1, the theorem has already been proved
in [11] and [19] respectively, at least for the standard metrics on S4 and
CP2 . These metrics have self-dual Weyl curvature, so the twistor spaces for
them are integrable and the instantons correspond to certain holomorphic
bundles on the twistor spaces [2]. Techniques of complex analysis can be
used to classify these bundles [1], [6], [13] which can then be compared
directly with classifications of bundles on P2 and its blow-up at a point
[4], [7] to arrive at the result above (further details are given in §3).

In general, it is known that nCΨ2 admits self-dual metrics for any n
[14], [21], [24], [25]. For some of those metrics there is a complex hyper-
surface in the twistor space biholomorphic to P 2 , and the holomorphic
bundles of the theorem are then just the restriction of the bundles on the
twistor space to the hypersurface, as in the case that n = 0, 1. Of course,
a self-dual metric is certainly not required here, and it should be noted
that there are many metrics satisfying the hypotheses of the theorem: for
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example, choose any metric which is conformally flat in a neighborhood
of y^ , so the twistor space for this metric is integrable near L^ and the
pullback of the metric is certainly compatible with the complex structure
there. The corresponding Hermitian form can then be glued to any other
on the rest of the complex surface using a cut-off function.

Note that Theorem 0.1 implies that all instanton moduli spaces associ-
ated with any such metric must be smooth away from reducible connec-
tions: by Serre duality H2(EndE) = H° (End E®K)* for any holomorphic
bundle E, where K is the canonical bundle. If E is trivial on L^ then
it is trivial on all nearby lines, and since K ~ #{-3) there, section of
H°(EndE ® K) must vanish on all such nearby lines; this implies it van-
ishes on an open set and hence is identically zero.

The theorem could equally well be stated in terms of based connections
and bundles as in [ 11 ] and [19], but it turns out that for the analytical proof
given here (as opposed to the algebraic approach of those references) the
statement given is slightly more natural. As in [13] and [6], it is a simple
matter to incorporate other gauge groups into the description having once
dealt with the case of unitary instantons.

It will be apparent from the proof that the techniques used here should
be applicable to a wider range of situations than just blow-ups of the com-
plex plane. However, it should also be noted that a complex surface with
one end biholomorphic to the complement of a compact set in C2 can
be compactified by adding a F{ at infinity to give a compact surface con-
taining a rational curve with self-intersection + 1 . By V.4.3 of [5], such
a surface must be a blow-up of either a Hirzebruch surface or P2 , and in
fact it is not hard to see that such a surface must be exactly a blow-up of
P 2 .

In one direction the proof of theorem 0.1 is as indicated earlier: the
pullback of a self-dual connection A on a bundle over Y = nCΨ2 is
an anti-self-dual connection with respect to π*g, and because the latter
metric is compatible with the complex structure and is nondegenerate off
L ^ the curvature of π*A is of type (1,1) off L^ , hence everywhere. The
pullback connection is flat on L^ so a trivialization at y^ e Y pulls back
to a holomorphic trivialization and a natural unitary structure along L^ .
The bulk of the proof is thus to construct an anti-self-dual connection on
a holomorphic bundle over X = P2 , where anti-self-duality is with respect
to the degenerate metric π* g (since a smooth connection on a bundle
over Y which is anti-self-dual with respect to π* g off L^ and which is
flat along that line is, after a unitary change of gauge, the pullback of a
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self-dual connection from Y by the removable singularities theorem [30]).
The approach used here is a modification of that which was used in

[8], i.e., minimizing a useful function measuring the size of the self-dual
curvature. Because of the degeneracy of the metric, the analysis is per-
formed on the noncompact manifold Z = P2 - L^ = C . This change
to a noncompact setting has both benefits and costs: on the one hand, the
nonlinear part of the problem is greatly simplified by virtue of the fact
that it is not hard to obtain a priori bounds preventing curvature from
"bubbling-off ' on the other, the linear part of the theory is more delicate
and it is fortunate that it is possible to fall back on the work of Lock-
hardt and McOwen [22] dealing precisely with elliptic theory in this type
of context; the works of Uhlenbeck [29], [30], [15] and of Taubes [28] also
provide key results.

In § 1 below, notation is established, preliminary material is introduced,
and the linear part of the proof of the main result is given; §2 deals with
the nonlinear part. On the whole, it is assumed in these sections that the
reader is familiar with [12] or [8] or some other such paper concerning the
existence of Hermitian-Einstein connections on stable bundles, of which
there are now a number in the literature. The third section is devoted to
providing some examples, including an explicit computation of the moduli
space Jί of SU(2) 1-instantons on «CP 2 .

The referee has pointed out that results similar to and more general
than those presented here have recently been obtained by Bando [3].

1. Proof of Theorem 0.1: Linear aspects

If Z is a complex surface equipped with a positive (1, l)-form ω ,
the problem of constructing an ω-anti-self-dual Hermitian connection on
a holomorphic bundle E over Z can be treated equivalently as the prob-
lem of finding an anti-self-dual unitary connection on a smooth unitary
bundle E such that the (0, 1) component of the connection induces
the holomorphic structure E. This is the approach taken in both [12]
and [8] where more details can be found. Given one integrable connec-
tion AQ inducing E, every other such connection A is determined by a
unique complex automorphism g of Etop with dA = g~ι ° dQo g and
dA = g* o d0 o g*~ , usually written as A = g Άo. If h := g*g, the curva-
ture of A has the form F{g Ao) = g[F{A0) + do{h~2dQh)]g~ι, and the
substitution g »-> ug, g ι-> gu for unitary u amount to unitary changes
of gauge of A, AQ respectively. To find an anti-self-dual Hermitian con-
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If Z has finite volume \ fz ω2 and the entities on the left of (1.1) can
be integrated, various obstructions become apparent: if ω is Kahler there
is a topological obstruction coming from the degree of the first Chern class,
and of a more subtle nature, there is a holomorphic obstruction which is
the condition of stability (cf. [13], [8]). An indecomposable bundle on a
blow-up of P 2 trivial on L^ can be far from stable with respect to any
Hermitian metric on the blow-up (though it should be added that some
notion of stability does lurk in the background in that the direct image of
any such bundle onto P2 is always a semistable torsion-free sheaf; see [23,
p. 210]). This absence of stability is the main reason for performing the
analysis on manifolds with infinite volume.

If s = s* e Γ(End2?to ) and gt := 1 + ts is invertible for small t then

F(gt-A0) = F(Λo)+ί(do<9o-<9odo)s+0(ί2) so the linearization at AQ of the
operator implicit in (1.1) is given by s *-> RQs := i * ω ω Λ (dodo - d o d o )s.
Once appropriate function spaces have been found between which this
operator acts as an isomorphism, solving (1.1) boils down to an exercise
in techniques of nonlinear analysis; heat equation or continuity method
approaches should work just as well as the functional-minimizing method
used here.

Having dealt with these preliminary observations, the task of setting up
the initial conditions for the body of this paper can be commenced.

Let g be a smooth metric on Y = nCP2 with the properties required
by Theorem 0.1. Fix geodesic normal coordinates {ya} in a neighborhood
U of y^ so the blowing-up map π is given by inversion ya ι-> ya/\y\2 ,
taking U - {y^} onto a deleted neighborhood U of the line L^ in
X = P 2 . According to the discussion of pp. 121-122 of [15], if (r, θ) are
corresponding geodesic polar coordinates and r =: exp(—τ), the rescaled
metric g = g/r is asymptotic to the standard product metric on the
cylinder R+ x S3, and the smoothness of g at y^ implies that all deriva-
tives of g with respect to (τ, θ) have exponential decay as τ —> oo.

Since the complex structure defining Z = C c X extends smoothly

across L^, the same exponential decay is enjoyed by the derivatives

of the Kahler form ώ determined by g and this complex structure. If

at := to/r is the corresponding positive (1,1) form on Z , then it fol-

lows that holomorphic coordinates (z°, z{) on U - L^ can be found so

that l i m , z H o o | z | V o ( ω - ω 0 ) | = 0 for any A:, where \z\2 := \z°\2 + \zι\2 ,
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ω 0 := ^d~d\z\2 and d0 denotes full covariant exterior differentiation with
respect to the flat metric in these coordinates.

This decay is somewhat stronger than is required for the purposes of
the proof and indeed will be weakened somewhat. If ωQ is a fixed Kahler
metric on Z , equal to (the pullback of) jdd\z\2 on the complement of a
compact set, the following pair of conditions

(1.2) lim [\ω - ω o | + \z\ \doω\ + \z\2\4ω\] = 0
\z\-+oo

a n d

(1.3) l im \z\2+e°iddω = 0 for some e o > 0 .
|z|—oc

By the discussion of the last paragraph, both conditions are certainly sat-
isfied for a form ω obtained from a smooth metric on Y satisfying the
hypotheses of Theorem 0.1. Unless otherwise stated, all norms used here
will be those induced by the metric ω rather than ω0 (throughout, ter-
minology is abused by identifying Hermitian metrics and positive (1, 1)-
forms).

In addition to the metrics, some initial conditions must also be estab-

lished for the connections. Let Ao be a smooth integrable unitary con-

nection on a bundle E = £ t o p over Z and suppose that Ao has finite L2

action fz |F(^40)| ω . Using the technique of broken Hodge gauges [30],
the finite action condition enables the construction of a gauge for the con-
nection such that both the bundle and the gauged connection extend to the
1-point compactification Y = n¥2 of Z—see [27] (of course, Y is simply
Y with the opposite orientation, but it is helpful to retain this notation
as it suggests compactification, the noncompact manifold Z now being
regarded as the fundamental manifold). The extended connection is only
L2 in a neighborhood of the point at infinity though if Ao satisfies the
Yang-Mills equations (at least in a neighborhood of infinity), elliptic reg-
ularity implies smoothness of the extension (see [29]). It will be assumed
until further notice that the connection AQ satisfies the condition

(1.4) ί \F(A0)f(l + \z\2)γω2

0 < oo f o r s o m e p>4andγ>p-2,

where F : = * ω ω Λ F ; this will provide sufficient regularity in a neighbor-
hood of infinity for the purposes required here, and is a condition which
is easily removed at the end of the proof.

Now set φ := (1 + | z | 2 ) 1 / 2 and for p > 0, δ eR introduce the weighted
Sobolev spaces Lp

k δ which are by definition the completion of C™(Z)
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under the norm

(After changing to polar coordinates in C2 and substituting τ = log r for

r > 1 as before, the pullback of φ~2ω0 agrees with the standard product

metric dτ2 + dθ2 on the cylinder [1, oo) x S3, so the sum in (1.5) is

equivalent to

with I I and d0 determined by the standard product metric.) In terms
of these weighted norms, the hypotheses on F(AQ) are equivalent to the
conditions \F(AQ)\ e L 0

2

2 and \F(AQ)\ e Lζ 2+δ for some p > 4 and
δ>0.

Analogues of the usual Sobolev inequalites for these spaces are given in

Lemma 5.2 of [28], where it is shown that if δ > 0 then Lp

 δ is contin-

uously embedded in L^ δ for p e [2, 4) and q = 4/?/(4 - p) and that

if p > 4 then lim, , ^ \φ f\ = 0 for any function / e Lp

χ δ . Moreover,

Taubes also proves that if df e L^ ι+δ for some p > 2 then there is a

constant / e C such that / - / e L\ δ\ this will be of considerable use

subsequently.
For current purposes, the "standard" metric on Y is (that induced by)

φ~4ωQ agreeing with the standard metric on S4 in a neighborhood of
infinity. Using the corresponding Riemannian volume form, it is straight-
forward to show that there are constants C(p, δ) > 0 such that

\\fφ-l+δ+4/p\\LP(Ϋ)< C(p,δ)\\f\\LP , /eC 0 ° ° (Z) .
1 v ' l,δ

Since H/i^H^n = 11/HL* ^ f°U°w s fr°m the usual Sobolev embed-
^ ' 0 , α — 4/q

ding theorem for Ύ that if p > 4 then / h-> φ~ι+δ+4^pf defines a compact

mapping lFχ δ -• C°(Ϋ). For p < 4 and # < 4p/(4 - p ) the embedding

theorem gives a continuous inclusion Lp

ιδ-^ ^0,-1+^+4/^-4/^ ' a n c ^ ^ s ^s

a compact mapping if q < 4p/(4 - p). Since any negative power of φ is

integrable with respect to φ~4ω\, it follows from Holder's inequality that

LQ δ c LQ ^ whenever p>p and <J > ί' (for any /?, δ), and therefore

if l < / ? < 4 , 1 < q < 4p/(4-p), and δ' < δ then Lp

δ is compactly

embedded in Lq

Q δ,.
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Before placing appropriate Sobolev structures on sections of E and
its associated bundles, it is convenient to pick a useful gauge for the ini-
tial connection Ao, as mentioned above. By Corollary 23 of [12], the
L2 bound on E(A0) and the Lp bound (1.4) on the self-dual curvature
combined with the asymptotic behavior (1.2) of ω imply that there exist
"good" gauges for AQ on the annuli 2n < \z\ < 2n+ι and these gauges can
be patched together using the technique of [30]. Indeed, the hypotheses
on E(A0) imPly Λat there is a compact set K c Z and a trivialization
of E on Z - K such that, in this trivialization, the connection forms for
Ao lie in Lp

 ι+δ for some δ > 0. Consequently, the embedding results
given above imply that in this gauge, the bundle E extends to Y and the
connection Ao extends continuously to this bundle.

For form-valued sections of the bundle E and associated bundles,
define the weighted Sobolev spaces as in (1.5), replacing d0 there by
the covariant derivative induced by the connection Ao. Kato's inequal-
ity \d\s\\ < \dAs\ implies that the Sobolev inequalities remain valid for
bundle-valued functions as above, and in addition, the asymptotic decay
of the connection forms for Ao in the above-mentioned gauge implies that
if P > 4, δ > 0 and s e T(E) has dos e Lζ ι+δ, then there is a sec-
tion s0 e T(Z - K, E) which is constant in this trivialization such that
s - soe Lp

 δ(Z - K)\ simply stated, s = s0 at infinity.

As in [8], let Λ := *ωωΛ : A1'1 -• Λ°, and let P be the second-
order linear elliptic operator on functions P := iAdd . If dQ = dQ + dQ

is the covariant exterior derivative from AQ, let RQ denote the operator
iA(dQd0 - dodQ), so RQ is a bounded map from Lp

2 δ into Lp

0 δ+2 . By

(1.2), the operator φ2RQ has principal symbol which is asymptotic to
a translation-invariant elliptic operator in the sense of §6 of [22]. By
Theorems 6.1 and 1.1 of that reference, it follows that i?0 is a Fredholm
map between these spaces for all p > 1 for all but a discrete set of δ e R
and by Lemma 7.3 of the same reference, the index is independent of p .

More generally, if δ > 0 and p > 2 are given, the set (indeed, group)
^ = 3?(δ, p) of complex automorphisms g of E such that dog e Lp

 ι+δ

acts on the integrable connections on E in the usual way, each such con-
nection defining a holomorphic structure isomorphic to the given one. For
any connection A = g-AQ with g e & it follows from the Sobolev inequal-
ities and Holder's inequality that the corresponding operator R = R de-
fined as above replacing AQ by A also defines a continuous map Lq

2 δ, ->
LQ 2+δ,. Indeed, the Sobolev embedding results stated above imply that
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the operators Ro and Rg differ by a compact mapping L\ δ, -• Lq

Q 2+δ,
so one is Fredholm iff the other is and they have the same index.

It will now be shown that if δ is properly chosen, then the index of each
of these operators is zero and that each defines an isomorphism between
the relevant spaces. The key ingredients here are the Sobolev embedding
results mentioned above, and the classical Maximum Principle.

If u is a C 2 function on Z satisfying Pu < 0 and U c Z is open,
then since P annihilates the constants the Maximum Principle implies
that u must attain its maximum over U on d U. If, in addition, u lies
in Lp

χ δ for some p > 2 and some δ > 0 then since HΠL, ^ u = 0 by
Lemma 5.2 of [28], it must be the case that u < 0 everywhere on Z .
If s e Γ(E), then since P\s\2 = ±{Rs, s) + ±(s, Rs) - \ds\2

ω < \s\ \Rs\ it
follows from the same argument that the kernel of any of the operators R
acting on L2 δ is zero whenever p > 2 and δ is positive.

For p > 2 and noncritical δ > 0 the operator R thus has nonpositive
index. By Lemma 7.3 of [22] the index is independent of p, so the prob-
lem of determining when the index is zero is reduced to the case p — 2
where Hubert space techniques apply. Clearly, the index of R is the same
as that of Ra := φ aR : L2 δ —» Lo 2+s-2a -> ^ e la*ter operator being
more easily dealt with if a is appropriately chosen. The adjoint of Ra is
given by R*a(s) = φ4~2δ *Q [i(dd - dd)(pφ2{δ~a)sω)], where ω2 =: pω\
(so p -> 1 at infinity) and * 0 is the Hodge *-operator for ω0 acting on
4-forms. In particular,

(1.7) R*δ(s) = φ4~2δ * 0 [i(dd - dd)(psω)] e L2

Qδ for s e L2

22_δ .

By direct calculation,

idd((s,s)ω) - {s,s)(iddω) = =(i(dd - dd){sω) - 2sίddω, s)

ί1-8) +l(s, i{dd - dd)(sω) - 2siddω)

, , ,2 2

The operator on the left of this equation annihilates the constants and
therefore obeys the Maximum Principle. Replacing s by ps in (1.8),
it follows that the kernel of the operator R defined by L2

22_δ 3 s *-+

*0[i(dd - d~d)(psω) - 2psίddω] € L2

QA_δ is zero if 2 - δ is positive, and
therefore its index is nonpositive for such δ. By (1.3) and the Sobolev
embedding theorem, multiplication by iddω defines a compact mapping
L2

2 ^ —• LQ δ+2 so φ4~2δR and R*δ differ by compact operator and there-
fore have the same index. Combining all this information, it follows that
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if 0 < δ < 2 the operator R has index 0 and defines an isomorphism
L\ δ ^ Lp

0 2+δ for all p > 2, except for the finite set of δ e [0, 2] where
it fails to be Fredholm. (As a brief aside, note that (1.3) could have been
replaced with the condition that ίddω should be everywhere nonnegative
to obtain the same result.)

This completes the task of assembling the facts required for the linear
part of the proof.

2. Proof of Theorem 0.1: Nonlinear aspects

The following lemma, providing an a priori bounds for sequences of
Hermitian connections, demonstrates the generally useful (and not unex-
pected) fact that bubbling of curvature for such sequences can only occur
if the Hermitian metrics degenerate.

Lemma 2.1. Let BR c C2 be the ball of radius R centered at 0. Let ω
be a smooth positive (1, \)-form on B4 and let AQ be a smooth integrable
connection on the trivial bundle over B4. If Co > 0 and p > 4 are given,
then there is a constant C = C(ω, Ao) such that, for any matrix of smooth
functions g on B4 satisfying

(a) \\F(g A0)\\LHB4)<C0,

(b) \\AωF(g.A0)\\LP{B4)<C0,and

(c) | |logtrλ|| i., ( B 4 ) + || l o g t r / Γ 1 ! ! ^ < Co (for h := g*g), it follows

that

(2.2)(a) ll

and

(2.2)(b) | | / z | | L , w < C(\\AωF(g A0)\\L,(Bi

(All norms on forms are with respect to ω, and trh = trg*g = \g\2 of
course.)

Proof By the Cauchy-Schwarz inequality,

iAωddlog\g\2 < \AωF(g A0)\ + \AωF(A0)\

and similarly for / Λ ^ θ log | ^ - 1 1 2 . By Theorem 9.20 of [18] the Lp

bound (b) on the central component of the curvature and the Lι bounds

(c) imply uniform C bounds on log \h\, log \h~ \ over any given compact

subset of B4 , giving (2.2)(a).
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If (2.2)(b) fails then there is a sequence of automorphisms {gt} satis-
fying (a), (b), (c) and (2.2)(a) with

If ^40 and {g j were defined on a compact surface and satisfied these
conditions, the desired contradiction would follow from the argument on
pp. 645-646 of [8] which shows that a subsequence of {gt Ao} must
be uniformly bounded in Uχ and converge strongly in C° (that argument
relies heavily on the proof of Lemma 19 in [12], to give due credit). Given
such bounds on the connection forms, standard linear elliptic estimates
applied to the equation

iA(ddhj - dhj Λ hjιdhj) = ih{g]F{Aj)gj - hjF(A0))

give a uniform L2 bound on h. precisely of the form (2.2)(b).
To convert the local problem to one on a compact surface, it can first be

assumed without loss of generality that Ao is the trivial flat connection.
By Sedlacek's method [26], the bound (a) on the L2 norm of F(g. AQ)
implies that there is a finite set S c B3 where the curvature is concentrat-
ing. If K € B3 - S, it follows from the proof of Corollary 23 of [12] and
the if bound (b) on the central component of the curvature that there
is a subsequence of {gjA0} and gauge transformations so that the gauged
subsequence converges weakly in L\ and strongly in C° over K elliptic-
ity of the d-operator then implies that the corresponding automorphisms
{g. } will converge weakly in L2 and strongly in C1 on any Kf c K.

In particular, if K = Br - Br, is an annulus with 2 < r < r < 3 and
f ΠS = 0 , choose a cut-off function p such that p = 1 on Br, and
suppdp c Br and replace g. by exp(/?log(Λz

1/2)). After extending ω
smoothly to a positive (1, l)-form on P2 , the entire problem can now be
transferred to the compact setting of a sequence of integrable connections
on the trivial bundle over P2 , all satisfying (a), (b), (c) with B4 replaced
by P 2 and with Co replaced by a different constant. By the argument
mentioned above, there are in fact no bad points for the new sequence,
implying that the connections in the subsequence of the original sequence
are bounded in Lp

χ(Br>), thus giving the desired contradiction, q.e.d.
With the above lemma in hand, the nonlinear part of the proof of the

main result can now be presented.
Fix p > 4 and 0 < δ < 2 such that F(A0) € Lp

0δ+2 and such that RQ :

L2δ^Lζ δ+2 is an isomorphism; thus R = Rg defines an isomorphism

between these spaces for any g e & = &(p,δ). For later purposes, δ
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should be chosen to be less than \ / 2 . Two easy observations simplify
the problem of solving (1.1) for g € &. First, taking the trace yields
the equation PlogdetΛ = -tviF(AQ) for the determinant of h = g* g.
By choice of function spaces and the discussion above, there is a unique
solution u e L2 δ to Pu = -tr iF(A0) so it may therefore be supposed

without loss of generality that Ao already satisfies tr F(A0) = 0, and all
g €%? to be considered may be assumed to have unit determinant.

Second, note that the solution will not be unique without the imposi-
tion of a boundary condition at infinity, corresponding to the choice of
unitary structure on L^. This is fixed as follows: if r is the rank of
the bundle and h0 is a positive self-adjoint unimodular matrix of rank r,
let &(h0) := {g e 2?\g*g = h0 at oo, detg = 1 } . If gx, g2 e S?(Λ0)
both satisfy F(giΆQ) = 0, first make unitary transformations replacing
8i by gig]12 - Then for g := g2g\~ι and A := gχ Λo it follows that
#(^4) = 0 = F(g A), implying Plogtr#*# < 0 and hence that t r#*# < r
everywhere by the Maximum Principle. Since g*g is positive with unit
determinant, it follows that g*g = 1 everywhere, implying #j = g2 since
both are positive. Thus, modulo unitary transformations (i.e., gauge trans-
formations), a solution is uniquely determined by this boundary condition.

Now fix a positive unimodular matrix h0 and define the functional

J(g):=\\F(g.A0)\\P

L, = f
0, 2+S J 'y

Choose a minimizing sequence {g.} c C°° n^(A 0 ) for / and set hi :=

g*gt. Using the Cauchy-Schwarz inequality, iMog^ , g.) = iAdd logtrΛz

< 1^(^)1 + \F(gi Άo)\. Since P is an isomorphism onto LP

0 δ+2 , there is

a unique function υ. e L2 δ such that Pv( = \F(A0)\ + |F(^ z ^ 0 ) | , and the

L2 δ norm of υ. is uniformly bounded by a constant which is independent

of i from the Sobolev inequalities it follows φδυi is uniformly bounded

in C°(Z). Since /^logtr/^. - v.) < 0 the Maximum Principle implies

that logtτhi - vi attains its maximum at infinity (where it has the value

logtrΛ0) and therefore the functions logtr^ are also bounded in C°(Z)

independent of / since det h{ = 1, the same is true of the inverses h~ι.

The fact that it is possible to bound the the sequence {/zz} of unimod-

ular metrics uniformly in C°(Z) is the key fact which prevents all of the

difficulties encountered in [8] from arising. Returning now to the prob-

lem in hand, since LP

Q 2+δ c L 2 ( Z , ω0) the curvatures F. = F(g. AQ) =
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Sii^o + ^ o ^ Γ ^ ί Λ ) ) ^ 1 a r e uniformly bounded in L2(Z, ω). If the an-
nulus A(k,k+ 1) := {2* < |z| < 2k+ι} is dilated to the uniform size
A{\, 2), the pulled-back rescaled metric ώ is close to the standard flat
metric by (1.2), and this improves as k increases. Similarly, in the gauge
for Ao constructed earlier, the pulled-back connection approaches the triv-
ial flat connection in Lp

{ as k -> oo. The local a priori estimate given by
Lemma 2.1 (which applies to the annulus by applying it to a fixed finite
cover by balls) then translates back into a bound of the form

for some constant C independent of i and k. Here, h0 has been
smoothly extended to Z so as to be constant in a neighborhood of infinity.
Thus there is an a priori bound on h{ - hQ in Lp

2 δ and a subsequence
{Λ - h0}} can be found converging weakly in this space and strongly

in Cι(Ύ) to a limit h^, and the automorphism g^ := hxj^ e &(h0)
minimizes the functional / .

The rest of the argument is now as in [8]: by the results of §1, the oper-
ator R corresponding to the connection g^ Ao defines an isomorphism

onto LQ M . If s e L?2 δ <S> E n d ^ p satisfies Rs = ^{A^) then s must

be self-adjoint and trace-free; moreover, s e C°(¥) by the embedding the-
orem and lim,z, ^ 1̂1 = 0. Thus l-ts is invertible for sufficiently small t

and del{l-ts) = l + O{t2), and it follows that gt :=

lies in &(hQ) for such t. Since F(grAoo) = F(Aoo)-t(dd-dd)s + 0{t2),
it follows that Fig^A^) = (l-ήFiA^+Oit2) and therefore ^ ( ^ ^ Q ) =
0 else the functional / is not minimized at t = 0.

It remains only to remove the extra assumption (1.4) concerning the
decay of the central component of the curvature of Ao. As noted at the
beginning of §1, the fact that F(AQ) lies in L2(Z, ω0) is sufficient to
imply, by the techniques of [30], that there is a gauge transformation such
that the gauged connection extends to a connection on a bundle over Ύ
see, e.g., [27]. The metric defined by φ~4ω0 extends smoothly to Y and
is flat in a neighborhood of y^ so the twistor space for this metric is inte-
grable in a neighborhood W of L^ , being isomorphic to a neighborhood
of a linearly embedded line in P 3 . If the holomorphic bundle E defined
by AQ together with its unitary structure can be extended to W (or some
subneighborhood of L^ in W) then the extended bundle is trivial on
all lines near to L^ and standard flat-space twistor theory yields a cor-
responding connection in a neighborhood of y0 which is self-dual with
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respect to the flat metric in this neighborhood and whose pullback Ao to

X induces E near L^ . By Lemma D2 of [15], the full curvature tensor

F(A0) then lies in LP

Q 2+δ for any δ < V2, so the assumption (1.4) is

satisfied for the connection AQ .
The proof that E does extend amounts to solving the equations term-

by-term and proving convergence in some neighborhood: let Wo:= WnX
and σ : W -*W be the real structure induced from P3 so L^ = WQΠσWQ

and Wχ := WQ\JσWQ is defined by a degenerate section of <?(2). The
bundle E extends to Wχ by setting Eχ := ~E*σx for x e σW0, using the
given unitary structure to identify the two vector spaces along L^ . Since
W can be covered by two Stein sets, there are no obstructions to the formal
extension of E from Wχ to W . By simple extension theory, at each step
the extension of the bundle from one formal neighborhood to the next
can be chosen so that the unitary structure E ~ σ*£"* also extends to
that neighborhood. Thus the bundle with unitary structure extends to all
formal neighborhoods of Wχ in W, and then Wavrik's theorem [31] can
be applied to give a genuine (convergent) extension of the single transition
function for E in Wχ to a neighborhood in W whilst preserving the
unitary structure.

This completes the proof of Theorem 0.1.

3. Examples

For n = 0, Theorem 0.1 gives an analytical proof of the result of
Donaldson [11] on the correspondence between the instantons on S with
its standard metric and holomorphic bundles on P2 trivial on the line at
infinity. Similarly, for n = 1, the result gives an analytical proof of the
results of King [19] describing the same correspondence for instantons on
CP2 and holomorphic bundles on the blow-up of P2 at a point. For general
interest and to some extent for later purposes, the case of instantons on
CP2 will be discussed in a little more detail.

Instantons on CP2 are studied in [6] (see also [13]) where it is shown
that gauge equivalence classes of self-dual unitary connections on a bundle
over CP2 are in one-to-one correspondence with isomorphism classes of
certain monads on the twistor space F := {(z, w) e P2 x P 2 |z w = 0} for
P 2 . Explicitly, if #(p, q) := π\&ψ (p) ® π*2@r{q) and the bundle on P2

has total Chern class r -IH - kH H where H is the first Chern class of
the Hopf bundle, then the monads are of the form

(3.1) F : 0^Kχ(-l,0)^N®K*2(-U l ) - ^ ( 0 , 1 ) ^ 0 ,
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where Kχ, K2 and N are complex vector spaces of dimension k +
\l{l + 1), k + \l{l - 1) and n + k + ±/(/ 4- 3) respectively (cf. [6, (3.7)]).
Further, the unitary structure of the instanton is encoded in the fact that
the map b is determined from a using the antiholomorphic involution
σ : (z, w) H-+ (w, z) on F and definite Hermitian forms on N, Kχ (the
twistor projection can be identified with F 9 ( Z , I O ) H [ Z X W ] G CP 2 ).
Instantons for other compact groups are described by embedding the group
in U(*) and imposing holomorphic restrictions on the corresponding mon-
ads. The connection and curvature of the instanton on P2 corresponding
to a monad of the form (3.1) can be explicitly calculated using the methods
described in §4 of [6], though the calculation is rather involved.

For the SU(2) 1-instantons, the vector spaces Kχ, K2 are one-dimen-
sional and it is shown in §5 of [6] that the corresponding monads are deter-
mined up to isomorphism by the homomorphism <^(-l, 0) A <f(-l, 1)
modulo multiplication by an element of U ( l ) . Each such homomorphism
is given by multiplication by R w for some R e C 3 , and nonsingularity
of the monad forces RR< 1, thereby identifying Jί with the open unit
ball in C3 modulo the multiplicative action of U ( l ) .

The blow-up of P 2 at a point is isomorphic to the Hirzebruch surface
Hχ (the projectivization of the bundle ^ e ^ ( - l ) over Fχ), and by the
results of [7], isomorphism classes of holomorphic bundles on Hχ which
are trivial on the line at infinity are also described by certain monads.
Specifically, if ^ ( 0 , 1) is the pullback of the Hopf bundle on Ϋχ and
^ ( 1 , 0 ) is the dual of the tautological line bundle associated to the pro-
jectivization P ( ^ θ ^ ( - 1 ) ) then under the identification Hχ = P2 the
bundle ^ ( 1 , 0 ) is identified with the pullback of the Hopf bundle from
P 2 and (f(l, —1) with the line bundle of the exceptional line. These iden-
tifications are explicitly realized by viewing Hχ as a hypersurface in F :
if A e C3 is nonzero, Hχ ~ {(z, w)\A w = 0}, with projection onto
first factor realizing Hχ as the blow-up of P2 at [A] and projection onto
second factor realizing it as a Ψχ bundle over the line A w = 0 in P*
the twistor projection collapses the line at infinity z A = 0 to the point
[A] e CP2 at infinity.

Using the lemma of §1 of [7], a simple calculation as in §2 of that
reference shows that isomorphism classes of holomorphic vector bundles
on Hχ which are trivial on the line at infinity and have total Chern class
r - l(x - y) + kxy for x = cχ(t?(l, 0)) and y = cχ(<f(0, 1)) are in one-
to-one correspondence with isomorphism classes of monads of the form

(3.2) Hχ: 0^Kι(-l90)l>NφK2(-l, l)±K3{0, l ) - > 0 ,
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where Kχ, K2, K3 and N are complex vector spaces of dimension k +
\l(l+\)9k + \l{l-\)9k + \l{l+\) and r + fc + £/(/ + 3) respectively, i.e.,
the same as those in (3.1) (cf. [7] (2.2) ® ^ ( - l , 1)). There is no longer a
relationship between the maps a, 6 other than the condition that ba = 0.

The fact that these two monad descriptions have the same form is the
manifestation of Theorem 0.1 in algebraic form for the case of the Fubini-
Study metric on P2 . The restriction of (3.1) to H{ represents the pulling

back of an instanton on P 2 to F2JJF2 , and the construction of the hermitian
connection satisfying the anti-self-duality equations is represented by the
construction of an extension of (3.2) to a monad on F of the form (3.1).
For a detailed discussion on these matters, see [19].

For n > 1, a monad description of holomorphic bundles on the blowup
of P2 at n points is unavailable. However, it is not difficult to analyze
the structure of moduli of bundles on the blow-up of a complex surface
in terms of bundles on the surface itself, a task which is done in [9]. The
net result is a description of bundles on P2 almost as detailed as that
which exists for bundles on P 2 . In the simplest nontrivial case of rank
2 holomorphic bundles E with with cx(E) = 0 and c2(E) = 1 on P2 a
direct calculation of the moduli space is possible, as will now be indicated.
According to the Theorem 0.1, such bundles, when trivial and equipped
with unitary structures on L^ , are in one-to-one correspondence with the
SU(2) 1-instantons on nCΨ2 .

Let E be such a bundle on P 2 . By the Riemann-Roch formula the

holomorphic Euler characteristic of E is χ(E) = 1, and since H2(E) =
* <g> K)* either E or E* <g> K must have a nonzero holomorphic

section, where K denotes the canonical bundle; the latter is not possible
since E is trivial on L^ and hence on the generic line, to each of which
the restriction of K is negative. Thus E can be expressed as an extension
0->^f -> E -+S? ->0 for some rank 1 sheaf 5? on P 2 , and taking the
maximal normal extension of (9 in E gives the commutative diagram
with exact rows

0
I II I

(3.3)

0

Here L is the line bundle denned by the lower row, and since det£ is
trivial it follows that S?lτ{5?) — L* ®S?' for some torsion-free sheaf S?'
with S?'" = 0.
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Since L has a holomorphic section and E is trivial on L^ it follows

that L is a tensor product of line bundles associated with the components

of the exceptional divisor; i.e., cχ{H) cχ(L) = 0 where H denotes the

pullback of the Hopf bundle from P2 . Again using the Riemann-Roch

formula it follows that 1 = χ(E) = χ{L) + χ{L* <8> S*) = -cx{L)2 +
0 2

Since cx{L)2 < 0 with equality iff L is trivial, there are
only two possiblities, namely (1) L — & and S?1 = mx for some x e P2 ,
i.e., E has the form

(3.4) 0^&^E^mχ-+0

where mχ is the maximal ideal in ffχ or (2) Sf = & and L = (f(Lt) for
some 1 < i < n where Lt is the ith exceptional line, i.e., E has the form

(3.5) 0

Extensions of the form (3.4) are classified by the point x e P 2 , and
moreover it must be the case that x £ L^ else the triviality of E on
the line is violated. For each i = 1, ••• , n, ^>{Li)\L = ^ ( - 1 ) and

Hι(Ψ2,^(2Li)) re4Γ J/^L., <?(-2)) = C is an isomorphism; it follows
that up to isomorphism there are only two distinct bundles of the form
(3.5), namely the trivial and the nontrivial extension. The latter restricts
to the trivial bundle on L ; and is therefore a pullback from the blow-
up of P 2 at n - 1 points; the trivial extension is the reducible bundle

Whether L in (3.3) is either @ or ff{L^, the endomorphism group
of E always contains the composition ψ given by E —• L* ® 5^ «-*
L* —> L —• E\ since ψ = 0 it follows λl + λV is a n isomorphism for
any A ̂  0. Apart from the case of the reducible bundles (i.e., when the
lower row of (3.3) splits) the automorphism group of E consists exactly
of these morphisms. By triviality of E on L^ the section of E <8> L*
is nowhere vanishing there, and it follows that the quotient of the set of
unitary structures on E\r by the group of holomorphic automorphisms

oo

is either a point or R + , according to whether E is respectively a direct
sum @{L?) ®#(—L ) or is indecomposable.

For n = 1 the global structure of the moduli space is more easily ana-
lyzed using the monad descriptions given earlier. Using the same notation
as before, it is easy to check that the holomorphic bundle E(R) on Hχ

corresponding to the instanton R e B{ - {0} is nontrivial on the excep-
tional line Lo = {[z] = [A]} iff R A = 0 in terms of (3.3), these are the
bundles of the form (3.4) for x e LQ. The bundle E(R) is an extension
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0 -» <?(L0) -> £ -> ^ ( - L o ) -> 0 iff i? = /U for some l e C , where
#(L0) = *?(1, -1) now. Apart from the reducible connection, these last
connections can be regarded as those which are "centered" at the point at
infinity.

In the general case when n > 1, the map on moduli spaces induced
by pulling back holomorphic bundles to the blow-up gives an injection of
^ζ,-i *-> <^n

 o n t o a n ° P e n s e t T h e complement of the image of this
map consists of the bundles which are on the new exceptional line Ln .
Any bundle which is near to one of these must be trivial on all the other
exceptional lines, and is therefore a pullback from the space with the first
n -1 exceptional lines collapsed; thus a neighborhood of the new reducible
is isomorphic to a neighborhood of the reducible connection in the case
n = 1, i.e., isomorphic to a cone on P2 .

Thus, for a large family of metrics on nCΨ2 a realization of Donaldson's
famous moduli space [10] has been obtained. It has the correct boundary,
and in addition, the description shows that each such moduli space is
connected and is smooth away from the cone points.

This paper concludes in a somewhat speculative vein with some remarks
intended to indicate part of the motivation for the work here. If Y is any
simply connected 4-manifold with positive intersection form, X := P2 ft Y
admits almost complex structures, and after removing a point, each such
structure is homotopic to an integrable one [20]. The methods of this
paper and the theorems of Uhlenbeck indicate that the removal of a point
from a manifold does not cause irrevocable damage to gauge theory on
that manifold. It might therefore be hoped that gauge theory, together
with techniques such as those used here, can shed further light on the
differential topology of general smooth definite 4-manifolds.
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