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BRUHAT CELLS IN THE NILPOTENT VARIETY
AND THE INTERSECTION RINGS

OF SCHUBERT VARIETIES

JAMES B. CARRELL

1. Introduction

Let G be a complex semisimple Lie group with fixed opposite Borel sub-
groups B and B~ , and let H be the maximal torus B Γ)B~ . QD b D ί}
denote the Lie algebras of G, B, H respectively and W = N(H)/H is
the Weyl group of (G, H). A famous result in Lie theory says that the
cohomology algebra H\G/B; C) of the flag variety G/B of G isisomor-
phic to the coordinate ring A{JV Π ϊj) of the scheme-theoretic intersection
of the nilpotent variety / e g and the Cartan subalgebra ί). The purpose
of this paper is to extend this result to Schubert varieties Xw := BwB/B
in G/B, where w eW.

We introduce a locally closed stratification 3§w of JV by "Bruhat cells"
defined by putting 3SW = Ad(Bw~ιB)u, where u is the nilradical of b.
Jίw := &w is a Zariski closed irreducible cone in g such that Jlfw c yΓ
if and only if Xw C X . Recall that the scheme-theoretic intersection
of varieties Z{ and Z 2 in g is the scheme Zj n Z 2 defined by the ideal
I(Zι)+I(Z2) where /(Z.) is the ideal of Z. in the coordinate A(g) of g.
By definition, the coordinate ring A(ZιΠZ2) of Z j n Z 2 is A(g)/(I(Zι) +
I(Z2)). We will prove

Theorem 1. For each w e W, there exists a surjective degree doubling
homomorphism of graded C-algebras ψw: A(J^W n ϊ>) -• H\XW C) such

thatifXwCXy,

(1.1)

the diagram

1
* H

* H'

\xy;

1
C)

C)
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commutes, where the vertical maps are induced by the natural inclusions.
If Xw is smooth, then ψw is an isomorphism.

We remark that if wQ is the longest element of W, then JVw — J/*
and ψw is the classical isomorphism. The homomorphisms ψw are con-
structed by relating J^w D H and the zero scheme of the algebraic vector
field Ve on G/B studied in [1], where e is a homogeneous principal nilpo-
tent in b (see §2). Ve has exactly one zero, the coordinate ring A(Ze) of
the zero scheme Ze of Ve is [known to be] a graded C-algebra, and there
exists an isomorphism of graded C-algebras a: A(Ze) —• H(G/B; C).
Moreover, Ve is tangent to Xw at all smooth points, so one can con-
sider the scheme-theoretic intersection Ze n Xw . The coordinate ring
A(Ze Π Xw) is also graded, and an application of a result in [3] gives the
existence of a surjective graded C-algebra morphism aw: A(Ze n Xw) ->
H'(XW C) such that the analog of diagram (1.1) commutes when Xw c
Xy and such that aw is an isomorphism if Xw is smooth.

The key to proving Theorem 1 is thus to produce isomorphisms βw :
A{JVW Π ϊ)) —• A(Ze Π Xw) having the usual naturality properties. To do
so, we consider the morphism φe: U~~ -> g given by φe{u) = Ad(u~ι)e,
U~ being the unipotent radical of B~ . Letting p: U~ -> G/B be the
isomorphism p(u) = u B of U~ onto the open cell U centered at B
and noting that p~ι(Xw Π uy = :φJι(J^v), we can state

Theorem 2. The comorphism (φep~l)*' A(Q) -> A(U) induces, for
each w eW, a degree-doubling isomorphism βw: A{jywC\h) -• A(ZeΓ\Xw)
so that if Xw c X , then βw and βy commute with the natural restrictions.

It has been an open question whether the homomorphisms aw :
A(Ze Π Xw) —> H\XW C) are isomoφhisms. Recently this question has
been partially answered by the following two results.

Theorem [5]. IfG = SLn(C), every aw is an isomorphism.
On the other hand, Dale Peterson has shown
Theorem 3. Suppose ω is a nonminuscule fundamental dominant

weight for \j and let r e W be the reflection corresponding to the sim-
ple root associated to ω. Let w = wor, where wQ is W 's longest element.
Then dim c A(Ze Γ\XW) = dimc A(Ze), and consequently aw is not injec-
tive.

Theorem 3 is proved in the Appendix. Note that SLn(C) is the only
simple group in which all fundamental dominant weights are minuscule.
Hence for G simple not of type An there exist codimension-one Xw for
which aw is not an isomorphism.
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As a consequence of the fact that all aw are isomorphisms if G =
SLΠ(C), one obtains the

Corollary. For G = SLn(C), all ψw: A(JVW n ί>) •-+ H\XW\C) are
isomorphisms.

There is a conjectured definition of ψw not involving A(Ze Π Xw)
which we discuss since it yields information on when aw is an isomor-

phism. Let t e f) and set 3BW t := Ad(5tt;" 15)ί. Using a result of [5],
we show in Theorem 8 that H\XW\ C) is isomorphic with the graded
ring A(a)/gr(I(&Wtt) + /(&)). Here gr/ denotes the ideal generated
by the leading terms of the ideal / . Since gr(/j + /2) D gr/t + gr/2,
if / ( ^ ) = grl(&w t), we obtain a natural map from A(J/

W n ϊj) onto
H\XW , C), which turns out to be ^ . Furthermore, we then obtain that
ψw is an isomorphism exactly when g r ( / ( ^ t) + /(ί))) = I{JVW) + /(ί))

Some of the results in this paper have been generalized by Peterson [16]
to the Kac-Moody setting. Moreover, he has shown that the maps aw

etc. are all defined over Z (instead of C). An account of these results is
included in the expository article [9].

The paper is organized as follows. In §2, the basic theorem (Theorem
5) on the zero scheme of the homogeneous principal nilpotent is proven
and an example to illustrate the result is given. In §3, we prove the basic
result that φe induces a degree-doubling isomorphism from A^nty onto
A(Ze) and in §4 we extend this to the relative case φe w: A(J/

W n Ij) -»
A(Ze Π I J . In §5 we consider a semisimple deformation as a path to
an alternate definition of the morphisms ψw . In the Appendix, examples
that show the ψw are not always injective are given.

The author would like to thank Dale Peterson for contributing the result
in the Appendix. He would also like to thank Hanspeter Kraft and Shrawan
Kumar for their comments.

2. A description of Ί{Zυ)

2.1. The starting point of this paper is the problem of giving a geomet-
ric description of the zero scheme of an algebraic vector field o n l = G/B
obtained by exponentiating a principal nilpotent v € Q . Such a vector field
has its only zero at the unique Borel subgroup of G whose Lie algebra
contains υ . We will suppose v e b, so the vector field Vv assigned to υ
vanishes only at B e X. Recall U denotes the big open cell in X cen-
tered at B . Then the zero scheme Zυ of Vv is the affine punctual scheme
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in U supported at B associated to the ideal I{Zυ) generated by the func-
tions Vυ(f), where / e A(U), the affine coordinate ring of U, and Vυ is
viewed as a derivation of A(U). By definition, the coordinate ring of Zυ

is A(Zυ) := A(U)/I(Zυ). We will solve our problem in A(U~), where
U~ is the unipotent radical of B~ , using the isomorphism p: U~ —• U
defined by p{u) = uB . Let Ω = U~B be the corresponding big cell in G
and Π: Ω —• U~ the canonical map defined by the composition

where m(u, b) = ub and πχ{u,b) = u.

Theorem 4. Let v e b be a principal nilpotent. Then p*(I(Zv)) c

w generated by the components {with respect to any basis) of the
vΓ-valued map u H-> Π^ Ad(u~ι)v where Π^ denotes the differential of Π
αί ίA^ identity lG of G.

Proof For j ; € β, let Ŵ  be the corresponding right invariant vector
field on G. Thus

The holomorphic vector field V on X induced by W is

Let Ŵ  be the holomorphic vector field on U~ defined at u e U~~ by

Wy(u) = Um(Wy{u)) where Π/. Γ^Ω ^ Γ^C/~ stands for the holomorphic

differential of Π on the holomorphic tangent space Γ^Ω to Ω at w.

Let μ: Ω —> U be the quotient map μ(g) = gB. Then pYl = μ, and

consequently

vy = n*wy = (pn\wy = P.(n*%) = P*wy>

where μ^ and p% are analogous to Π^. Now let y = υ and define

Iv C A{U~) to be the ideal generated by all Wυ(f) where / e A{U~).

Lemma 1. p*(I(Zv)) = Iv , and p* induces an isomorphism p: A(Zυ)

Proof This is obvious from (2.1).
We now compute the ideal Iυ . Note that for u e UIυ

where Lu(g) = ug. Since YILU = LJJ for u e U



BRUHAT CELLS AND SCHUBERT VARIETIES 655

Wv{u) = Π^Wv(u) = Π m L κ A d ( z Γ V = LUΠ. Ad(u-l)v.

T h u s , L u - \ m ( W υ { u ) ) — Π + Ad(u~ι)v . N o w s u p p o s e t h a t vχ, υ2, ••• 9 υ k

form a basis of left invariant vector fields on U~ and write Wv = Σk

i=x a{vv

where aχ, , ak are in -4(t/~). Then

Hence av , α^ are the components with respect to v{(lG), ...,vk(lG)
of Π^ Ad(u~ι)v . Since aχ, , αfc generate /v , the theorem is proved.

2.2. We now bring in the homogeneous principal nilpotent e. Let
Φ c ϊ)* be the root system of (g, f)) and let Φ + be the set of positive
roots, i.e., the roots of (b, fj). Denote the set of simple roots in Φ +

by Δ = {a{, , α j and choose e. e Qa\0, where gα c g is the root

subspace corresponding to each a e Φ. We set e = eχ Λ V e{. Recall

φe(u) = Ad(u~ι)e and note φe{u) € e + \) + u~ . Thus

(2.2) ^( i ι) = e + ke(u) +
α>0

where every e_a € 0_α\O and ke(u) e ί). Hence /̂  is defined by the
condition φe(u) € e + ί).

Recall that e induces gradings on A(U) and >4(t/~) [13]. We now
show that I(Ze) and Ie are homogeneous and that /?* determines the
graded isomorphism. Let s e \) be the unique element such that (α , s) =
2 if 1 < / < /, and γ: C* —> G the one-parameter group such that
^'(l) = 5. Since U~ is //-invariant, y determines a C*-action C* x
U~ —• ί7~ via (ί, w) •-• ί w = yίOwyίO"1 and this determines the grading

kof A(U~) by setting A(U~)k := {f e A(U~)\t f = tkf for all
k

Likewise, 4̂({7) has a grading—namely the one associated with the en-
action (t, gB) —> γ(t)gB on i7. Clearly, /? is y-equivariant so p* is a
graded isomorphism, and the homogeneity of /, = p*(I(Ze)) and I{Ze)
are equivalent. Recall the height of a e Φ+ is ht(α) = j (α, s).

Lemma 2. £αcA v_a (a > 0) w homogeneous of degree 2(1 + ht(α)),
and the map ke is homogeneous of degree 2.

Proof We must show that t - υ_a = t

2{ι+ht{a))v_a where as usual

t ' V

a(
U) = Va^~l ' W ) N θ W
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xu ιγ(t))e

= Ad(γ(t)'i)Ad(u-i)Ad(γ{t))e

= t2 Ad(γ(t))~ι Ad(u~ι)e

= t2Ad(γ(ή)-1 (e + ke(u)

This establishes the lemma, q.e.d.
To summarize, we state
Theorem 5. Let e be the principal homogeneous nilpotent e = e{ +

h eι. Then the ideals Ie and I(Ze) are homogeneous in A(U~) and

A(U) respectively, and p: A(Ze) —• Ae is an isomorphism of graded C-

algebras. Consequently, Ae = H{X\ C). If φe: U~ -+ Q is the embedding

φe(u) = Ad(u~ι)e, then Ie is generated by the functions v_a = π_aφe

(a > 0), where π_a: g —• &_a = C is the canonical projection.
Example. Let

u =

1 0 0 0\
0 0
1 0

M 6 \)

denote an arbitrary element of U . We have

e =

Ό 1 0 0λ
0 0 1 0
0 0 0 1

,0 0 0 0J

and so

(2.3) A d ( « ')•<? =

ίa

31

0
1

0 λ
0
1

where
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« 1 1 = M 1 > α 2 2 = « 4 - " l > β 3 3 = « 6 - M 4 > «44 = " M 6 >

a2χ=U2-u\, fl31 = M 3 - M 2 M 4 + M 1 ( M , M 4 - M 2 ) ,

fl41 = -M 3 M 6 + M2(M4M6 - W5) + M,(-M 3 + UχU5 + U2U6 - M 1« 4M 6) ,

α 3 2 - M5 - U2 + M4(M, - M4) ,

fl42 = ~ M 3 + U6(U2 ~ M s ) + (" l - M 4 ) ( " 5 ~ M 4 M ό) '

The α j ; with / > j generate Ie . On the other hand, Ie is also generated
by the coefficients of the vector field

1=1 ι

which are given as follows:

bx=u2-u], b2 = u3-uχu2, b3 = -u{u3,

b4 = u5-u2 + u4(uχ - u4), b5 = -u3 + u5{u{ - u4),

b6 = -us + u6(u4 - u6).

Note that the coefficients b{, b4, b6 of We are matrix entries in (2.3).
bχ, , b6 give a simpler but theoretically less interesting set of generators
of Ie than the entries in (2.3).

3. The fundamental isomorphism φe

3.1. In this section we show
Theorem 6. φe induces a degree-doubling isomorphism of graded alge-

bras

Proof. We first show φe induces a surjective homomorphism φ*e\

Π (e 4-1))) -> Ae . By Theorem 5, it suffices to show φ*e is surjective.

This follows easily from the result of Kostant [13] that if {e, s, /} is an

sl2-triplet, then the map U~ x $f -> $ sending (u, x) to Ad(w)(x + /) is

an isomorphism onto e + f) + u~ . Here gf denotes the centralizer of / .

Notice that A{JV Π (e -f ί))) is not graded; however the usual grading of

Λ(fl) = C[zα, z_β,xi\a, β>0, 1 < i < /] ({*., zα , z_β} denoting the

usual dual basis of g*) defines a filtration FQC F{ C C F . C F . + 1 c

φof A{JT Π (e + ί))) such that F ^ . c F / + 7 , where F( :=
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Ae , being graded, also has a filtration F C F'i+ι such that F^FJ c iγ^. .

Since φ*e is not graded, we must show that for all m > 0, Φe(Fm) C F2'm .
A typical monomial M in i4(g) of degree at most m has the form

7 = 1

where Σ ^ + Σ ^ ^ J a n d all ia and r. are > 0. Then φ*e(M) = 0 if
ia > 0 for some a such that ht(α) > 1, and 0*(M) G /e if ia > 0 for
some a < 0. Hence we may assume

i = l 7 = 1

and then

which has degree 2Y^r.<2m. Therefore Φe(Fm) c /^^ as claimed. Let

GxA{jy n (e + ί))) := F o + Y,FJFi_x be the graded ring associated with

the filtration F . Thus φ*e induces

Gτφ*e: GrA(yK n(e + ϊ)))-+Gr Ae = Ae.

The final step in the proof is to define φe. By [14, p. 134], there exists a
canonical isomorphism

(3.1) j : A{0)/ff{I(JT) + i{e + ί,)) - GτA(Jf n (̂  + f>))

such that if / e A(Q) has degree < p and residue class / , then j(f) is

the element of Fp/Fp_ι determined by / . Now gr/(yf) + gr/(e + ίj) is

clearly /(^Γ) -f /(ί)), so we can define ^ by the composition

Since dim c A(JV Π f)) = dim c ^ e , ^ is as claimed and the theorem is
proved, q.e.d.

Consequently, we have an isomorphism

where v is the inverse of p.

3.2. Let /+ c A(t)) be the ideal generated by the homogeneous W-
invariants. The inclusion map /: f) —• Q induces an isomorphism ϊ :
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A{yV Π I)) -*'SW := Aft)/I*. In [1], it was shown that if π denotes

the projection of Q onto ί), then the map τe: u~ -> ί) given by τ^(rt) =

π[e, n] induces an isomorphism of graded algebras

(3.3) τe:Sw^A(υΓ)/exp(Ie).

It seems worthwhile to use the above results to reprove this.
Corollary. τe is a degree-doubling isomorphism of graded algebras. If

ωχ, , ωι are the fundamental dominant weights of ϊ) with respect to
<*!,-•• , aι, then Te(eu.) = z_t if 1 < i < I, where "bars" denote residue
classes.

Proof In fact, τe = τφe exp = ke exp. We show π* induces the inverse

of f. To see that π*(I*) c I{JT) + /(^), use the fact that for any / e

A(f))w, there exists a g e A{g)G such that i*g = f. Then π*f - g

vanishes on ϊ) hence π induces a morphism π : Sw —> A(J^Πij) which is

the inverse of Γ. Thus τ^ is an isomorphism. Next, let a = Σ aae_a e u~ .

We may suppose {ei, a^ , e_J forms an sl2-triplet. Hence

[β, a] =

Now for any fundamental dominant weight ωt,

= aa.

This shows that τ*(ωz) = z_ι:, and completes the proof.
3.3. To summarize the maps that have been introduced, we note the

following commutative diagram of isomorphisms:

A{Jfr\

(3.4)

/ί'(Λ' C)

It is well known that as a ίF-module, Sw is the regular representa-

tion. There is no obvious H^-module structure on Ae however. Recently,

Dale Peterson showed that there exists an action of W on U~ such that

the functions v_a of (2.2) are a fundamental system of generators for

A(U~)W, which is a polynomial ring. Moreover, φeπ: Sw -+ Ae is W-

equivariant.
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4. The fundamental isomorphisms φe w

4.1. In this section we prove Theorem 2. The main step is to show
that φ induces an isomorphism between A(JV Π ί)) and

ΛβtW:=A(U-)/Ie-

First we will show that p: A(Ze) —> Ae induces an isomorphism pw from

A(ZeΓ\Xw) onto Ae w . Note that p induces an isomorphism of varieties

between U~ΠBwB and UΠXW , hence an isomorphism p*w: A(UnXw) —>

A(U~ ΠBwB). Thus, by the definition of I , we obtain the isomorphism
epw: A(UnXJ/I(Ze) = A(ZeΠXJ - A(U~ ΠBUB)/Ie = A

Recall that yKw is by definition Ad(Bw~ιB)e . Put u e = φe{u).
Lemma 3.
(1) Φ^l{^w) = U~ Γ\BwB as varieties.

(2) I(U~ ΠBwB) c A(U~) is homogeneous.
Proof. For (1), suppose u-e = bχwb2-e for some u in U~ and bχ, έ2

in B. Since the centralizer G^ of e is contained in B, u = b[wb2 for

some &ί, *2 in # . Thus u e U~ ΠBwB so Φ'1^) = U~ Π~BwB.
That 0 e is an isomorphism follows from the fact that φe is a closed
immersion. For (2) note that BwB is stable under the 1-p.s.g. γ. Using
this one proves the homogeneity in the same way it is established for the
standard action in [15, p. 21]. This proves the lemma.

It follows that ^*(/(^,)) = I[ϋ" Π BwB) so we obtain a surjective
C-algebra homomorphism

Arguing as in (3.1) and (3.2), using the fact that I(^w) is homogeneous,
we obtain a morphism of graded rings

which composed with Gvφζ w yields a morphism

e ,

However, both ideals Ie and I(U Π BwB) being homogeneous, it is

trivial that p(Ie+I(U~nBwB)) = Ie + I(U~n5wB), so GτAew £ Aew

and we finally obtain φw as the composition of surjective morphisms
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In order to show that φw is an isomorphism, we will show that γw

is an isomorphism. Note first that dim<cA(yPr

w Π ϊ)) > dim£Ae w . Let
p: G e -> X be the projection defined by p(g e) = gB . Then we have
the commutative diagram

eΓ\p-ι

u~ +—— u

where *p(uB) = u~ι. Since yΓ is normal and G-e has even codimension

~ι{U)) A { T D p ~ \in JT = CΓ~e, one knows that A(G e Πp~ι{U)) = A{JT D p~\ϋ)).

d of e in G

for all w in

Therefore, since p~ (U) is a Zariski open neighborhood of e in G - e

c c

Now, p induces a morphism p^ sending p~l(Ae w) onto ^(p""^!/) Π
JVW n (e + f))) > the surjectivity holding for each w since it holds for the
longest element w0 . Thus

dimCAe,w = d i m C ^ ( A * , J ^ d i m C ^ ( Λ ; Π (̂  + W)

To finish the proof that γw is an isomorphism, it will be sufficient to note
that GτA(jVw n {e + ί))) = ^ ( ^ n ί)). Hence it suffices to check that

(4.1) g r ( / ( ^ ) + /(<? + W) = I{/rw) + /(W.

This is clear, however, since /(e +1)) is generated by linear functions and
I(J^W) is homogeneous. This completes the proof of Theorem 2 except
checking commutativity, which is left to the reader.

4.2. We now prove Theorem 1. Since Ve is tangent to the set of regular
points of Xw , it follows from [3, Theorem 5] that there exists a filtration
of A(Ze) such that there is a commutative diagram

QτA(Ze) —2— H\X\C)

GτA(ZeΠXw) -*L^H\XW'9C)

where a is an isomorphism of graded C-algebras, the vertical maps are
the restrictions, and the filtration on A(ZeΓ)Xw) defining GτA(ZeΠXw)
is the image of the filtration on A(Ze). By [1], A(Ze) is graded and
GτA(Ze) £ A{Ze). Similarly, by naturality, A(Ze n l j is graded (by
§2) and isomorphic with GvA(Ze ΠXW). Combining this with Theorem
2 finishes the proof of Theorem 1.
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5. The semisimple deformation

5.1. In this section we will seek a method for defining the morphisms
ψw without factoring through A(Ze f] Xw). The method is motivated
by the deformation argument employed in [8] and the computation of
H\XW C) in terms of the orbit W 1 of a regular t e ί). We first recall
that computation. Put W(w) = {v e W \ v < w} , where < is the partial
order on W associated to B.

Theorem 7 [3, Theorem 4]. Let t e ί) be regular. For each w e W,

there exists a degree-doubling isomorphism λw: A{\))/ gr I[){W{w~ ) t) -*

H\XW C) such that if XυCXw, the diagram

A(h)/grUW(w-ι) t) -*^-> H\XW\C)

~ι) t) —^ H\Xυ;C)

commutes, where the vertical maps are the natural restrictions, and
I^{W{w) -1) denotes the ideal of W(w) t in A(ί)).

Suppose V is an affine variety in g with defining ideal / c A(g). The
associated cone K(V) is by definition the affine variety in g determined
by the homogeneous ideal gr/. A basic result of Borho and Kraft [8]
says that gr/(G t) = I{JV) for any regular semisimple element t of g.
We will use this to determine the ideals I{^w) in a useful way. Recall
that s is the unique regular element of ί) characterized by the condition
(a., s) = 2 for / = 1, ••• , /. For each w e W, let Bw s denote the

Zariski closure of Bw~ιB s := Ad(Bw~ιB)s in g. We will prove
Theorem 8. Let w be an arbitrary element of W. Then the following

hold:
(1) Bw s is a normal, irreducible subvariety of g of dimension l(w) +

d i m c X . In addition, Bw-\ is smooth if Xw is.
(2) JVW is an irreducible component of the associated cone K(Bw s). In

particular, ξχI(Bw s) C I{/Vw).

(3) I(W(w~ι) s) = I(BW9S) + I(t)), where I{W{w)-s) is the ideal in
^(fl) of functions vanishing on W{w) s.

We obtain therefore a surjective degree-doubling algebra homomor-
phism

vw. A(β)/gτI(Bws) + /(ί,) - H\XW C)
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as the composition:

= A{0)/ffI(W(w'1) s) -C A(\>)lffIh(W(w-χ) - s) X H\Xw C).

Here we have used the fact that i*(grI(W(w) s)) c %τI^(W(w) s).

Clearly, i* is an isomorphism, so vw is an isomoφhism precisely when

(5.1) gr(I(Bws) + i m = grI(BwJ + I(t)).

Remark. Notice that unlike (4.1), (5.1) is not automatically true, the
difference being that I(Bw s) is neither homogeneous nor generated by
linear functions.

Since %τI(Bw s) c I(Jfw), there is a similar homomorphism

σw: A(z)/grI(Bws) + /(ί,) - A(JTw n ί)).

Corollary. For each w e W the following hold: (1) The following
diagram is commutative:

(5.2)

(2) i/̂  , ψw and σw are all isomorphisms if and only if{5Λ) holds.

9

The point of (3) is that when grI(Bws) = I(^w), ψw can be defined
without factoring through A(Zef)Xw). It seems to be an interesting prob-
lem to determine when this is so.

Parts (2) and (3) of the corollary follow from the above discussion. We
will first prove Theorem 8 and then establish commutativity of (5.2). We
begin with a useful fact.

Lemma 4. For each w e W, Bw s = Bw~ιB s.
Proof Since s is regular and semisimple, G s is G/H, where H

is the algebraic torus corresponding to f). The orbit map G —• G s
sends closed //-invariant subsets of G onto closed subsets of G J . In
particular, Bw~ιB s is closed in G s. Since G-s is closed, the lemma
is established, q.e.d.

It follows that Bw s is isomorphic with Bw~ιB/H and is bundle over
Bw~ιB/B = Xw-ι with fibre B/H. All the statements in Theorem 8 (1)
follow immediately from this.
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Next we will show that JVW is an irreducible component of K(Bw s).
In fact, it follows immediately from [14, Satz, p. 133] that

^ w,s/ w,s\ w,s w, s'

This implies that JVW c K(Bw s). For e e C*B-s, since te + s and s are

conjugate via B for any t e C, and this implies C*Bw~ιB s c Λ^i?^ s).
As 2?^ 5 is irreducible, all irreducible components of K(BW s) have the
same dimension, namely dim£Bw s [14, p. 131]. In particular, as JVW

also has this dimension and is irreducible, it is an irreducible component.
We next prove (3). By Lemma 4 and the fact that G s Πί) = W' - s, it
follows from BwB = \JX<W BxB that Bw s Π ί) = W(w'x) s. Hence it
suffices to show that the scheme theoretic intersection Bw s n ί) is reduced.
But 5^ 5 Π ί) is locally closed in G s Π I) and (? 5 Π ί) is reduced, so it
automatically follows that Bw s Π ί) is also reduced. This completes the
proof of Theorem 8. We omit the proof of the commutativity of (5.2).

Appendix
(after D. Peterson)

The notation of the Appendix is the same as that introduced in §§1 and
2. In particular Ze Π Xw will refer to the scheme-theoretic intersection of
the zero scheme Ze , associated to the principal homogeneous nilpotent e
in b, and the Schubert variety Xw = BwB/B in the flag variety X = G/B
of G. It was conjectured in [1] that the morphisms aw of §1, sending
the coordinate ring A(Ze n Xw) onto H\XW C), are isomorphisms. As
mentioned in the Introduction, this has now been established when G is
SLrt(C) [5].

The purpose of this Appendix is to prove the following negative result,
which impinges on Theorem 1 of this paper. Recall, {aχ, ••• , α7} is
the set of simple roots and ωχ, , ω{ the corresponding fundamental
dominant weights satisfying (ω / 9 θ! V ) = δr where ( , ) is the inner
product on ί)* and for α e Φ , av - 2a/(a, α ) .

Theorem. Suppose w e W has length l(w0) - 1 and write w = wQri,
where w0 is the longest element of W and ri is the reflection corresponding
to a simple root at. If the fundamental dominant weight ωt corresponding
to OL{ is not miniscule, then the inclusion iw of Xw into X induces an
isomorphism between the coordinate rings A(Ze) and A(Ze n Xw). Con-
sequently, dim c kerα^ = #{v e W\ υ ^ w} .
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Recall that a dominant weight λ is called minuscule if (λ, βv) is 0 or
1 for all positive roots β .

From now on, G will be assumed to be simple. The theorem is based
on the

Proposition. Suppose w is as in the theorem. Then I(BwB n U~) in

A(U~) is a principal ideal generated say by Fw € A(U~), and if ω. is

not minuscule, then Fw is in the kernel of the homomorphism from A(U~)

onto H\X\C) defined in §1.
Before proving this, let us show how to obtain the main result. Denote

by Fw in A(Ze) the residue class of Fw . Since the kernel of the natural
map iw from A(Ze) into A(Ze Π l ^ ) is the image of I(BwB Π U~) in
A(Ze), this kernel is generated by Fw . But a(Fw) = 0 by the Proposition,
and therefore Ψw = 0, so iw is an isomorphism. Using the long exact
sequence of cohomology for the pair (X, Xw) shows that dim c ker aw =
dimcH(X, Xw C) which is #{t> e W \ υ £ w} as asserted. This proves
the theorem.

We will break the proof of the proposition into a number of steps, the

first being the definition of Fw . Assume ω is any fundamental dominant

weight and V. — L(ω ) is the irreducible G-module with highest weight

ω.. Let V* be the dual G-module. If μ is a weight of V (resp. V*),

let V (resp. V*) denote the corresponding //-weight space. Let υ+ and

v* be highest weight vectors in Vt and V* respectively, and define Fw e

A(U~) as the lowest weight component of u υ+ , i.e.,

for ueU~ . Since the highest weight of V* is -wQ(ω )9 Fw{u) is simply

the ^ 0 (ω z ) component of u v+ .
The second step in the proof is to show that the variety V(FW) of Fw

in U~ is BwB Π U~ . The proof given here can easily be modified to
show that if Fw is viewed in A(G), then V(FW) = BwB. Note first
that BwB Π U~ is a Zariski closed subset of U~ isomorphic with Xw Π
U, where U is the dual open cell in X containing B. The Schubert
decomposition \JW'<W Bw1 BjB is a locally closed decomposition of Xw ,
and there is a corresponding one \Jw,<w(BwfB n U~) for BwB n U~ .

Suppose now that u e V(FW). Then u e Bw1 B for some w' e W,

so we want to show w < w . Since multiplication by w0 reverses order

and WQ = 1, it suffices to show wQwf > r.. If not, there exists a reduced

expression wQwf = r. >>>r. not involving r., so wQw\ωi) = ω z , i.e.,
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w'{ωi) = wo(ωz ) . Since u e Bw' B, u v+ = bri υ+ for some b e B

and n e wΉ, where H is the maximal torus corresponding to \). This

means b~ιu υ+ is a lowest weight vector, which is impossible since, by

the definition of Fw(u), the lowest weight component of u v+ is zero.

Hence w <w, and V(FW) c ΈwB Π U" .

To see the opposite inclusion, it suffices to show that BwB Π U~ c

F(/ς) since, as shown above, 5 w £ Π ί/~ = \JW><W Bw'B nU~ = BwBn

U~ . Thus let u e BwBnU~ . Then u v+ e Σλ>w{ω.) v

λ » s o (̂ *» u'v+) =

0 since ^(ω.) ^ ti;0(ωf.). (Indeed, w^ω^ = wr lω^ = w(ωi — ai).)

Consequently u G F ^ ) and we have established that V{FW) = BwB Π

In order to show that I(BwBΓ)U~) is (i 7^), observe that since BwBn

U~ is irreducible, it suffices to show that ^ ( i ^ ) has no multiple compo-

nents. To establish this, we show that the differential dFw is nonzero at

all points of BwB n U~ . We begin with a
Lemma. Let r. be the simple reflection such that w = rjWQ = wQri.

Then w{ωi) + ^-(ωp = 0.
Proof, r. exists since w^r{w^ has length one. Clearly wo(a.) = -a.,

so w{ωi) = wQr.(ω.) = wo(ωέ) + aj. Thus it suffices to show ^ ( ω ^ ) =
—ω.. This follows since w0 interchanges the positive and negative roots,
w2

0 = 1, and {w^ω^a]) = (ωf., tι;o(αj)) = - ( ω , . , ^ ) = - 1 . This
completes the proof.

Let fj be a nonzero element of g_a . For u e U~ , we have

/=0

= -(fj υ*, u υ*).

But, for u e BwBΓ\U~ , the ^(ω^-component of u-v+ is nonzero, and,
since υ* is a highest-weight vector of weight ω . , /)• v* is a nonzero

element of the one-dimensional space V* = V*(f.,. Since w(ωλ +
ωy > rj\wj)

r.{ω.) = 0, we deduce that (fj - υ*, u v+) φ 0. Hence dFw Φ 0 at

every point of BwB Π t/~ , so F ( F ) has no multiple components and
we deduce that I(BwB Π £/~) = (i 7^).

It remains to show that a(Fw) = 0 if ω( is not minuscule. Let P

be the stabilizer of the line Cv+ . Note that dim c G/P is the number

of positive roots involving a.. There exists a commutative diagram of
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C-algebra homomorphisms

A{U~/U~nP) - ^ - > H\G/P\C)

_ 2 l _ H'(X C)

where the vertical maps π* are induced by the natural projections π , α v

is the obvious lift of a, and aw

p is the lift of the isomorphism

ap: A(U'/U'ΠP)/I(Ze) - H\G/P; C)

established for G/P in the same way as a for G/B ([4] and [1]).
Since Fw(up) = Fw(u) if p e U~ Γ) P, there exists an element Gw of
A(U~/U~ Π P) of the same degree as Fw such that Fw = π*Gw.
Since degi^ = ht(ω. - iϋo(ω.)), it will follow that α( i^) = 0 if
\iX{ωi - wo(ωi)) > dim c G/P. Recall that if ω is a positive weight, say
co = J^fl.α,., then ht(ω) = E ^ z •

Lemma. L^ί pv = 5 Σ ) j β e Φ + j 8 v . Then for any positive weight λ,

Proof. Since r.(/?v) = py - oζ for 1 = 1, •••,/, it follows that
(/?v , α ) = l for all simple roots a . Hence (/?v , Σ f l i α / ) = Σ f l ι •

Now

= ( / , ω - ^(ω,.))

= ( / , ω.) - (wop
v, ω ) = 2(/?v , ω.)

> #{β e Φ + I (βv , ω,.) > 0} = dim c G/P

with equality if and only if (/?v , ωt) = 1 for all β involving a.. Conse-
quently, if ωt is not minuscule, then a^(Gw) - 0 which shows a{Fw) = 0
and finally completes the proof of the proposition.

Remark. The only simple group for which every fundamental domi-
nant weight is minuscule is SLW(C).
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