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Abstract

In this paper we describe the Picard group of the variety #Z(r, d) which
parametrizes semistable vector bundles of rank r and degree d on the
fibers of the universal curve ?g. The bundle #(r, d) lies over the

moduli space I: of smooth curves of genus g (g > 3) without auto-
morphisms.

1. Introduction

We denote by /[go the moduli space of smooth curves of genus g
(g > 3) without automorphisms. To this space we can associate various
varieties: The universal curve 7: ‘gg — /l;) which is a bundle with fiber
the curve C over the point [C] € /[: ; the variety q: Z(r, d) — /[go with
fiber over [C] the space U.(r, d), which parametrizes semistable vector
bundles of rank r and degree d on C—for the definition see [9]. In the
special case when r = 1, this becomes the Jacobian variety p: # 4, /K;

of degree d with fiber J d(C ) over the point [C], which parametrizes line
bundles of degree d on C.

The Picard groups of //{: and %’g have been described by Harer, Ar-
barello and Cornalba (see [1]). The Pic//{g0 is generated by the determi-
nant A of the Hodge bundle. On the other hand, the restriction of a line
bundle on %g to the fibers of 7 is something “canonical”, namely a multi-
ple of the canonical bundle (Franchetta’s problem, see [1]). Therefore the
relative Picard group Pic(‘g;, //1: ) is generated by the relative dualizing
sheaf w_ of the family n and the Pic%g is the free abelian group with
generators w, and 7"A.

In this paper we prove that a similar phenomenon holds for line bun-
dles on % (r, d). The restriction of a line bundle on Z(r, d) to a fiber
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Uc(r, d) is again something “canonical” in the sense that we explain in
§3. Before we continue, let us note that we have a natural isomorphism
Yr,d)=2%(r,d+r(2g-2)) givenby E — EQK , where K the canon-
ical bundle. Using this, it is enough to describe the PicZ/(r, d) for large
values of the degree d .

2. Some properties of 6 divisors

We state here some technical lemmas concerning properties of 6 di-
visors on the Jacobian of a smooth curve. First a notation. By fixing
a line bundle L € J “*¢7'(C), the locus of {M € J%(C) such that
ho(M ® L) > 1} is of codimension one in Jd(C). We denote by 6,
the line bundle on J d(C ) corresponding to this divisor (or sometimes the
divisor itself).

Lemma 1. Let &/ be an abelian variety, and & a principal polar-
ization on &/ . Then the map ¢ : & — Pic(/) which sends A —
T, 2% =1 is a group homomorphism.

Proof. See [8, p. 59, Corollary 4].

Lemma 2. JO(C ) is naturally isomorphic to the variety Pic’ Jd(C )
which parametrizes the line bundle of class 0 on J d(C ).

Proof. Fix a principal polarization 6,, on Jd(C ), where M €
J _d+g_l(C ) following the above notation. Consider the map JO(C ) —
Pic’J d(C ) which sends L — 6,,,, ® 0;41 . As it turns out this does not
depend on the choice of M and is an isomorphism (see [8] for details).

Lemma 3. If A,B € J “**7Y(C) with A" = B", then 0", = 0],
on J%(C). More generally, if 4;,B; € JEN(C) with Qi A" =
8B, T =Y m \ then ® 0 =@, 05 -

Proof. We prove the general case. It is enough to prove the lemma for
the case d = 0. Then using an identiﬁcation of J¢ (C) with J° (C) itis
true for all d. Fix a polarization 6. on J? (C). Then 0 T, ®C"6C
We want to prove that

s t m
n
Qb = Qb5
. ! . J
i=] Jj=1
or

s
X0 ®6.™) ®(0 ® 0
i=1
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or

s t
QT o168 ®6.™) = ®(T;j®c_,gz;' ®6.™),
i=1 Jj=1
or

s t

N —1\m;
®¢0C(Ai®c )" =®¢0C(Bj®c )™,
i=1 j=1

which is true by Lemma 1.

3. The Picard group of U.(r, d)

We review now the description of the Picard group of the variety
Uq(r, d) (resp. U,(r, L)) which parametrizes the semistable vector bun-
dles of rank r and degree d (resp. determinant L € J d(C)) on a smooth
curve C. The reference is [3].

The smooth locus of U.(r, d) is the set of points Ué(r, d) which cor-
respond to stable vector bundles. Also codimUC(r, aUc(r, d)\Ué(r, d)) >
2. The space U.(r, d) is locally factorial (see [3, Theorem A], and so
any line bundle on Ué(r, d) can be extended uniquely to a line bundle
on U,(r,d). Similarly, one can see that the space #(r, d) is locally
factorial too. The map det: U, (r, d) — Jd(C) which sends E — detE

has fiber over the point [L] € J d(C ) the variety U.(r, L). We have the
following (see [3]):
(1) PicU.(r, L) =1Z;
(2) PicU.(r, d) = Z@det" PicJ/(C).
A geometric description of the generators is given as follows. For a generic
choice of a vector bundle F of rank . and degree —‘ﬁ%ﬁl'l where n =
g.c.d.(r, d), the set of points {E € U.(r, d) (resp. E € U.(r, L)) such
that ho(E ® F) > 1} defines a divisor in U, (r, d) (resp. in U.(r, L)).
This has been proven in [5]. Note that F has the minimum possible rank
for which there exists a degree such that the Euler characteristic y(EQF) =
0. We denote the induced line bundle by O (resp. by 6, ). The basic
facts about these line bundles are
1. The line bundle 91,, r on Uc(r, L) does not depend on the choice
of F and is the generator of the PicU.(r, L) = Z.
2. The line bundle ©, on U.(r, d) depends only on the determinant
of the vector bundle F . Namely, if F, F " are two choices as above, then
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we have the relation
8, =6, ®det'(“det F ®detF' ™' "),

where det F ® det F'~! is an element of J 0(C) which can be considered
naturally as an element of Pic’ J d(C) (see Lemma 2).

We construct now “canonical” choices of line bundles on U (r, d) as
follows. Let m be an integer such that ml‘%l—) is an integral linear
combination of the numbers —d + g —1 and 2g -2, i.e.,

(1) m—d+r(g—1)
n
The set of all such m’s forms a subgroup of the integers with generator
2) k= gcd.(2g—-2,-d+g-1)
" ged (2g-2, —d+g— 1, 24Dy’

=a(-d+g-1)+B(2g-2).

Given F (resp. F') with rank and degree as above, we choose a line
bundle M (resp. M') of degree —d+g—1, such that M* = det F"oK™*
(resp. M = detF" ® K -k ). There are finitely many such choices,
namely o’8 . The claim is that the line bundle

3) 6, ®det" 6,
does not depend on the choice of F, M . Indeed, we have that
O @ det’ 0, = O @ det’ (“det F @ det F'~')" @ det” 6,
=0} @det’((“detF @ det F'~' ") © 6,,")
m * -
=06 @ det 0 M
where the last equality comes from Lemma 3, using that M “@det F" ®
det ™™ = K# @ det /™™ = M'™*. The line bundles of the above form as
in (3) are the canonical choices of line bundles on U (r, d). The descrip-
tion of the Picard group of #(r, d) is given by the following theorem.
Theorem 1. The restriction of any line bundle on % (r, d) to the fibers
ofthe map q: % (r,d) — /lgo is such a canonical choice as in (3). Even
more, for any choice of integers m, «, B satisfying relation (1), there
exists a line bundle .‘Zm,a on % (r, d) which restricts to the above canonical
choice O ® det” 0, on the fiber U.(r, d).
Remark. As we proved in [6], in the special case of the Jacobians
5 4 _, /lgo , i.e., when r = 1, the restriction of a line bundle on the

fiber J(C) has the form 65, where M* =K £ for some integers o, B.
This corresponds to the above situation when m = 0; i.e., the line bundle
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is trivial on the fibers of the map det: Z(r,d) — # 4 and so it is the
pullback of a line bundle from _# .

4. The space of extensions

We first recall some things about symmetric products of curves. The
main reference is [2]. For d large enough, the dth symmetric product C @
of a smooth curve C can be considered as a projectivized vector bundle
over the Jacobian variety J d(C ) in the following way: By fixing a point
g, in C, there exists a normalized Poincaré bundle 9’% on the product
J d(C) x C. This is characterized by the properties: 3”%| yxc =L and
.g"qol (O {a} = @ . To construct ‘@qo , we define the map

B, 11 (C)x €= J57H(O),
(L,p)— L®F((§—d)gy—P)-

Then

@ F E 6,000 0(d = 8)a)) © V"0 4yg 1y,

where v and ¢ the projections, 6 = 6, (@ the trivial line bundle) and
0(_ dtg—1)g, def Oé.(( d+g—1)q followmg the notation of §2. We then have

that C¥) = P(V*.g?’qo) , and the fiber of the map u: C¥ = P(u*gf’qo) -

Jd(C) over a point [L] € Jd(C) is the projective space P(HO(C, L)).
Given a point p in C, the set {D € C? such that D — p > 0} defines
a divisor which we denote by X As it turns out the divisor X is a

section of the tautological line bundle ﬂ’P(V %, (1) (see [2, p. 309])

We denote by x the class in the Neron-Seven group of the divisor X i
This is independent from the choice of the point p. We also denote by

J the class of the diagonal A def {D € c¥ , D=D,;_,+2p for some
D, ,eC“?, peC}in C¥. The pullback of the class § of the theta

divisor in Jd(C) by the Abel-Jacobi map u: c9 - Jd(C) is given by
the MacDonald’s formula

=(d+g-—1)x—%,

(see [2, Proposition 5.1 in p. 358] or [6, Lemma 4]). If C is a curve
with general moduli, then it is known that the Neron-Severi group of the
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J d(C) is generated by the class of the theta divisor. From this, one con-

cludes that the Neron-Severi group of c? s generated by the class of
the pullback of 6 and the above-defined class x (see [2, p. 359]); using
the MacDonald’s formula the generators can be chosen to be % and x.
According to this, given a line bundle . on the universal dth symmetric
product ‘Zg(d) , its restriction to a fiber c? s algebraically equivalent to
an integral combination ax + b‘% . Since the curve C is not rational, the
classes x and % are linearly independent. In our paper [6] we show that

the coefficient a has to satisfy
(%) 2g —2la.

In the following we are going to see how the relation (*) imposes con-
ditions to line bundles on #(r, d). To start with, if D is a stable vector
bundle of rank r and degree d, then for d large enough—as we are going
to assume from now on—we have an exact sequence (see [9])

0—»@’C®Cr_]—>E——>L—>O,

where L = det E. The extensions of L by C! are parametrized by the
points of H'(C,L™'®C™"). Let P, =P(H'(C,L™' ®C"™")). Take a
Poincaré bundle & on Jd(C) x C and define

1 -1 r—1,, Serre * oV r—1
P=PRv(# ©C ) =2 Pr(#oqK) eC ),
where v and g are the projections of J d(C) x C . This is a projectivized
vector bundle v: P — J d(C) . According to [4, Proposition 2, application
II], there exist a “universal” vector bundle E on P x C and an exact
sequence

(5) 056, 0C ' 5E-pg-1)ev'? -0,

(where v = (vx1)*, and p, is the projection P x C — P) such that for
every point x in P, with v(x) =[L] € Jd(C) , its restriction to {x} x C

0—>@'C®Cr_l—>Ex—>x®L—->O

corresponds to the inclusion x — H l(C , L' C'—l) . Let P’ be the
open of P consisting of points x with E_ stable vector bundle. We
denote by f the forgetful morphism f: P’ — U.(r,d) and also by f
again the rational map f: P — U,(r, d). The complement of P’ in P
is of codimension > 2 and so, any line bundle on P° extends uniquely
to a line bundle on P. We denote now by P*" the bundle over //{go
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whose fiber over [C] € /lgo is the above space P. We have the following
diagram:

P Ly, d)

vl/l
Fl—

The crucial point here is that the variety P*” is a projective bundle over

F a , with fiber over [L] € Jd(C) isomorphic to the projective space

pr—Dd+e-1-1 , but not in general a projectivized one. This corresponds

to the fact that in general there is no Poincaré bundle on _# ? % P %g ,
&

see application at the end of §5. A way to measuring how far P*" is of
being a projectivized vector bundle is to determine the minimum positive
number / for which there exists a line bundle on P*" whose restrictions
to the fibers of the map f is &(/), where &(1) is the hyperplane bundle
on PU~DE*+e=D=1 "\we start with a lemma.

Lemma 4. Let P|" be the bundle over Mgo whose fiber over the point

[C] e/l; is P, (P ®q°K)"), where P and v, q are as before. Then

P{" is a projective bundle v, :P\" — # Y for which the corresponding
nu’r,nber | (definition as above) is the same as that of the projective bundle
P .

Proof. Overapoint [L] € J(C) the fiber of P!" is P(H(C, L®K)")
and the fiber of P*" is P(H°(C, L® K)" ® C"™"). Over a small analytic
neighborhood U of # “ the bundle P'l”' is projectivization of a vector
bundle Vy - Let N ¢d+g—1 be a local frame. If e, --- ,e,_, is

a frame for the trivial bundle C"~' over 5 d , then over U the bun-
dle P*" is the projectivization of ¥, ® C’~' with a local frame ¢, ® e
i=1,.--,d+g-1and j=1,-.--,r—1. Consider the diagonal map
Vy = Vy® c! sending Y. a,¢; — E.j a,$; ® € this induces a mor-
phism B: P{" — P*". Consider also the map V}, ® c ' o V,, sending
¥, b0,®e; = (T, b;;)¢; ; this induces a rational map a: P - P".
The locus where this is not defined is of codimension d + g — 1 (> 2)
in the fibers of v: P*" — #%. Note that the monodromy on /{go does
not cause any problem in the construction of the maps, since the local
construction is invariant under the action. Any line bundle on P*" which
restricts to @(n) on the fibers of v pulls back by f to a line bundle
on P}” with the same property. Similarly, any line bundle on P{" with
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restriction @ (n) pulls back by a and extends uniquely to line bundle on
P*" with the same property. This proves the lemma.

We have now the following theorem:

Theorem 2. For the projective bundle v: P*" — #° the minimum
number | for which there exists a line bundle on P*" whose restriction on
the fibers of the map v is @(l) is given by

l=gcd(2g-2,d+g-1).
Proof. By Lemma 4 above, it is enough to prove the result for the
bundle P{". Consider the maps
gg(d) ,.«Og ¢—u><1/ Xlog _>Ptlm’
where u is the Abel-Jacobi map, and y is the map which sends (L, p) —
{0 € H(C, L®K) with a(p) =0}. On gD X 40 %, we have a universal
&

g
bundle &, ; this is the bundle corresponding to the divisor which is the

image of the map %(d b Vi % £ &, sending (D, p) — (D +
D, p). Note that class (.9 IC(d)X {p}) = X, where x is the class of the
divisor X , defined at the beginning of the section. Let Z be a line
bundle on P{" which restricts to &(s) on the fibers of the map v,: P}" —
5 d , where s is an integer. Consider the line bundle y*.% . If ¢ is the
projection _# 4 5 £ ‘Z} — %g , and o is the relative dualizing sheaf of

the family %, — /lgo , then the line bundle & = y*".Z ® ¢*w™° has the
property 2| (L}xC > 1% Also, the class in the Neron-Severi group of
the Z| 7(C)x {0} is independent of the choice of p € C, equal say to nf
where 7 is an integer independent of C and p ; this is because the Neron-
Severi group of the Jacobian of a curve with general moduli is generated
by the class of the theta divisor, and since algebraic equivalence is an
open (topological) condition, » will not vary over the irreducible space
?;, . Therefore from the above-mentioned MacDonald’s formula it follows
that class (¢"P| wxwm) =n((d+g—-1)x—9%).

For each D € %g(d) over [C], we have ¢"%| p, & Qfslw}xc =
ﬁ(D)@. By the see-saw principle (see [8]), there exists a line bundle
Z on %g(d) such that ¢*# =~ f‘ ® n; % , where =, is the projection
on ‘gg(d). Therefore, the restriction of # to a fiber C @ of the map
%g(d) — /lgo has class [n(d + g — 1) — s]x — ng— . From our basic relation
(), we conclude that 2g — 2 has to divide the coefficient of x; i.e.,

nd+g-1)-s=k(2g-2),
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where k is an integer. This implies that g.c.d(2g —2,d + g — 1) has
to divide the number s. To conclude the proof of the theorem we have
to prove that there exists a line bundle on P|" whose restrictions on the
fibers of v is @(g.c.d.(2g —2,d + g —1)). In the following section we
construct such a line bundle.

5. Construction of line bundles

We construct here two line bundles on P*" whose restrictions to the
fibers of the map v are &(d + g — 1) and @ (2g — 2) respectively. For
this, we first do the construction on P}”, and then pull back by the map
a on P*" (see proof of Lemma 4 for the definition of ).

The first line bundle is the dual of the relative dualizing sheaf o, of the

family v, : P'l‘" - 7 4 . Since the fibers are projective spaces of dimension
d + g — 2, the dual of @, restricts to @(d + g — 1) on the fibers.

The construction of the second line bundle is a little more complicated.
We start with a definition.

Definition 1. For a fixed curve C we denote by _920 the tautological

bundle ﬁpl (1) of the projectivized bundle P, def P(v, (9"%®q*K )V), where
37’% is the normalized Poincaré bundle at ¢,, and v, g are the two
projections.

Choose a divisor 2,2.51_2 p; € HO(C, K) and consider the line bundle
& = ®f§ N 2 “(Z;’.- on P, . As we shall see later (see Definition 2 in §7), this

line bundle does not depend on the choice of the section in HO(C , K).
We are going now to prove that there exists a line bundle %" on P{",
which restricts to .Z; on the fibers. To do this we use the following lemma
(see [6]).

Lemma 5. Let ?;, A /lgo denote the universal curve over /Zgo ,and o,
the relative dualizing sheaf of n. Then, there is a nonempty Zariski open
subset 7% of -/[go such that on n_l(?/) there is a holomorphic section of
@, .

Proof. m, w, is an algebraic bundle on /l: . Therefore by Serre’s the-
orem, it can be trivialized on a Zariski open of /lgo . This is the set Z we
are asking for. A trivial section of the bundle n, @, over Z corresponds

to a holomorphic section of w, over 'y q.e.d.
Note first that we can choose % such that the restriction of the map =
to the above holomorphic section gives an unramified covering of Z of
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degree 2g — 2. We can now cover the Zariski open Z by open analytic
subsets {U,} such that over each U, there are 2g —2 sections sf of the
map =n. Locally over each U, we can construct a collection of 2g — 2
different maps

d’i,a: fad an gg,a _)fag-—l,
(L,p)~L®F((g—-d)gy— D),

where the subindex a on the bundles means restriction over U,. Then
we define locally Poincaré bundles

def  * * * —1
‘%,a = ¢i,a0®q ﬁ((d‘g)sf)®y 0(—d+g—l)s;”

where the maps v, ¢ are the projections of /ad Xy ?} 2> and 0(

—d+g—1)s}
is the divisor on fad whose restriction to J d(C) is the divisor
0(_ d+g—1)s((C]) (by sf we denote either the map or the image, whatever
makes sense). Using these locally defined Poincaré bundles, the restric-
tion of P'l"' over the set U, can be considered as a projectivized bundle
over j;d in 2g -2 different ways. We denote by &/ .o the corresponding
tautological bundles. For each U, let ,9’;'1“" denote the tensor product
of all these bundles, which is a line bundle over P{"|, whose construc-
tion remains invariant under the action of the monodro;ny group. Also by
construction the _92“" ’s coincide on the overlaps of the set U, ’s, and so
they fit together and give rise to a line bundle on P}"|,, and by extension
to a line bundle %" on P|". Note that although we may have several
possible extensions, their restrictions to the fibers over /[; coincide, and
are the above-defined line bundles .7}, .

To construct now a line bundle on P*" which restricts to @(/) on
the fibers of the map v: P*" — _#? consider integers a, b such that
a(2g-2)-b(d+g—-1)=1. Then, if £ = %"**®w}’, the bundle we
are asking foris &, @ o’ % .

Application. Consider the group

A, = {n € Z such that 3a Lb. & on #* x g0 &, with Py, 0 = L%}

Theorem 2 above implies that the generator of the group 4, is the number
l=gcd.(d+g-1,2g-2). Indeed, at first / € 4,. If & is the above line
bundle on P{", then as we saw in the proof of the theorem, the line bundle
P2yYy'#e q*w;I has the property that #|,,, . = L®' . On the other
hand, using the map ¢ as in the proof of the theorem we conclude / is
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the generator of A, . In particular this implies that there exists a Poincaré

bundle on #“ x ,0 &, if and only if g.c.d(2g-2,d+g—1)=1. The
4

latest has been proven in a different way by Mestrano and Ramanan (see

[7D).

6. Imposing conditions

For a fixed curve C,let f: P — U.(r, d) be the (rational) map defined
in §4. Let 6, be the line bundle on U (r, d) defined in the same section,
where tkF = £, degF = ;G_fnig__‘l , n=g.c.d(r,d). Werecall here from
[3] how one calculates the f* 6 ; note that since f is not defined in a

locus of codim > 2, the pullback of 6, is uniquely determined. We have
the following diagram:

c &£ pxc—* Ly )xc L C
nl v
P v , JY0)
N dV
Ucq(r, d)

Tensoring the exact sequence (5) of §4 by p;F and taking direct images
to P we get the induced long exact sequence

0-&e@H(C,C ™' ©F) - R’p, (E®p;F)
— Oy(-1)® R%p,,(*P @ p}F) » G, H'(C,C' & F)
—R'p,,(E®p;F) — Gp(-1)® R'p,,(v*" P @ p;F) - 0,

where v* & (v x 1)* . Therefore

x d x
detp,(E®p,F) =0 (—(r - 1);1-) (§§>detp“('v#9z ®p,F),

(note —(r—1)4 = y(detE _®F)). In[3] the authors prove that /(-6
detp,(E®p;F) (see proof of Theorem C). Now since p,(V*P @ p}F
v* (v (L ® q"F)) we have

R IR

)
)

(6) 8y =6, ((r— 1)%) ®v*(dew!(9?’®q*F))“.

Also if f;: P, —u(r, L) is the restriction map, then

£©,0=6 (r-n%).

n
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where © L.F is the generator of PicU.(r, d). Combining this with The-
orem 2, we impose now conditions for line bundles on #(r, d). We start
with the diagram

P v fd
\\f' da/
%(r,d)
Consider a line bundle . on #(r, d) which restricts to Gko on the
fiber U.(r, L) of the map det. Then, f*_?|PL = &, (k(r - 1)4), and
Theorem 2 implies that

ged.(2g-2,d+g-1)k(r—1)%.

The minimum of such number k is

gcd.(2g-2,d+g-1)
gcd.(2g-2,d+g-1,(r-14%)’

Observe that this minimum is the same as the number k, d in equality
(2) of §3. Assume now that the second part of the Theorem 1 is true; i.e.,

given integers m, a, B satisfying relation (1) of §3, then there exists a line
bundle f/m,a on #(r,d) which restricts to the canonical choices 8} ®
det” 6, on the fiber U.(r, d) over the point [C] € ./[go . Thus the above
discussion leads to the proof of the first part of the Theorem 1. Indeed,
let . be any line bundle on #(r, d). The fiber of the map det over
a point [L] € #¢ is U.(r, L), which has Picard group PicU(r, L) =
Z[B ;] (see §3). Restricting £ to Uc(r, L), by the above discussion

k . .
we conclude that .|, (L) = = 9® T 4 s an integer. Therefore by taking

m =k, ,s we can find integers o, ﬂ satisfying relation (1). Let i”m’a be
the “corresponding” line bundle on % (r, d). Then Zm’a|UC(,’ n < ec”
and so .¥ lUc(” L = IU (r.1)- BY the see-saw principle there exists a
line bundle .# on / such that & =% ®det".# . Now using the
remark following Theorem 1, we conclude the proof of the first part of
this theorem.

7. The generator line bundles on % (r, d)

In this section we construct the above mentioned line bundle .,S’m)a on
% (r, d) and complete the proof of Theorem 1.
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Lemma 6. Let .9”40 be a normalized Poincaré bundle at the point q,.
If v: Jd(C) x C — Jd(C) is the projection map, then

~ o1
dCtV!‘@qo = 0(—d+g—l)q0 .

More general, if E is a vector bundle on C of rank r, and degree d,,
then

* ~ _(r ‘l) -1
detv(F, ®q E) =0 _4, 0 1)q ®Op(—d-q, +8—1)g,)®det E *

where q: J d(C) x C — C is the projection map.
Proof. We first claim that Bz’qol JO)x o} = “@(qy, — p)” - Indeed, with
the notation of the construction of ‘@qo (see relation (4)) we have

¢ 0l54c)xp)
> &({M € J*(C) such that h°(C, M ® &((g — d)g, — p)) > 1})

= 9(—d+g)qo—p ’

~ -1 .
and 0 F | (e xp) = O_arg)g-p ®O(=drg)0,-p ® O(—dg-1)q, - Then using
Lemma 3, the claim is true.

By the Grothendieck-Riemann-Roch theorem one can show that
det u!.@qo has class 67! ; see [2, Chapter VIII, §2]. Therefore, there ex-

ists a line bundle L € J~**¥7}(C) with dety#, = 6;'. We want to
prove that L = @((—d + g — 1)q,) . Fix a generic line bundle D,_, of

degree d — 1 on C, and define the map y,: C — J d(C ) which sends
p— D, , ®(p). Now consider the diagram

C«——nz—CxCﬂx_l,Jd(C)xC

| |
c 2. Jjo
where n,, m,, v are the projection maps. Note that y/*g"qo| (pIxC =3
D, ,®&(p) and t//*.97’q0| cx(py 2P — 4;) . The last equality is derived

from the above claim and the relation y;8, =~ K®D;' ®L™'. Therefore
by the theorem of the cube (see [8]), we have

y/*.?qo = n@(—q,) ®m,D,;_ ®C(A).
Consider the exact sequence
0 Oppc = Ocyc(B) = G5(A) = 0.
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Tensoring by n;Dd_l and taking the induced long exact sequence of the

projection x, , we get det n”(A®7c;Dd_1) = det(id),(A®D,;_,) = K'®
D,_, . Therefore

detnl!w*ﬂqo > det(@(q,) " @7, (A® 73D, _,))
~o(-d+g-1)g)®K '®D,_,.

On the other hand y; dety, %, = y;6;'*L®D,  ®K ' . By the base
change property we get that L®D,_, oK ' O((-d+g-1)q,) oK '®
D, , andso L=O((-d+g—-1)q,).

For the second identity, if , =1, i.e., E = detE, then a slight modi-
fication of the above calculation gives the result. For general rank r, , we

have in the K-group that [E] = [C"_I]GB [det E] which proves the lemma.
Lemma?7. Let E be a vector bundle on a variety X , andlet E' ¥ EQL
where L is a line bundle. Then

Gppr(1) = Opp(1)@ 1" L™

where n is the canonical map.
Proof. See [4, Chapter II, Lemma 7.9].
Lemma 8. We have

-1 A~ K »
%o®‘5’;0 =1, ﬁ(qo“l’o) ,

where .‘ZIO , _‘Z;,o as in Definition 1 of §5.

Proof. Indeed, by the construction of the normalized Poincaré bundles,
we have that .@qo o gf’po ® v"“G(q, — p,)”; see claim at the beginning of
the proof of Lemma 6. Therefore u*(.@qo ® ¢ K) = 1/*(97’1,o ®¢'K)' ®
“@(py— 4q,)” > and Lemma 7 concludes the proof.

Definition 2. If M is a line bundle on C, we define %}, &f ®.,’7?’

® 3 where ) . p, — Z q; is the divisor of a meromorphic section
of M By the above Lemma 8 the definition does not depend on the
choice of the divisor. From the same lemma we easily derive the following
properties:

(1) .‘ZM] oM, = .S”Ml ®.<ZM2 where M, , M, are two line bundles.

(2) v{(“L; ® Lz'l”) = .?1] ®,‘Z};l , where L, L, are two line bundles
of the same degree.

In the following we often use the notation + and — for the “tensor”
and the “dual”.
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—d+g-1
Lemma9. If Le J **7'(C), then
*9 o~ _ -
v,0, 2% -Z @, -

Proof. The bundle v,: P, = P (#, ® 4*K)") — J%(C) has Euler
sequence

0-8 -y, (P, ® 'K)' ®F (1) > Q, -0,
where Qv, is the sheaf of relative differentials of the map v, . Therefore
detv;u*(ﬂqo ®q'K) = ~w, +(-d-g+1)Z, .
Since det V*(gzqo ® q*K)v = 0(—d—g+l)(9’(qo)®K (see Lemma 6), we get
V10 _i—ginogek =~y + (-d-g+ l)‘-%o .
Using Lemma 3 and Lemma 8 yields

'Ul*eL = ’Ul*o(—d—g-q.[)(?(qo)@]( ® 'Ur(“L —((-d - g+ 1)?(gy) + K)”)
= -w, +(-d-g+ 1)3;0+£’L—(—d—g— 1)3;0—,9’;(
_wvl +,?1 - ‘SﬂK .

[%

As we saw in the proof of Lemma 4 we have a map «: P — P,. On
P we denote again by .%; the pullback line bundle "%, , and by w the
pull back o['a)vl . Note that if we consider P as a projectivized bundle
with the “use” of the Poincaré bundle 9’% , then (1) = 5/;0 .

Lemma 10. For the line bundle ©, on U.(r, d),

,
fng%etF_;(%+w)’

where f:P — U(r, d) is the forgetful (rational) map.
Proof. By Lemmas 6 and 9 we have

detv"v!(Z, ® g F)"

~ ¥ n(r/n)—1
=v (0(—d+g—l)qo ® 0(—d+d/n—(r/n)(g—1)+g—1)r?'(qo)®detF)

z(%—l)((—d+g—l)%o—£’,(—w)
d
+(—d+;—%(g—1)+g—1>_€’;0+,£’;etp—.%<—w

d
> —(r-— 1)?.?;0 - %(.‘Z;(+w)+_?;etp.
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Now this proves the lemma since
8,2 (r-1)4% e@detv' (P @ g F)!

(see relation (6)).

From Lemmas 9 and 10 one concludes easily

Theorem 3. The pullback by the map f of the canonical choices of line
bundles on U,(r, d) is

rr@egedet 6, (a+ - 20) H+ (a- o) w;

see relations (1), (3) for the notation.
Proof. Recall that M* = det F™ @ K~ ?, so that oty = mL, p —
B . Thus we have

fOF edet’ ;) 2 mP o~ TG~ Tl — 0y + 0y + 0w
~ mr mr
x (a+ﬂ—7)£’,{+ (a——n—)w. g.e.d.

We now prove the existence of the line bundle ,?m’a on Z(r,d). Let
P." denote the subset of P*" corresponding to stable points; the comple-
ment is of codimension > 2 in P*". In §5, we saw that there exist on P.”
globally defining line bundles which restrict to .#; and w on the fiber
over the point [C] € /l; . Therefore there is a line bundle & on P?"

which restricts to (a+ f — 25 ).%; + (a— % )w on the fiber over [C] € /fgo .

n n
The restriction of this bundle to the fibers of the map f: P! — #(r, d)
is trivial (pullback of a line bundle from U,(r, d)). We give now a see-
saw principle argument which implies that the above-defined canonical
choices of line bundles on the fibers of the map q: Z(r, d) — /[go are
actually restrictions of globally defined line bundles on #(r, d). We are
going to use a resolution of the map f: P;‘" — #(r, d) constructed in
[3]. Following that paper, one can construct over Z(r,d) a bundle T
whose fiber over a point [E] € Z(r, d) is a bundle over the Grassman-
nian Gr(r — 1, H°(C, E)) with fiber over [H] € Gr(r— 1, H(C, E)) to
be P(Hom(C'™', H)); see [3, p. 88]. As it turns out the space P'" is
included in the space T, and the map f: P}" — #(r, d) is extended to
the canonical map of the bundle f;: T — Z(r, d). The complement of
P." in T is fiberwise a union of two irreducible divisors. Now having
the line bundle ¥ on P*" which is trivial on the fibers of the map f,
one can find an extension % of & to T, which remains trivial on the
fibers of the map f: for this, just take any extension of & and then
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“correct it” by an appropriate combination of the line bundles defined by
the above complement divisors. For the map f, we can now apply see-saw
principle and so there exists a line bundle .2/, = on #(r, d) such that

S = %, .. Using the fact that the pullback map f* is one-to-one
(see [3]), we get that the restrictions of 3»1,0, to the fibers of the map

q:%(r,d)— .l: are the above canonical choices, and this concludes the
proof of Theorem 1.

Remark 1. In the case of the Jacobian variety # d , a canonical choice
of a line bundle on the fiber J d(C ) has the form 67, where L* = K £,
Working with the symmetric product Cc? ~ P(v,#)—assume that d is
large enough—we can prove the analogue of the Lemma 10 and Theorem
3 in this case. The corresponding formulas are

(1) u'0, 2w, -%,

(2) W6} 2aw, — %,

where u: C9 - J d(C) is the Abel-Jacobi map, and .#] is defined in a
similar way as above. In the same way as before we can see now that there
exists a line bundle . which restricts to the above canonical choices on
the fibers. This gives a proof of this fact different from that we gave in
[6].

Remark 2. The following is also true. If we have a canonical way of
choosing a line bundle on the general fiber of the family q: Z(r, d) —
/l; , these choices fit together and give rise to a line bundle on #Z(r, d).
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