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Introduction

A Lorentz manifold M of dimension # is a smooth manifold together
with a Lorentz metric g. A Lorentz metric g on M is a smooth field
{8, } e Of nondegenerate symmetric bilinear forms g, of type (1, n—1)

on the tangent space 7, M. Namely let R""""! denote the real vector
space of dimension n equipped with the bilinear form

Q(x, y) ==X +x2y2+"‘+x,,yn-

A nondegenerate symmetric bilinear form g_ is of type (1, n—1) if
the pair (T, M, g ) is isometric to (R""™', Q) (cf. [31], [34]).

A pseudo-Riemannian manifold has a unique connection (Levi-Civita
connection) on its frame bundle. Henceforth geodesics, curvature, com-
pleteness refer to the Levi-Civita connection. It is notorious that com-
pactness does not necessarily imply completeness in pseudo-Riemannian
geometry. In this paper we consider this problem for Lorentz manifolds of
constant curvature which admit Killing vector fields of certain type. This
leads to some precise classification results.

Theorem A. Let M be a compact Lorentz manifold of constant curva-
ture k. Suppose that M admits a timelike Killing vector field. Then M
is complete, k < 0 and the following hold:

(1) M is affinely diffeomorphic to a euclidean space form with nonzero
first Betti number if k =0;

(2) some finite covering of M is a circle bundle over a negatively curved
manifold if k is a negative constant.

This will be proved in Corollary 3.2, Theorem 2.15, and Theorem 2.17.
A compact Lorentz manifold of k = 0 is called a Lorentz flat manifold.
It is known that a compact Lorentz flat manifold is complete by the result
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of Carriete [3]. We notice that dim M is odd for a compact Lorentz
manifoid of nonzero constant curvature k. For this, it is known that
a smooth manifold admits a Lorentz metric if and only if there exists a
nonzero vector field (cf. [31]). Thus the Euler characteristic x(M) is zero.
On the other hand, the generalized Gauss-Bonnet formula can be applied
to a compact pseudo-Riemannian manifold (cf. [1], [4], [24]). If dim M
is even and k # 0, then the Gauss-Bonnet formula certainly implies that
X(M)#0.

It is a famous result that if M is a Riemannian manifold, then the
group of all isometries acts properly on M . In particular the stabilizer at
any point of M is compact. If Iso(M) is the group of all isometries of
a Lorentz manifold M , then it is emphasized that in pseudo-Riemannian
geometry Iso(M) need not act properly and hence its stabilizer fails to
be compact. This fact causes difficulties in understanding the topology of
Lorentz manifolds (cf. [20], [22]).

Let b(x,y) = =Xy, — XV, + -+ + Xy,,5V5,,, be the bilinear form
on R**?. The quadric H"'?" = {x € R**"*|b(x, x) = —1} supports a
complete Lorentz metric of constant negative curvature, and moreover if
O(2, 2n) is the orthogonal group of GL(2n + 2, R) preserving the form
b, then Iso(H1 ’2") = O(2, 2n). There is the canonical exact sequence

1-2Z 502,20~ 5002, 2n) -1,

associated with the covering projection H"*" - H"» (cf. §1). Thus
we can find a Lie group U(1, n)~ of O(2,2n)"~ for which U(1, n)~
acts transitively and U(n)\U(1, n)” =~ H''?" . Since there exists a torsion
free discrete cocompact subgroup I' in U(1, n)~ , the compact complete
Lorentz manifold of negative curvature 3 Gt /T is called a (complete)
standard space form U(n)\U(1, n)~/T". It is a Seifert fiber space, namely
it admits a circle action which induces a timelike Killing vector field. (See
Proposition 2.19, also cf. [24], [25].) We shall give a necessary and suffi-
cient condition for a compact Lorentz manifold of constant negative cur-
vature admitting a Killing vector field to become a standard space form.
Theorem B. Let M be a compact Lorentz manifold of constant nega-
tive curvature in dimension 2n + 1. Suppose that M admits a nontrivial
Killing vector field. Let {("t}m <oo e a one-parameter group of Lorentz

transformations of M generated by the Killing vector field, and {¢,} lt]<oo

its lift to the universal covering space M. Denote by H the holonomy
image of {(zit}m<oo in O(2,2n)". Then M is a standard space form

Um)\U(1, n)~ /T ifand only if P(H) is compact where P: O(2, 2n)~ —
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O(2, 2n) is the covering map. In particular the Killing vector field is time-
like.

A related work for a complete Lorentz 3-manifold of constant negative
curvature to be standard has been found in Proposition 7.5 [25]. We re-
mark that a compact complete Lorentz manifold of constant negative cur-
vature is not always a standard one. In fact there is a three-dimensional
nonstandard Lorentz space form (i.e., there is a proper action of a sub-
group of O(2, 2) not lying in the closed subgroup PSL,(R)). Kulkarni,
Raymond and Goldman ([24], [25], [12]) classified three-dimensional com-
plete Lorentz manifolds of constant negative curvature. It has been shown
that if a complete Lorentz manifold of constant negative curvature is com-
pact, then it is finitely covered by a circle bundle over a closed surface of
genus > 2 with nonzero Euler class. One of the crucial results used to
prove this fact is that complete Lorentz 3-manifolds of constant negative
curvature with abelian fundamental groups are not compact. We general-
ize this result without completeness.

Theorem C. Let M be a Lorentz 3-manifold of constant negative cur-
vature. If the holonomy group of M is virtually abelian, then M is not
compact.

Using this theorem, we have

Theorem D. Let M be a Lorentz 3-manifold of constant negative cur-
vature. Suppose that the universal covering space M of M admits a non-
trivial complete Killing vector field and the developing map is injective. If
M is compact, then M is geodesically complete.

We relate Lorentz causal character of Killing vector fields to Lorentz
3-manifolds of constant curvature.

Theorem E. (a) There exists no compact Lorentz 3-manifold of constant
positive curvature which admits a spacelike Killing vector field or a lightlike
Killing vector field.

(b) If a compact Lorentz flat 3-manifold admits a lightlike Killing vector
field, then it is an infranilmanifold.

(¢) If a compact Lorentz flat 3-manifold admits a spacelike Killing vector
field and is not a Euclidean space form, then it is an infrasolvmanifold but
not an infranilmanifold.

(d) A compact Lorentz 3-manifold of constant negative curvature admit-
ting a timelike Killing vector field is a standard space form.

(€) There exists no lightlike Killing vector field on a compact Lorentz
3-manifold of constant negative curvature.

(f) If a compact Lorentz 3-manifold M of constant negative curvature
admits a spacelike Killing vector field and the developing map is injective,
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then a finite covering of M is either a homogeneous standard space form
or a nonstandard space form.

For the current development of compact Lorentz flat manifolds, the
reader should refer to [9], [14], [17], [28], [33] and for the three-dimen-
sional Lorentz manifolds of negative curvature and related topics to [7],
(8], [10}], [15], [29], [30].

This paper is organized as follows: In §1 we define Lorentz causal char-
acter of vector fields and collect some elementary facts about Lorentz struc-
ture. §2 is devoted to Lorentz manifolds of nonpositive curvature. The
above classification theorems are proved in §§3 and 4. Lorentz 3-manifolds
of constant curvature are discussed in §4.

I. Preliminaries

1.1. Let M be a Lorentz manifold with metric g. A tangent vector
v (#0) to M falls into the following types:

timelike ifg(v,v)<0,
lightlike if g(v,v)=0,
spacelike if g(v, v) > 0.
A vector field ¥V on M is timelike if all of the vectors V, € T,M are

timelike; similarly for lightlike and spacelike vector fields.
1.2. Consider the following quadrics:

1, Lntl, 2 2 2
S "={p=(x1,yl’..-,y"+l)€R "+|_x1+y1+'“+yn+1=1}’
L 2, 2 2 2 2
H n={P=(x1,x2,y1,~~-,yn)eR n‘_xl—x2+y1+"'+yn=—1}-

Note that """ ~R' xS", H""" ~S' xR”. Then S"" and H"" are
complete Lorentz (n + 1)-dimensional manifolds of constant curvature
1 and -1 respectively. The groups O(1,n + 1) and O(2, n) are the
orthogonal subgroups of GL(n + 2, R) that preserve the quadratic forms

2, 2 2
Q+(x1,y1, s V) =X Y Y
- 2 2 2 2
Q (X1, X%, ¥, ,¥,) ==X —X, +yi+-+y,.

Thus it follows that O(1, n+1) = Iso(S""") and O(2, n) = Iso(H"'") (cf.
[24], [34]). Let S"" be the universal covering space of S'*". Denote by
O(1, n+ 1)~ the corresponding lift of O(1, n+ 1) to a group acting on
st Similarly let O(2, n)~ be the corresponding lift of O(2, n) to the
universal covering space H"'". In this case there is the canonical exact
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sequence 1 —» Z — 0(2,n)~ 5 02, n) - 1, where Z is an infinite
cyclic central subgroup. We note the following. (Compare [24, §7].)

Lemma 1.3. Thegroups O(1. n+1)~ and O(2, n)~ are the full groups
of isometries of S"" and H"" respectively (n > 2).

Proof. Since s s simply connected for » > 2, it follows that
S""=8"" and O(1, n+1)~ = O(1, n+1). Recall that O(1, n)\O(2, n)
=H"" where O(1, n) is isomorphic to the stabilizer of O(2, n) at the
point p= (1,0, ---,0). If § isalift of the point p to H''", then from
the covering theory it follows that O(1, n)™ , the stabilizer of O(2, n)™ at
P, maps isomorphically onto O(1, n) and O(1, n)~\O(2, n)~ = H"".
Let Iso(H""") be the group of all isometries of H''". As Iso(H''") acts
transitively on H'*" it is sufficient to prove that Iso(H''") ;=0(1,n)".
For this, note that Tﬁfll’" is isometric to R'*". Taking the differen-
tials, we have a homomorphism: Iso(INIl’")!7 — O(1, n). Obviously it
is a monomorphism and so Iso(ﬁl’")p = O(1, n)~ because O(1, n)"~ =~
o(1, n).

1.4. Models for complete Lorentz manifold. The vector space R!" (cf.
Introduction) is a complete connected simply connected Lorentz manifold
of zero curvature. The Lorentz metric is obtained by Euclidean parallel
translation of the above form Q (cf. [34], [31]). We simply denote it by
R™'. The group of isometries of R™*' is isomorphic to the semidirect
product R""' % O(1, n).

The complete connected simply connected Lorentz n + 1 dimensional
manifolds of constant curvature k, with their groups of isometries are:

oQ1,n+1)",8""  ifk=1,
®R™*' x o1, n), R™Y ifk=0,
02, n)~, H"" if k=—1.

Notice that we may reduce the case of general k£ to those three cases by
scaling the metric. By (G, X) we shall mean one of the above geometries.
We say that a Lorentz spherical structure (resp. Lorentz flat structure,
and Lorentz hyperbolic structure) on an (n + 1)-dimensional manifold M
is a geometric structure modelled on X whose coordinate changes lie in
G where (G, X) represents one of the above geometries for k = 1,0,
and —1. A Lorentz spherical (resp. flat and hyperbolic) manifold M
is a smooth manifold equipped with a Lorentz spherical (resp. flat and
hyperbolic) structure. By the usual monodromy argument (cf. [23], [11],
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[34, Theorem 2.3.12], for example), given a Lorentz manifold M there
exist an immersion dev: M — X preserving the Lorentz structure and a
homomorphism p: n,(M) — G, where M is the universal covering space.
Moreover the holonomy map p extends to a homomorphism of IS’(\)_gﬂ )
into G. Therefore we have the developing pair (p, dev): (Iso(ﬁ ), M) —
(G, X) such that =, (M) C Iso(M).

By a Lorentz space form we shall mean a (geodesically) complete
Lorentz manifold of constant curvature. It is noted that a Lorentz mani-
Jold is (geodesically) complete if the developing map is a covering map onto
X . Then the Lorentz space form problem states that a Lorentz space form
is isometric (up to rescaling the metric by a constant) to a quotient X/T’
where T is a subgroup of G, that acts properly discontinuously and freely.
(Compare [34].)

2. Lorentz manifolds of nonpositive curvature

In this section we examine the structure of Lorentz manifolds of con-
stant curvature k where k =0 or k =—1.

2.1. Definition. Let {¢},_, be a one-parameter group of Lorentz
isometries on a Lorentz manifold M . The group {#,}/)<co induces the
vector field X on M . The vector X » is tangent to the orbit {w,(p)}“| oo
at p for each point p € M. Then the group {¢t}|t| <00 18 said to be
timelike if X is timelike; similarly for lightlike and spacelike (cf. 1.1).

Proposition 2.2. Suppose that H is a one-parameter group of R %
O(1, n). If H is either timelike or lightlike, then the closure H is non-
compact.

Proof. If H is compact, then it is conjugate to a subgroup of SO(n).
Choose the point p = (0, 1,0, --- , 0) € {0} xR" c R"*' . Thus the orbit
Hp sitsin {0} x R", and any vector field ¥ tangent to the orbit satisfies
gV, V) >0, which is impossible. Hence H is noncompact. q.e.d.

Let 1 -2 — 0(2,n)” Ll O(2, n) — 1 be the exact sequence associ-
ated with the projection P: H''" - H"" where .2 is an infinite central
cyclic subgroup.

Proposition 2.3. Let H be a one-parameter group of O(2, n)™ .

(1) If H is either timelike or lightlike, then the closure H is noncompact.

(2) If H is noncompact and P(H) is compact, then H is timelike.

Proof. (1) The above exact sequence induces the exact sequence 1 —
Z - Rx O(n)” — SO(2) x SO(n) — 1. Suppose that H is either
timelike or lightlike. If H is compact, then it is conjugate to a subgroup
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of the r&aximal compact subgroup O(n)~ . (Compare [18].) It follows
that P(H) c {1} x SO(n) up to conjugation. We can assume that P(H)
belongs to the maximal torus such that

1
cost —sint
sint cost

Taking y = (vV2,0,1,0,--- ,0) e H"", we have
P(H)y ={(V2,0, cost, sint, 0, -, 0)} ~ {vV2} xS'.

Under the correspondence H''" ~ S' x R", the orbit P(H)y is mapped
onto the set {(1, 0; cos¢, sin¢,0,--- ,0)} = S'. Thus any vector field V
tangent to the orbit satisfies g(V, V) > 0. This contradicts the hypothesis
on H. Therefore H is noncompact in O(2, n)~ .

(2) Suppose that P(H) is compact. Then H is conjugate to a subgroup
of Rx O(n)~. Since H is noncompact by the hypothesis, P(H) has the
following form in SO(2) x SO(n):

cos —sinf \
sinf cosé

cosAf —sinlf

sinif cosAf

\ "
So the orbit P(H)(x,, x,,y,, -+ ,»,) consists of the set
{(x,cosf — x,sin 0, x, sin 6 + x, cos @, - -- )|0€R}.

Any vector field V' tangent to the orbit P(H)(x,, x,, y,, - ,,) satisfies
gV, V)= —xl2 —x§ +yf + ---+yi = —1. Therefore P(H) (and so H)
is timelike.

2.4. Timelike Killing vector fields and geodesically completeness. Let
(G, X) be one of the following geometries:

®R™' %01, n),R™") ifk=0,
(02, n)~, H"" if k = —1.
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Let M be a Lorentz flat (or hyperbolic) manifold of dimension n + 1.
Then for any developing pair (p, dev): (Iso(}\? ), M ) — (G, X), we have
n,(M)C Iso(ﬁ). Put 7 =n,(M) and I' = p(n).

Proposition 2.5. If a compact Lorentz flat (or hyperbolic) manifold M
admits a timelike Killing vector field, then M is geodesically complete. In
particular, M is a Lorentz space form X/T.

Proof. Since M is compact, the timelike Killing vector field generates
a one-parameter group of Lorentz transformations {%}m <o ON M. Let

{¢t}|t|<oo be its lift to the universal covering space M. Put p({¢t}]t|<oo) =

Let g be the Lorentz metric of X such that Iso(X, g) = G. Since
{9} 1<o0 C Iso(M), note that H C G and H is a timelike one-parameter
group. Let & be the unit vector field associated with the H-action. Note
that g(&, &) =—1. Let f;L be the orthogonal complement of £ in T, X
for each x € X . Since g is nondegenerate on the vector space spanned by
&, the tangent bundle TX decomposes into the orthogonal sum & & &t
Then we define a Riemannian metric # on X by setting

h(X,Y)=g(X,Y)+2g(¢, X) -8, Y).

Since g is nondegenerate and positive definite on EX b s precisely a
Riemannian metric on X . Let % (H) be the centralizer of H in G. If
we note that o, ¢ = ¢ for each a € €;(H), then the Riemannian metric
h is invariant under the group %;(H) . In particular Z;(H) C Iso(X, h).
Since I' C €,(H), the pullback of h by the map dev deﬁnes a m-invariant
Riemannian metricon M. As M is compact, it follows that dev: Mo X
is a covering map. In particular, since X is simply connected, dev is a
homeomorphism and so M ~ X/I". q.e.d.
2.6. Consider the exact sequence (compare [2] for example):

1= B(T) = By (D) 2 DIff(X/T)’ — 1,

where Z(I') is the center of I', and ?Dm( X)(I“) is the centralizer of T
in Diff(X). Let g* be the induced Lorentz metric on X/I" from g.
Then the Riemannian metric /4 is invariant under I'", and induces a Rie-
mannian metric 2* on X/I'". We consider the subgroups Iso(X/T", g*)0
and Iso(X/T", h*)0 of Diff(X /F)O. The above exact sequence restricted
to these groups induces the following exact sequences:

1 — &) - &,(I) % Iso(X/T, g°)° — 1,



COMPLETENESS OF LORENTZ MANIFOLDS 577

1-%T)— Iso(X h)(l“) — Iso(X/I‘ h* )
Let H be a timelike one-parameter group as in Proposmon 2.5. Note that
H is closed in G and H C €(I"). It is not necessarily true that v(H)
is compact (i.e., isomorphic to Sl) in Iso(X/T, g*)o. However we prove
the following.

Lemma 2.7. Under the assumption of Proposition 2.5, there is a time-
like one-parameter group H' in &5(I) (also in %So x.nIM) such that
v(H') is compact.

Proof. Since % (H) C Iso(X, h), we obtain that H C ?}so(x, ().
Put n(H) = H" ,and note that v(H) = v'(H) = H" . Let H* beits closure
in Diff( X/l") Then H* sits in both Iso(X/T, g ) and Iso(X/T, h* )
Since Iso(X/T, h* ) is compact relative to the Riemannian metric 4",
follows that H* is compact.

Let S be the identity component of the inverse image u"(?). It
is easy to see that v_l(F) = v'—l(?) so that S C E;’]so(x’h)(l"). The
above exact sequence induces the exact sequence of covering groups 1 —
ZI)NS - S5 H — 1. By Propositions 2.2 and 2.3, H (= H) is
noncompact. Thus S is noncompact, and #(I')N.S is nontrivial. Passing
to the universal covering group if necessary, we assume that S is simply
connected. Then S is isomorphic to a vector space, and H is isomorphic
to a straight line through the origin in the vector space. We can choose a
sequence of one-parameter groups {Hi'} in S such that

(i) the sequence H, convergesto H .
(ii) v(H]) is compact, i.e, | » #)NH — H —S' -1 isan
exact sequence.

It suffices to show that some Hlf is timelike. Let ' be a unit vector field
induced by Hi' for each i. If P: X — X/T is the canonical projection,
then W' = P (V') isaunit vector field induced by v(H)). Since {v(H,)}
converges to v(H) by , (W' } converges to a timelike vector field W .
Suppose that all H are not timelike. Then there exists a sequence {x;}

in X such that g(V V ) > 0. Note g(V )_ g ( P(x WP(x))

Since {P(x;)} hasan accumulatlon point x in X /F {w, ( )} converges
to W, and therefore g (Wx , W,)>20. This contradicts that W is time-
like.

2.8. A Seifert fiber space is a (locally trivial) fiber space over a (smooth)
orbifold whose typical fiber is S ! , and exceptional fiber is homeomorphic
to a circle (i.e., an orbit space s /F by a cyclic group F). See [6], [27]
for higher-dimensional Seifert fiber spaces.
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Theorem 2.9. Let M be a compact Lorentz flat (or hyperbolic) man-
ifold. Suppose that M admits a timelike Killing vector field. Then M
admits an isometric action of a timelike one-parameter group of a circle
S', and further is a Seifert fiber space over a nonpositively curved orbifold.

Proof. Since H' is a closed subgroup of Iso(X, ) by Lemma 2.7, H !
acts properly and freely on X . It induces a principal bundle H' — X 5w
where W = X/H'. Suppose that H' induces a vector field & . Then the
Lorentz metric g satisfies g(&', &) < 0. Since #,: & — TW is an
isomorphism, the restriction of g to é'l defines a Riemannian metric g
on W . It is easy to see that # maps the group %G(H') into Iso(W, g).
We obtain the equivariant principal bundle

H — (Z,H), X)L (Iso(W, 8), W).

The intersection I'N H' is an infinite cyclic group by (ii) of Lemma 2.7.
Corresponding to the above bundle, there is an exact sequence 1 — I'nN
H-T-0-1.

Since T acts properly discontinuously and H' acts freely, Q acts prop-
erly discontinuously on W . In particular Q is discrete in Iso(W, 2).
Therefore we have a Seifert fiber space

s' > x/;T-w/Q,

where S' = H'/TnH'. Since H' is timelike, S' acts as Lorentz isome-
tries of a timelike one-parameter group on X/I" with respect to g*. Fi-
nally we prove that W/Q is a nonpositively curved orbifold. Let Y,
Z be orthonormal vectors of a plane in é;l such that 5, (Y) = Y, and
n,(Z) = Z, which span a plane section of T,’(x)W. Applying O’Neill’s
formula [31] to the above principal fibration yields that 4k(Y, Z) =
c+3g((Y,ZY ,[Y,Z)) where k is the sectional curvature of W with
respect to 2, c is the constant sectional curvature of X, and 7~ stands
for the vertical component. Since g([Y, Z]” ,[Y,Z]”)<0 and ¢ <0,
we have kK <0.

2.10. Structure of (Q, W). Let k be the sectional curvature of W as
above. It satisfies that K <0 or k < —% accordingas c=0 or c=—1.

Proposition 2.11. (i) Let k < 0. Suppose that Q is virtually polycyclic.
Then W is necessarily isometric to the Euclidean space (i.e., k =0), and
Q is a virtually free abelian group.

(ii) Let k < —% . Then Q has no normal solvable subgroup.

Proof. W/Q is a compact nonpositively curved orbifold. (i) is the
special case of Corollary 3 of Gromoll and Wolf [16] (cf. also [26]). In
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fact suppose that a normal solvable subgroup of Q contains an element
of infinite order. Then W is isometric to the product E x D where E is
a Euclidean space such that 0 < dim E = rank of a normal free abelian
subgroup of Q.

For (ii) we need some lemmas. Let p be the distance function on W
induced from g. For each a € Iso(W, g) we have the displacement
function J, (w) = p(w, aw). Put C = {w € W|J (w) = 0} (ie., the
fixed point set of «). It is known that C_ is convex.

Lemma 2.12 [16]. If C # O is closed, convex and invariant under an
element o€ Q then CNC, #J.

Using this lemma we can prove the following (cf. [16, Theorem 1]).

Lemma 2.13. Let T be a torsion solvable subgroup of Q. Then T has
a fixed point in W . In particular T is a finite group.

Proof of (ii). If we note kK < —1, then a normal solvable subgroup of
Q has no element of infinite order by the proof of (i). Let T be a normal
solvable subgroup of Q. Then T is a finite group by Lemma 2.13, and
so Cp = ﬂaer C, is nonempty, convex by Lemma 2.12.

l,n n
=5

Since T is normal in Q, C, is invariant under Q. Let H -H
W be the principal bundle as before. Then Y = n_l (C;) isa T'-invariant

contractible submanifold of H'*" , and thus cdI"' <dimY . Since cdI =
dimH"" | it follows that Y = H""" or W = Cr. As T acts as isometries
on W, we obtain that T = {1}.

2.14. Lorentz flat structure. A Lorentz flat manifold is an affinely flat
manifold (cf. [10], [11]). We can classify compact Lorentz flat manifolds
more clearly (cf. [17], [33]).

Theorem 2.15. Let M be a compact Lorentz flat (n + 1)-manifold
(n > 0). If M supports a timelike Killing vector field, then M is affinely
diffeomorphic to a Euclidean space form with nonvanishing first Betti num-
ber.

Proof. We have shown M =~ R""! /T’ which admits a Seifert fibration:

s' - rR™! /T i W/Q. Here W/Q is a compact Riemannian orbifold
for which the sectional curvature k of W is nonpositive by Theorem 2.9.
Since the fundamental group I is virtually polycyclic by the result of [13],
Q is also virtually polycyclic. Proposition 2.11 implies that W =R" (i.e.,
k =0) and Q is virtually free abelian. We prove that I'" is also virtually
free abelian. Passing to a subgroup of finite index if necessary, Q is a
free abelian group in which W/Q is an n-torus T". Now the above
fibration is a principal circle bundle over T" . It is sufficient to show that
the Euler class of this bundle vanishes. Let ¢* and k" be the induced
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sectional curvatures on R"*'/I" and T" respectively. In our case we have

¢* =k*=0. Let ¢ be a unit vector field induced by the circle S'. If
we apply O’Neill’s formula to the principal bundle, then [X, Y] = 0
for X,Y € &-. (Compare the proof of Theorem 2.9.) Let w be a real-
valued 1-form on R™*! /T’ defined by w(£) =1 and w(él) = 0. Since
the Lorentz metric g* (cf. 2.6) and &' are invariant under S', w isa
connection form in R"*'/I". There is a unique 2-form Q on T" such
that dw = P*Q and the characteristic class [Q] defines the Euler class of
the above bundle (cf. [22]). Since & consists of horizontal vectors for
w , the above fact implies dw(X,Y) =0. Thus Q=0 on 7", and the
Euler class of the above bundle is zero.

If a compact complete affinely flat manifold has a virtually free abelian
group as the fundamental group, then it is affinely diffeomorphic to a Eu-
clidean space form. (Compare [14], [10], [19] for example.) Moreover, a
compact Euclidean space form M admits a maximal T* action if and
only if rankH (M, Z) = k (cf. [5], [34]). And so our Euclidean space
form has the nonzero first Betti number.

2.16. Lorentz hyperbolic structure. When M is a compact Lorentz
hyperbolic manifold, we can prove

Theorem 2.17. Ifa compact Lorentz hyperbolic manifold admits a time-
like Killing vector field, then some finite covering is diffeomorphic to a circle
bundle over a negatively curved manifold.

Proof We have M ~ H"'"/T". By Theorem 2.9 and its proof there
exist the principal fibration H — H""' - W and the exact sequences:

1 — H — &/(H) 5 Iso(W,2)

(1) T 1 1
!l —— 2 — I — (0] — 1

Note k < —% for the sectional curvature k of W . If we can find a torsion
free normal subgroup Q' of finite index in Q, then a finite covering
of H""/T is a circle bundle over a Riemannian manifold W/Q' of the
sectional curvature k* < —% . The rest of proof is devoted to find such a
group Q' .

let 1 -2 - G5 O(2, n) — 1 be the exact sequence where G =
O(2, n)” . This induces the exact sequence

1 -2 > GH) 5 B (PH)) - L.

Put I' = P(IN. As O(2, n) c GL(n + 2, R), we consider the real al-
gebraic closure of Ea”o(z’n)(P(H')) . If &/ is its identity component, then
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&/ centralizes P(H') because Bo@.m(P(H')) is the centralizer of P(H').

Let v': &/ — &/ /P(H') be the quotient map. Passing to a subgroup of fi-
nite index if necessary, we assume I ¢ &/ . Put Q' = v'(I”). Combining
these with (1) yields the following commutative diagram:

1 — FnI' — T & — 1

) ! vl vl
1 —- v@&)NQEe — Q0 — 0 — 1.

Then we note Q ~ Q' by Proposition 2.11.

On the other hand, if # is the radical of ./, i.e., a unique maxi-
mal connected solvable algebraic group, then there exists a complemen-
tary semisimple algebraic subgroup . C & . ¥ maps onto &/ /% . The
canonical projection of &/ /P(H') onto &/ /% maps Q' onto a subgroup
Q" of &/ |/ . Since the kernel of this projection is a solvable Lie group
Z/P(H'), Q is isomorphicto Q" .

Consider the following exact sequences:

1 — n# — & — A/FZ — 1

(3) T 1 1
1 —- #n# — ¥ — Q0" — 1,

where W is the inverse image of Q”. Since both . and % are alge-
braic, N is a finite central subgroup and so ¥ is a finitely generated
subgroup lying in GL(n + 2, R). Applying Selberg’s lemma shows that
¥ contains a torsion free normal subgroup of finite index. Such a group
maps isomorphically onto a torsion free normal subgroup of Q" . There-
fore there exists a torsion free normal subgroup of finite index in Q. Thus
the theorem is proved.

2.18. Examples of standard space forms of dimension 2n+1 (n>1).
It is difficult to determine the topology of the orbit space W /Q. We shall
give examples of compact Lorentz hyperbolic space forms with timelike
circle actions in higher dimensions (cf. 4.6). In the next theorem we con-
sider the case where a compact Lorentz hyperbolic manifold with timelike
Killing vector field becomes a standard space form.

Let Q(z, w) = -Z,w, +Z,w, +---+Z, ,w,,, be the Hermitian form
on C"*'. The group U (1, n) is the subgroup of GL(n + 1, C) pre-
serving the form Q. There is the natural embedding of U(1, n) into
0O(2,2n). Then U(l, n) acts transitively on H''?" whose stabilizer is
isomorphic to the unitary group U(n). Here H''*" is identified with
the set {z € C"'|Q(z, z) = —1}. Let U(1, n)™ be the lift of U(1, n)

corresponding to the universal covering space H"?". If T is a discrete
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cocompact subgroup of U(1, n)~, then we have a compact Lorentz hyper-
bolic space form H'**"/T ~ U(n)~\U(1, n)~/T. (Note U(n) =~ U(n)~.)
Such a Lorentz manifold is called a standard space form following Kul-
karni [24]. Let Z(1, n) be the kernel of the canonical projection of
U(1, n) onto the group PU(1, n) consisting of biholomorphic transfor-
mations of complex hyperbolic space HZ, The center .Z'(1, n) is iso-
morphic to S'. If m is the lift of Z (1, n) to U(1, n)~, then
_"Z"(Tn/) is isomorphic to R’ and is timelike by Proposition 2.3.

Proposition 2.19. H''?" /F is a Seifert fiber space over a complex
(Kdhler) hyperbolic orbifold HY ¢/T', where the circle acts as a timelike one-
parameter group of M tragsformatzons

Proof. Put A=Z(1, n)NnT and consider the exact sequences:

I — ZWn — Ul,n” 2 PU,R) — 1
T 1 T

1 — A — I — T — 1.

Then A is infinite cyclic if and only if I" is discrete. If we prove that T’
is discrete, then the result follows from the following diagram:

Z(@ ) — UmN\UQ, " =R"" — Um\PU(1, n)=H
1/A ~1/r~ /T
s’ — H'*/T — H}/T.

Suppose that I' is not discrete. Then we will show that it contradicts
the cohomological dimension chl = 2n + 1. Let I be the identity
component of the closure of I' in PU(1, n). Then it is known that I
is solvable (cf. [32, Lemma 8.24]).

Case A. If I_“0 is compact then the fixed point set of F 1s the to-
tally geodesic subspace H of H (n > k), and T leaves HC invari-
ant. Moreover, I' lies in the subgroup P(U(1, k) x U(n — k)), and
thus we obtain I ¢ U (1, k)xU (n — k). On the other hand, since

U(l, k)xU (n—k) acts transmvely on H''% , T acts properly discontinu-
ously on H"'% 5o that chT < 2k+1. This contradlcts the cohomological
dimension of T .

Case B. Suppose that I_"0 is noncompact. Then its normalizer N (f'o)
is conjugate to a subgroup of the maximal amenable Lie subgroup .#" x
(U(n — 1) x R*) of PU(1,n). Here ./ is the (2n — 1)-dimensional
Heisenberg Lie group. (See for example [21], [30].) Since I is solvable,
we may assume that = N X (T"'l x R*). Then it is easy to see

that N(f‘o) = % (N(T"') x R*) where N(T""!) is the normalizer



COMPLETENESS OF LORENTZ MANIFOLDS 583

of the maximal torus in U(n — 1). Note that N(T"')/T""" is finite.

Now I'c N (I_"O) , passing to a subgroup of finite index, we can assume
IF'cA % (T”—l x R"). It follows from the above exact sequence that
I'c# xH where H=T""'xZ(1,n) xR*.

Let _Let y: A x H — H be the natural projection. If y/(l:) cT"
Za, ) (1, n), then ¢hT = dimAs” +d1m.‘:2—’m) = 2n, which is 1mposs1ble
On the other hand if t//(l“) has nontrivial R*-summand, then the inter-
section /V NT is trivial. For this, R acts as left multiplication on ./,
but # NT is a lattice of .#". Now I must be a free abelian group, i.e.,
isomorphic to a subgroup of H. If we note that P = /" x m) is
the nilradical of .#° x H, then the intersection [N P is uniform in P
(cf. [32, Theorem 3.3]). But this is impossible because I'NP is abelian.
Hence the proof is complete.

Theorem 2.20. Let M be a (2n + 1)-dimensional compact Lorentz
hyperbolic manifold which admits a one-parameter group of Lorentz trans-
formations {¢,}, ... Let (p,dev): (=, {4, }|t|<oo’ — (T, #H,H"*™)

be the developing pair and 1 — Z — 0(2, 2n)~ 5 0(2, 2n) — 1 be the
exact sequence associated with the projection P: B — H"?. Then
P(H) is compact in O(2, 2n) if and only if M is a standard space form
U(n)"\U(1, n)~/T. In particular {¢t}|tl<oo is a timelike one-parameter
group. ~

Proof. The sufficient condition follows from the fact that H = Z'(1, n)
and P(H)=Z(1, n) is a circle (cf. 2.18).

Put H = P(}NI ). Suppose that H is compact in O(2, 2n). Then
H is a circle embedded into the maximal connected compact subgroup
SO(2) x SO(2n) of 0O(2, 2n)0 . Consider the extreme case where

i cosf —sinf » cosf —sinf .o cosf —sind
“\\sinf cosf sinf cos@ sinf cosf )/~
By direct calculation from the Lie algebra theory it follows that the cen-

tralizer %0(2’2,,)(H) =U(1,n).
The above projection P induces the exact sequence:

1=-Z - %0(2 any~(H) = %O(Z,Zn)(H) — L

Then it follows %0(2 2n)~(1‘~1 )= U(1, n)~ . Furthermore since H central-
izes the holonomy group I', we obtain I'c U(1, n)~ . As U(1l, n)~ acts
properly on H , there is a U(1, n)” -invariant Riemannian metric on
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H'? . M is compact and so we obtain a zm-invariant complete Rieman-
nian metric on M by the pullback of dev. Therefore dev is a homeomor-
phism of M onto H'"**" and hence M ~ H""*"/T ~ U(n)"\U(1, n)~/T.
This proves the extreme case.

In general H has the following form:

cosa,00 —sina 6 cosa,f —sina,f
. X . X
sing,0 cosa, 0 sina,f  cos a20

9 (cgsake —smak()) (1),
sing, 6 cosa,6

for nonzero numbers 4, a,, --- , q, . Then it turns out that ‘_50(2’2,,)(H )
becomes a smaller subgroup than that of the extreme case. In fact
%0(2’2,,)(}1 ) belongs to the group G with the following possibilities:

G = {1} x SO(2n),
G=U(l,k)xSO@2n-2k) (1<k<n),
G = SO(2) x SO(2n).

Let G be its lift to 0O(2,2n)~ . Then we notice that G acts properly
on H"*". Since T C G, we can apply the same argument as above. If
G = SO(2n), then T must be finite. If G = U(1, k)~ x SO(2n — 2k),
then cdT' <2k +1<2n+1.If G=R'xSO(2n), then c¢dI' = 1. Since
c¢dI"=2n+ 1, these are impossible. Hence the theorem is proved.

3. Lorentz spherical structure

Lemma 3.1. Let H be a timelike, lightlike, or spacelike one-parameter
group of O(1,n +1). Then the closure H is compact, and every one-
parameter group of H is spacelike.

Proof. Put £ = H . Suppose that # is noncompact in O(1, n+1).
Since # is an abelian subgroup of O(1, n+1), the group % is conjugate
to a subgroup of the maximal amenable group Sim(R") = R" x(0O(n)xR")
(cf. [14]). Consider the following cases.

Case 1. # C R" x (0O(n) x R*) for which the projection onto R” is
nontrivial. The orbit %Zp at the point p = (0,0,1,0,---,0) e S" of
s is homeomorphic to a horosphere, and in fact the orbit is asymptotic
to a straight line lying on the light cone in R’ "+ The orbit H p will be
a horocycle. So there are vector fields V', W such that g(V, V) <0 and
g(W, W) > 0. This contradicts the hypothesis on H .
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Case 2. # c O(n) x R* . Suppose that the projection onto the first
summand, P,(#), is nontrivial. Then P (%) lies in the maximal torus
in O(n). Choosing the point p = (0,0,1,0,---,0) €S"" shows that
the orbit of # at p is contained in the sphere S” c S'*". Any vector
field V' tangent to the orbit satisfies g(V, V) > 0, while choosing the
point p’' = (1,v2,0,---,0), we see that any vector field W tangent
to the orbit at p’ satisfies g(W, W) < 0. Hence H cannot be timelike,
lightlike, or spacelike. On the other hand if # c R*, ie., # = R",
-then the orbit #p at the point p = (1, 0, V2,0, -, 0) is the subset
{(cosh@,sinh6,v2,0,---,0)|, 6 € R'}. Therefore it is easy to find
vector fields V', W tangent to the orbit #p which satisfy g(V, V) >0
and g(W, W) < 0. This yields a contradiction.

Now, H is conjugate to a subgroup of O(n + 1). If a one-parameter
group of H induces a vector field V', then we can readily see that g(V, V)
>0.

Corollary 3.2. There exists neither timelike nor lightlike Killing vector
field on a Lorentz spherical manifold.

There is a Lorentz spherical (n + 1)-manifold which admits a spacelike
one-parameter group of Lorentz transformations; however we have the
following.

Theorem 3.3. There exists no compact Lorentz spherical 3-manifold
admitting a spacelike Killing vector field.

Proof. Since M is compact, a spacelike Killing vector field generates
a spacelike one-parameter group {¢z}|z| <00 Of Lorentz transformations on
M . We will show that the existence of such a one-parameter group contra-
dicts the cohomological dimension of 7 = 7,(M). Let (%, {$,} .00 » M)

(P, dev) (r, H, Sl’z) be the developing pair where H c O(1,3). By
Lemma 3.1 the closure H is compact in O(1, 3). It implies H = SO(2)
up to conjugation and so H is closed. If we recall sh? - {(x 915955 03)
€ R"3| - xl2 +yf +y§ +y§ = 1}, then the fixed point set of H is
S0 = {(xy,¥,,0,0)| - xl2 + yf = 1}. Since the holonomy group T’
leaves S'° invariant, it follows I' C O(1, 1) x SO(2) in which H =
{1} x SO(2). Passing to a subgroup of finite index we may assume that
I'coqQ, 1)0 x SO(2). We note the following lemma.

Lemma 3.4. The identity component of O(1, 1), O(1, 1)0, does not
act properly on any O(1, 1)0 x SO(2)-invariant domain Q of S"? that
contains the set {—xf' +yf =0, x, #0, y, # 0}. In particular any discrete
infinite subgroup of O(1, l)O x SO(2) does not act properly discontinuously
on Q.
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Proof. Consider the following sets in s!-2.

l+={(x1,yl’1,0)|x1=y13x1<0,y15£0}9
l_={(x1,y1,1,0)|x1=—y1,x1<0,y1#0}-

Each half-line is invariant under O(1, 1)0. Choose points p€/_, g € I .
Let {p;} be the sequence of points lying in the component with x; <0,
and suppose lim p;, = p. We note that each orbit O(1, l)o-pi is asymptotic
to the half-line /_ (also / ). So there exists a sequence {g;} € O(1, 1)0
such that limg, - p, = ¢. On the other hand, since /_ is invariant un-
der O(1, 1)0 and /_ N/ = &, the sequence {g;} does not converge in

o(l, 1)0 . Therefore O(1, 1)0 does not act properly. If T is an infinite
discrete subgroup of O(1, 1)0 x SO(2), then O(1, 1)0 x SO(2)/T is com-
pact. Thus there exists a compact set K C O(1, 1)0 x SO(2) such that
o(1, 1)o cTI-K,sothat I" cannot act properly discontinuously on Q.

Notice that O(1, l)0 has the fixed point set st = {(0,0, y,, y3)|J’§ +
y:=1} in "2,

We continue the proof of the theorem. By the above observation,
o(1, 1)0 acts properly on the domain X of S"2 which satisfies —xl2 +
yf #0. If weput ¥ = {(x,,y,,¥,,);) € Sl’2| —)612+y12 = 0 and
y;+v; =1}, then S —Y = X. Since Y is invariant under SO(2),
o1, 1)0 x SO(2) acts properly on X. X consists of 4 components; 2
copies A, A of a 3-ball and 2 copies B, B’ of a circle x 2-ball. Fur-
thermore O(1, 1)0 acts freelyon X, and O(1, 1)0 x SO(2) acts freely on
X —S"°. Thus we can construct an o(1, 1)0 x SO(2)-invariant complete
Riemannian metric on X . Since M is compact, from the result of [13] it
follows that dev: M — dev™" (Y) — X is a covering map on each compo-
nent. Let L be a component of M —dev ™" (Y). We dissect the argument
into two cases.

Case A. dev: L — A is a covering map. Since A is simply connected,
dev: L — A4 is a homeomorphism. In particular p: {‘it}ltl <o — SO(2) is
an isomorghism. L has the boundary component in M . For this, if 8L =
@, then M = L which implies that 7 ~ I is discrete in O(1, 1)* x SO(2)
and cdI' < 1. This is impossible because M is aspherical in this case so
that cdn = 3. Since dL # <&, there is another component N adjacent
to L such that dev: N — B (or B') is a covering map. The group
{9:}4)<co acts freely on N because so does SO(2) on B. Then the map

dev induces a map dev: N/{q?t} — B/SO(2) which is also a covering
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map. Since B/SO(2) is simply connected, dev is a homeomorphism.
Thus dev: N — B is a homeomorphism. We can continue in this way
whenever the boundary component is nonempty.

Let AU B be the manifold obtained from 4 and B glued along the
common boundary part; we can define similarly for the manifold 4U B U
B’ etc. The At:ollowing possibilities occur from the construction of X :

(1) dev: M — AU B is a homeomorphism.

(2) dev: M - AUBUB' is a homeomorphism.

(3) dev: M- AUBUA isa homeomorphism.

(4) dev: M - AUBU A UB' (=S"?-S') is a homeomorphism.
For (1), (2), they are homeomorphic to 3-balls. Since they are aspherical,
(1), (2) do not occur by the same argument as above. For (3), (4), n ~
rcoq, 1)0 x SO(2) as above, and I'" acts properly discontinuously and
freelyon A U B U A’ (resp. AU B U A U B'). But these noncompact
domains clearly contain the lines {—xl2 + yf = 0} with the origin removed.
By the above lemma, the holonomy group I"' must be finite. Since M is
noncompact, it is impossible. N

Case B. dev: L — B is a covering map. If 0L = &, then dev: M — B
is a covering map, and so there is a covering homeomorphism dev: M ~
B, where Z — (0(1, 1)° x R, B) - (0(1, 1)’ x SO(2), B) is the cov-
ering projection. Therefore the image n' of 7 under dev is discrete in
o(1, 1)0 x R. In particular we have cdn’ < 2. Since M is aspherical and
n ~ 7', this is impossible. If L # &, then there is another component
L' such that dev: L' — A is covering and hence a homeomorphism. This
goes back to Case A, and so it does not occur. Therefore there exists no
spacelike one-parameter group of Lorentz transformations on M . This
completes the proof of the theorem.

4. Lorentz 3-manifolds with killing vector fields and their examples

In this section we give examples of Lorentz manifolds admitting time-
like Killing vector fields, and examine the structure of Lorentz 3-manifolds
which support lightlike Killing vector fields; similarly for spacelike Killing
vector fields.

4.1. Compact Lorentz flat 3-manifolds. We shall give examples of com-
pact Lorentz flat space forms. First of all, a 3-torus is an example of
compact Lorentz flat manifolds. (See [34].) As the nontrivial ones we
prove that there exists a complete Lorentz flat structure on 3-dimensional
nilmanifolds and solvmanifolds. (See [10], [14] for the related work.)
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Recently Margulis and Grunewald [17] gave a list of classification of com-
pact complete Lorentz flat manifolds.

4.2. Examples.

Example (1). Let N denote the semidirect product R’ x R with the
group law:

(C)-2)(G)-)=(C)+ GG ove):

Then N is isomorphic to the 3-dimensional 1-connected nilpotent non-
abelian Lie group. We construct a continuous homomorphism p: N —
R3>o0(1 »2). Let {e,, e,, e;} be the orthogonal basis such that (e, , e,) =
-1, (e,, e,) = (e5, €;) = 1. Define a map p, with respect to the basis

{(e, +€;)/V2, e,, (e, —e3)/V2}, to be

©-(6)619)
()61 7))

It is easy to see that p is a continuous homomorphism. Moreover p acts
simply transitively on R?. Choose a discrete cocompact subgroup A in
N, we obtain a compact Lorentz flat nilmanifold N/A.

Example (2). Let S denote the semidirect product R’ x R with the
group law:

(6)- o) ((7)-9) - (6 (na o) (5)-o+9).

Then S is a 3-dimensional solvable Lie group. For a nonzero real number
a we define a homomorphism p,: S — R® % 0(1, 2) to be

- ab 1 0 0
p(( ),0)= x ],10 coshf sinhf .
y y 0 sinh@® coshé

Then p acts simply transitively on R?. We can find a discrete cocompact
subgroup A of S, so that S/A ~ R’ /p(A) is a compact Lorentz flat
solvmanifold.

We know that T° (more generally, a compact Euclidean space form
whose linear holonomy lies in Z/2 x O(2)) is a Lorentz flat manifold
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admitting a Killing vector field from Theorem 2.11. It is easy to see that
T? also admits a spacelike Killing vector field and a lightlike Killing vector
field. We shall examine how the above examples will be characterized by
those Killing vector fields.

Lemma4.3. Let % be a closed one-parameter subgroup of R>x 01,2
isomorphic to R" . Let Q: R? % O(1,2) — O(1, 2) be the lienar holonomy
map. If £ is timelike, lightlike, or spacelike, then ¢(Z) is trivial.

Proof. Suppose not. First if ¢(%#) is compact, then we have ¢(%Z) =
SO(2) up to a conjugation. In this case it follows that

t 1 0 0
K = 0],]10 cost —sint .
0 0 sint cost

Thus the orbit #p at the point p = (0, a, 0) is the set {(¢, acos?,
asint)}, and the vector field V' tangent to the orbit satisfies g(V, V) =
—1+d”. The sign of g varies as a varies. This contradicts the hypothesis
of #. Now if ¢(&#) is noncompact, then it is conjugate to either the
parabolic subgroup R! or the loxodromic subgroup R* of the similarity
group Sim(Rl).

(1) o(#) = R'. Then it is isomorphic to

1t )2
01 ¢ |,teR
00 1

with respect to the basis {(e,+ e3)/\/§, e,, (e, —e3)/\/§} , where {e,e,,e;}
is the orthogonal basis such that g(e,, e,) = -1, g(e,, e,) = g(e;, €;) =
1. Then it is easy to see that

ct’/6 1 ¢t )2
(%) (41 7))
ct 0 0 1

where ¢ is a constant multiple. Thus the orbit at (0, 0, 1) is

0 e’ /6 +1%/2
Z - (0 =| 2+ |.
1 ct+1

The vector field W tangent to the orbit satisfies g(W, W)=1>0. On
the other hand if ¢ = 0, then the orbit at (0,1,0) is #Z-(0,1,0) =
{(¢, 1, 0)}. Since the vector field W, tangent to this orbit is generated by
{e, +es}, it follows that g(W,, W,) = 0. When ¢ # 0, the orbit at the

origin is the set {(ct3 /6, ct? /2, ct)}. The vector field W, tangent to the
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orbit satisfies g(W,, W,) = 0. These contradict the hypothesis that % is
timelike, lightlike, or spacelike.
(2) ¢(#)=R". In this case it is isomorphic to

A0 0
¢(ﬂ)={(0 1 o),zew}
00 A

with respect to the basis {(e, +¢,)/V2, e,, (¢,—€;)/ V2} . Then it follows

that
0 A 0 0
ﬂ=((blogl),(0 1 0))
0 00 A!

When b = 0, consider the orbits at the points (1,0, —1), (1,0, +1).
Then the vector fields ¥}, V, tangent to these orbits satisfy g(V, V) =
-24"%2 < 0 and g, V) = #2472 >0 respectively. This is impos-
sible by the hypothesis of %#. When b # 0, consider the orbits at
(b,0,-b), (b,0,+b). The vector fields W,, W, tangent to the or-
bits satisfy g(W,, W) = —b*A"> < 0 and g(W,, W,) = +3b°27> > 0
respectively. This yields also a contradiction. Therefore ¢(%) is trivial.

Proposition 4.4. If a compact Lorentz flat 3-manifold admits a space-
like Killing vector field, then it is either a Euclidean space form or an infra-
solvmanifold.

Proof. A spacelike Killing vector field generates a spacelike one-param-
eter group H of Lorentz transformations on M . Let (7, H, M 3') (0.5
T, a, R3) be the developing pair where G C R® % O(1,2). We prove
first that G is closed. If the closure G of G contains a compact subgroup
K, then K =S0(2) c {0} x O(1, 2) up to a conjugation. The subgroup
of O(1, 2) whose elements commute with SO(2) is Z/2 x SO(2) . Since
K centralizes the holonomy group I', each element y of I' has the form

@)

where a € R', and B € SO(2). It follows that I’ c R* x O(3) = E(3).
Hence M is a Euclidean space form R’ /T . In particular I is discrete.
If we note that a subgroup of finite index in I" consists of translations,
then I' has an infinite cyclic subgroup of finite index from the above form.
This is impossible because M is compact. Therefore G = G, which is a
closed subgroup isomorphic to R'. Thus Gc R® by Lemma 4.3. Since
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G is spacelike and centralizes I', we may obtain ' Cc G @ (R2 x O(1, 1))
where G =R'.

On the other hand, R® x o1, 1)0 is the solvable Lie group S of Ex-
ample (2). Note from the result of Carrietre [3] that M =~ R’ /T", and so
I" is discrete. Thus M is finitely covered by R’ /T" where T'c G&S.
Put A=SNT’. Since A leaves R* invariant, R’ /A is compact in R® )T
and therefore rankA = 2. Then it is easy to see that either I C R® or
I’ c R* % pa(Rl) (= p,(S)). Here p, is a representation of Example (2).
In this case R*/I” is a 3-torus or a solvmanifold S/T” .

When M is an infrasolvmanifold, notice that the spacelike one-param-
eter group G on R? induces an action of a group G' on M for which
G’ is a closed spacelike one-parameter group of Lorentz transformations
isomorphic to R'.

Proposition 4.5. Ifa compact Lorentz flat 3-manifold admits a lightlike
Killing vector field, then it is an infranilmanifold.

Proof. Let (p,dev): (n, H, fl?) - (', G, R3) be the developing
pair as before. First suppose that G is closed. Then by Lemma 4.3
we can assume that G is spanned by the vector {e, +e;} of R’. Let
y =(a, A) be an element of I" in R’ x O(1, 2) with respect to the basis
{(e, +€;)/V2, e,, (e, —e,)/V2} of R’,and ¢: R’ xO(1,2) - O(1, 2)
be the linear holonomy map as in Lemma 4.3. Since G centralizes I" and
the linear holonomy group ¢(I') preserves the bilinear form Q(x, y) =
=X, ¥, + X,¥, + X3¥5, We obtain

1 6 6%)2
A=[0 1 6
00 1

for some 6 € R'. It follows that I c R> x R' (cf. Example (1)). The
real algebraic closure A(I') is a simply connected nilpotent Lie group be-
cause R®> x R! is nilpotent. As I' is discrete and rank I' is 3, A(I') isa
3-dimensional Lie group. Therefore A(I") is isomorphic to either R’ or
R’ xR! ,and so M 3 is either a Euclidean space form or an infranilmani-
fold.

For the rest of proof (the case where G is not closed), G contains a
connected compact subgroup K in R® x O(1,2). Thus K is conjugate
to {0} x SO(2). If we note that G centralizes I, then K commutes with
the elements of the linear holonomy group ¢(I'). It is easily seen that
p(I) cO(1)xO(2) andso I' C R’ x O(3) . Therefore M is a Euclidean
space form.
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4.6. Lorentz hyperbolic 3-manifolds. Let O(2, 2)0 be the identity com-
ponent of O(2,2). If we identify H"? with SL,R, then it follows
0(2,2)° ~ SL,R x, SL,R in which the action of SL,Rx, SL,R on
SL, R is given by ([4, B], X) = AXB™'. (Compare [25].) By recall-
ing the exact sequence: 1 — Z — O(2, 2)°~ Kl 0(2, 2)0 — 1, we have
02, 2)0~ =SLR Xy ’S_I_?I_i where SL, R is the universal covering group
of PSL,R.

Examples. (1). Standard space forms of dimensions 3 (cf. 2.18, [25]).
Consider the subgroup J =R x, SL,R C lstl’l x, SL, R. Then it is easy
to see that any discrete subgroup of J acts properly discontinuously on
H"'? where H"'? ~ SL,R. Let I be a torsion free discrete cocompact
subgroup of J. Then H'? /T is called a 3-dimensional standard space
form.

(2). Homogeneous standard space forms of dimension 3. Let U, 4 be
a parabolic one-parameter group and a hyperbolic one-parameter group of
PSL, R respectively. Note U x SL,R (= Z x U x, SL,R) € 0(2, 2)*".
Similarly for 4. If T is a discrete torsion free cocompact subgroup of
SL, R, we have a compact homogeneous standard space form SL,R/I" for
which U (also A4) acts as Lorentz isometries of a spacelike one-parameter
group.

(3). Nonstandard space forms of dimension 3. There is a properly
discontinuous action of a group I' ¢ 0(2,2)° on H''? which is not
conjugate to a subgroup of S ! Xz /2SL2 R in O(2, 2), and so the orbit space

Hl’z/l" is not a standard space form. In fact the manifold Hl’z/l“ is
obtained from a homogeneous standard space form by a small deformation
of a holonomy representation. (See [12] for details.)

It is easy to check the following.

Lemma 4.7. Let O(2,2)" ~SL,Rx, SL,R be as above. Then closed

connected noncompact abelian subgroups of O(2, 2)O are of the following
types up to a conjugacy and switching of factors:

(1) {((1) i>x1|teR}, {(‘6’ eQ,)xl]teR}.
) {(é ‘i’)x(é b10)|t,6?eR}, a,b#0.

at bo
(3) {(eo e9a,)x("0 ef’bg)n,een}, a,b#0.
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b
t e 0
)x(O e_[,g)lt,OGR}, a,b#0.

@ (g

(=)

a
1
1 0 cosaf —sinaf
(5) {(O l)x(sinaH cosaO)leeR}’
0 .
e 0 cosafl —sinaf
{(0 e"o)x(sina() cosa0)|0€R}’ a#0.
Put
0
N={((l) i>|teR}, A={(6;) e?g)l@ER},
cosf —sinf
_{<sin0 cosG)leeR}'
Set

Aot
S0=NA={(0 A-I)MGRJr,teR}.

Let S=5S,U(% %)S,. S, 0= (27")S.

Lemma 4.8. (i) The group N x N acts properly on SL,R—-S§.
(il) The group A x A acts properly on SL,R—{SUS, 1}
(iii) The group N x A acts properly on SL,R—S.
(iv) Thegroups N, A, NxK, AxK, and K %z K act properly on
SL, R.
2

Proof. Let x=(2b) eSL,R~H"?. Then,

(6 1) (o 1)==( (2 )
=(a4;cz —ctG:CaeG:;t+b)

Thus it is easy to see that N x N acts properly on the subset of SL,R
with ¢ # 0. We can prove similarly for (ii), (iii) and (iv).

Remark 4.9. The groups of types (i), (ii), and (iii) leave S or SUS, 2
invariant, but do not act properly. This follows from a direct calcula-
tion. In particular a discrete cocompact subgroup does not act properly
discontinuously on S or SUS, 2

Theorem 4.10. Let M be a Lorentz hyperbolic 3-manifold. If the
holonomy group is virtually abelian, then M is not compact.

Proof. Let (p,dev): (m, M ) — (T, H' ’2) be the developing pair, and
P: 02, 2)O~ - 0(2, 2)0 the covering map. Passing to a subgroup of
finite index, we assume that I' is abelian and I' C O(2, 2)°~. Then
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P(T") is an abelian subgroup of O(2, 2)0. If A(P(T)) is the real alge-
braic closure of P(I') in O(2, 2)0 , then it is an abelian Lie subgroup
such that P(I') ¢ A(P(T ))0. Thus the identity component is either one
of the groups in Lemma 4.8. Suppose that A(P(l"))0 is one of the groups
of (iv). Then A(P(I)° acts properly on H"? = SL,R. Since Z —
(02, 2)0~, H" 2) B (0(2, 2) H1 2) is the covering map, the group
P~ H(A(P())% acts properly on H''?. There isa P~'(4(P(I))°)-invari-
ant Riemannian metric on H''? such that ' C P"'(A(P(F)) ) . The de-
veloping map dev induces a z-invariant Riemannian metric on M . So if
M is compact, then dev is a covering map, and thus M is geodesically
complete. Thus the result follows from Theorem 6.1 of [25]. Indeed, since
the abelian group P~ '(A(P(T )) ) has d1mens1on at most two, I' is a free
abelian group of rank < 2. Hence H" / I' cannot be compact.

Suppose that A(P (F))O is either one of the groups in (i), (ii) or (iii) of
Lemma 4.8. Consider (i), i.e., I' € N x N. Note that each component Z
of SL,R - S is invariant under N x N, and N x N acts properly on Z
by Lemma 4.8. Choose an N x N-invariant complete Riemannian metric
on Z. Let Podev: M — H"? = SL,R be the immersion of Lorentz
hyperbolic structure. If M is compact, then from Lemma B of [13] it
follows that Podev: Y — Z is a covering map for each component Y
of (Po dev)—l( Z). As Z is simply connected (homeomorphlc to R® ),
we have Y ~ Z . On the other hand, we shall prove M= Y Let S be
a lift of S to H''2. Then it is sufficient to show dev™ (S) @. For
this, dev_l(§) is a m-invariant closed subset in M , and soif p: M — M
is the covering map, then p(dev_l(S’)) is a closed subset consisting of a
disjoint union of closed submanifolds in M . Let Q be a component of
dev™! (§ ), and suppose Q to be a boundary component of Y . Then there
exists a component §0 of S such that dev: o-— §0 is a homeomorphism.
Since P maps §0 onto a component S, of S, Podev:Q — § is
a homeomorphism. If we note from the above remark that p(Q) is a
closed submanifold Q/n’ in M for a subgroup 7’ C 7, the corresponding
holonomy group I' acts properly discontinuously and freely on .§0 with
compact quotient. Therefore P(I") is a discrete cocompact subgroup of
N x N acting properly discontinuously on S,. This is impossible by
Remark 4.9. Hence we obtain M = Y such that Podev: M — Z is
a homeomorphism. But this implies that P(I') is a discrete subgroup
of N x N consisting of a free abelian subgroup of rank < 2. Hence
M =~ Z/P(I') cannot be compact. This proves (i). We can prove similarly
for (ii), (iii).



COMPLETENESS OF LORENTZ MANIFOLDS 595

Theorem 4.11. Let M be a Lorentz hyperbolic 3-manifold. Suppose
that M admits a nontrivial complete Killing vector field, and the developing
map is injective. If M is compact, then M is geodesically complete.

Proof. Since M admits a complete vector field, the identity compo-
nent Iso(]l7 )0 is a nontrivial closed connected subgroup normalized by
the fundamental group 7. As the developing map is injective, we assume
that there is a smallest connected closed Lie subgroup G normahzed by
the holonomy group I' in O(2, 2) for which G acts on dev(M ) and
I'co(2, 2)0~ . Let N(G) be the normalizer of G in O(2, 2)°~ .

Case 1. G has the radical. If N(G) is solvable, then from Lemma
4.7 it follows that N(G) is an abelian Lie subgroup of dimension 1 or
2, or isomorphic to the solvable Lie subgroup S, S, x S, or S, x R of
02, 2)0~ ~ SL Rx, SL R. Since T is discrete, I' is a free abelian group
in this case. By the above theorem, M cannot be compact. If If N(G) i
not solvable, then N(G) is conjugate to the subgroup G x SL R (up to
switching factors) where G = N, 4, or to the subgroup R x, SL R. In
the latter case, P(N(G)) = K x, 2 SL, R which acts properly on H"
SL,R. Thus N(G) acts properly on H'*?. This implies dev(M )= Hl’z.
Moreover M 1s a standard space form by the Example (1) of 4.6. Let
N(G) = N x SL R. First note that N (or A) is a spacelike one-parameter
group, and so the action (N x SL R, H" ) induces the two-dimensional
Lorentz hyperbolic geometry (SLZR, H" ). Here N\Hl’2 =H"' on
which SL,R = O(1, 2)0 acts as isometries. Consider the exact sequences:

1 — N — NxSL,LR — SLLR — 1
7 i i

] — A — T — I, — L

Put dev(ﬁ Y = N\ dev(]Tf ). Then the action (', dev(ﬂ )*) is a Lorentz
hyperbolic manifold of dimension two. As there exists no compact Lorentz
hyperbolic manifold of dimension two (cf. Introduction), dev(M )" is
simply connected and noncompact. Thus dev(Af) is contractible. In
particular, chI" = 3.

If A is nontrivial, then I", acts properly discontinuously on dev(M )"
with compact quotlent but 1t is impossible, and so I' =~ I',. Moreover
', is discrete in SL R; otherwise I" would be abehan as before. On

the other hand, I', acts as right translations of SL R on the domain
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dev(M) of H"? = SL,R. For this, let y, € T, and y = (u,7,) €T
Since N leaves dev(ﬁ ) invariant, it follows x -y, = u! -y-X € dev(]\7 )
for x € dev(]Tf ). As T, is discrete, it acts properly discontinuously on
dev(ﬂ). If we note chl', = 3, dev(]\7 )/T", is compact in §L\2-1’2/I“2.
Hence we have dev(ﬁ )= m, and M is complete.

Case II. G is semisimple. Since P(G) is semisimple in O(2, 2)0 =
SLZsz/ZSLzR, it follows that P(G) = SLszZ/ZSLzR, SL,Rx {1}, or
P(G) ={lg, aga_I]Ig € SL,R} for some a € SL,R. G is transitive on
H"'? for the first two cases. Hence dev(ﬁ )= H"? ,and M is complete.

We shall prove that the last case does not occur when M is com-
pact. As the developing map is unique up to a conjugation by elements
of O(2, 2)0”“ , we assume P(G) = {[g, gllg € SL,R} (= SL,R). Since
P(I') normalizes P(G), we have P(I') C P(G). If we note G =~ P(G) in
this case, it follows I' ¢ P~'(P(G)) = 2 x G. Consider the covering:

4, 2) - (@, 5" - (P(D), H"?),

where A =2 NTI". As before P(I') is discrete and not abelian. Moreover
we may assume that M is orientable.

Subcase A. Suppose that A is nontrivial. Then I" contains an infinite
normal cyclic subgroup. Thus dev(fi )/T" is prime and irreducible, and
therefore is an aspherical manifold. Hence chI" = 3.

Let S, c SL,R=H"" be the solvable Lie subgroup as in Lemma 4.8.
Note that P maps each component of m—go homeomorphically onto
SL,R—S,. If Podev(M)NS, =0, then P: dev(M) — Podev(M) is
homeomorphic, while P o dev(ﬂ ) = dev(ﬂ )/A is not simply connected.
Thus Po dev(ﬂ? )NS, # @. Note that each element of S, — N has the

form nan™' fora€ A, ne N.Let x=nan"' ¢ Podev(ﬁ)ﬂSo. Now
P(I') acts properly discontinuously on P o dev(ﬂ ) and leaves P(G) - x
invariant. On the other hand, the correspondence g — gxg‘l defines
a homeomorphism of PSL,(R)/ndn~' (~S' xR') onto P(G)-x. So
we obtain a two-dimensional manifold S' x R’ /P('). This implies that
chP(I') < 1, so that chT" < 2, which is a contradiction. Similarly for
x € N because PSL,(R)/N =~ s'xR'.

Subcase B. Suppose A = {1} so that I' ~ P(I'). Choose x = (97!) €
SL,R. As above the orbit P(G)-x is homeomorphic to PSL, R/P(K)

(= Rz). We note from 3.5 of [25] that P(G) - x is a closed subset in
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SL,R. Soif x € Podev(M) then P(G) x is a P(I')-invariant closed
subset of P o dev(M ). Choose X € dev(M ) such that P(X) = x. Put
W = P_I(P(G) < X) ﬂdev(M ). The set W is a I'-invariant closed subset
consisting of a disjoint union of copies of G-X%. Let =: dev(ﬂ ) —
dev(ﬂ )/T" be the covering map. Then z(W) is a finite number of closed
surfaces. Thus there exists a subgroup I" in I' for which #n(G- %) =
G-%/T’ is a closed surface in dev(M)/T. Since G-%/T" ~ P(G)-x/P(I")
and P(G) - x/P(I’) covers P(G)-x/P(), P(G)-x/P() is compact,
which is homeomorphic to P(I')\ PSL, R/P(K) (= R’ /P(I")). Thus T is
isomorphic to the fundamental group of a closed surface so that chI"' =2,
while it follows that dev(Mv )/T is a prime manifold. Hence dev(ﬁ )/T is
aspherical or chI" = 3, being a contradiction.

Now x ¢ Podev(M),ie., Podev(M)NP(G)-x =@. Since PSL,R—
P(G)-x is connected and simply connected (cf. [25]), P: dev(N) —
Po dev(M ) 1s homeomorpmc and so P(I') acts properly dlscontlnuously
on Po dev(M) As Podev(M ) 1s adomain of SL,R, Po dev(M) con-
tains a hyperbolic element hxh™" (x € A) or an elliptic element hxh™"
(x € K) for some h € SL,R. The orbit P(G)-hxh™' is either home-
omorphic to PSL,R/h4h™" ~ S' xR or PSL,R/P(hkh™") ~ R*. On
the other hand, we note that P(G)- hxh™" is closed in Po dev(ﬁ ). For
this, if P(G)-hxh™"' is the closure of P(G)-hxh™' in SL,R, then in
each case we see that OP(G) - hxh™' (= P(G)-hxh™' = P(G) - hxh™")
is homeomorphic to a circle. (Compare [25].) So if P(G) - hxh™' is
nonempty, then P(I") leaves this set invariant. By properness, P(I") will
be finite. Then it would follow M ~ H''? /T, which cannot be compact.
Hence

P(G)-hxh~'nPodev(M) = P(G)-hxh™' NP odev(M).

Now, let z € dev(M) such that P(z) = hxh™'. Since P: G-z =~
P(G) - hxh™', G-z is a T-invariant closed subset of dev(]\? ). Thus
n(G-z) = G-z/T is a closed surface in dev(ﬂ)/l’. I' is isomorphic
to the fundamental group of a closed surface of genus > 2. It implies
chI” = 2, while dev(j\7 )/T" is prime and so aspherical. This yields a
contradiction again. Hence the proof of Theorem 4.11 is complete.

4.12. We consider Lorentz hyperbolic 3-manifolds which admit space-
like Killing vector fields. Let 5: O(2,2)° — PSL,R x PSL,R be the
two-fold covering map.
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Corollary 4.13. Let (n, H, %) "5 (T, G, H"?) be the developing
pair of a compact Lorentz hyperbolic 3-manifold M which admits a space-
like one-parameter group H of Lorentz transformations. Then the group
n(P(G)) is a closed noncompact subgroup.

Proof. Let n(P(G)) be the closure of n(P(G)) in PSL,R x PSL,R.
We show that #(P(G)) is noncompact. Then it follows from Lemma 4.7
that n(P(G)) is closed. Put B = n(P(G)). If B is compact, then it is
conjugate to a subgroup of SO(2) x.SO(2). Suppose B C SO(2)xSO(2).
If B=S0O(2)x{1} or {1} xS0O(2), then a vector field tangent to the orbit
B-1 at 1 € PSL, R is timelike on the induced Lorentz hyperbolic manifold
PSL, R (cf. 4.16), which contradicts the hypothesis. Thus the centralizer
of B in PSL,R x PSL,R is SO(2) x SO(2). Put ' =Tno(_, 2)0~
which is of finite index in I'. Since G centralizes I', it follows that
n(P(I’)) c SO(2) x SO(2). So we have I" c R x SO(2) in O(2, 2)ON.
Hence I' is abelian, but it does not occur by Theorem 4.10.

Corollary 4.14. If a compact Lorentz hyperbolic 3-manifold M admits
a spacelike Killing vector field, and the developing map is injective, then
some finite covering of M s either a homogeneous standard space form or
a nonstandard space form.

Proof. Let (p,dev): (n, H, M) — (I, G, H"?) be the developing
pair. It follows M ~ H"'%/T" by Theorem 4.11. Put I’ =T'n O(2, 2)™~.
Then I belongs to the centralizer #(G) in O(2, 2)0~ . Thus as in the
argument of Theorem 4.11, it follows #(G) = N x SL,R or 4 x ’S]:i
IfI'c ﬁ, then a finite covering of M is a homogeneous standard
space form §I:ii/1"' . Otherwise, H'"?/I” is a nonstandard space form.

Problem 1. Let M be a compact Lorentz hyperbolic 3-manifold ad-
mitting a spacelike Killing vector field. Is M (geodesically) complete?

4.15. We examine Lorentz hyperbolic 3-manifolds which admit light-
like or timelike Killing vcector fields.

Lemma 4.16. If H is a closed connected noncompact abelian subgroup
of 0O(2, 2), then no one-parameter subgroup of H is lightlike.

Proof. Put n(H) = G where n: O(2, 2)0 — PSL,R x PSL, R is the
two-fold covering map. It is sufficient to show that any one-parameter
group of G is not lightlike. There is the principal circle bundle s' -
PSL,R — H?. If B is the subbundle of the tangent bundle of PSL,R

which maps isomorphically onto the tangent bundle T(HZ) , then each B,
has the positive scalar product with respect to the Killing form (Lorentz
metric of constant curvature) of PSL, R. On the other hand, H is either
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one of the groups of Lemma 4.7. If H is of type 1, then G acts as left
translations of PSL,R. Thus G is spacelike. When H is of type 2, we
choose the point x =1, (%' %) in PSL,R accordingas a#b, a=b.
If H is of type 3, then choose the point x =1, () accordingas a # b,
a = b. For type 4, we choose the point x = 1. In each case the vector
field tangent to the orbit G - x belongs to the subbundle B. Thus G is
neither timelike nor lightlike. If H is of type 5, then the orbit G-1 winds
infinitely many times around the S'-direction in PSL,R. Hence G is
neither lightlike nor spacelike in this case.

Corollary 4.17. There exists no lightlike Killing vector field on a com-
pact Lorentz hyperbolic 3-manifold.

Lemma 4.18. Let G be a timelike one-parameter group in O(2, 2)0~ ,

and 1 > Z - 0(2,2)~ £ 0(2,2) = 1 be the exact sequence. Then the
group P(G) satisfies either one of the following:

i) P(G)~S'.
(i) P(G) = R' which is dense in SO(2) x4/, SO(2).
(iii)) P(G) = R' which is a closed subgroup of type (5) in O(2, 2)0 of
Lemma 4.7.

Proof. Let P(G) be the closure of P(G) in O(2, 2)0. If P(G) is

compact, then P(G) is conjugate to a subgroup of the maximal compact
subgroup SO(2) x, 2 SO(2). Thus either (i) or (ii) follows. Suppose that

P(G) is noncompact. Then P(G) is isomorphic to one of the groups of
Lemma 4.7 in which two-dimensional Lie group is isomorphic to either
R’ or Rx S'. Thus the group P(G) is itself closed and is isomorphic to
R!. Since P(G) is timelike, P(G) is of type 5.

Proposition 4.19. If'a compact Lorentz hyperbolic 3-manifold admits a
timelike Killing vector field, then it is a standard space form.

Proof. Let (p,dev): (m, H) — (T, ﬁ"z) be the developing pair.
Given a timelike one-parameter group H of Lorentz transformations in
0(2,2)~, we put H = P(H). If H is compact in O(2,2), then the
result follows from Theorem 2.20. Otherwise, from (ii), (iii) of Lemma
4.18 it follows that H = SO(2) X7/, 80(2) or

1 6 cosaf —sinaf
H={<0 1) x (sina@ cosal )IHER}

(/] .
e 0 cosal —sinaf
(resp. {( 0 e—e) x <sina0 cosat ) 16 € R}) ’



600 YOSHINOBU KAMISHIMA

Since H centralizes the group P(I"), the closure H also centralizes P(T).
When H = SO(2) Xz/2 SO(2), the subgroup of O(2, 2), whose elements
commute with H, is H itself. Thus P(I') ¢ H. By pulling back into
0(2, 2)”, weobtain I' C RxSO(2). Similarly the subgroup of O(2, 2)0 =~
SL,R x5, SL,R which commutes with H is {(39)10 e R} xSO(2). By
passing to a subgroup of finite index in I", we have P(I') c {(}?)|0 €
R} x SO(2), and therefore I' c {(}9)|0 € R} x R (cf. 4.6), which is
impossible since M =~ H'? /T’ by Proposition 2.5.

Problem 2. Let M be a compact Lorentz hyperbolic (2n+ 1)-manifold
(n > 2) which admits a timelike Killing vector field. Is A always a
standard space form?
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