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DURFEE CONJECTURE AND
COORDINATE FREE CHARACTERIZATION

OF HOMOGENEOUS SINGULARITIES

YI-JING XU & STEPHEN S.-T. YAU

0. Introduction

This work is a natural continuation of our previous work [14].

The motivation of our work is to solve the Durfee conjecture. Let

/ : (C 3 , 0) —> (C, 0) be the germ of a complex analytic function with

an isolated critical point at the origin. For ε > 0 suitably small and δ

yet smaller, the space V' = f~ι(δ)Γ\De (where D£ denotes the closed

disk of radius ε about 0) is a real oriented four-manifold with boundary

whose diffeomorphism type depends only on / . It has been proved that

V1 has the homotopy type of a wedge of two-spheres; the number μ of

two-spheres is precisely d i m C { x 9 y 9 z } / ( f χ , f 9 f z ) . Let π: (AT, A) —>

(V, 0) be a resolution of V = {(x,y, z) : f(x, y, z) = 0} with excep-

tional set A = π~ 1(0). The geometric genus p of the singularity V is

the dimension of Hι(M, (?). Let χ(A) be the topological Euler char-

acteristic of A , and K be the self-intersection number of the canonical

divisor on M. Laufer's formula (cf. [5]) says that

l+μ = χ(A)+K2+l2pg.

However the formula does not provide direct comparison between μ and
p , which are two important numerical measures of the complexity of the
singularity. In 1978, Durfee [2] made the following spectacular conjecture
which has remained open ever since.

Durfee conjecture. Let σ be the signature of the Milnor fiber V' above.
Then

(1) σ<0,
(2) 6p < μ with equality only when μ = 0.
In this paper we prove the Durfee conjecture in the weighted homoge-

neous case. In fact we show that the conjecture itself is not sharp. More
precisely, we have the following theorem.
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Theorem A. Let (V, 0) be a two-dimensional isolated singularity de-

fined by a weighted homogeneous polynomial f{z0, zχ, z2) = 0. Let μ be

the Milnor number, p be the geometric genus and v be the multiplicity

of the singularity. Then

μ - v + 1 > 6pg

with equality if and only if (V, 0) is defined by the homogeneous polyno-

mial

In particular 6pg = μ, if and only if v — 1, if and only if V is smooth
at 0, if and only if μ = 0.

Corollary B. Let (V, 0) be an isolated singularity defined by a weighted
homogeneous polynomial. Let σ be the signature of the Milnor fibre, μ
be the Milnor number of the singularity, and v be the multiplicity of the
singularity. Then

The proof of Theorem A makes use of the results of W. V. D. Hodge
[3] and Milnor and Orlik [7], Hodge's result allows us to express pg in
terms of a number of positive integral points in the Newton polyhedron
of / . (See §1 for a precise definition.) Thus Theorem A is related to
the Main Theorem of [14]. However it does not follow directly from that
theorem because the minimal weight of the variables zz may not be an
integer. We need our previous result in [12] that the multiplicity v is
inf{« e Z + : n > inf(w0, wχ, w2) where wt is the weight of zz} which
was also independently observed by Saeki [9]. The key point there is to
prove that if w0 > w{ >w2 and w2 is not an integer, then w2 = [w2] + β ,
0 < β < 1 and β is either w2/w0 or w2/w{. We then need to get an
even sharper estimate in a particular case than those obtained in the Main
Theorem of [14] (cf. Theorem 2.4).

It is well known that the Durfee conjecture is not valid for general
smoothable singularities. The validity of the Durfee conjecture for hyper-
surface singularities has the following important implication. It gives a
necessary condition for a singularity to be hypersurface.

Give a function / with an isolated singularity at the origin, it is an
important question to know wheither / is a weighted homogeneous poly-
nomial or a homogeneous polynomial after a biholomorphic change of
variables. The former question was answered by a celebrated paper [10]
by Saito in 1973. However the latter question has remained open ever
since. In case / is a holomorphic function of three variables, the problem
is solved. More precisely we have the following theorem.
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Theorem C. Let (V, 0) be a two-dimensional isolated hypersur-

face singularity defined by f(x,y, z) = 0. Let μ be the Milnor

number, p be the geometric genus, v be the multiplicity of singularity

and τ = dimension of the semi-universal deformation space of (V, 0) =

dimC{jc, y, z}/(f, fx, fy, f z ) . Then after a biholomorphic change of co-

ordinate f is a homomogeneous polynomial if and only ifμ-v 4-1 = 6pg

and μ = τ.

We thank Bruce Rezuick and Richard Randell for their interest in our

work.

1. Preliminaries

Let / ( z 0 , z{, , zn) be a germ of an analytic function at the origin
such that /(0) = 0. Suppose that / has an isolated critical point at the
origin. / can be developed in a convergent Taylor series f{zQ, zχ, , z j

= Σχaλzλ w h e r e zλ = zo°''' zi" Recall that Newton boundary Γ(/) is
the union of the compact faces of Γ+(/) where Γ+(/) is the convex hull

of the union of the subsets {λ + (R+)n+ι} for λ such that aλ φθ. Finally,

let Γ_(/), the Newton polyhedron of / , be the cone over Γ(/) with cone

point at 0. For any closed face Δ of Γ(/) , we associate the polynomial

/A(Z) = Σ eAaλzλ - ^ e s a y ^ a t f * s nondegenerate if fA has no critical

point in (C*)π + 1 for any Δ e Γ(/) where C* = C - {0} .

Let (V, 0) be an isolated hypersurface singularity defined by holomor-

phic function / : (C w + 1 , 0) -> (C, 0). Let π: M -+ V be a resolu-

tion of the singularity at 0. Define the geometric genus of the singular-

ity (V, 0) to be pg = dimHn~ι(M,(f). Let ω be a holomorphic n-

form on V - {0} . ω is said to be iΛintegrable if fw_{0} ω Λ ω < oo

for any sufficiently small relatively compact neighborhood W of 0 in

V. Let L2(V - {0}, Ω") be the set of all zΛintegral holomorphic n-

forms V - {0} , which is a linear subspace of Γ(V - {0}, Ω Λ ) . Then

pg = dimΓ(K - {0}, Ω)/L2(V - {0}, Ω"). (See Laufer [5] for n = 2 and

Yau[15]for n>2).

We say that a point p of the integer lattice Zn+ι in R"+1 is positive if
all the coordinates of p are positive; then we have the following theorem.

Theorem 1.1. Let (V, 0) be an isolated hypersurface singularity de-

fined by a nondegenerate holomorphic function f: (Cn+ι ,0) -+ (C, 0) .

Then the geometric genus pg = #{p e Zn+ι n Γ _ ( / ) : p is positive}.

Notice that in the above formula, positive lattice points on Γ(/) are
counted. This formula was proved by Hodge [3, §5] for n = 2. A
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corresponding result for all dimensions n > 2 is due to D. N. Bernstein,
A. G. Khovanski, and/or Kouchnirenko. See the remark in [1, p. 19].
However the complete proof of the above theorem was first published by
Merle and Teissier [6].

A polynomial f(z0, zχ, ••• , zn) is weighted homogeneous of type
(w0 , wχ, - - , wn) 9 where wQ, wχ, , wn are fixed positive rational
numbers, if it can be expressed as a linear combination of monomials
Z0zh '"Zn f θ Γ W h i c h V^O + hlW\ + * + UWn = l '

Theorem 1.2 (Milnor and Orlik). Let f{zQ, zχ, , zn) be a weighted
homogeneous polynomial of type (wQ, wχ, 9wn) with isolated singular-
ity at the origin. Then the Milnor number μ = (w0 - 1 ){wχ -1) (wn - 1 ) .

The signature σ(M) of an arbitrary real oriented four-manifold M
with or without boundary is defined as follows: There is a symmetric
bilinear intersection pairing ( , ) on H2(M\R) defined by setting

(x,y) = (x'uy')[M]

where x and y in H2(M,dM;R) are Lefschetz duals to x and y
in H2{M\ R), and [M] e H4(M, dM; R) is the orientation class. The
bilinear form may be diagonalized, with diagonal entries + 1 , 0, and - 1 .
The signature σ(M) of M is the signature of this bilinear form, namely,
the number of positive minus the number of negative diagonal entries.

2. Sharp upper estimate of number of integral points in tetrahedron

The following Proposition 2.1, Corollary 2.2 and Theorem 2.3 are
proved in our previous paper [14].

Proposition 2.1. Let N be the number of positive integral solutions of

(2.1) ^ < 1 ,

where r > s > 0 are real numbers; i.e. N - #{(JC , y) e Z2^ : f + £ < 1}.
Let s = [s]+a with 0 < a < 1, where [s] denotes the largest integer which
is less than or equal to s. If s < 1, then N — 0. If s > 1, then

(2-2) ί ^ + £ ,
(2.3) N<)ύψ + C^ ifa>°7ands->\,

(2.4) I ^ if a < i.

The equality of (2.2) holds only if s = [s] + \ and r- > 2, while the

equality of (2.3) holds only if s = [s] + j with ι

r < 1.

Moreover if r = s = integer, then JV =
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Corollary 2.2. With the notation as in Proposition 2.1

N

(2.6) ~

The equality of (2.5) holds only if s = [s] + \ and L

s > 2. The equality of
(2.6) holds only if s = [s] + £ and f < 1.

Theorem 2.3. Lei a>b>c>2 be real numbers. Consider

Let P be the number of positive integral solutions of (2.7); i.e., P =

#{(*,;>;, z ) e Z * : * + £ + § < 1}. Then

(2.8) 6P < (c - \){ab -a-b) = (a- \)(b - l)(c - 1) - c + 1,

<z/tί/ ̂ Λe quality is attained if and only if a = b = c = integer.
Theorem 2.4. Let a>b>c>2 be real numbers. Consider

(2.9) - + ? + £ < lv ' a b c ""

Let P be the number of positive integral solutions o/(2.7); i.e.,

Suppose c is not an integer and c = [c] + β where β is either % or % .
Then

(2.10) 6P < (a - l)(b - l)(c -l)-c + β .

Proof We first remark that if a < 3, then b < 3, c < 3, and P = 0.
Observe that a > 2, and b >2\ otherwise ft = c = 2, which contradicts
our hypothesis that c is not an integer. To prove (2.10), we only need to
show

(2.11) (a - \){b - \){c - l ) - c + β > 0 .

For the sake of argument, let us assume that β = % . The proof of (2.11)
for β = % is similar. For fixed a, b with a > 2 and b > 2, we need to
prove

However, f'ab(c) = {a - 1)(& - l ) - l + £ > £ > 0 . So it suffices to
ab(

show fab{2) = {a - \){b - 1) - 2 + 2 > 0 for all α > 2 a n d * > 2 . Let
ft(*) = / * * ( 2 ) = ( β " W * - 1) - 2 + £ . We want t o show that gb(a)> 0
for all a > 2 a n d b > 2. Observe that ^ ( Λ ) = & - l - Λ > 0 f o r # > 2
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and b > 2. Therefore it remains to show that gb(2) > 0. However, it is
clear that gb(2) = b - 2 > 0. From now on, we shall assume that a > 3.
There are four cases to be considered.

Case I(i). f > 2 a n d θ < £ < § .
In this case β = % and a > b > c. Following the proof of Theorem

2.3, Case I(i), it suffices to prove

r ab ~, 3a _ / c \ _ 2c
/ = — + α - 2 6 - 7 - : - i ? 1 - ) - 2 + —

c 2b ι \a) a
(2.12) ab „, 3α 2Z>c 3 ί , έ 3c Λ 2c

c 2b a a c 2b a

For a > 4, b > 2, we assert that

(2.13) a - ^ - l > 0

and the equality is obtained if and only if a = 4 and 6 = 2. This can
be seen as follows. Let hb(a) = a - | g . Then A (̂α) = 1 - ^ > 0. So
hb(a) > hb(4) = 4— | — 1 = ^ ^ > 0 for α > 4 and our assertion follows.

Hence we have

o6 26c 36 6 3c c , _

~ c a2 a c 2b a

lr If 1 2 * If *J 2 1 2

__L 7

where k{ = ^, k2 = % and

/j = b + 2^3fc2

2 + 3 ^ + ifej + | ^ ^ 2

2 - ^2fc2

2 - (2b ^

(2.14) is actually a strict inequality. Because if equality in (2.14) is at-
tained, then equality in (2.13) is also attained and hence we have a = 4,
6 = 2. It follows that c = 2 which contradicts our hypothesis that c is
not an integer.

It remains to show that I{ > 0 in the region Ω show in Figure 1:

0<fcj < 1, 0<&2 < 1, kχk2 < \.
We first see that dlxldk2 does not vanish in Ω. Suppose

—±- = Ak\k2 + Zk] + 3k{k2 - 2k\k2 - (2b + 4)fc, = 0



DURFEE CONJECTURE AND HOMOGENEOUS SINGULARITIES 381

Ω

s k

Ί
1

1*2
1

= 2

k

FIGURE 1

in Ω. Then
26 + 4-3fc,

2 3 - 2fc, + 4A:2

2 6 + 1

since b > 2. Hence dl{/dk2 does not vanish in Ω. Now

So dljdl2 < 0 in Ω. It follows that in order to show that /, > 0 in
Ω, it suffices to show that /, > 0 on {(fc,, 1) : 0 < kχ < \) U {(k{, k2) :
kxk2 = \, ^ < k { < l } .

On {(k{, 1): 0 < kχ < {-} , /, = 2fcf + 2k\ - (26 + \)k{ + 6. Its critical
points do not lie in the interval (0, \]. Therefore

in f\I x {k x , l ) = m i n ( / 1 ( 0 , 1 ) , / , ^ , 1))

= min(b, 0) = 0.

On {(kι,k2):kιk2 = ±, \<kχ < 1}, I{ = b +±k{ +lk{+k{ +$k2-

i _ 6 _ 2 = 3/ct + \k2 - I = 3fcj + |/ct - I = \kx[2A(kx - I)2 - | ] > 0 for
5 < kχ < 1. This finishes the Case I(i).

Cα^I(ii). ? > 2 , f < j»< 1.
In this case β = % . Following the proof of Theorem 2.3 Case I(ii) in

[14], it suffices to prove

which is equivalent to
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i r &

kχk2=2

FIGURE 2

Hence we want to prove

Observe that Λ 2 φ = -

- ^ - f + |f. Hence

ab 3a

+ ( ^ + *)(§) 2 -(* +

ac a 3a - 2c

where Iχ = &

- fc)2 -fc)2
> 0. Let *, = f and k2 = $ . Then

I = bkλ kΊ + ί?A:1 ^ - 2/? - 2 + y- ,
1 1 2 1 O Is

z / t 2

*:, , , 3,

If ^ A : ^ 3 , then

/ > /, > 36 + (b - I'j A:, - 2b - 2 + | -

ι-2 + ±>0,

since b>2. Therefore we only need to prove / > 0 on the region shown
in Figure 2

Ω : A;, k2 < 3, &2A:2 > 2, A:, > 2, k2 > 1,

a/ a/. di2
3 1
2 + 2Ar,

3
2
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in Ω. In order to show that / > 0 in Ω, it suffices that / > 0 on
{(1, k2): 2 < k2 < 3} U {(kχ, k2) :k{k2 = 29 1 < kχ < 2} .

On { ( I , f c 2 ) : 2 < f c 2 < 3 } 5

(2.15)

1

Y2

bk2 - lk2 - (2b + 2)k2 + 2] + ^ k2 - I

Observe that the critical point of (b + \)k] - (b + 5)k2 + f is

\ + JIJ < 2. Hence

inf 1)A:2
2 - {b + 5)k2 + 5 ] > (b+Λ)22-

It follows from (2.15) that / > 0.
On {(k{, k2): k2k2 = 2, 1 < k2 < 2} we have

~> 0.

2b

ψ
κ2

4

This finishes the proof of case I(ii).
Case II(i). f < 2 a n d θ < ) β < f .
In this case β = ^ . It follows that β > % + | — 1. We consider two

subcases.
S u b c a s e (I), f < \.'
We are going to count N2, the number of positive integral points on

z = [c]-2 = c-β-2 = c-^-2 level satisfying
χ , y

i.e.,

(2.16)

It is easy to see that (x, y) = ( 1 , 1), ( 1 , 2 ) , and ( 2 , 1 ) are positive
integral solutions of (2.16). For (x, y) with 4x + y = 4 , the left-hand
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FIGURE 3

side of (2.16) becomes

x-l y
a b

2 x-l+y
> +

c ~ a

2 3 ,
= - + 1

c a
2

c

since f < § . Thus we conclude that N2 = 3. Following the proof of
Theorem 2.3 in [14], we have

M - 1 1 ~

k=3

f
A C — 1

a-b
2a

1 / ab 2b a
- 6 V c

2 c c

To prove the desired inequality (2.10), we only need to prove

(2.17) = 2 a b + 2 t _ a _ 3 1 c > Q
2 c c 6 6a

< \,

and I = 2k{k2 + 2k2 - k{k2 - ψ + \kχk2

6 6a

1 < kχ
Let k{ = f and A:2 = έ . Then we have

1 < kλk2 < \ and I = 2k{k2

to show that / > 0 on Ω = {(k{, k2) : 1 < k{ <

1 < A:tA:2 < | } - {(1, 1)} , as shown in Figure 3.

1 < k2 < \
We are going

1 < fc2 < §,
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Observe that dl/dkχ = 2k\ - k2 - \k\k2 > 0 on Ω since kχ > 1,
k2 > 1. So the minimal value of / on Ω must be reached on kχ = 1. It
remains to prove

) = 2k2+2k2-^ + ± = 2kl + k2-^ + ±>0

f o r l < A : 2 < ! and

Since dJ/dk2 = 4k2 + 1 - \k2 > 0 when k2 > 1, the minimal value of J2

on the interval [1, f ] is J ( l ) = 7(1, 1) = 2 + 1 - ψ + \ = 0. Our claim
that / > 0 on Ω is proved.

Subcase (ii). 2 > f > f a n d Z > > ^ .
In case II(i) of the proof of Theorem 2.3 in [14], we have already shown

We want to show

This is equivalent to showing

Since

- 2<α + ») - 2» + . - 2 4 -
c

< )

c a c a

>2(a-b)--(a-b)

> 0 for a > 3,

in order to prove (2.18), it suffices to prove

R e C a 1 1 - i ii. u

3c 3b b
(c\ _ 4bc 3c 3b b

3 \a) ~ a2 a a c'
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Let

ab_
c

ab
a J \a>

^* ^£ b 4bc

a a c a2

Let /, = I and t2 = § . Then

We want to show that I(tι, t2) > 0 on Ω, where

Ω, = { ( * , , ί 2 ) : $ < ί , < l , i < ί 2 < l ,

Observe that on Ω,

tχt\
 ι t\ 5

since b > 2.

Therefore minimal value of / on Ωj can only be reached on {(t{, 1)

\ < tx < \) or {(/j, t2): ί2ί2 = f , § < tx < 1} see Figure 4.

'9 l

FIGURE 4
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: \ < t < \On {{t1, 1): \ < tχ < \} we have

I(tx ,l) = ^ + - + 9tι + 5tι + l-2b

= -?--4t\+\Atχ-2b-\0,

dl{tχ, 1) _ _2b

ή
= - 4 - 8 / , + 14,

dt\ t\ - 2 - » - 3

It follows that for \ < tx < \

dl{tx,\) ^ dl{tx,\)
dt, ~ dt,

lib + 52

',=2/3

Hence i ^

by the hypothesis b > ψ . On {(/,, t2): tλt2 = \, \<tx<\}

b 47 23

It is easy to check that inf(f + ^ ί , ) = ^ψ^-. We claim that for ψ < b <

92 we have

This can be seen easily by checking that ψ and 92 are lying between the
roots of 9b2 - 852b + 2116 = 0. We have shown for ψ < b < 92, the
right-hand side of (2.20) is strictly larger than zero. On the other hand for
b > 92, the right-hand side of (2.20)

T b b 47, 23 b 23 π

This completes of the proof that / > 0 on Ω t .
Subcase (iii). 2 > § > f f
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We first observe that b < ψ implies c < ψ and f < 2 implies a <
On the other hand, c < ψ implies 2 < c < 3. It follows that we have

a

Ό
1

1 -

92

3 5 '

= 2

1
+ -

a

2

+ •-

since

c

1

a"

a <

\ _ 2

46

9

But we have already shown c < ψ < | | . The contradiction means that
subcase (iii) cannot occur.

Case IΙ(ii). f < 2 and 1 > β > § .
In this case /? = | . We are going to count TVj, the number of positive

integral points on z = [c]-l=c-β-l=c-%-l level satisfying

i.e.,

(2.21) + £ +

Setting (x, y) = (1, 1) in (2.21), we have

- + -Γ + I -r = I - - + - < I,
α b c b c a

since α > c. So ( I , I) is a solution of (2.21). For (JC , y) with x+y > 3,
the left-hand side of (2.21)

x y Λ \ I x y - I , I
- + Γ + 1 τ = - + Lτ- + ι ~ ~
a b c b a b c

~ α c a c

since f < 2. Therefore we conclude that Nx is exactly one. Following
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the proof of Theorem 2.3 in [14], we have

£ Σ "„ s", + Σ [ H < * + β ) icc{k + β)-

2α ' 6

To prove the desired inequality (2.10), we only need to prove

Left-hand side of (2.22)

_ 1 a a b a-b

_ ab a 1 b

- 2c2 2 ( S m C e b ~

It suffices to prove

_ ab 1 1/ c\ _ ab c 2
2c2 2 6 V ~b) 2c2 66 3

Let kχ = f and k2 = \. Then 1 < fcj < 2 , 1 < A : 2 < 2 , 1 < A:jA:2 < 2
and

We want to show that / > 0 on

Λ | I f V i 2 / v < } J . I ^ ^ f v i ^ " ^ ^ 9 ••• _ ^ T ^ ^ ** j A v » ^ r V i I V < ^ ^ " v Z « j ?

see Figure 5 (next page).
Since dlldkχ - \k\ > 0 on Ω2, we only need to check that / > 0 on

{ ( I , k 2 ) I < k 2 < 2 } a n d 7 ( 1 , 1) = 0 .

nuk2) = ̂ -
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" 2 N

FIGURE 5

>0
= 0

So it remains to prove

(2.23) 3

(2.24) 3/c2-fc2 +

(2.24) is obviously true. Since the derivative of ~ik\ - 4/c2 + 1 is 9k\ - 4
which is strictly bigger than zero for 1 < k2 < 2, (2.23) follows from
(2.24). This completes the proof.

for 1 < k2 < 2,

for k2 = 1.

3. Application to Durfee conjecture for weighted homogeneous
hypersurface singularities and coordinate free characterization

of homogeneous hypersurface singularities

Let V = {z E C3 : f(z) = 0} be the germ of a complex hypersurface
with an isolated singular point at the origin. For ε > 0 suitably small
and δ yet smaller, the space V' = f~ι(δ)Γ\Dε (where Dε denotes the
closed disk radius ε about 0) is a real oriented four-manifold with bound-
ary whose diffeomorphism type depends only on V. It has been proved
that V' has the homotopy type of a wedge of two-spheres; the Milnor
number μ of two-spheres is readily computable. Let σ be the signature
of the intersection pairing on the two-dimensional homology of the man-
ifold V1. Let 0 be the geometric genus of the singularity ( F , 0) i.e.,

pg = dimHι(V,<9~) where π: V -+ V is a resolution of F . In [2],

Durfee conjectured that the signature of the smoothing V1 is nonpositive.

This conjecture is implied by his other conjecture which says that 6pg < μ

with equality only when μ = 0. These conjectures have been open for

more than eleven years, although there is an example in [11] of a nonhy-

persurface singularity (the quotient of xy +yz + zx — 0 by a group of
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order 7) which has a smoothing with positive signature. The purpose of
this section is to prove an inequality for (V, 0) with C*-action, which im-
plies the above conjectures automatically. We also give a coordinate free
characterization when (V9 0) is defined by homogeneous polynomial.

A polynomial f(zχ, zχ, z2) is weighted homogeneous of type (w0, wχ,
wχ), where (wQ9 wχ, w2) are fixed positive rational numbers, if it can

be expressed as a linear combination of monomials z^zj'z^2 for which

'o/^o + *\/w\ + hlwi = * - (wo' ^ I ' wi) *s called the weights of / .
Lemma 3.1. Let w0, wχ and w2 be the weights of a weighted homo-

geneous polynomial f(z0, zχ, z2) such that f(zQ, zχ, z2) has an isolated
critical point at the origin. Suppose w. > w. > w. and w. is not an in-

l0 ll l2 l2

tegert where {i0, iχ, i2} = {0, 1, 2} . Let wi = [wi ] + β with 0 < β < 1.

Then β is either wi /wi or wi /wi .
Proof By a result of Orlik and Wagreich [8] (see also Xu-Yau [12])

f(zQ, Zj, z2) can be deformed to one of the following seven classes with-
out changing the weights at all.

Class 1. / ( z 0 , zχ, z2) = ZQ° + z\x + z2

2.
Clearly this case cannot happen under the hypothesis of the weights of

Class 2. f(z0, zχ, z2) = z^0 + za

χ

ι + zχz2

2, ax > 1.
In this case w0 = α 0 , wx = ax and w2 = aχa2/(ax - 1). The only

possible noninteger weight is w2 = axa2/(ax - 1) = a2 + a2/(aχ - 1). By
our hypothesis, wχ > w2 since wχ is an integer and w2 is not an integer.
In particular, we have aχ > aχa2/(aχ - 1), i.e., a2/(aχ - 1) < 1. Hence
we deduce that [w2] = a2 and β = a2/(aχ - 1) = w2/wχ.

Class 3. / ( z 0 , Zj, z2) = z^0 + za

χ

[z2 4- zχz2

2, ax > 1, a2 > 1.
In this case, we have wQ = aQ, wt = (^^ 2 - l)/(a2 - 1) and tί;2 =

(aχa2 - l)/(aχ - 1). By symmetry, we may assume wχ > w2 £ Z.
We claim that wχ φw2. If wχ =w2, then ax = a2 and it follows that

wχ = w2 = aχ + 1 = a2 + 1 e Z, which contradicts our hypothesis. Hence
we conclude that wχ > w2 fi Z,

£7 ^ — 1 d — 1

2 αj - 1 2 α t — 1

Since wχ > w2, we have #2 — 1 < ax — 1. Therefore [tt;2] = α2 and
β = (a2-\)/(ax-l) = w2/wχ.

Case 4. / ( z 0 , zχ, z2) = za

0° + zj1 z2 + zQz 2

2, fl0 > 1.
In this case, we have w0 = a0 , lUj = aQaχl(a0 - 1),



392 YI-JING XU & STEPHEN S.-T. YAU

We need to consider two cases.
(i) wχ > w2 £ Z . As

w2 = aoaxa2/(aoax - a0 + 1) = a2 + a2{a0 - l)/{aoax - a0

we have

1 2 ao~ι aoax-ao+l aoax-ao+l

Thus [w2] = a2 and β = a2(a0 - l)/(aoax - a0 + 1) = w2/wχ.
(ii) w2 > wχ £ Z .
Since w0 e Z a n d wχ ^ Z , we h a v e wQ = a0 > wχ — aQax/(a0 - 1 ) .

T h i s impl ies ax/(a0 - 1) < 1 . As wχ = aoax/(ao -l) = a{+ aχ/{a0 - 1 ) ,
we have \wχ] — aχ a n d β = aχ/(aQ - 1) = wχ/w0 .

Class 5. f(zQ, z t , z2) = za

Q°zχ + za

χ

ιz2 + ^ z ^ 2 .
In this case we have

wo = 7 5

aoa2-ao+l

Without loss of generality, we may assume that w2 is the minimal weight
and w2 £ Z . Observe that

2

We claim that w0 ^ w2. If tt;0 = w 2 , then wo/w2 = 1 which implies
( 0 ^ - aχ -h l)/(aχa2 - a2 + 1) = 1. Thus iί;2 = α2 + 1 € Z which
contradicts our hypothesis. So we conclude that w0 > w2 and hence
(αjα2 - a2 -h l)/(^oaj - #j -f 1) < 1. It follows that [w2] = a2 and β =
(fljέij - α2 + l ) / ^ ! - ax -κl) = tι;2/ιι;0 .

Class6. f{z0, zχ, z2) = zJ+ZozJ'+ZoZ^+zf'z^ with (α o -l)(α 1 6 2 +
a2bχ) = a0aχa2.

In this case tί;0 = aQ, t^t = aoaχ/(ao - 1) and w2 = aoa2/(ao - 1).
Without loss of generality, we may assume that w2 is the minimal weight
and w2 £ Z . Hence we have wo> w2 = aoa2/(aQ - 1) = a2 + 02(tfo - 1) •
t/;0 = 0O > <u;2 = aQa2/(a0 - 1) implies a2/(a0 - 1) < 1. Hence [iί;2] = α2

and jί = a2/{a0 - 1) = tϋ2/u;0 .

C/αw 7. / ( z o , z 1 ? z 2 ) = ZQ°ZX + zoz"1 + zoz 2

2 + zf1 zj2 with
(α0 - l)(axb2 + α26,) = ^ ( α ^ - 1).
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In this case,

aoaχ - 1 aoax - 1 aΆa^\ ~ 1)
7/1 — V ι /|/i — U 1 Λ.J 2.v U 1 _̂

There are three cases to consider.
CVwe (i). w 0 is the minimal weight and w0 φ Z . We claim that

w0 < wχ. If w0 = wχ, then α 0 = αj and hence w 0 = Wj = α 0 + 1 e Z.
This contradicts the hypothesis. Hence we have wx> wQ9 i.e.,

ΊΓ~Γ > a-ΊΓ-Γ * (Λoβi - »)(^ - 0

S

Now Ϊ^ 0 = (aoaχ - \)/{aχ - 1) = a0 + (α0 - l ) ^ - 1). Thus [w0] = ^ 0

and jff = (a0 - l)/(ax - 1) = wo/™i
C α ^ (ii). tϋj is the minimal weight and wx $ Z.
Similar argument as in case (i) will lead to w0 > wχ, [wχ] = aχ,

(iii). w2 is the minimal weight and w2 £ Z .
Without loss of generality, we may assume that w0 > w2 and wχ > w2,

otherwise we would be in case (i) or case (ii) again.

ar.a, - 1 ciΛar.a. - 1) 0,(0, - 1)

Now w2 = a2(a0aχ - l)/aχ(aQ - 1) = a2 + +α 2 (αj - l ) / ^ ! ^ - 1). Hence
[w2] = a2 and β = a2(aχ - l)/aχ(a0 - 1) = w2/w0.

Theorem 3.2. Let (V, 0) fee α two-dimensional isolated singularity de-
fined by a weighted homogeneous polynomial f{z0, zχ, z2) = 0. Lei μ to
the Milnor number, pg be the geometric genus, and v be the multiplicity
of the singularity. Then

(3.1) μ-v+\>6pg

with equality if and only if (V, 0) is defined by homogeneous polynomial.
Proof Let w0, wχ9 w2 be the weights of x, y and z respectively so

that f(x, y, z) is a weighted homogeneous polynomial. By the theorem
of Saito [10], we may assume without loss of generality that wQ > wχ >
w2>2. In view of Theorem 1.1, p is precisely the number of positive
integral solutions of



394 YI-JING XU & STEPHEN S.-T. YAU

w0 wx w2

i.e., pg = #{(x, y, z) e Z 3 : § + \ + f < 1} . On the other hand, a result
of Milnor and Orlik says that μ = (w0 - l)(w{ - l)(w2 - 1). Therefore
Theorem 2.3 implies that

(3.2) 6pg < μ - w2 + 1

with equality if and only if w0 = wχ = w2 = integer. Recall that v =
mf{n e Z + : n > inf(wQ, wιw2)} (cf. [12]). If w2 is an integer, then
v — w2 and (3.1) follows directly from (3.2). If w2 is not an integer,
then write w2 = [w2] + β with 0 < β < 1. By Lemma 3.1, β is either
w2/w0 or w2/wι. From Theorems 1.1 and 2.4 it follows that

(3.3) 6pg < (w0 - l)(w{ - \){w2 -l)-w2 + β = μ- [w2].

Since v = [w2] + 1, in view of (3.3), we have

6pg < μ - v + 1.

Now we have proved (3.1) and also that the equality in (3.1) holds if
(V, 0) is defined by homogeneous polynomial.

It remains to prove that if ( F , 0) is defined by homogeneous polyno-
mial of degree v , then the equality in (3.1) holds, i.e., μ-v + \ = 6pg . By
a result of [12], (V, 0) has the same topological type as (W, 0) where
W = {(z0, zχ, z2) e C 3 : z£ + z^ + z2 = 0}. On the other hand by a

result of [16], (V, 0) and (W, 0) have the same p , which is equal to

\v{y - l)(i/ - 2). Therefore

μ - j , + 1 = („ + I) 3 _ j , + 1 = (y - i)[(i/ - I) 2 - 1]

= u(u - l ( i/-2) = 6 ^ .

Theorem 3.3. Lei ( F , 0) be a two-dimensional isolated hypersurface
singularity defined by f(x, y, z) = 0. Lβ/ μ £e ί/*e Milnor number,
pg be the geometric genus, v be the multiplicity of singularity, and τ =
dimC{z, y, z}/(/, fχ9 fy9 f z ) . Then after a biholomorphic change of co-
ordinate f is a homogeneous polynomial if and only if μ - v + 1 = 6pg

and μ = τ .

Proo/ Recall by a theorem of [10], after a biholomorphic change of
coordinate / is a weighted homogeneous polynomial if and only if μ = τ.
The result follows immediately from Theorem 3.2.
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Corollary 3.4 (Durfee conjecture for weighted homogeneous singularity).
Let (V, 0) be an isolated singularity defined by weighted homogeneous
polynomial f{x, y, z) = 0. Let pg be the geometric genus, and μ be the
Milnor number of the singuarility. Then βp < μ with equality if and only
if μ = 0, if and only if V is smooth.

Proof. By Theorem 3.2, we have 6pg <μ-v + l<μ.If6p = μ ,
then v < 1, This implies v = 1 and V is smooth. In particular μ = 0 .
Conversely if μ = 0 , then V is smooth and hence p = 0 .

Corollary 3.5. Let ( F , 0 ) be an isolated singularity defined by a
weighted homogeneous polynomial. Let σ be the signature of the Mil-
nor fibre, μ be the Milnor number of singularity, and v be the multiplicity
of the singularity. Then

Proof Observe that

(3.4) μ = σ+ + σ0 + σ_

and

(3.5) σ = er+ - σ_ ,

where σ+ , σ0 and σ_ are respectively the number of positive, zero and
negative eigenvalues of the intersection form of the Milnor fiber. By Propo-
sition 3.1 of [2] we have

(3.6) 2pg = σ+ + σQ.

(3.4) and (3.6) imply σ_ = μ - 2pg and σ+ = 2pg - σ0. Putting these
into (3.5) gives

Corollary 3.6. Let (V, 0) be an isolated singuarility defined by a
weighted homogeneous polynomial. Let π: (M, A) —> (K, 0) be a res-
olution of singularity where A = π~ι(0) is the exceptional set. Let χ{A)
denote the topological Euler characteristic of the exceptional set A, and let
K2 denote the self-intersection of the canonical divisor on M. Then

(3.7) - 1 - μ + 2v < K2 + χ(A) <\+μ9

where μ and v are Milnor numbers and multiplicity of the singularity

respectively.
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Proof. The right-hand inequality of (3.7) follows trivially from the fol-
lowing Laufer's formula:

(3.8) l+μ=l2pg

On the other hand, by Theorem 3.2 we have

which implies
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