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EQUIVALENCE CLASSES OF POLARIZATIONS
AND MODULI SPACES OF SHEAVES
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Introduction

Let X be a smooth algebraic variety over the complex number field
C with dimension n larger than one. For fixed cχ in Pic( Jf), c2 in
A2

num (X) which is the Chow group of codimension-two cycles on X mod-
ulo numerical equivalence and a polarization L on X, let JfL{cχ, c2) be
the moduli space of locally free rank-two sheaves stable with respect to L
in the sense of Mumford-Takemoto such that their first and second Chern
classes are cχ and c2 respectively. In this paper, we consider the problem:
what is the difference between JίL (cχ, c2) and JίL (cχ, c2) where Lχ and
L2 are two different polarizations!

The understanding of this problem has two important implications. The
first is in algebraic geometry. If one knows the structure of some moduli
space JίL(cχ, c2), then one will know the structure of any other moduli
space JfL,{cχ, c2) by comparing it with JfL{cχ, c2). The author has ap-
plied this idea to the case where X is a ruled surface (for instance, see
[21]); the results will appear elsewhere. The second implication is in gauge
theory where X is an algebraic surface. When the geometric genus p of
X is positive, the polynomials defined by Donaldson [6] are differential
invariants. When p is zero, via the results in [4], these polynomials are
defined on chambers of certain type (cx, c2) from the work of Mong [ 18]
and Kotschick [15], one sees that we need to understand the difference
between moduli spaces in order to compute these polynomials.

Our approach to the problem is to develop a theory about equivalence
classes, walls and chambers of type (cx, c2) for polarizations on X. This
is done in Chapter I. Fix cx and c2 as before. Let Lχ and L2 be two
polarizations on X. We say that Lχ and L2 are equivalent if every
locally free rank-two sheaf V with first and second Chern classes cx and
c2 , respectively, is Lχ-stable if and only if it is L2-stable.
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Theorem 1. Let V be a locally free rank-two sheaf which is Lχ -stable

and L2-unstable. Then, there is an invertible sheaf @χ{F) y and integers

i, j with 0 < i < j < {n - 1) such that, S being equal to Ln~x~3 L\

(LJ + L J ) ' " 1 " 1 , we have

(i) 0χ{F + cx{V)) is divisible by 2 in Pic(JSΓ)

(ii) [cx(V)2-4c2(V)]-S<F2-S<0;

(iii) (F-LX)-S<O<(F-L2)-S.

The special case where X is a surface and cχ is trivial (see Proposition
1.2.1 in Chapter I) is obtained by Mong [ 19] and Friedman [7]. Using The-
orem 1, we can define walls and chambers of type (cx, c 2 ) . Let Num (X)
be the group of divisors on X modulo numerical equivalence relation. Let
Cχ be the Kahler cone in Num (X) <g> R generated by all ample divisors.
Roughly speaking, a wall of type (cx, c2) is the intersection of Cχ with
a set of the form {JC e Num (X) ® R\x - ζ S = 0} where C and 5 sat-
isfy some conditions. Walls of type (c{, c2) cut Cx into many connected
components; each of these components is a chamber of type (c{, c2), and
intersection of a chamber with Num (X) is Z-chamber. A basic relation
among equivalence classes, walls and chambers is that an equivalence class
is a union of Z-chambers, and possibly some polarizations lying on walls.
We will see that the study of moduli spaces of locally free rank-two sheaves
stable with respect to polarizations lying on walls can be reduced to the
study of moduli spaces of locally free rank-two sheaves stable with respect
to polarizations lying in chambers.

In Chapter II, we focus on the case where X is an algebraic surface,
and work in the Kahler cone Cχ . It turns out that the concepts of walls
and chambers here are slight modifications of those used by Donaldson [5]
and Friedman and Morgan [8]. Let ζ be any numerical equivalence class
which defines a nonempty wall W of type (c{, c2). We introduce the
notation EΛcχ, c2), which is the set of all locally free rank-two sheaves
V given by nontrivial extensions

where F is some divisor with (2F - cχ) = C, and Z is some locally

complete intersection 0-cycle with length /(Z) = c2 + (ζ2 - c2

χ)/A. Every

sheaf V in E^(cχ, c2) has two basic properties: (a) the above defining

exact sequence for V is canonical; (b) V is L-stable if Lζ is negative and

L is contained in a chamber ^ such that l ^ Π Closure(£f) is nonempty.

Our main result is the following.
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Theorem 2. Let &, &χ be two chambers sharing a common wall. Then,
as sets,

*9(cx, c2) = (JΛΨ{CX , c2) - Y[E{_Q{cχ, c2))

where ζ satisfies ζ L < 0 ybr some L e&, and runs over all numerical
equivalence classes which define the common wall.

We now explain the geometric meaning of Theorem 2. It is well known
that JtL(cx, c2) is quasiprojective (see [16]). Thus, for two polarizations
Lχ and L2, one would expect to perform only a finite surgery operation
to pass from JtL (cx, c2) to JtL (cx, c2) by removing and adding locally
closed subsets. Indeed, E,(cχ, c2) is a finite disjoint union of locally closed
subsets of Jίψ{cχ, c2) under the conditions in Theorem 2. Therefore,
Theorem 2 gives a precise description about what locally closed subsets
should be removed or added when Lχ and L2 can be connected by a
path which intersects with only one wall of type (cχ, c2).

We notice that EΛcx, c2) plays a significant role in comparing different
moduli spaces and in determining the equivalence classes of polarizations.
In §2 of Chapter II, we discuss the nonemptiness of Eζ(cχ, c2). We use
some classical techniques to construct locally free rank-two sheaves. In
this direction, we have two results.

Theorem 3. Eζ(cχ, c2) or E^_ζ)(cχ, c2) is nonempty if c2 > c(X, cχ)

where c(X, cχ) is a constant depending on X and cχ.

Notice that no condition is imposed on the wall W . If we do make
some assumption on W , we obtain a stronger result. The second is the
following.

Theorem 4. Let 38 be a compact subset in the Kάhler cone Cx . For

any numerical equivalence class ζ with Wζn& to be nonempty, Eζ(cχ, c2)

is nonempty when c2 > c(X 9 cx, SB) where c(X, cx, SB) is a constant

depending on X, cχ and 38.
In [23], we have estimated the dimension of Eζ(c{, c2) and studied the

birational structure of JfL{cχ, c2) when (4c2 - c\) is sufficiently large.

CHAPTER I

1. Stability under different polarizations

1.1. Stability in the sense of Mumford-Takemoto. We begin with sev-
eral definitions. Let X be a smooth projective variety of dimension n
over the complex number field C. From the exponential sequence
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we obtain a map from Pic (X) -» H2{X Z) . Let Num {X) be a Pic {X)
modulo the kernel of the induced map Pic (X) -+ H2(X; Z)/ Torsion.
Clearly, Num (X) is a finely generated free abelian group. The images
of ample invertible sheaves in Num (X) are called polarizations (a word
of caution: this definition is different from the standard one). Since we
will only need numerical properties, we make no distinctions between a
polarization and its inverse images in Pic (X) or Div (X).

Definition 1.1.1. For a polarization L and a torsion free coherent sheaf
K,let

Definition 1.1.2. Let V be a torsion free coherent sheaf on X. V
is L-stable (resp. L-semistable) if, for all coherent subsheaves W of
V with 0 < rank(W) < rank(F), we have μL(W) < μL(V) (resp.
μL{W) < μL{V)). V is said to be unstable if it is not semistable, and
strictly semistable if it is semistable but not stable.

Remark 1.1.3. If n = 2 or rank (V) = 2, then it is sufficient to check
(semi)stability on locally free subsheaves of V such that the quotients are
torsion free.

Definition 1.1.4. Fix cx e Pic(ΛΓ) and c2 e A2

num {X) where ^ u m (X)
is the Chow group of cycles on X of codimension i modulo numerical
equivalence. Let L be a polarization on X. We define J?L{cγ, c2) to be
the moduli space of L-stable locally free rank-two sheaves with fixed cχ

and c2.
Remark 1.1.5. It is well known that JίL{cχ, c2) is quasiprojective (see

[16]).
1.2. Stability under different polarizations.
Proposition 1.2.1 (see [19] and [7]). Let V be a locally free rank-two

sheaf on a smooth algebraic surface X with c{(V) - 0. Let Lχ and L2

be two polarizations on X. Suppose that V is L{ -stable and L2 -unstable.
Then, there exists an invertible sheaf @χ{F) on X with Lχ F < 0 < L2-F
and -c2{V)<F2 < 0 .

A slight modificaion of the proof in [7] of the proposition above will
result in the following which says that c{(V)φ0 makes no big difference.

Proposition 1.2.2. Let V be a locally free rank-two sheaf on a smooth
surface X. Let Lχ and L2 be two polarizations on X. Suppose that V is
Lχ -stable and L2 -unstable. Then, there exists an invertible sheaf @X{F)
such that @χ{F + cχ{V)) is divisible by 2 in Pic(X), Lχ - F < 0 < L2 F
and cx{V)2 - 4c2(V) < F2 < 0 .
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Corollary 1.2.3. Let V be a locally free rank-two sheaf on a smooth
surface X.IfV is stable with respect to one polarization and unstable with
respect to another polarization, then cχ(V)2 - 4c2(V) < 0.

Remark 1.2.4. This corollary is obtained by Takemoto [25]. It is a
special case of Bogomolov's instability theorem [1]: if c[ > 4c2, then
Λ?L(cx, c2) = 0 for any polarization L on any surface X. Donaldson
[4] and Kobayashi [13] (see also [17] and [14]) showed that if cχ(V) =
c2(V) = 0, then V is stable with respect to some polarization on X if
and only if V comes from an irreducible unitary representation of the
fundamental group πχ(X). In general, the case (4c2 - c\) = 0 has been
studied by Takemoto [24, 25]. Therefore, in case of algebraic surfaces, we
always assume (4c2 - c\) > 0 unless otherwise specified.

Theorem 1.2.5. Let V be a locally free rank-two sheaf on a smooth n-

dimensional variety X where n > 2. Let Lχ and L2 be two polarizations

on X. Suppose that V is Lχ -stable and L2 -unstable. Then, there exist an

invertible sheaf &χ{F) on X, and integers iy j satisfying 0 < i < j < (n—l)

such that, S being equal to Ln~x~] - L\ (Lx + L2)
J~~ι~x, we have

(i) ffix(F + cλ(V)) is divisible by 2 in Pic(ΛQ;

(ii) [c1(F)2-4c2(F)].5<F2.5<0;
(iii) {F'Lχ) S<0<(F L2) S.

Proof. By assumption, there exists an invertible subsheaf ffχ{G) of V

such that G-Ln-χ <[cl{V).Ln

l~
l]/2 and \cx(V)^Ln-χ\l2 < G-L2~

ι. By

Remark 1.1.3, we may assume that the quotient V/<fχ(G) is torsion free.

P u t F = 2G - cx(V). W e h a v e F L n ~ x <0<F- L n ~ x . T h u s , w e c a n

choose integers i and j with 0 < i < 7 < ( π - l ) such that

(i)

(ϋ)
(iii)

(iv)

Put

L

F-ύn-χ-k) L\
p # L(H-l-k) . Lk

F-Un"x~k) L\

F L(n~x~k) • L\

\ C J7 T
) * O X * -i-'i *

<

<

=

>

(L

L

0

0

0

0

',-

for

for

for

for

;<o

fc = i ;

y-ι-1 j ^ e n > w e j , a v e

and (F L2) S = F

Therefore, we obtain that (F Lχ). S < 0 < (F - L2) S. Note that after
a scaling of Lχ and L2 , we may regard S as a smooth algebraic surface
i n X. R e s t r i c t F, L χ a n d L 2 t o S. P u t H = (F\s L2\s) L X \ S - (F\s

Lχ\s) L2\s-. Then H is ample on S and F\s H = 0. By the Hodge
Index Theorem [11], either (F\s)

2 < 0 O Γ F | 5 Ξ 0 . But the second case
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will not happen since F\s-Lχ\s <0. Thus, {F\sf < 0, i.e., F2 S < 0.
On the other hand, there exists an exact sequence

0 -> 0χ(G) -> F -> 0x(cx{V) - G) 0 /Z -+ 0,

where Z is a locally complete intersection codimension-two cycle on Λf.

Thus, c2(V) = G (c1(K)-G)+[Z],and F 2 5 = [ ^ ( ^ - ^ ( K J l S+^Z]-
2 . Hence, we have [c1(F)2-4c2(F)].5 < F2 S < 0.

2. Equivalence classes and chambers

2.1. Equivalence classes of polarizations.
Definition 2.1.1. Let Lχ, L2 be two polarizations on X. Fix cχ e

2 s

Pic(X) and c2 e Anum (X) We define L{ > L2 if every locally free
rank-two sheaf with c{ and c2 as its first and second Chern classes is
Lj-stable whenever it is L2-stable. We define Lχ = L2 if both Lχ > L2

s

a n d L 2 > L χ .
Remark 2.1.2. Fix cχ and c2 . Then Lχ = L2 means that the moduli

spaces JίL (cχ, c2) and J(L (cχ, c2) can be naturally identified.
Notation 2.1.3. For a polarization L, we put

(i) ΔL = {L'\L! is a polarization and Lf > L};

(ii) %L = {l/|l/ is a polarization and l/ = L} .

Proposition 2.1.4. Lei L αnt/ Lr 6e two polarizations on X. Then,

(i) ΔL/ C ΔL if and only if L < l!

(ii) AL> = AL if and only if L = ll.

Proof Follows from Definition 2.1.1 and Notation 2.1.3. q.e.d.
We already know that Num(X) is a finitely generated free abelian

group. There is an open cone (called the Kάhler cone) Cχ , in Num
which is spanned by polarizations. Fix cχ e Pic(Z) and c2 e ^nu

Definition 2.1.5. (i) Let S e An

n~^ (X), and ζ e Num (ΛΓ) 0 R. We
define

W{ζ'S) = Cχ Π {x e Num (X) 0 R|JC - ζ - S = 0} .

(ii) We define W{cvc2) to be the set whose elements consist of W{ζ'S),
where S is a complete intersection surface in X, and ζ is the numerical
equivalence class of a divisor F o n I such that @X{F + c{) is divisible
by 2 in Pic(ΛΓ), and that

F2 S<0,
F2-c2
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for some locally complete intersection codimension-two cycle Z in X.
(iii) A wall of type (cχ, c2) is an element in W(cχ, c2). A chamber of

type (Cj, c2) is a connected component of C^ -W(cχ, c 2 ). A Z-chamber
of type (Cj, c2) is the intersection of Num (X) with some chamber of type
(cx , c2) .

We notice that when dim(ΛQ = 2, the above definitions for walls and
chambers are slight modifications of those used in [5], [8], [18] and [15];
they also appeared briefly in [7]. As in §1, Chapter II of [8], we can show
the following result.

Proposition 2.1.6. The set of walls of type (cx, c2) is locally finite if

Remark 2.1.7. If dim(X) > 2, Proposition 2.1.6 will not hold any-
more (see 2.3 below). This will limit the application of our theory in
higher-dimensional cases. Nevertheless, this theory is quite satisfactory in
dimension two (see Chapter II).

2.2. Some relations among walls, chambers and equivalence classes.
Proposition 2.2.1. Let *& be a chamber, and let Lχ, L2£&. Then,

Proof. By assumption, Lχ and L2 are not separated by any wall. Thus,

by the Theorem 1.2.5 in §1, Lχ = L2 . Since Ψ is convex and closed under

the action of R+ , (Lχ+ L2) is also in W.
Corollary 2.2.2. Each Z -chamber is contained in some equivalence

class. Thus, an equivalence class is a union of Z -chambers, and possibly
some polarizations lying on walls.

In the next chapter, we will discuss this corollary for algebraic surfaces
in detail. Right now, using Corollary 2.2.2, we can make

Definition 2.2.3. Fix cχ e Pic(X) and c2 £ A2

nλχm (X). Let Ψχ and ^2

be two Z-chambers of type (cχ, c2), and LχeWχ, L2e&2.

(i) We define that Wχ > % if Lχ > L2 , and that ^ = ff2 if Lχ = L2 .
(ii) We define that a locally free rank-two sheaf is ^-stable if it is

Lj-stable. Let <^<g{cχ, c2) be JίL (cx, c2).
(iii) We define Δ^ to be ΔL , and g^ to be %L .

Proposition 2.2.4. Let & and &' be two chambers having a unique
common face which is part of the wall W. Assume that the two Z -chambers
Num (X) Π Ψ and Num (X) n &' are nonempty. If W is not of the form
JF ( / Γ ' 5 ) where S is a smooth complete intersection surface in X and F =
2G-cx for some invertible subsheaf@χ{G) of a locally free rank-two sheaf
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which is either & -stable or &' -stable, then

Num(jr) Π ^ = Num(I) n &.

Moreover, if dim(X) = 2, the converse is also true.
Proof. The first statement follows from Definition 2.1.1 and Theorem

1.2.5.
Next, suppose dim (X) = 2 and Num {X)n& = Num(X) n &'. If

W=WF where &χ{F) is a subsheaf of V which is (Num (JT)ng>stable
(so must be (Num (X) n ^')-stable), then by the definition of stability,
F L < 0 for any L e Num(Z) n & or Num (X) n &'. Thus, JF cannot
separate ^ and ̂ ' . A contradiction, q.e.d.

In the following, we consider polarizations lying on walls.
Proposition 2.2.5. Suppose &{ and %?2 are two chambers having a

unique common face which is part of the wall W. Let & = Wn Closure^)
be the common face. Assume that Num(ΛΓ) n & is nonempty and L e
N u m ( Z ) n ^ . Then,

(i) Num(^Γ) Π & is contained in one equivalence class;
(ii) ΔL D (Num(JΓ) Π^Γi (Num(JΓ) Π %)

(iii) Num(Z) n ̂  = Num(X) n ̂ 2 z/α«rf o^/y ι/ %L D (Num(X) n ̂ ) U
(Num(X) Π ^ 2 ) .

Proof, (i) Follows from the fact that no wall intersects with & prop-
erly.

(ii) We need only to show that ΔL D (Num (X)nW{). Assume Num (X)
Π ̂ j is nonempty, and let Lj e Num (X) n ffx. Suppose F is L-stable
but is not (Num (X) n ̂ )-stable. Then there exists a wall JF' = W{F'S)

such that F-L-5 < 0 < F Lχ -S by the Theorem 1.2.5 in §1. This implies
that W1 separates L and L1, and does not contain L. But the only wall
separating L and L1 is W which contains L. A contradiction. Thus,
V is (Num {X) Π «J)-stable and ΔL D (Num (Z) n « J ) .

(iii) Clearly, if %L D (Num (X)n^)U (Num (JT)n?2), then Num (Z)Π

^ = Num(X) Πg?2 . Suppose Num(X) n ^ = Num(X) n ^ 2 , and F is

(Num(ΛΓ) Π ̂ )-stable (i = 1, 2). If V is not L-stable, then there is a

wall JF' = W{F'S) such that F L-S > 0 > F-&rS. Thus, W = W' and

JF cannot separate ^ and ^ . Contradiction! Therefore, V must be

L-stable, so L > Num (X)nWr Combining with (ii), we conclude that

L = ( N u m ( J f ) n ^ ) . So &LD (Num(Z)ng;)U (Num (X) n Ψ2).
Remark 2.2.6. From the proof, we see that V is (Num (X) Π ^ ) - stable

if and only if it is both (Num (X) Π ^)-stable and (Num (X) n ^)-stable.
Thus, the study of moduli spaces of locally free rank-two sheaves stable
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with respect to polarizations lying on walls may be reduced to the study of
moduli spaces of locally free rank-two sheaves with respect to polarizations
lying in Z-chambers.

2.3. An example. Let X = P1 x P1 x P 1 , and let pt be the i-th
projection of X to P 1 . Put ^ = p * ^ p i ( l ) . Let (sl9s2,s3) denote
(s{ J2^ + s2 o2̂  + £3 Jg^). Then, (sx, s2, s3) is a polarization if and only
if s{, s2, s3 are positive. The proof of the following is quite elementary
(see [21]); hence we simply state the result.

Proposition 2.3.1. Let cx=0 and c2 = 2(£?2 &3+&r&3). Then,

(i) there is no Z -chamber of type (0, c2)

(ii) chambers of type (0, c2) exist, and each chamber consists of a ray
(iii) (1, 1, m) is equivalent to (1, 1, ή) if m, n > 1.

CHAPTER II

1. Theory in the case of algebraic surfaces

1.1. Remarks on polarizations. One essential difference between Prop-
osition 1.2.2 and Theorem 1.2.5 in Chapter I is that when dim (X) > 2,
we have restrictions on the complete intersection surface S in X , and we
have to work with those elements in Num (X) Π C^ in order to guarantee
that the S in Theorem 1.2.5 of Chapter I is indeed an algebraic surface
up to a scaling. But in the case where X is a surface, S disappears. This
implies that we can work with any element in Cχ .

Definition 1.1.1. A polarization on an algebraic surface X is an ele-
ment in Cχ.

All definitions and conclusions in Chapter I are true if we simply replace
Z-chambers and polarizations by chambers and generalized polarizations
above.

1.2. Introduction of EΛcχ, c2). From now on, X is an algebraic sur-

face. Fix cχ e Pic(Λf) and c2eZ such that (4c2-c2

{) > 0. Let Lχ and L2

be two polarizations which are not equivalent. We may assume that there

is a locally free rank-two sheaf V which is L{-stable but not L2-stable.

From the proof of Theorem 1.2.5 in Chapter I, V sits in

where Z is a locally complete intersection 0-cycle on X, and (2G - c{)
defines a nonempty wall of type (c{, c2) with L{ (2G - cx) < 0 < L2

(2G-c{). Notice that the extension above is nontrivial since a stable sheaf
cannot be a direct sum.
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We want to study the inverse process. First of all, we introduce
Eζ(cχ, c2).

Definition 1.2.1. Let ζ be some numerical equivalence class which
defines a nonempty wall of type (cx, c2). We define EΛcγ, c2) to be the
set of all locally free rank-two sheaves V given by nontrivial extensions
of <9χ{cx -F)®IZ by 0χ(F)

0^&χ(F)-^ V ->&χ(cχ-F)®Iz ->0,

where F is some divisor with (2F — cx) = ζ, and Z is some locally

complete intersection 0-cycle with length /(Z) = c2 + (ζ2 - c2

χ )/4.
The following lemma implies that the above extension is canonical.
Lemma 1.2.2. Let V be a sheaf in Eζ(cχ, c2), and let &χ{F) be its sub-

sheaf coming from the extension in Definition 1.2.1. Then, Horn (&X(F), V)
= C; moreover, &x(Fχ) is equal to &X{F) if <fχ{Fχ) is a subsheafof V
with (2Fχ -cχ) = ζ.

Proof Note that (cχ - F - Fχ) = -ζ. Since ζ L > 0 for some
polarization L, neither (cχ - 2F) nor (cχ - F - Fχ) can be effective.
Let Lo e Wζ. Then, V is strictly L0-semistable. Thus, V/^χ{Fχ) is
torsion free. Therefore, the conclusions follow from the standard fact:
two invertible subsheaves of a sheaf with torsion free quotients coincide
if the map of one to the quotient by the other is zero.

Theorem 1.2.3. Assume ζ defines a nonempty wall W of type (cχ, c 2).
Let & be a chamber such that Wn Closure (W) is nonempty and L ζ < 0
for L e ? . Let LoeW, and let Lχ be a polarization with Lχ ζ > 0. //

V is contained in Eζ(cχ, c2), then V is Lχ-unstable, strictly L0-semistable
and L-stable.

Proof Obviously, V is Lχ -unstable and strictly L0-semistable. In
the following, we show that V is L-stable. By definition, V sits in a
nontrivial extension

0^>ffiχ(F)^> V -><?χ(cχ -F)®IZ -+0,

where F is some divisor with (2F-cχ) = ζ . Let &x{Fχ) be any invertible
subsheaf of V with torsion free quotient. Then, we have either

U > (yv(rλ ) > C7v(r ) OΓ U • cyv{rλ ) • Cyv(CΛ — r ) (& 1^ .

If 0 -+ @x{Fχ) -> 0X{F), then LFχ < (L qJ/2 . Assume 0 -> ^ ( i 7 , )
-> ^ - ( q -F)®IZ. Then, (c, - i 7 - Fχ) is strictly effective. Thus, LQ

•{2Fχ - c χ ) < 0 . W e c l a i m t h a t L F X < {L c χ ) / 2 : i f L F χ > ( L - c { ) / 2 9

then
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L'0 (2Fχ-cχ)<0<L (2Fχ-cχ),

where we choose L'oeWΓ\ Closure(^) on the other hand, V sits in an
extension

as in the proof of Theorem 1.2.5 in Chapter I, -(4c 2 - c\) < {2Fχ - cχf <

0 combined with L'o (2Fχ - cχ) < 0 < L (2Fχ -c{), this implies that

(2Fχ - cχ) defines a nonempty wall which separates L'o and L, and does

not contain LQ but L e f and L'o e WnClosure(^), so any wall which

separates L and L'o must contain L'o we thus obtain a contradiction. In

any case, L- Fχ < (L c{)/2, so V is L-stable.

Corollary 1.2.4. Let & be a chamber such that Wζ n Closure(^) is
nonempty and L ζ < 0 ^br L e ? . ΓΛew, £^(Cj, c2) w embedded in

By Theorem 1.2.3, each sheaf in Eζ(cχ, c2) is stable with re-
spect to ^ . By Lemma 1.2.2, Eζ(cx, c2) is embedded in Jίψ(cx, c2).

Proposition 1.2.5. Let ζ and η be two different numerical equivalence
classes defining nonempty walls of type (cχ, c2). Then, Eζ(cχ, c2) and
E (cχ, c2) have no intersection if either of the following is true:

(i) both ζ L' and η l! are nonnegative for some polarization Lf

(ii) the two walls W and Wη are coincident.

Proof We may assume that both EΛcx, c2) and E (cx, c2) are non-

empty. Suppose V e Eζ(cχ, c2) n Eη(cχ, c2). Let W be a chamber such

that one of its faces is contained in Wζ . Without loss of generality, let
L ζ < 0 for some L e %?. By Theorem 1.2.3, F is L-stable. Since
F G ^ ( q , c 2 ), L -1/ < 0 by Definition 1.2.1.

(i) By definition, F fits into two extensions

Λ^ ' X^ 1 ' Z '

Λ ^ ' Λ ^ 1 C

where (2F - cx) = ζ and (2(7 - cx) = η. Note that (cχ - F - G) =
-(ζ -f f/)/2. Since L (£ + η) < 0, (q - i 7 - (7) cannot be trivial; since
L1 (C + η) > 0, {cx - F - G) cannot be effective. Applying the standard
fact in the proof of Lemma 1.2.2, we conclude that @X(F) = &X(G), so
ζ = η. A contradiction.

(ii) Since L η < 0 and η = aζ for some number a, a > 0. Choose a
polarization L ; with ζ - L' > 0, and our conclusion follows from (i).
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1.3. Set-theoretic comparison of moduli spaces.

Proposition 1.3.1. Let Ψ be a chamber, and SF be one of its faces.
Then, as sets,

Λ^i* c2) =

where ζ satisfies ζ L < 0 for some L e &, and runs over all numerical
equivalence classes which define the wall containing SF.

Proof First of all, by Theorem 1.2.3 and Proposition 1.2.5 (ii), the
right-hand side consists of disjoint unions. Next, by Remark 2.2.6 in
Chapter I (replace Z-chambers by chambers), ^sr{cx, c2) is contained in
Jf%{cx, c2) by Corollary 1.2.4, E(\cx, c2) is contained in Jt^(c{, c2)
thus, the right-hand side is contained in the left-hand side. Finally, let V
be ^-stable but not ^-stable. Then, V sits in

where {IF - cx) L < 0 < {IF - cx) Lo for L e W and LQ e &.
Let (2F - cχ) = ζ. Then, £ defines a wall of type {cχ, c2) separating
L and LQ. Since ^ is a face of 8", H^ must contain £F. Since
V e Eq{cχ, c2), we conclude that the left-hand side is contained in the
right-hand side. Hence, the equality holds.

Corollary 1.3.2. Let & be a chamber, and let SF be one of its faces.
Then, y c Λ ^ if and only if Eζ{cχ, c2) is empty for any ζ where ζ
satisfies ζ L < 0 for some L e &, and defines the wall containing &.

This gives a necessary and sufficient condition for a face of a chamber
to be contained in the equivalence class determined by the chamber. It
sharpens Corollary 2.2.2 in Chapter I. We will study the nonemptiness of
Eζ{cχ, c2) in §2.

Theorem 1.3.3. LetW,Wχ be chambers sharing a common wall. Then,
as sets,

jy (p s> \ — I Jjf (p p \ I I 17 (s* n \ I I I I 1 1 / 7 * (r> p \
**&\Ll ' C 2 / ~ I </^^Vcl 5 L2> \_± (-C)̂ > 1 ' 2' I J_l I J_l Ĉ  1 ' 2/

where ζ satisfies ζ L < 0 for some L e &, and runs over all numerical
equivalence classes which define the common wall.

Proof Follows immediately from Proposition 1.3.1.
By Proposition 1.3.1, ]}ζEζ{cx, c2) is the subset of JίΨ{cx, c2) rep-

resenting all sheaves which are not ^-stable. Since stability is an open
property (see [20]), UζEζ{cx, c2) is closed in ^>{cχ, c2). In general,
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Eζ{c{, c2) is neither open nor closed. A subset is defined to be locally
closed if it is open in its closure, and constructible if it is a finite disjoint
union of locally closed subsets (see [11]).

Proposition 1.3.4. Let & be a chamber such that Wζ n Closure(^) is
nonempty and L ζ < 0 for L e &. Then, Eζ(c{, c2) is a constructible
subset in Jt^(cx, c2).

Proof. Using the standard construction in [12], one sees that EΛcχ, c2)
is quasiprojective; moreover, its scheme structure coincides with the in-
duced one from ^€^(cι, c2). Therefore, Eζ(cx, c2) is a constructible sub-
set in the moduli space Jt^(cx, c2) by a theorem of Chevalley (see [3] and
[11]). q.e.d.

Finally, we make some distinctions among different irreducible compo-
nents.

Definition 1.3.5. Let JtL{cx, c2) be a nonempty moduli space. An
irreducible component is defined to be nontrivial if it contains an open
subset in which no sheaf is stable with respect to some polarization l!.

Proposition 1.3.6. Let Jί be a nontrivial irreducible component in
JKL(cx, c2). Then, an open subset of Jt is contained in some Eζ(c{, c2)
where ζ defines a nonempty wall of type (c{, c2) with ζ L < 0.

Proof Let Lf be a polarization with respect to which sheaves in an
open subset U of Jί are not stable. By Proposition 2.1.6 in Chapter I,
the set of walls of type (c{, c2) is locally finite. Therefore, there are finitely
many walls of type (cx, c2) separating Lf and L, and there are finitely
many ζ 's representing each of these walls and satisfying ζ L < 0 < ζ l/ .
Since each sheaf in U must be contained in some Eζ(c{, c2), an open
subset of U is contained in some E^{cx, c2).

Remark 1.3.7. Let Lf be as in the above proof. By Proposition 1.2.5,
the ζ in Proposition 1.3.6 is unique if we require that ζ-Lf is nonnegative.

2. Nonemptiness of EΛcx, c2)

2.1. Classical techniques. Let Z stand for a locally complete inter-
section 0-cycle on a surface X.

Proposition 2.1.1 (see [10] and [2]). Suppose Z consists of n distinct
points {pl9 -" , Pn} Then, a locally free extension of @x(Lι) <g> Iz by
@χ (L) exists if and only if every section of @X{L' -L + Kχ) which vanishes
at all but one of the pi vanishes at the remaining point as well where Kχ

is the canonical divisor of X.
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Corollary 2.1.2. Let I > 2h°(X, (9χ{j! -L + Kχ)). Then, there exists
Z with length I such that a locally free extension of (9χ(ll) ® IZ by 0χ(L)
exists.

2.2. Nonemptiness of Eζ(cx, c2).

Definition 2.2.1. For any divisor F with (2F - cx) = ζ9 we define
EF(cχ ,c2) to be the set of those sheaves in Eζ(cχ, c2) for which &X(F)
is a subsheaf.

Remark 2.2.2. Let F be as in the above definition. Then E{c _F)(cvc2)
is the set of those sheaves in E^_ζJcχ, c2) for which &x(cx - F) is a
subsheaf.

In the following, we fix F such that (2F - cχ) = ζ, and study the
nonemptiness of EF(cx, c2) and E,c _FΛcx, c2) since it implies the non-
emptiness of Eζ(c{, c2) and E,^(cλ, c2). First of all, we impose no

condition on the wall Wζ.

Lemma 2.2.3. If the linear system \Kχ + (IF - cχ)\ is empty, then

EF(cχ, c2) or E{c _F)(cχ, c2) is nonempty when c2> c2

χ+ 2χ((fχ))/4.

Proof If c2 + (ζ2 - c2)/4 > 0, then E,c _FΛcx, c2) is nonempty by

Corollary 2.1.2. If c2 + (ζ2 - c2)/4 = 0 (i.e., ζ2 = -(4c 2 - c2)), then

^(c -F)(ci > 2̂) ^s n o n empty unless Extι(tfχ(F), Ωχ(Cj - F)) = 0, that is,

Hι\x,Ωχ(cx-2F)) = 0.

Assume both ζ2 = ~(4c2-c2

χ) and Hl(X,ffix(cx-2F)) = 0. Note that

h2(X, &χ(cx - IF)) = h°(X, ^ ( ^ + 2F - cχ)) = 0 by assumption, and

that h°(X, &x(cχ - 2F)) = 0 for (cχ - 2F) = -ζ. By the Riemann-Roch

formula, we have χ(ffiχ) + % (cι-2F)[(cι-2f)-Kx] = 0. Thus, A:z C =
2

 F(cχ, c 2 ). Since h°(X, &χ(2F-cχ- C 2 . We now consider EF(cχ, c 2 ). Since h°(X, &χ(2F-cχ)) =

0, we have

h\x^χ(2F-cχ))>-χ^χ)-\(2F-cχ)(2F-cχ)[(2F-cx)-Kχ]

= (4c2-c2)-2χ(d?χ).

Therefore, if c2 > (c\ + 2χ(0x))/4 then hι(X, @X(2F - cx)) > 0; thus,
ι2

EF(cx, c2) is nonempty since Extι(#x(cx - F), ^ ( i 7 ) ) is nontrivial.

Lemma 2.2.4. // \Kχ + (2F -cx)\ and \Kχ - (2F -cχ)\ are nonempty,

then EF(cx, c2) and E, _FΛcx, c2) are nonempty if c2 > c(X, cx) where

c(X, cχ) is a constant depending on X and cx.
Proof Fix a polarization HeNum(X) with H2= 1. Let {ex, ,er}

be a basis for the space {x e Num (X)\x - H = 0} with ez e = -ί / y . .
Choose a positive number α such that aH + ez is a polarization for any
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i. Now, 0 < H [Kχ ± (2F - cχ)] implies that \H ζ\ < H - Kχ . Put

Thus, \ζ.\ < 2a(H Kx) + b for any i where we have put

So, |£ 2 | < ( # C)2 + Σw ICZ|
2 < ^i where &t is a constant depending on

X (and / / ) . Since | ^ - h ( 2 / ^ - ^ ) 1 and \Kχ-(2F -cχ)\ are nonempty,

A°(ΛΓ, ̂ ( A * ± (2F - q))) is not greater than h°(X, <?x(2Kχ)). Put

c(X, cx) = 2Λ°(X, f

Assume c2 > c(X, q ) . Then

By Corollary 2.1.2, both EF(cx, c2) and £ ( c -f)(^i» c2) are nonempty.

Theorem 2.2.5. For any numerical equivalence class ζ which defines a
nonempty wall of type (cχ, c2), Eζ(cχ, c2) or E,ςΛcx, c2) w nonempty if
cχ > c(X, Cj) wΛ r̂e c(X, Cj) w a constant depending on X and cχ.

Proof Let F be any divisor with (2F - cχ) = ζ . There are two cases:

(i) ^ + ( 2 ^ - ^ ) 1 or \Kχ-(2F-cx)\ is empty;
(ii) both \Kx + (2F-cx)\ and |A:χ - (2F - Cj)| are nonempty.

For case (i), we apply Lemma 2.2.3. For case (ii), we apply Lemma 2.2.4.
Corollary 2.2.6. Let ^ and W2 be two chambers of type (c{, c2) shar-

ing a common face which is part of the wall W. Then for any Lo e W,
Lo £ %y or Lo £ %y if c2 > c(X, cλ) where c(X, cx) is a constant
depending on X and cx.

Proof Let c(X, cx) be the same as in Theorem 2.2.5. Assume W is
represented by ζ. If c2 > c(X, cx), then Eζ(cx, c2) or E^_^(cχ, c2) is
nonempty by Theorem 2.2.5. We may assume that ^ ( q , c2) is nonempty
and that ζ L < 0 for some L e ? r Let F e Eζ(cχ, c 2 ). By Theo-
rem 1.2.3, V is ^-stable but strictly L0-semistable. By the definition of
equivalence classes, we conclude that Lo φ %<% .

Remark 2.2.7. By the results in [21] and [22], the condition that c 2 »
0 in Theorem 2.2.5 cannot be weakened, and Theorem 2.2.5 is the sharpest.

Next, let 38 be a compact subset in the Kahler cone Cx. We now

investigate the nonemptiness of Eζ(cx, c2) where the wall Wζ intersects
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with 33 . Let H and eχ, , er be asin the proof of Lemma 2.2.4. Since
33 is compact, we can choose a positive integer a satisfying the following
properties:

(PI) (aL ±H)eCχ for any L in 33
(P2) ( α t f i e . J e C r for any /;
(P3) (α/f — Kχ) is strictly effective and aH is very ample.

Assume W^Γ\^ is nonempty, and (2F-cχ) = C. We separate the case
where \Kχ - (2F -cx)\ is nonempty and the case where \Kχ - {2F -cx)\
is empty.

Lemma 2.2.8. If \KX - (2F - cχ)\ is nonempty, then EF{cχ, c2) is
nonempty when c2 > c{X, cχ, SB) where c(X, cx, £B) is a constant de-
pending on X, cx and 38.

Proof. First of all, we show that |£ 2 | is bounded above by some con-

stant depending on X and '3S . Put ζ = (H ζ)H + E , Cft Let L e

&MVζ. We have 0 < [Kχ-(2F-cx)] (aL±H) = (Kχ-ζ)-{aL±H), so

\H ζ\ < a\Kχ-L\+\Kχ H\ for Lζ = 0. Now, 0 < [J^-(2F-c1)]-(a/f±^ J.)

implies that |C, | < a2 |A:x - L\ + 2α|ϋ: χ - ̂ | + |A^ ef.|. Thus, \ζ2\ <

\H ' C|2 + Σ/ICil2 < ^i where bx is a constant depending on X and

SB.
Next, we show that Λ = h°(X, @x{Kχ - {IF - cx))) is also bounded

above. Let E e \aH\ be a smooth curve, and let gE be its genus. Then
we have

0 -> 0χ(Kx - {2F - cχ) -E)^ &χ{Kχ - {2F - cχ)) -+ &E{D) -, 0,

where <fE{D) is the restriction of &x(Kχ - {2F - cχ)) on E. Since
{aH-Kχ) is strictly effective, [Kχ-{2F-cχ)-E] L = {Kχ-aH) L <0,
so (Λ:χ - {2F - cx) - E) can never be effective. Thus, h < h°{E, &E{D)).
Note that

deg(D) < a\Kx H\ + α|C /ί| < α 2 | ^ L\

If Λ1(E,

, 0E(D)) = deg(D) + 1 - gE < {a2\Kχ . L| + 2 f l | ^ H\

If Λ 1 ( £ , ^ ( 2 ) ) ) > 0 , then by the Clifford's Theorem [11], h°{E,0E{D))

< 1 + deg(Z))/2 < ( Λ 2 ! ^ - L| + 2α|A^ //| + 1). From either case, we

conclude h < b2 where b2 = {a2\Kχ L\ + 2α|Λ:z //| + 1) is a constant

depending on X and 33 . Put c(X, cx, ^ ) = 2Z?2 + {bχ -f c 2)/4.

If c2 > c ( Z , c 1 ? ^ ) , then
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By Corollary 2.1.2, we conclude that EF{cx, c2) is nonempty.

We now move to the case where \Kχ-(2F -cχ)\ is empty. Let 03$ be
the cone with vertex O (the trivial element in Num (X) ® R), and spanned
by elements in 38 . Any wall intersecting with 38 must contain a ray in
03B . Using this observation and the assumption that 38 is compact, we
can choose another compact subset 38* in C^ large enough such that
any wall intersecting with 38 cuts & into two parts, and that each part
contains the image of some very ample divisor.

Lemma 2.2.9. If\Kχ-(2F-cχ)\ is empty, then EF(cχ, c2) is nonempty
when c2 > c(X, cx, 38) where c(X, cx, 38) is a constant depending on
X,cx and &.

Proof. Clearly, EF(cx, c2) is nonempty unless ζ2 - -(4c2 - c2) and

Hι{X, 0χ(2F -cχ)) = 0. Assume ζ2 = -(4c2 - c\) and

Hι(X,ffix(2F-cι)) = 0.

We need to show that c2 is bounded above by some constant depending
on X, cχ and 38 .

Since χ{@χ(2F - cx)) = 0, by the Riemann-Roch formula, we obtain
C Kχ = 2χ(d?χ) + ζ2, so C Kχ = 2χ(0χ)- (4c2 - c2). Since ίF c

intersects with 38 , from the assumption on 38', there exists a very ample
divisor Hf such that its image in Num (X) <g> R is contained in SB1 and
that ζ - Hf < 0. Note that 2Hf is very ample. Choose a smooth curve
i? E \2Hf\, and let # £ be its genus. Consider

0 -> ̂ ( A j - (2F - cχ)) -> ̂ ( £ + A:̂  - (2F - q)) -> ffE{D) -+ 0,

where &E(D) is the restriction of ^ ( £ * + Kχ - (2F - cχ)) on £". Since

both h°(X,0χ{Kχ-{2F -cχ))) and /**(*, 0x{Kχ - (2F - cx))) are 0,

h°(X,0x(E + Kχ- {2F - cχ))) = h°(E,0E(D)). We have deg(Z)) =

- 2) - 2(f i/ ' ) . Thus, A°(£ , ^(Z))) > 0 since (ζ Hf) < 0, so

|(2? + 2^) - (2F - Cj)| is nonempty. As in the proof of Lemma 2.2.8,

we can show that ζ is bounded above by some constant depending on

X,38 (and SB1). Therefore, \c2\ = \(c2 - ζ2)\/4 is bounded above by

some constant depending on X, cχ and 38 .

Theorem 2.2.10. Let 38 be a compact subset in the Kάhler cone Qχ .

For any numerical equivalence class ζ with W n 38 to be nonempty\

Eς(cχ, c2) is nonempty when c2 > c(X, cχ, 38) where c(X, cχ, 38) is a

constant depending on X, cx and 38.
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Proof. L e t F b e a n y d i v i s o r w i t h {2F-cx) = ζ.lΐ \Kχ - {IF - cχ)\
is nonempty, we apply Lemma 2.2.8. If \Kχ — (2F — c{)\ is empty, we use
Lemma 2.2.9.

Corollary 2.2.11. Let 3S be a compact subset in the Kάhler cone Ψχ,
let W be a wall of type (c{, c 2), and let Ψ be a chamber. Assume both
Wn& and Wr\& and W n Closure^) are nonempty. Then Wc\%w

is empty if c2 > c{X, cχ, 38) where c(X, c{, 3S) is a constant depending
on X, cλ and 3§.
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