
J. DIFFERENTIAL GEOMETRY
37(1993)535-568

THE LIMITING ETA INVARIANTS
OF COLLAPSED THREE-MANIFOLDS

XIAOCHUN RONG

In this paper, we study the limiting eta invariants of collapsed Rieman-
nian manifolds. These invariants were defined and previously studied in
[9]. In particular, we prove a conjecture of Cheeger and Gromov which
asserts their rationality in the three-dimensional case, provided that the
collapse has bounded covering geometry.

0. Introduction

Let M be an n-dimensional complete Riemannian manifold with sec-
tional curvature bounded in absolute value, say \K\ < 1. Let a(g) denote
one of the following geometric quantities associated to g: the diameter of
M, the supremum of injectivity radii at all points of M, or the volume of
M. Roughly speaking, M is said to be sufficiently a(g)-collapsed, if a(g)
is smaller than a sufficiently small constant depending only on dimension
of M. M is said to admit an a(g)-collapse, if there exists a family of
metrics {gδ} on M, 0 < δ < 1, such that the sequence {a{gs)} con-
verges to zero as δ —> 0 (here we assume the sectional curvatures of all
gδ are bounded in absolute value by one).

The basic questions about the interplay between the collapsing geometry
and the topology of M are the following:

(1) What kind of structures and invariants can be attached to a suffi-
ciently α-collapsed metric or to an α-collapse ?

(2) Does a sufficiently α-collapsed metric imply the existence of an a-
collapse ?

Starting with [21], there has been considerable progress on the above
questions; for instance, Gromov's theorem of almost flat manifolds [21],
i.e., manifolds whose diameter is sufficiently collapsed, the F-structure the-
ory for sufficiently collapsed injectivity radii [10], [11], the bundle struc-
ture theorems and their applications for manifolds which collapse to a
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manifold of lower dimension [17]-[20] and more recently, the Nil-structure
theorem [7].

Important progress has been made, concerning the implications of the
existence of a volume collapse, in the work of [8], [9], [ 12] and [31]. In [8],
[9] and [12], Cheeger and Gromov generalized the type of Chern-Gauss-
Bonnet theorem to open manifolds and studied topological properties of
the ^-invariant in the sense of Atiyah-Patodi-Singer [1], [2].

A volume collapse {gδ} is said to have bounded covering geometry
(briefly, BCG), if the family of pullback metrics {gδ} on the universal
covering of M has a uniform lower bound on the injectivity radius.

Theorem 0.1 [9]. Let N be a closed oriented (4k - \)-dimensional
manifold. Suppose M admits a volume collapse {gδ} with BCG. Then the
limit of the η-invariants associated to the volume collapse,

(0-1) η(2)(N) = hmη(N,gό)

exists (thus f/(2)(N) ^ a topological invariant of N).
Note that without the condition of BCG Theorem 0.1 fails completely

(see [36, Example 4]). Concerning the value of η,2JN), the following
conjecture is due to Cheeger and Gromov.

Conjecture 0.2. f/(2)(N) is a rational (for a volume collapse with BCG).
Now we start to state our results as follows:

Theorem 0.3. For k = 1, under the conditions of Theorem 0.1, >/(2)(N)

is a rational.
Our approach to Conjecture 0.2 is to show that the existence of some

volume collapsed with BCG implies the existence of a "nice volume col-
lapse with BCG", i.e., on N for which η,2)(N) is computable.

To begin with, the work of [11] implies that, on a three-manifold, the
existence of a volume collapse is equivalent to the existence of a posi-
tive rank F-structure (see below). We find that the injectivity (see below)
of such a structure is equivalent to the additional assumption, BCG, on
the volume collapse (Theorem 0.4). Furthermore, from an injective F-
structure, one is able to construct an invariant volume collapse with BCG,
i.e., a volume collapse that is compatible with the structure. It turns out
that this invariance of the volume collapse with BCG enables one to use
the residue formula of [36] to compute η,2ΛN) explicitly, and therefore
concludes //(2)(Λ0 is rational.

The F-structure was defined in [10] and [11]. Roughly, an F-structure
on a manifold M can be thought of as a family of local torus actions
on M satisfying certain consistency conditions on overlaps so that M is
partitioned into orbits of these local torus actions (see §1). The existence
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of an F-structure on a manifold is equivalent to existence of an injectivity
radius collapse [10], [11]. An F-structure is said to be injective, if the
fundamental group of each orbit injects into the fundamental group of the
total space. As shown below, in dimension three, an injective F-structure
fully encodes the topological information associated to a volume collapse
with BCG.

Theorem 0.4. There exists a constant e > 0 such that if a closed three-
manifold N admits a Riemannian metric g satisfying

(0.1) \K(N,g)\<\,
(0.2) Injrad(x, g) < e, for x e N,
(0.3) wSo{N9g)>l(BCG)/

then either N admits an injective F-structure for infinite π{(N) or N (or
double cover of N) is homeomorphic to a lens space for finite π{(N). In
particular, if N admits a volume collapse with BCG, then N admits an
injective F-structure.

Remark 0.5. The proof of Theorem 0.4 uses some theorems from
three-dimensional topology. We point out that an injective F-structure
cannot be obtained from a metric satisfying (0.1)- (0.3) by means of the
general geometrical constructions using either the local short geodesic loops
as in [11] or the frame bundle technique as in [18] and [19] (see Example
4.9). Further work is required .

An F-structure is said to be polarized, if the local orbits have the same
dimension as the tori which act locally. Using a polarized F-structure, one
is able to construct an invariant volume collapse ([10], also Theorem 1.8).
An injective F-structure is automatically a polarized F-structure. The basic
feature of an injective F-structure is the local splitting property (Proposi-
tion 2.4). This property guarantees that the invariant volume collapse con-
structed by a slight modification of procedure in [10] has BCG (Theorem
2.5). A consequence of this fact and Theorem 0.4 is that, in computing the
invariant f/(2)(N), one can assume that the volume collapse gδ is com-
patible with an injective F-structure, &, of N. The advantage of this
invariance is that one is able to use the result of [36] to explicitly compute

In [36], the residue formulas for characteristic numbers of closed man-
ifolds in [4] and [5] have been generalized to compact manifolds whose
boundary supports a polarized F-structure &. A minor extension of the
result of [36], when restricted to the case of signature form, asserts that
the limiting ^-invariant η(N, &), associated to the invariant volume col-
lapse constructed as in [10] by using a polarized F-structure F on iV,
exists and is independent of the particular invariant volume collapse. In
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addition, if N is the boundary of some compact 4/c-manifold M and
can be extended to M with all orbits closed submanifolds, then η(N,
is rational (Theorem 1.11).

In our special circumstances, by using the invariant plumbing technique
[28] it is not hard to construct a compact 4-manifold M, dM ~ N, and
extend / to M simultaneously (Theorem 6.1). As a consequence of
above results, we obtain

Theorem 0.3 '. Let the assumptions be as in Theorem 0.3, and let &
be an injective F-structure on N. Then

(0-2) η(2)(N) = η(N9r).

In particular, f/(2)(N) is rational.
In higher dimensions, we also verify Conjecture 0.2 under the additional

strong assumption that an injective F-structure exists (Theorem 2.8).
From [36], η(N, &~) is a cobordism invariant depending not only on

N but also on &~. Thus (0-2) may suggest that in a certain sense at
most one injective F-structure can exist on a given three-manifold. To be
precise, two F-structures of TV, ^ and ^ , are said to be weakly equiv-
alent, if there is a polarized F-structure which has both ^ and 5ζ as
substructures. By [36], η(N 9 &) is determined only by the weak isomor-
phism class of &. By making use of the classification of graph manifolds
given in [34] and [35], we prove the following rigidity result for injective
F-structures.

Theorem 0.6. Let N be a closed three-manifold whose finite cover is
not homeomorphic to a solvable manifold or to S2 x Sι. Then up to a
weak isomorphism, N admits at most one injective F-structure.

Remark 0.7. Combining (0-2) with Theorem 0.6, we conclude that, in
dimension three, the limiting //-invariant η,2ΛN) is a cobordism invariant
of the weak isomorphism class of the injective F-structure of TV (which is
unique except in the above-mentioned cases).

Starting from (0-2), one is able to write down an explicit formula for
τ/(2)(JV) in terms of (N, &). In particular, the noninteger part of T/(2)(N)

is contributed by the exceptional orbits of & (see (3.4)). The result of
Theorem 0.6 implies that the residue formula for η(N, £Γ) is also intrinsic
in most cases. In this paper, we only give the explicit residue formula for
an oriented injective Seifert manifold with Seifert invariants (see [28])

(0-3) N={b\(o9g)\{μχ9βχ)9... , ( α Γ , j ί Γ ) } .

Theorem 0.8. Let N be an oriented injective Seifert manifold whose
Seifert invariant is given in (0-3). Then
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ϊ=l j=\

where ^ - = [bn, ••• , bis\ is the continued fraction (6 l 7 > 2), atj =

bijaij-i-<*ij-2 w i t h aι,o= ι> a n = b n a n d

For a real number D > 0, let Jt (D) be the collection of closed ori-
entable three-manifolds which admit a volume collapse with BCG and for
which the diameters are bounded uniformly by D. Our last result con-
cerns the finiteness of the noninteger part of η{2){N) for TV e J?3(D).

Theorem 0.9. For each D > 0,

{ η{2) (N) mod Z | N e Λf3 (D)}

is a finite set.

Remark 0.10. Note that for each D > 0, Jfι{D) contains infinitely

many topological types, for instance, Gromov's almost flat manifolds of

dimension three [21]. Also, the size of {η{2)(N) modZ\N e JT3(D)} de-

pends on D . For instance, if D < exp(-exp(9)), then Jί3{D) consists

of Gromov's almost flat manifolds [21]. From Theorem 0.8, we have

{η{2)(N)modZ\N e^3(D)} = {0, i , §}.

This paper is organized as follows.
In §1, we define the notion of F-structure and state the main results

of [10] and [11] on collapses and F-structures. We also derive a residue
formula for a certain volume collapse. This is an easy consequence of the
work of [36]. The remainder of the paper is based on these results.

In §2 we study both topological and geometrical aspects of an injective
F-structure in general. As an application, we verify Conjecture 0.3 in
higher dimensions by assuming the existence of an injective F-structure.

In §§3-5, we systematically study injective F-structures on a three-mani-
foΓd. Theorem 0.4 is proved in §4, and Theorem 0.6 in §5.

In §6, we will give the proof for Theorem. 0.3'.
§7 is devoted to showing Theorem 0.7.
In §8, we prove Theorem 0.9.
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1. Preliminaries

In this section we will briefly recall the main results of [10] and [11]
and some results of [36].

a. Collapses and F-structures.

Definition 1.1. Let M be a manifold. An F-structure 9" of M is
determined by a collection {(£/•, U , Tki, φ., ψ^} (called an atlas of !?),
which satisfies the following conditions

(1.1) {C/J is a locally finite open cover of M,

(1.2) πz: Ui -» Ui is a finite Galois covering with Galois (deck transfor-
mation) group Gt ,

(1.3) Tki is a ^-dimensional torus, and φ.: Tk[ -> Diff(£/.) is an effec-
tive and smooth action,

(1.4) ψt: (J. —• Aut(Γ^) is a homeomorphism satisfying

- 1 ,

for each g. e Gi, γ. e Tki and xeϋn

(1.5) if Utr\Uj Φ 0 , there is a common covering Vtj of n~\Ui n

Uj) and π " 1 ^ . Π Uj) so that the lifting actions of Tki and Γ*> on V(j

commute.
Remark 1.2. From (1.4), the orbits of local action φ. on Ui are well

defined. By (1.5), we define the orbit @χ of 9r at x e M as the union of
all orbits of φ. through x . The rank of ^ at x is defined as d i m ( ^ ) .

Definition 1.3. Let 9' = {(Ui,Ui, Tki, φ., ψ.)} be an F-structure.
(1.6) 9" is said to have positive rank, if it has positive rank at every

point.
(1.7) 9* is said to be a T-structure, if t/ = '£/. for all ι.
(1.8) ^ is said to be pure, if A:̂  = k. for all 1,7.
(1.9) ^ is said to be polarized, if the for each i, the local action φ.

has a finite isotropy group at each point.
Definition 1.4. Let 9" be an F-structure (not necessarily of positive

rank). An orbit ff of 9" is said to be singular, if ^ is a singular orbit
of some local torus action at x . The singular set Z{9) of 9" is defined
as the union of all singular orbits of 9".

Definition 1.5. A polarization of a positive rank F-structure is.a col-

lection of connected subgroups ffcl' such that tϋίdimension of each

ίζ-orbit is equal to dim(//z). If Hi is a compact subgroup of Γ for all

/, we call this polarization a polarized substructure.
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The existence of a sufficiently injectivity radius collapsed metric is
equivalent to the existence of a positive rank F-structure.

Theorem 1.6 [10], [11]. Let M be a complete n-dimensional manifold
with \K\ < \. Then there exists a constant en > 0 depending only on n,
such that if the injectivity radii of M are smaller than en at every point,
then M admits a positive rank F-structure SF which is almost compatible
with the metric. Conversely, suppose a manifold admits a positive rank
F-structure. Then it admits an invariant injectivity radius collapse.

Remark 1.7. The first part of Theorem 1.6 has been generalized con-
siderably in a recent paper [7].

The geometric consequence of the existence of a polarized F-structure
is

Theorem 1.8 [10]. Let M be a manifold.
(1.10) Suppose M admits a polarized F-structure ̂  outside some com-

pact subset C. Then M admits a complete metric of \K\ < 1 and finite
volume which is compatible with &.

(1.11) As in (1.10), if C is the empty set, then M admits an invariant
volume collapse.

Remark 1.9. By inspecting the proof of Theorem 1.8 in [10] one sees
that Theorem 1.8 remains valid if "polarized F-structure" is replaced by
"polarization".

Remark 1.10. It is an open question whether the converse of Theorem
1.6 is true. However, in dimension three, the affirmative answer follows
directly from Theorem 1.6 (see Proposition 3.1).

For examples of collapsing and F-structures, we refer to [10], [11] and
[20].

b. Limiting eta invariants associated to a polarized F-structure. Based

on the work of [35] on secondary geometric invariants, we will easily obtain
a residue formula for the limiting eta-invariant with respect to a certain
invariant volume collapse for &.

Let (N, g) be a closed orientable {In - l)-dimensional Riemannian
manifold which is the boundary of some compact orientable 2«-manifold
M. For any extension g of g to M such that g is the product metric
near N and any O(w)-invariant polynomial P such that the associated cό-
homology class is integral, the associated secondary geometric P-invariant
of N, defined by

-±-» [ P(Ω) modZ,
(2π) J{M,g)

depends only on the metric of N and P. The secondary geometric
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invariants were studied in [13], [14], [1], [2], etc. The results of [4] and
[5] imply that if N admits a nonvanishing Killing vector field, then the
above secondary geometric invariants can be made into topological invari-
ants by modifying (0-3) by the integration of a closed form aχ (which
is determined by the Killing field) over N (P(Ω) - aχ is called a Bott-
form). This fact was generalized in [36] to the situation where N admits
a polarized F-structure. Yang constructed the generalized Bott-form P{Ω)
( = P(Ω) modified by a canonical boundary form) in terms of & and
proved its value on M,

(1-1)
JM

is the topological invariant depending only M, P and &. We refer to
P[M, &"\ mod Z as a secondary topological invariant. In particular, if &
has an extension & to M with singularity Z ( ^ ) , then P(Ω) is actually
exact away from Z ( ^ ) , i.e., P(Ω) = da on M-Z(^). Thus, (1-1) can
be written as

(1-2) P[M, P]= [ P(Ω) = X)Res(α, Z ),
JM i

where Z. is a component of Z ( ^ ) , and Res(α, Zf.) is the residue of a
on Z. (see [36]).

There is an another approach to (1-2) by using the collapsing theorems
of [10]. (This was actually the original idea of Cheeger and Gromov.) Put
M^ = M U (N x [0, +oo)). First, using & one is able to construct a
complete invariant metric g on M^ which satisfies (0.1) and (0.2) [10]
and

(1.12) \Π(N x {r})\ < C2 , where II( ) is the second fundamental form
of ( ) .

(1.13) Vol(JV x {r}) - ^ 0 a s r - > + o o .
It turns out that the "collapsing" ((1.12) and (1.13)) on the level sets,
N x {r}, kills the modified boundary term. Hence the integral

(1-3) PίM,^]= f P(Ω)

is a topological invariant determined only by M, P and SF (compare
(0-1)). Define the map φr: N -> M^ by φr{x) = (x,r)eNx[0, +oo) c
M^ , and denote the pullback metric gδ = Φ^ig^), r = δ~ι. If we restrict
attention to P = PL, Hirzebruch's L-polynomial, and apply the Atiyah-
Patodi-Singer index formula to Mr = MU(N x [0, r]), from (1.12), (1-13)
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we deduce

j M PL(Ώ)=limjM PL(Sl)

O-4) = υm(σ{Mδ-t) + η(N, gδ) + llσ(N, gδ))

= σ(M) + limη(N,gδ).
O—+Ό

Combining (1-2) with (1-3) and (1-4) gives
Theorem 1.11. Let N be a closed oriented (4k - \)-manifold which

is the boundary of some compact 4k-manifold, and let ^ be a polarized
F-structure on N. Then for the invariant volume collapse gδ, the asso-
ciated limiting η-invariantf η(N, &~) = l i m ^ 0 η(N, gδ), exists and is a
topological invariant depending onlyjm N and ^ . Moreover, if there is
an F-structure ^ of M such that 9'\Ή—^'i then

(1-5) fe^' Ss) = σ{M) + Σ R e s ( α ' z/)
i

In particular, if all orbits of & are closed submanifolds of M, then
η(N,^) is rational.

Remark 1.12. We point out that Theorem 1.11 is true for arbitrary
invariant volume collapse (see [31] for details).

2. Injective F-structures and collapsing with BCG

In order to study the topological implications of the existence of a vol-
ume collapse with BCG, we introduce the notion of the injectivity of an
F-structure. If we assume the existence of an injective F-structure, Con-
jecture 0.2 can be easily proved (Theorem 2.8).

Definition 2.1. Let & = {(£/-, Ui9 Tki, φ., ψ.)} be a positive rank

F-structure on N. For any x £ M and φ., £/ , Tki, φ{, ψ.) e &, x e

t / ^ d i m ^ ) = k.)9 consider the following diagram:

i
(M,x)

y is said to be injective if the induced map (φ. )s)t: π{(Tkio, e) -> πχ (Af, x)

is injective at every x e M.
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Remark 2.2. The notion of injective F-structure is a kind of general-
ization of the notion of injective torus action studied in [15], [16] and
[24].

Definition 2.3. A polarization, %?, of a positive rank F-structure, &,
is said to be injective, if dim(Hχ) = τaήk(Im(φu)) at every point x .

Injective F-structures are polarized. The basic topological feature of
injectivity is the following local splitting phenomenon which occurs in the
universal covering space.

Proposition 2.4. Let & be an injective F-structure ofM, and let π:M
—• M be the universal covering. For any x e M there exists an invariant
tubular neighborhood U of & such that n~ι(V) is homeomorphic to

lr

Sχ x R , where Sχ is a slice of <fχ at x which is homeomorphic to a
(n - kydimensional ball (k = d i m ( ^ ) ) .

Proof. In this proof we shall use some elementary facts from com-

pact transformation group theory (see [6] for reference). For x e M,

let (£/, Unφ, ψ) be a chart of & containing x, and let x e U with

π(x) = x. Let Γ be the finite isotropy subgroup of Tk at <fχ, and

choose Sχ to be the slice of 0% at x which is homeomorphic to a

(n - /c)-ball. Then Sχ determines the invariant tubular neighborhood V ,

V w Sχ x Γ Tk . The universal covering of V is Sx x Rk , and the lifting

group Rk of Tk acts on Sχ x Rk by the addition in Rk . We have the

following commutative diagram:

Rk x (5 x Rk)

Let π:M —• M be the universal cover. Put V = nt(V). To see that V

is the desired invariant neighborhood, it suffices to verify that π~ι(V) is

simply connected. If not, pick x eπ~ι(V) with π(x) = x, and let γ be

any nontrivial loop in π~x{V) at x . Then π o γ determines a nontrivial

element in πχ(V,x). Since V is homotopically equivalent to (?χ9 πoγ

is also nontrivial in πx{ffχ , JC) . Note that the injectivity of the local T -

action implies that π{{&x, x) is a torsion free subgroup of n{(M, x).

Thus πoγ has infinite order in πx(M 9 x). Consequently, the lift γ of

π o γ is not a closed path. This contradicts our choice for γ, and the proof

is complete, q.e.d.
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The geometric consequence of the existence of injective F-structures is
(compare with Theorem 1.8)

Theorem 2.5. Let M be a manifold.
(2.1) Suppose M admits an injective F-structure & outside some com-

pact subset C of M. Then M admits a complete metric which is compat-
ible with 3F, with \K\ < 1, finite volume and BCG near infinity.

(2.2) As in (2.1), if C is the empty set, then M admits an invariant
volume collapse with BCG.

Proof. First, note that 9~ is polarized. The construction of the metric
as in (2.1) and the volume collapse {gδ} (0 < δ < 1) as in (2.2) are
given in the proof of Theorem 1.8 [10]. What we shall do is to check
BCG, which is actually a consequence of the local splitting property of &
(Proposition 2.4). Here we also need to use the result of [10] to construct
a suitable initial metric (see below). Since the proofs of (2.1) and (2.2)
are essentially the same, we only give the proof of (2.2).

Let π:M —> M be the universal covering, and let gδ = (π)*(^) be
the pullback metrics. Pick x € M with π(x) = x. Let Tχ(^χ) be the
orthogonal complement of the tangent space Tχ0x of <9χ in TχM, the
tangent space of M at x, with respect to the initial metric gχ. Clearly,
for each x , we can find pχ > 0 such that the slice of (9X as in Proposition
2.4 is given by Sχ = expχ(B^), where B^ is the ball of radius pχ in

Tχ0x. By Proposition 2.4, π~ι(V) ~ Sχ x Rk. For each δ, let gf

be the restriction of gδ on Tχ(9χ . Consider the convergence of pointed

metric space (A/, jc, gδ) with respect to the Gromov-Hausdorff distance

[23]. Following the proof of Theorem 1.7 as in [10] one sees that when

restricting to the (π~ 1 (F), jc), the sequence {gδ} converges to a C°°

product metric £ 0 in π~\v), go = go + g'ό , where g'ό = fge ( / is a

C°° function on Sx, ge is the Euclidean metric and £Q is the limit of

{g£}). If y is pure F-structure, then gQ = gf = gf (0 < δ < 1). It

follows that Injrad(x, gδ) > px as δ —• 0. In case & is not pure, one

still has Injrad(Jc, gδ) > px since there gf is constructed basically by

spanning gf.

By the above discussion it is clear that if the initial metric is chosen
such that pχ > 1 for all x e M, then {gδ} has BCG. The existence of
such metric is obvious if M is compact. In the case M is noncompact the
construction of the metric was given in [10]. Thus the proof is complete.

Remark 2.6. It is easy to check that Theorem 2.5 remains valid if one
modifies the statement by replacing the injective F-structure by an injective
polarization.
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Example 2.7. The following are some examples of the manifolds which
admit injective F-structures:

(2.3) The injective Seifert fiber space with fiber flat manifolds which is
defined (see [24]). In fact, this Seifert fibration actually coincides with a
pure injective F-structure. In particular, a three-dimensional Seifert fiber
space with infinite fundamental group is injective [32].

(2.4) A flat ^-dimensional manifold is covered by an fl-torus. The mul-
tiplication on Tn is injective. An almost flat manifold has a finite cover
which is diffeomorphic to a nilmanifold [21]. The center of a nilmani-
fold acts injectively on itself. Thus an almost flat manifold admits pure
injective F-structure.

(2.5) A complete manifold with -b2 < K < -a2 (a Φ 0) and finite
volume admits a pure injective F-structure outside some compact subset.
This is because this manifold is homeomorphic to the interior of a compact
manifold whose boundary components are infranilmanifolds (see [5] for
details).

(2.6) [10] Let Mn be a closed oriented manifold, and let f:K(π, 1)
be the classifying map, where π ~ πχ(Mn). We call Mn essential, if the
fundamental class [Mn] e Hn{M, R) satisfies f*([Mn]) φθ. Suppose 5Γ
is a pure positive rank F-structure on an essential manifold Mn . Then
& is injective.

We conclude this section by giving an application of Theorem 2.5.
Theorem 2.8. Let N be a closed oriented (4k — l)-manifold which is

the boundary of some compact orientable manifold M. Suppose M admits
an F-structure 9" satisfying the following conditions:

(2.7) 9\N is injective.
(2.8) Each component of Z ( ^ ) is a closed submanifold of M.

Then ι/(2) (^0 /iS> ra^ona^
Proof First, from (2.2) of Theorem 2.5, we construct an invariant

volume collapse with BCG, {gδ} , on N. T/(2)(N) = limδ^oη(N, gδ) by
Theorem 0.1. Using the invariance of {gδ} and (2.8), we get

and conclude that η(N, 9\N) is rational (Theorem 1.11).

3. Polarized Γ-structures on three-manifolds

As a general preparation for the sequel, we restrict attention to F-struc-
tures on collapsed three-manifolds. A basic and well-known fact for posi-
tive rank F-structures on a three-manifold is
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Proposition 3.1. Let & be a positive rank F-structure on a three-mani-
fold. Then & has a substructure which is polarized.

Proof. Let & = {(Ua, Ua, Γ* , φa)} . If there is a chart, (Ua, Ua,
Tka, φa), with fcα = 3, then Ua~ N and thus N ~ T3 up to a finite
cover.

Now we assume that ka < 2 for all α. Let Z be a component of
the singular set of &, and let (Ux, Ux, T

2, φχ, ψχ), , (Ur, t/r, Γ2, 0 f, ψr)
be all the charts which contain Z . By taking a common cover [/ for
Uχ, , t/Γ and lifting the Γ2-action to £/, we may assume ^ is locally
a pure restructure. By dim(TV) = 3 and dim(Z) > 1 it is easy to see
that Z consists of a single Sι -orbit; that is , Z ~ S1 is isolated. Clearly,
& contains a polarized substructure near Z . q.e.d.

For a positive rank F-structure F of M , the basic questions about
the topology of & concern the existence axiom (in particular those which
are polarized, pure and injective). Let π:M -> M be any finite covering.
Then M has a natural F-structure ^ " ^induced by π which has the same
properties as & does (one may think & is the pullback sheaf, π*(^), by
using the sheaf-theoretic definition of F-structure as in [10], [11]). Thus,
as far as the basic properties are concerned, one is free to work on a finite
covering space. In particular, one can assume the base manifold is ori-
entable. In the three-dimensional case, this principle can be strengthened
to reduce the study of F-structures to that of T-structures. To be precise,
we introduce the following.

Definition 3.2. Let M be a manifold, and let &j (/ = 1, 2) be two
F-structures of M. 9[ is said to have the same orbit structure as ^ , if
there is a homeomorphism of N which preserves the orbits.

If two F-structures have the same orbit structure, then roughly speaking
they have the same basic properties.

Let / b e a polarized F-structure on an orientable three-manifold TV.
Let JV7, N" be the union of one-dimensional, respectively, two-dimen-
sional, orbits of &. Write Nf = \JN. and N" = [JXj (Nn Xj are
connected components).

Assume every two-dimensional orbit of & is a topological torus. Since
N is orientable, X. « I. x T2, I. a closed interval. We observe the
following:

(3.1) each N. is a Seifert fiber space with torus boundary components
such that the Seifert fiber structure is trivial near the boundary ΘN.,

(3.2) by identifying the corresponding boundary components of N't 's
in pairs via suitable gluing maps, φk , one obtains N again.
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From [32], it is easy to see that any Seifert fibration on a compact three-
manifold can be viewed as the orbits of some pure S ̂ structure. This is
because any S^-fibered solid torus (and also solid Klein bottle) admits
an Sι-action leaving the fibration invariant. Thus, if we let 9\ be the
pure Sι T-structure of N., then obviously these ^ generate a mixed
T-structure ίΓ ofN. Clearly, y has the same orbit structure as &
does. For convenience, in the remainder of the discussion, we shall use
the following terminology.

(3.3) We shall call the set 3f(N, Γ) = {(Nt9ty,φk} the natural de-
composition of £Γ. Sometimes we just denote it by 3f(N, y ) = {Nt, φk} .
Each Nt is called a piece of 3f{N, &).

(3.4) The exceptional orbits of the N. are called the exceptional orbits
of 9-.

Now, assume & contains a two-dimensional orbit <fχ~K , a Klein
bottle. By the assumption on orientation, a neighborhood U of $χ is a
twisted /-bundle over (9χ. Clearly, N is homeomoφhic to a double of
U. Further, Γ 3 double covers N.

Summarizing the above discussion, we have the following.
Proposition 3.2. Let N be an orientable three-manifold, and let 9~ be

a polarized F-structure on N. Then there is a polarized T-structure ZΓ on
N which has the same orbits as &, provided N is not a double of twisted
I-bundle over K2.

We now return to (3.3) and (3.4). If each Nt is a 5!-fiber bundle, i.e.,
N. has no exceptional orbits, then the family of the embedded two-torus,
{ON;} , without counting multiplicities, determines a so-called graph struc-
ture of N in the sense of [34] and [35] (see also [28]). Given an exceptional
orbit, say, ffk , k = 1, 2, , r, we cut out a small tubular neighborhood
Vt, around each (9k . Then the family of embedded tori, {dN., dVk} ,
without counting mutiplicities, determines a graph structure for N. A
three-manifold which possesses a graph structure is called a graph mani-
fold. Thus we identify N as the graph manifold. On the other hand, an
orientable graph manifold admits a decomposition as (3.3). These 5!-fiber
bundle structures on the N. determine an obvious T-structure of iV. We
have actually found a one-to-one correspondence between the following
two sets:

{graph manifolds} Φ> {three-manifolds admitting an F-structure}.

The topological classification for graph manifolds was obtained in [34]
and [35]. We shall use these results to explore the rigidity of injective
T-structures on three-manifolds in §5.
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4. Injective T-structures on three-manifolds

In this section, we will prove Theorem 0.4. Our basic tools are some
results from three-dimensional topology and combinational group theory.
The main work is to establish a criterion which enables us to modify a
polarized T-structure so as to obtain one which is injective (Theorem 4.3).

Let Σ be a closed surface embedded in a three-manifold N. Σ is
said to be incompresssible if Σ is not S2 or P2, and the induced map
i^: πχ (Σ) —• πχ (N) is injective (i: Σ —• N).

Lemma 4.1. The boundary of a Seifert fiber space is incompressible un-
less it is homeomorphic to a solid torus or a solid Klein bottle.

Proof. See [32].
Theorem 4.2. Let N be a closed three-manifold, and £Γ be a polarized

T-structure of N. Then ZΓ is injective if and only if the natural decompo-
sition <3f(N, &) contains no piece which is a solid torus.

Proof. In one direction the proof is obvious. Assume that & is in-
jective. This amounts to saying that the boundaries of every piece in
3f(N9 &) is incompressible. From Lemma 4.1 we conclude that no piece
is a solid torus.

On the other hand, assuming that no N. is a solid torus is equiva-
lent to assuming that the boundaries of every Ni are incompressible. Let
i: dNt-^ N be the natural inclusion ( i = 1, 2, , r). It suffices to show
that the induced map i^: π(dN.) —• π(N) is injective.

We start with Nχ and glue the component (ΘNι)ι to its partner. We
denote by Nχ the result. Note that N{ is formed by gluing {dNx)x with
either some (dNχ). , another component of dNχ, or {dNt)j (iφ 1).

In the former case, again using the induced map, (φ\ J

ι)^: 7r1((βiV1)1) —•

π1((9Λ^1)) is an isomorphism since the components of dN are incom-

pressible. Thus, the fundamental group, πι(Nι)9 is actually an HNN ex-

tension of π^JVj) relative to the subgroups π1((9Λ^1)1), π{((dNx)j) and

(0i'{)* (see Chapter IV of [25] for details). Denote by ϊ the natural inclu-

sion from N{ to Nχ from Theorem 4.2 of [25] we see that ϊ^: n{(N{) —>

π^N^ is injective. Therefore the map (ϊ o l^iπ^dTVj) —• π^NJ is

injective.

In the second case, still from the incompressibility of every dNk in Nk

it is easy to see that πχ (Nχ) is the free product of πχ (Nχ) and πχ (N.) with

amalgamation (</>}';\ (see [25]). Consequently, k^.πχ{Nk) -> πχ(Nχ)

are injective for k = 1, / [25, Theorem 2.6]. As before, we see that

(k o k)^: πχ(dNk) -> πx(Nχ) are injective (k = 1, /).
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Note that in the above two cases, dNχ are incompressible in Nχ . Thus
we are able to replace Nχ or Nχ and JV by Nχ and continue the above
gluing process. Apparently, by an obvious induction argument we then
finish the proof.

Theorem 4.3. Under the same assumption as in Theorem 4.2, if every
Sι-orbit of ' & is not homotopically contractible, then either N admits an
injective T-structure when πχ(N) is infinite or N is homeomorphic to a
lens space up to a double covering when nχ(N) is finite.

Let 3f(N, y ) = {Nχ, , Nr} be a natural decomposition of (N, <T).
According to Theorem 4.2, if no N. is homeomorphic to a solid torus,
then & is already injective. Now we assume that some of 7Vz 's are solid
tori. Basically, what we want to do is to modify ZΓ to be injective. We
first deal with the following simple case.

Lemma 4.4. Theorem 4.3 is true if Nχ, , Nr_χ are all solid tori.
Proof Clearly, N has a Seifert fibration by extending (uniquely) the

Seifert fibration of Nr to each N., 1 < / < n - 1. Here we emphasize
the fact that S ̂ orbits of the Seifert fibration are not homotopically triv-
ial is crucial for the extension. From the classification result for Seifert
manifolds as in [28] we immediately obtain the desired result, q.e.d.

Note that in the above proof, if πχ (N) is infinite, then we have actually
modified 9Γ on N. ( i = 1, 2, , r - 2) to be injective. In general, the
modification process turns out to be more complicated. We illustrate this
by presenting the following example.

Example 4.5. This example shows that a solid torus may support mixed
T-structures whose natural decompositions are rather complicated.

Let Σ be the surface formed by deleting three disjoint disks from a
sphere. Take two solid tori DtxSl ( i = 1, 2) and attach them to Σ x Sι

in such a way that the Sι-fiber of Σ x Sι is not identified with dDt.
Clearly, the result is a Seifert fiber space with compressible boundary.
Thus it is a solid torus (Lemma 4.1).

For any natural number k, take k (k > 2) copies of Σ x Sι, Σj x

Sι, " , Σ^xS 1 , and perform k+\ solid tori, DQxSι, DχxSι, , Dkx

S we proceed with the following gluing. The first step is to attach DoxS

and Dχ x Sι to Σj x Sι as above. We denote the result by DQ χ x Sι.

The second step is to attach DQ χ x Sι and Dχ x Sι to D2 x Sι in the
same manner. Clearly, by successively attaching, we finally obtain a solid
torus, ΰ x S 1 . Note that the Sι-rotation on every Σz x Sι generates a



THE LIMITING ETA INVARIANTS OF COLLAPSED THREE-MANIFOLDS 551

mixed T-structure ΣΓ. It is apparent that ΣΓ has a natural decomposition
2f(D x Sι, 9~) = {£>• x Sι, Σj x Sι, 0 < i < k, 1 < < k} .

Motivated by the above example, we introduce the following:
Definition 4.6. Let 3f(N, ZΓ) be a natural decomposition of (N, ΣF).

A solid torus chain ^ ^ is a maximal subset of 2{N, ^) whose total
space is homeomorphic to a solid torus.

Remark 4.7. We point out that a solid torus chain may appear naturally
in the construction for & as in [10] from a sufficiently collapsed metric.

From the proof of Theorem 4.2 one observes that every solid torus
chain contains at least one piece that is a solid torus, Z>. x S . To form

a solid torus chain, one can start with D xSι and proceed as follows. If

the partner of D. x Sι is also a solid torus, then the solid torus chain is
0 ~

D. x Sι itself. Otherwise, let N. be the gluing result of D. x Sι with its0 ° ~
partner. Next, one attaches all the solid tori which are the partners of Nχ

and denotes the result by N2. If N2 is not a solid torus, then the solid
torus chain is again D. x Sι (Theorem 4.2), otherwise one repeats the

0 ~
same process starting at N2 . Clearly, after finitely many steps the process

ends with the desired solid torus chain containing D. xS . Also, from the
above construction, it is clear that if two distinct torus solid torus chains
of Sf(N, SF) have nonempty intersection, then N, formed by gluing two
solid tori along their boundaries, is homeomorphic to a lens space. Thus
we have actually proved the following lemma.

Lemma 4.8. Let N be orientable, and let EΓ^ and &1Λ be two dis-
ΓϊiclX ΓT13.Λ

tinct solid torus chains in ^(N,^). If ^ a χ n ^ a x Φ 0 , then N is
homeomorphic to a lens space.

Proof of Theorem 4.3. Let {5^ax k} be the collection of all solid torus

chains of ^(N,^). We construct a new decomposition, 2χ{N) =

{N{, , Ns}, which is obtained by simply replacing the {<9 âx k} by

their total spaces DkxSι and attaching every DkxSι to its partner Nέ .

If s = 1, i.e., N{ & N, then using Lemma 4.4 we complete the proof.
In the case of s > 2, from our construction of 3${{N) we observe that
no N( is a solid torus and every N. has the Seifert fiber structure from
extending those of Nt . Finally by applying Theorem 4.2 to 2$X{N) we
complete the proof, q.e.d.

With the above topological preliminaries, now we are able to give a
simple proof of Theorem 0.4.
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Proof of Theorem 0.4. We choose the constant e to be the critical
injective radius e3 as in Theorem 1.5. Let g be the Riemannian metric
satisfying conditions (0.1), (0.2) and (0.3). Then we can find a polarized
T-structure ZΓ (Theorem 1.5). According to Theorem 4.3, we only need

to know that any S1 -orbit of ίΓ is not homotopically trivial.
Suppose that there is a point x e N with (9χ homotopically trivial in

N. Note that according to [11], locally 0χ is not homotopically trivial.
More precisely, there exists a constant r, e < r < 1, such that (9χ is not
homotopically trivial in the metric ball Br(x) at x.

On the other hand, we look at the universal covering π:N —• N with
the pullback metric g = π*g. Picking a point x e π~ι(x) we lift the
&χ at x. From BCG and length(^f.) < r < 1 we conclude that O^ is
homotopically trivial in Br{x). It follows that $χ must be homotopically
trivial in Br(x). Since this contradicts our assumption on Br(x), the
proof is complete, q.e.d.

We conclude this section by giving an example showing that, in general,
injective T-structures may not be found from a volume collapse with BCG
by means of the general geometrical constructions given in [11] or [18] and
[19].

Example 4.9. Take the standard S2 and Sι and form S2 x Sι. Let
H be the Sι subgroup of SO(3), defined by

H = 0<t<2π

Then T2 = HxSι acts as isometries on S2 x S ι by H acting on the first

factor and multiplication on the second factor. Take any Rι-subgroup Rθ

of T2 and split the metric as g = g0 + g{, where #0 is the restriction

of g to the orbits of Rι

θ and g{ its orthogonal complement. We then

construct a volume collapse {gδ} by multiplying δ2 to # 0 . It is not hard

to see that the pullback volume collapse on the universal covering S2 xRι

is equivalent to the one obtained by shrinking the metric g along the

direction of the J^-flow lines (the lift action of H on R2 x Sι) while

keeping the metric in the orthogonal direction fixed. Therefore {gδ} has

BCG. Note that the limit space of (S2 x Sι, gδ) is an interval since Rι

θ

is dense in T2 . This implies that for any sufficiently collapsed metric gδ ,

the T-structure !Γ , constructed by using either the local short geodesies
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technique [11] or the frame-bundle technique [18], [19], has to contain

Γ2-orbits. Clearly, !Γ are not injective for every small δ .

5. Rigidity of injective T-structures on three-manifolds

As pointed out in §0, Corollary 0.8 suggests that the injective T-
structures on a three-manifold, if any, are essentially the same in some
sense. To be precise, we introduce the following:

Definition 5.1. Let .5^ and ^ be two positive rank T-structures and
3f{N 9 3^ = {N. x, , N. r } be the natural decompositions. &[ is said
to be isomorphic to £Γ2 if rχ — r2 and there is a homeomorphism φ of TV,
such that φ\N :Nχj —• N2 . preserves the local actions. The exceptional

orbits of y consist of the exceptional orbits of iV. as a Seifert fiber space.

Definition 5.2. Let <Γ be an injective T-structure of N and 3f(N9^)

= {iVj, — , Nr} be the natural decomposition. F is said to be simple,

if y contains no piece which is homeomorphic to I x T2 .
We will see that simple injective T-structures are rigid on most three-

manifolds. Namely, they are unique up to isomorphism (Lemma 5.4).
This generalizes the well-known fact that most three-manifolds admit an
unique S^-fibration (if any) (see [32]). Before proceeding with the proof,
let us first look at all the exceptional cases.

Example 5.3. The injective T-structures on S x S are in one-to-one
correspondence with fixed-point-free S ̂ action on 5 x S . It is obvious
that every such structure is a simple injective S^structure. In particular,
there are infinitely many nonisomorphic classes of simple F-structures.

Example 5.4. Let N be a three-dimensional solve-manifold and let F
be a simple T-structure of iV. Then &~ is pure. If & is of rank three,
then a finite cover of TV is T3. If & is of rank two, then N is the total
space of a T2-bundle over Sι. If SΓ is of rank one, then TV is actually
a nilmanifold with the center acting on TV.

Lemma 5.5. Suppose N is a closed three-manifold which has no finite
cover homeomorphic to S2 x Sι or a solve-manifold. Then N admits a
simple injective T-structure which is unique up to isomorphism (if any).

Proof Let ^ be simple T-structures on TV and

be the natural decompositions (/ = 1, 2). It suffices to show that rχ = r2

and that there is a homeomorphism φ of N such that φ\N \Nχ .Γ —• N2 .
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preserves the Seifert fiber structures (j = 1, 2, , rχ). Actually this
follows from the classification result of [34], [35] and [32] (see also [28,

§8]).
To see this, we further decompose 3f{N, ^ ) as follows. Let {^.)P ,

ffx k } denote the set of the exceptional orbits of &[ (see (3.4)). For each

(9{ •, let Ui • be an open invariant tubular neighborhood of it. We can

assume that {ί/ } are pairwise disjoint and each (9t • c N. ., for some

N. j , ( i = 1,2). Put [/. = Uί1' Uitj. Then the Seifert fiber structure
on each N. - £/• is actually a S^bundle structure. This implies that the
boundary components {d(Ni .--ί/,-)} (without counting the mutiplicities)
give the graph structure of TV (see the discussion at the end of §3). Since
the ^ are simple injective T-structures, it is not hard to check that this
graph structure is actually simple in the sense of [34] and [35] (see also
[28, §8]). Thus, by Theorem 6, §8 of [28], we obtain the following:

(i) The number of boundary components of {d(Nχ . - £/•)} is the
same as {d(Nχ . - £/.)} (without counting the multiplicities).

(ii) There is a homeomorphism φχ of N such that

It follows from (i) that kχ = k2 and hence rχ = r2. By (ii), we can
assume, by properly rearranging the indices, that φ 'Nx . —• N2 . is a
homeomorphism for j = 1, , rχ. Note that each N. • is neither a solid

torus nor an /-bundle over T2 or K2 since the ^ are simple injective T-
structures (Theorem 4.2). Thus, from Theorem 3.9 of [32], we can find a
fiber preserving isomorphism φ( which is isotopic to φ • (j: = 1, , rχ ).
Gluing these {φ^ further in an obvious way, we then obtain the desired
homeomorphism φ. Consequently, ZΓχ ~ SΓ2. q.e.d.

From (1-5), one easily concludes the following.
Lemma 5.6. Let N be a closed oriented three-manifold. Suppose N

admits a polarized T-structure £Γ. If ^' is a substructure of ΪΓ, then

Motivated by Lemma 5.6, we introduce
Definition 5.7. Let ^ (i = 1, 2 ) be two polarized T-structures on TV.

3\ is said to be weakly isomorphic to ^ , if there is a polarized T-structure
y of N which has both t7[ and ^ as substructures.

Lemma 5.8. Let ZΓ be an injective T-structure on N. Then F is
weakly isomorphic to a simple injective T-structure <9^ of N.

Proof Let 3f(N, J') = {Nχ, , Nr} be the natural decomposition
of (N, &"). If we assume that &~ is not simple, then we have the subset
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-^1 = {̂ z > ' > Ni } o f &(N> ^) consisting of the pieces which are

homeomorphic to IxT2 . We reglue the pieces in 3λ together and obtain

the set 32 = {N. , , N. }, whose elements are also homeomorphic

to / x T2. By replacing ZΓ\~ by the obvious Γ2-action on N. and

retaining the rest of ZΓ, we obtain an injective T-structure F which
clearly contains ZΓ as a substructure.

In order to find a simple substructure 1ΓS of ίΓ, we modify !Γ\~ as

follows: let N. and N. be the partners of Nt . (Note that if 3f2 = {N( }

and N. has no partner but itself, then !Γ is a pure T2 structure on a

solve-manifold. In particular, fΓ is simple.)

(i) If the iS^fibration on the disjoint union, N.uNj , can be extended to

N. U Nt U Λ̂  , then we replace ^\NUJ} uN by this extended -S^fibration,
J i ij jj

(ii) otherwise, we return y | ~ and the pure restructure as before.

From our construction for ίΓ and ίΓs it is routine to check that ^ is a

simple substructure of ίΓ.
Proof of Theorem 0.10. Combine Lemma 5.6 and Lemma 5.8.

6. Proof of Theorem 0.3 and filling three-manifolds
by equivariant plumbing

In this section we will prove the following result:

Theorem 6.1. Let N be a closed orientable three-manifold and let ZΓ

be a polarized T-structure on N. Then there is a compact manifold MN

and a T-structure ZΓ {possibly with singularities) such that
(6.1) ΘMN~N,

(6.2) Γ\ ~7\
N ^-v_-

(6.3) every component of the singularity Z{£Γ) is an embedded sub-

manifold.
If we assume Theorem 6.1 for the moment, then we can finish the proof

of Theorem 0.3' (Theorem 0.3) as follows (compare with Theorem 2.8).
Proof of Theorem 0.3. Let N be as in Theorem 0.3. By Theorem 0.4

and (2.2) of Theorem 2.5, there exist an injective T-structure 3" on N
and an invariant volume collapse with BCG. According to Theorem 0.1
and Theorem 1.11,
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η JN) = l i ό

From Theorem 6.1, we fill N with the compact 4-manifold M and extend
F to y that satisfies (6.1)-(6.3). Consequently, η(N9f) is rational
(Theorem 1.11). q.e.d.

Note that (6.1) is well known from the fact that the oriented cobordism
ring of three-manifolds is trivial [26]. To insure that we can extend &
to MN in a canonical way (this is needed in order to obtain an intrinsic
formula for η,2)(N)), we will construct MN by the so-called equivariant
plumbing technique. We refer to [28] for facts concerning equivariant
plumbing. First, we state a lemma of [28] which we shall use in the proof
of Theorem 6.1.

Lemma 6.2. Let L(p, q) be a lens space, and let M(p, q) be the result
of the equivariant plumbings according to the graph given by the continued
fraction q/p = Γ[bχ, , br]. Then dM(p, q) = L(p, q). Moreover, any
Sι-action on L(p, q) extends uniquely to M{p, q).

Proof See [28].
Proof of Theorem 6.1. It is natural that the filling must take into ac-

count F. Let 3f(N9 &') = {Nι, ' ,Nr, φk} be the natural decompo-
sition. Note that each orientable Seifert fiber space has a decomposition
into a union of Seifert manifolds. Here Seifert manifold means the three-
manifold which admits a fixed point free Sι -action. Further, each Seifert
manifold decomposes into the product spaces: {Σ x Sι, (Dι : x Sι, φ()} ,
where Σ is a surface (perhaps not orientable), and φi e SL(2, Z): dZ>zx
—• dΣ x Sι are the gluing maps (see [29]). Thus, we can start with a de-
composition of (N, £Γ), say {Σj x S ι , Dt- x Sι, φk} . We shall construct
MN in three steps below:

(6.4) Fill in each JL. x Sι by Σj x D and fill in Dtj x Sι by Dtj x D2 .

We observe that any S^action on Σ x Sι or Σ x D extends uniquely to
its filling.

(6.5) Glue these Σ x ΰ ' s and Zλ x ΰ ' s together via the φk and denote
the result by Mχ. Note that Mχ is not a manifold since each gluing map
φk produces a "hole" whose boundary is a lens space, say, L(pk , qk). We
denote by &£ the restriction of y to L{pk, qk).

(6.6) For each k, let M(pk, qk) be the filling of L(pk, qk) as in Lemma
6.2. We then close up the holes of Mχ by filling in the corresponding

, qk) 's, and denote the result by MN . Finally, by extending ^ to

, qk)
 c-> MN we obtain ϊΓ. From our construction for MN, it is

obvious that dMN ~ N and (6.3) is satisfied, q.e.d.
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By making the additional assumption that each piece in the natural
decomposition is a Seifert manifold with orientable base, we are able to
give an intrinsic construction of MN. This can be used to derive an
intrinsic residue formula for η{2)(N). Here we need a more general lemma
than Lemma 6.2.

Lemma 6.3. Let N = {b\ {o, g); (a{, βχ)9 •• , (ar, βr)}, and let
MN be the result of the equivariant plumbings according to the graph deter-
mined by the above Seifert invariants of N. Then dMN ~ N. Moreover,
any Sx-action on N extends uniquely to MN.

Remark 6.4. Let

Then

- N = {-b-r;(o,g);(al9aι-βι)9... , (αΓ, α, - 0,)}.

The computation for the signatures shows that in general σ{MN) Φ σ(M_N)
(see §7). Thus the filling MN depends on the orientation.

We begin with the natural decomposition 3f(N9^) = {N{, ,
iVΓ, φk} (see (3.3)). Now we construct MN in three steps which are sim-
ilar to (6.4)-(6.6):

(6.7) Consider Seifert manifold Nt. Since every component of dNi

can be trivialized as Dik x Sι, we form a closed Seifert manifold Nt by
gluing Dik x D to each component of dN.. By the classification result of
[29], we have

^MV>(^);(«π>/y> Λ*ir,βir)}.
By applying Lemma 6.3, we fill in ΛΓ. with MN .

(6.8) Corresponding to each φk , there are two attached pieces, Dik x
D, D kx D (note that it may happen that i = j). We may normalize φk

as

Φk = ( ^ V

q

k

k ) : Wh x Sl - , (dNj)k x Sl det(^) = - 1 .

Then we construct equivariant plumbings from Dik x D to Djk x D ac-

cording to the graph given by qk/pk = T[ckι, 9cktt]. (Note that the

result of plumbings is M(pk, qk) as in Lemma 6.2.)

(6.9) From our construction, it is routine to check that MN ~ N. It

follows from Lemma 6.2 and Lemma 6.3 that 9" extends to MN, by

extending the S ̂ action on each iV. to M~ and the S ̂ actions on Ni
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and Nj to M(pk, qk). (Here we assume that φk glues one component

of dNt with one of dN..)

7. Residue formula for limiting eta invariants

This section is devoted to the explicit topological formula for η{2){N),

for N a closed oriented Seifert manifold. First, combining Theorem 0.3',

Theorem 6.1 and Theorem 1.11, we have

(7-1) η(2)(N) = σ(MN) + £Res(α, Γ),

where MN is as in Theorem 6.1, J7~ is a T-structure of MN which is in-
jective when restricted to N. The rigidity result for injective T-structures
(Theorem 0.9) implies that in most cases formula (7-1) will be intrinsic.
More precisely, one is able to write η,2ΛN) in terms of the data of the
simple decomposition of (N,^) (of course, SΓ is simple). However,
in this paper, we shall only carry out the computation for η^(N) for
injective Seifert manifolds.

Before computing the residue formula for general Seifert manifolds,
let us first do the simpler case where the Seifert manifold has only one
exceptional orbit.

a. Residue formula for Seifert manifolds with one exceptional orbit

Lemma 7.1. For the oriented injective Seifert manifold N = {b\ (o, g),
(a, β)}, we have

(7-2) tj ( λ n — " ' w ^ \ i •" i \ ^ u . s—\

ι = l

where a/(a -β) = [b{," ,bs], a. = b-a^ - at_2 with aQ = 0 , aχ = 1
and e(b) = 1 if b < - 1 or e(b) = - 1 otherwise.

Remark 7.2. In the proof of Lemma 7.1 we find σ(MN) = -s + t(b).
Thus in general, MN is not homeomorphic to M_N (compare Remark
6.4). This is the reason why the relation η^(-N) = -η^(N) cannot be
seen directly from (7-2).

Proof By Lemma 6.3, we fill in TV with MN via the equivariant

plumbing. More precisely, MN is formed by plumbing successively a num-

ber of disc bundles Λ/(m) ( m , the Euler number of the bundle) over sur-

faces, ξ = (M_b_χ, π, Y), ζ. = (M_bι, π., SJ) (1 < i < s), where Y is

an orientable closed surface of genus g [28]. If we write S1

i=Bi ιUBi 2 ,
the union of two discs, then M_b = Bχ, χ x D \j. Bχ, 2 x D with the gluing
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map

Φi" ( ΐ ?)•
Thus MN can be expressed as
(7-3)

MN = M_h_χ U x finxΰU £ 1 2 x D

I-

I
S 2 2 x D

ψ2

BslxDU Bs2 x D

where

s =

and

Let X be the vector field generated by the extended -S1-action from TV to
MN, and let Xy be the restriction of X \o B. χx D(\ <i <s). In the
polar coordinates, ((pι, θx), (p2, θ2)), of Bi:ι x D, we have

Note that α 0 = 0 and ax = 1 since the S1-action becomes a rotation of
the fiber when restricted to M_h_χ . From (7-4) we solve for ai, α / + 1 =
6/α/ - OL._{9 1 < / < r. Using ftz < 2 and the initial condition, we
conclude by induction that

U ^ J > 0.
Consequently, the fixed point set of X is ZQU{0{ { x 0, 0 2 j x θ , , 0s {

x 0, 0s 2 x 0} , where Z o ĉ  7 and 0y x 0 is the center of Bi x D.
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Therefore, (7-1) can be written as

*(2) W = ^MN) + R e S K > Zθ) + Σ R e S K > °« 1 X °)
(7-5) / = 1

+Res(α χ , O ί 2 x O ) ,

where ax is the closed form determined by X (see [36] for details). Also,

(7-6)

Res(α^, 0. j x 0) = - ^ - + — ι - = bt + —*- a i - l

i+i ai

Res(ax, Zo) =

By substituting (7-6) into (7-5), we get

ι = l

Now the only thing remaining to check is that σ(MN) = -s + c(b). From
[28], σ(MN) is equal to the signature of the matrix

ί-b-\ 1 λ
1 - b χ 1

1 -

1
1 - I

and A is negative definite if and only if -b - 1 < 0. Thus, here we only
need to consider -b-\ > 0. First, we consider -b - 1 > 0. It is easy to
see that A is congruent to

- 6 , - 1 0

where L J
' FΓT

f-bx-\ 0\
V 0 Aj'

A χ =

1

1 -b2 1
1 —b

1

Note that -6j -f -^ < 0 because ^y < 0. Consequently, ^j is negative
definite, and therefore σ(A) = -s + I.

If b + 1 = 0, then

' - 6 , 0 0

0 0
0 0 Λ,
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where

-h 1

• . l

1 —b

Since -b2 + l/b{ < 0 (6f. > 2), by the same reason we conclude that A2

is negative definite, and hence that o(A) = —5 -h 1. Now the proof is
complete.

b. Residue formula for Seifert manifolds. We shall prove Theorem 0.9.
As mentioned in the above part a the anti-invariance of η,2ΛN) under a
change of orientation is not obvious from (0-3). However, it turns out that
the anti-invariance of (0-3) can be derived easily from the anti-invariance
of (7-2).

L e t N = {b\{p,g)\{aχ9βx)9... , ( α , , j ϊ Γ ) } . T h e n -N = {-b-

r (0, g) {a{, aχ - β{), , (αΓ, αΓ - βr)} . Without loss of generality,
we may assume b + r > 0. Put

2 < / < r.

Comparing (0-3) with (7-2), we find

= Σ/=!
It follows from our assumption that

Proof of Theorem 0.9. First, by our construction for MN (Lemma 6.3),
essentially the same calculation as in the proof of Lemma 7.1 yields

i=\ j=\ i=\ i

According to §2 of [28], σ(MN) is equal to the signature of the matrix

/ —b — r
ι Fι

A2 0

0 A^

: 0 0
{ Erl 0 0

0

0

0
A.
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with

1 -b,.
a

1 -I

£.1 = El

(/= 1, 2,

, and A is negative if and only if

,5,. if
"yi ~ iy

-b - r < 0. Thus what we shall do is to check σ(A) = - J
—fc — r > 0. As preparation, we first prove the following lemma.

Lemma 7.4. Let

A =

(Aι-aEn

—aE.21

-aE\2

A,. — aEΎ22

-aE

-aE.

-aE.VI -aE rl Ar-aEι

rrJ

with A. and .j = (a^) is the st x Sj matrix in which entries are zero but
akχ — \. Suppose a > 0 and btj > 2. Then A is negative definite.

Proof. Lemma 7.4 is known in [28] for a = 0. Assume a > 0. We
proceed by induction on r. The case r - 1 is verified in the proof of
Lemma 7.1. Assume Lemma 7.4 holds for r - 1. In order to use the
induction assumption we make a congruence transformation on A so that
A\ is diagonalized and Eι

u and Ex

n vanish for / = 1, 2, , r. In the
first step we see the following

"21

E

'12

7 1
"22

where

13

-bs I , S
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with

a

In the second step we get
a{a2

Al~A2 =

/

V

a

a

A
1

Γ
l β 2

E3

£,2,

^ 3 i

α i«2
'12 axa2

where

1 -b
14

with

1 -Kj
1 1

Continuing the process till a step numbered Sj, we obtain the desired

result:
/ ^

A1 ~ A ι =

0

where

0

-r)
\ )
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We claim the following.

(7.1) bu

(7.2)

!

ί = l

— - a > 0.

Assume (7.1) and (7.2). Then Λj1 is negative definite and hence A is
negative definite (by induction assumption).

To see (7.1), we start with

1 . 1 2ax + 1
a2 = bu > 2 + — = —i .

ax ax a

Then

Assuming (7.1) for i - 1, we have

1 b , • . - 1
6 , . - - > 2 - '•'-' . •£±2-

+ 1 2aλ + 1 ' "

/α, + / - 1

since α, > 0. Now we prove (7.2). From (7.1),
(7-7)

, / *ι ,

ι=2

^ 2 α (2aι + 1 /a, + / - l y ( i + 1 ) ^ + /
^ ' V «i ( / - l ) α , + / - 2 / ta, + / - l

If aχ > 1, then from (7-7)

l
(7-8)

ί



THE LIMITING ETA INVARIANTS OF COLLAPSED THREE-MANIFOLDS

If 0 < ax < 1, then from (7-7)

565

Since (7-8) and (7-9)together give (7.2), the proof is complete.
We continue our proof of Theorem 0.9.
First, we consider b + r < -1. It is easy to see

ί-b-r 0 ••• 0 • λ
n A _L i rx i /r1

q.e.d.

0 +
Applying Lemma 7.4 we conclude that σ(MN) — σ(A) = - Σr

i=ι ί, + 1.
Now assume fe + r = 0. After a simple congruence transformation on A
(compare the last part in the proof of Lemma 7.1), we find

ί-b
11 0

1
0 A 0

0 Λ.

where

A =

-E.

-E

-£,2

Λ-*ll£22

-E 13

-*i.4
31

ί-b 12 1
- 6 13

1 ~bi ,
1 ' ^

By proceeding with essentially the same diagonalization procedure on Aχ

and killing Ex

χj and Ex

jχ simultaneously (1 < j < r) as in the proof of
Lemma 7.4, we are able to see that A is conjugate to a matrix satisfying
the conditions in Lemma 7.4. Thus, by applying Lemma 7.4, σ(MN) =
σ(A) — - Σ,r

i=ι st + 1 (here we omit the detailed computation).
Now the proof is complete.
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8. The proof of Theorem 0.11

Proof. We proceed by contradiction. Assuming the opposite, we have
3a sequence {Nt} in ^#3(Z>) such that

(8.1) {τ/(2)(JV.)modZ} is an infinite set.
For each /, let g. be a metric of JV) which satisfies conditions (0.1), (0.3)
and

(8.2) Vol(Ni9gi)<\9

(8.3) diam(Nngi)<D.
From (0.1), (8.2) and (8.3), by Gromov's precompactness theorem [23]
we may assume, by passing through a subsequence if necessary, that {JVJ
converges to a lower-dimensional metric space Y in the Gromov-Haus-
dorff distance. We split the rest of the proof according to dim(Y).

(a) dim(y) = 0. Then all but finitely many iV are nilmanifolds
[21]. Note that a three-dimensional nilmanifold is a Seifert manifold
whose Seifert invariants are {b\ (o, 2)} (b e Z ) . By Theorem 0.9,
η^N^modZ = 0, \ 9 \ . Consequently, {η^)iNi) m o d z } i s a finite

set. This contradicts (8.1).

(b) dim(y) = 1. Then Y is homeomorphic to either a closed interval

or Sι. In the former case, from Theorem 12.8 of [20] we conclude that all

but finitely many N( are actually Γ2-manifolds. By the result of [27], we

can even identify these Γ2-manifolds with either S2xSι or Γ 3 (note that

π^Λf) is an infinite group). Consequently, {f/mC-W/) modZ} is again a

finite set and this contradicts (8.1) again. If Y « Sι, then all but finitely
many N( are solve-manifolds (Theorem 12.1 of [20]). In fact, the limiting
eta-invariant of a solve-manif old is ^ and \ modulo integers (note that a
pure polarized restructure on a solve-manif old has no exceptional orbit).
This fact leads to a contradiction to (8.1).

(c) dim(y) = 2. Then all but finitely many TV. are injective Seifert
fiber spaces, and Y is an orbifold. Let yx, , yk be the singular points
of the orbifold. Then each Nt (/ sufficiently large) has exactly k excep-
tional orbits which are the preimage of yi. According to the classification
theorem due to [33] (see also [28]), we can write

where g is the genus of Y , ei? = e , a constant depending on orientability
of Y. For convenience, we define a norm of N. as follows:

\\Ni\\ = max{α / f l, ••• , aik}.
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By Theorem 0.9, if {||N.||} is a bounded set, then {η{2)(N)modZ} is
finite. Thus, we may assume that ||Λ .̂|| —> oo as i —• oo. By passing to
a subsequence if necessary, we may assume that ai, j -• oo ( i -• oo)
for some fixed j , 1 < 7 < fc. To get a contradiction, we choose a
small metric ball Bδ{y.){ς. Y) at y. such that its preimage in N. is
solid torus for sufficiently large i. Note that Bδ(y.) can be viewed as

the orbit space of the ^-action on π~ι(Bδ(y.)) with the isotropy group

Z . Since diam(π~1(5J(yy))) < D and atJ -> 00, the limit of the

orbifold π~ι(Bδ(yj))/Za has to be of dimension one. This contradicts

d i ( B { ) ) d i ( ) 2
j

Now the proof is complete.
Remark 8.1. It would be interesting to know whether or not Theorem

0.11 can be generalized to higher dimensions.
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