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THE HEAT TRACE ON SINGULAR
ALGEBRAIC THREEFOLDS

VISHWAMBHAR PATI

1. Introduction

Let X be a complex projective algebraicjhreefold with isolated singu-
larity set Σ . Consider the Laplacian Δ = δd with respect to the induced
Fubini-Study metric on the noncompact smooth locus X - Σ acting on
square integrable functions. In [7], we showed that δ = d0 = d*, which
implied the selfadjointness of the Laplacian Δ. The main result of this
paper is

1.1. Theorem. The trace of the heat operator etA is finite and satisfies

Ύre-* < KΓ3

for t e (0, Γ], suitable T > 0, and K>0.
1.2. Remarks. The corresponding facts for curves and surfaces are

respectively due to Cheeger [2], [3] and Nagase [6].

2. Reduction to local problems

Let X, Σ be as above. Then by the main results of §2,3 of [7], we may

decompose

(l) JT-Σ =

where M = {x e X - Σ: d(x, Σ) > b} for some fixed be (0, 1), and

the W^ are sets of the type W*, w£, wf^, which were introduced in

[7, §2, 3]. Similarly, the ε-truncation Xε of X is defined as

(2) X = {x e X - Σ: d(x, Σ) > ε} = M U
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where W^(ε) = W^ n {r > ε), r being the local radial distance function
from the singular set. Clearly for

m

Ye = U Wb

α=l

we have

(3) dYε = dMUdXε,

(4) » Ϊ

where d0 denotes the {r = ε} part of the boundary dW^(ε) of W^(ε),

and dx denotes the rest. Clearly dQW*(ε) = dW*(ε) Π aX ε .
2.1. Lemma. L ^ Δε te Λ̂e Laplacian in the induced Fubini-Study

metric on the ε-truncation Xε, with Dirichlet boundary conditions on dXε,
and let

be the eigenvalues of this selfadjoint boundary value problem, arranged in
ascending order. Also let

be the eigenvalues of the operator AM on M (with vanishing Neumann
data on dM), and the operator Δ y on the manifold Yε (with vanishing
Dirichlet data on the dXε part of dYε and vanishing Neumann data on
the dM part of dYe), all taken together and arranged in ascending order,
with multiplicity if the same eigenvalue arises from two different regions.
Then

W >/έf.(β) Vi.

Proof. This is a standard fact, following from the Weyl-Courant min-
imax characterisation of eigenvalues. See, e.g., Chapter 1, §5 of ChavePs
book [1], and Proposition 3.2 in [6].

2.2. Corollary.

Tr(e~tA°) < Tτ(e~tAM) + Tτ(e~tAγ<).

It is well known (by the Weyl asymptotic formula) that for the compact
6-dimensional Riemannian manifold M with boundary and Neumann
conditions, we have

Ύr(e~tAM) < KΓ3
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for a K > 0 and t e (0, T]. Thus, in view of the above corollary, it is
sufficient to prove that for the operator Aγ with the boundary conditions
stated in Lemma 2.1, we have the estimate

Tτ(e-tAγ*)<KΓ\ te(0,T],

where T > 0, and K is a positive constant independent of ε.
We now have to estimate the heat trace for Yε, in terms of heat traces

for the W^{ε). To do this we shall need the following lemma, which is
a general eigenvalue comparison result similar in spirit to the lemma in
Chavel cited above, but independent of it.

2.3. Lemma. Let Y be a manifold with boundary dY = d0Y\JdχY,
and let {Wa}™^χ be a finite covering of it by m normal domains, not
necessarily disjoint, with boundaries meeting d Y transversely. Let

0<λι<λ2<><λk<

be the eigenvalues of the Laplacian Δ y with the mixed boundary data of
Dirichlet on d0Y and Neumann on dχY. Further, let

0<μι<μ2< <μk<

be the eigenvalues of the Laplacians Δα on Wa with the original Y data
on WaΓ\dY and Neumann data on dWaΠ(Y~dY)f arranged in ascending
order, with repetition in case the same eigenvalue occurs with multiplicity,
or from different Wa. Then

K > —μk
k mr~k

for all k.
Proof We suitably modify the proof of Corollary 1 on p. 18 of Chavel

[1]. Let Ψj, , Ψfc_j be the eigenfunctions corresponding to the eigen-
values μχ, , μk_{ of the problems on Wa, α = 1, 2, ,m, stated
above. Extending these by 0 to all of Y makes them admissible functions
for the eigenvalue problem on Y. (See the corollary in [1] cited above for
the definition of admissible.) Now let / be an admissible function for the
problem on Y, which is orthogonal to the functions Ψχ, , Ψk_{ in the
Hubert space H(Y) of F-admissible functions. Then fQ, the restriction
of / t o Wa, is in the admissible space H(Wa). Clearly

m(Df, Df)γ > Σ{Df, Df)Wa = Σ(»fa. AO,
a=\ α=l

where the subscripts on iΛnorms always denote the domains of integra-
tion of the pointwise norm. Since / is orthogonal to Ψ{, , Ψ fc_j, for
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each a, fa is orthogonal to those of the Ψ^ (I <j <k-l), which arise
from Wa for each α = l , - , m . Thus ( D / α , Z)/β) > i/ β (/ α , f a ) , where
i/β is the lowest eigenvalue for the ^ problem succeeding the eigenvalues
of W^, which appear among the μx, , //A:_1 above, for each a. By
the definition of μk , we have va > μk for all a = 1, , m. Combining
the above inequalities gives

m m

m(Df, Df)γ > μk ]Γ(/α, fj = μk ^ ( / , /)„, > μk(f, f)γ.
α=l α=l

Now, since the Ψj , , Ψfc_j span a subspace E of //(Γ) of dimension
at most k - 1, we have

m a x

m f±E (/,/) dim^<A:

by the Weyl-Courant minimax characterization of eigenvalues.

2.4. Corollary. If the heat-trace estimates for the Laplacians Aae on

w£(ε), a = 1, , m, with the boundary conditions defined in Lemma

2.3 satisfy the estimate

Ίτ{e~tκ>) < KaΓ
3 for te(0,T] and some Ka>0,

then the heat trace estimate for Aγ satisfies

Ύτ(e~tAγ*) < Kt~3 for t e (0, Γ7] and some K>0.

Proof We take Y = Yε and Wa = W*{έ) in Lemma 2.3. Then, letting

- 3

K' = maxαKa we have for te(0,mT] that

Tr(*-'ΔΌ = Σe-tλ> < γ^e-^lm < K' UX* = Kf

from Lemma 2.3, where K = Kfm*.

Thus the problem now boils down to analyzing the W^{έ). We will do

this for the three types of W^(ε) regions in the next section. This would
establish Theorem 1.1 in view of the fact that

6—0

as in (1.3), (1.4) of [5].

3. The estimates for the W*(e)

For convenience, we take b < l/e in all that follows, as we did in [7].
In any case, this b is completely immaterial, and fixed (less than 1) right
at the outset.
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3.1. Proposition. For W*(ε) = W^{e) oftype-l, we have the heat trace
estimate {with the mixed boundary conditions stated in Lemma 2.1)

(5) Tr{e-^)<KC\ te(0,T],

where K is a constant independent of ε.
Proof. We recall the following from 3.1.3 of [7] to define the regions
* . It is shown in Propositions 2.2.2, 2.3.1 of [7] that for a simple-point

p on the singular divisor E = π " 1 ^ ) (for a sufficiently high resolution
π of the singularity π: X -» X as constructed in §2 of [7]), there is a
(w, v, w) polydisc neighborhood U of p = (0, 0, 0) such that

(i) UnE = {u = 0},
(ii) the pullback π*(g) of the Fubini-Study metric g on X - {0} is

quasi-isometric on U - E to Y?i=x dζidζi, where ζx = ua

χ

x, ζ 2 = u2

2v ,

and ζ 3 = ua*w <z3 > a2 > aχ > 1 are positive integers.

We define
W? = {0<r<b}ΠU,

where r is the pullback of the radial distance function from the origin in
C^ (the germ of the isolated singularity being embedded with the origin
as the singular point) restricted to X - {0}. The metric of (ii) above
further (quasi-isometrically) simplifies to the expression in (6) below with
Γj = |Cj| in place of r. However, the same proof as that of Lemma 3.3 of
[5] shows that the quasi-isometry type is unaltered by taking r in place of
Γj, which results in (6) below. Thus

W? = (0<r<b)xSl xY{ x 72,

where θ = arg£t is a local coordinate on the Sι factor, and Yχ and Y2

are the unit discs (\v\ < 1) and (\w\ < 1) respectively. We also proved
in the section of [7] cited above that the induced Fubini-Study metric in
this region W* is quasi-isometric to the metric

(6) g = dr2 + r2 dϋ2 + rla(dχ2 + dy\) + r2\dx\ + dy\),

where v = xχ + iyχ, w = x2 + iy2, and 1 < a = ajaχ < β = b2/bx, the
at and bt being as in Proposition 2.2.2 of [7].

The Laplacian corresponding to the metric g in (6) is easily seen to be

d2 2C+1 θ 1 θ2 , -2α A , -2β

dr2 r dr r

2 dϋ2 ι
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where c = α + β, and Δf. are the standard Euclidean Laplacians on the
discs Y.9 i = l , 2 .

Since quasi-isometries preserve the trace estimate which we are seeking
(called the basic property BP in [6, §1]), it is enough to show that

m
α ( ) < KΓ3 for t e (0, Γ], and K independent of ε ,

where λ^ε) are the eigenvalues of the equation

(8a) Δ/ + λ/ = 0,

Δ being given by (7) and the mixed boundary conditions

(8b) / = 0 o n a o ^ ( δ ) and dj = 0 on dxwf(ε)9

where dv is the normal derivative.
The way to proceed now is to separate variables. Let {Φ.}, {Ψy} be

the eigenfunctions of Aχ and Δ2 , with vanishing Neumann data on d Yχ

and dY2 respectively, corresponding to the eigenvalues {JA} and {μ^}

respectively. Also let {xk{ϋ)} be the eigenfunctions of d2/dϋ2 on Sι,
with corresponding eigenvalues {ηk} . Then expanding a function / as a
product G(r)Φi

x¥jXk , and requiring it to be a A-eigenfunction of (8a, b)
leads to the Sturm-Liouville boundary value problem on [ε, b] given by
the differential equation

(primes denote r-derivatives), and the boundary conditions above dictate
the boundary conditions on G to be

(9b) G(ε) ^

This can be recast, by putting H = rc+1^2G, yielding

(10a) H" + (λ-qijk(r))H = 0,

(10b) H(ε) = -fr(r-c-l/2H)(b) = 0,

where

, , vi μ, η. (c2-l/4)

«^(r) = ̂  + φ + f + r2 •
Let us arrange the eigenvalues of (10a,b) in ascending order
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These can in turn be compared with the eigenvalues of a simpler problem as
follows. In (10a), replace the qijk{r) by the number p.jk = Vi+μj+ηk-ζ0,
where ζ0 = limε_>oζo(ε) < C0(ε), and {C,(ε)} are the eigenvalues of the
problem on [ε, b] given by

(13a) H" + C# = 0,

(13b) H(ε) = ^(Γc-ι/2H)(b) = 0

arranged in ascending order of /, and the ζι = limfi_>0 £z(ε) < £z(ε) are the
eigenvalues of the limiting problem as ε —• 0, viz., the eigenvalues of (13a)
on the interval (0, b], and the boundary conditions being (13b') which is
(13b) with ε replaced by 0. We note here (cf. [6, 4.2]) that ζ0 < 0 < ζ{,
and the £7(ε) diminish monotonically, as ε -> 0, to ζι.

Now if the eigenvalues of the problem, which we get by replacing qt .k(r)
by the pijk defined above, given by the equations called (14a), (14b) re-
spectively, are denoted by

(15) 0 < λijk0(ε) < λijkι(e) < < λiJkl(e) < ,

then a comparison of the Rayleigh-Ritz quotients of (10a, b) and (14a, b)
shows that

(16) λijkl(ε) > λijkl(ε) + ζ0

since g.Jk > ptJk + ζ0. However, since XiJkl(e) = ζ,(ε) + vi + μj + ηk-ζ0,
it follows that

(17) λijkl(ε) > i/,. + μ. + ηk + ζ,(ε) > vt + μ} + ηk + ζ,,

so that

(18) ττ{e-* ) <

Since it is well known that vt and μy have linear growth in /, j respec-
tively, and ηk and ζι have quadratic growth in k and / respectively, the
proposition is proven.

3.2. Remark. The analysis above is very similar to that of W(-) re-
gions in the surface case of [6, Lemma 4.3].

3.3. Proposition. For a region W^ of the type Wu (cf. [7, Proposition
3.1.4]) which satisfies the additional condition
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(definitions of βt, at below, after (20) and (21) in the proof), we have the
trace estimate

(19) Tr(<Γ'Δ«) < Kt~3

for t e (0, T\, K > 0 independent of ε.
Proof Let us recall some facts from [7] first. In Propositions 2.2.8,

2.3.1 we showed that for a double point p which lies at the intersection
of exactly two components of the singular divisor E, there is a (u,υ, w)-
polydisc neighborhood U of p = (0, 0, 0) such that

(i) UnE = {u = 0}U{v = 0},
(ii) the pullback π*g (g defined in proof of Proposition 3.1 above)

is quasi-isometric on U - E to Y?i=ι dζidζi, where ζ{ = uaχv ι, ζ2 =
uU2vbl, C3 = ua>vb3w, α3 > α2 > έij > 1, and b3 > b2 > bχ > 1 are
positive integers. One then defines

where r is the radial distance function from 0 on X - {0} pulled back
to U as described in the beginning of the proof of 3.1 above.

There is also the type-B operation (see [7, §2.1], and Proposition 2.2.8)
which blows up the w-axis (u = v = 0), viz. the global curve of inter-
section of the two divisor components in question on which p lies. This
results in some Wγ regions of the type discussed in 3.1 above, and two
new type Wn regions with the same quasi-isometry class of metric de-
scribed in (ii) of the above, but with changed exponents: viz. (α , b.) are
respectively replaced by the exponents (a( + bt, bt) and (a(, at + b ) in
the two new regions. This fact will be exploited in the proof of the Lemma
3.4 below.

A further (quasi-isometric) simplification of the metric in (ii) above can
be achieved by introducing the new real coordinate

where p = \u\ and τ = \v\, whose range is given below in (22). With
this new coordinate, and the other coordinates defines in (20) below, one
sees (cf. [7, proof of Proposition 3.1.4]), that w£ may be written as the
product

(20) w£ = (0 < r < b) x (α, < s < βχ) x T2 x D2,

where 1 < aχ = a2/aχ < βγ = b2/bx. Let fy = argCz (/ = 1, 2) be local

coordinates on the torus factor T2, and D2 = {w £ C: \w\ < 1}. The
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induced Fubini-Study metric in this region, which is quasi-isometric to the
expression in (ii) above, can be further quasi-isometrically simplified, as
shown in the proof of Proposition 3.1.4 of [7] cited above, to

(21) g = dr2 + r2 dϋ\ + r2s((\ogr)2 ds2 + dϋ\) + r2{λ^sλ*] dw dw,

where the λ{ 's that occur in the r-exponent of the last term are defined
by ( α 3 , b3) = λχ(ax, bχ) + λ2{a2, b2), recalling that (aχ, bχ) and (a2, b2)
are linearly independent, and if we let

(22) a i m i n g , | i ) and /?2 = max g , ^

we have (loc. cit.) that for s e [aχ, βχ], (λ{ + λ2s) e [a2, β2]. Actually,
(21) should contain the variable r{ in place of r, but again by the same
argument referred to in the proof of 3.1 above (Lemma 3.3 of [5]), we can
replace rχ by r.

The idea is to compare the Rayleigh-Ritz quotient for the Laplacian Δ^
of the metric in (21) with that of a simpler operator. The energy form for
Ag is

f) = J(df,df)gdVg

(23)

+ P5{fx)
2+P6Wy)

2)drdϋιdsdϋ2dxdy9

where the subscripts of / denote partial derivatives, w = x + iy, and
Pi = gHy/g- Also y/g = r2(5+A1+5A2)+i| logr| β y ( 2 2 ) ? . e ? t h e b o u n d s o n

s a n d λ χ + λ2s, a n d b y t h e c o n d i t i o n t h a t 0 < r < f e < l , w e h a v e t h e

f o l l o w i n g i n e q u a l i t i e s o n Wu :

q2 (say),

PX = gUVg > r2{β^)+l\logr\ = qχ (say),

P2 = ^ 2 2 ^ = r " 2 ^ > Γ ^ i + « - i i l o g Γ | > Qi 9

since by the hypothesis of this proposition, 2(βχ + β2)-l < 2(aχ + α 2 ) + 1 ,

33 i— — 2 J I , I — 2 / — 2(A.+5λ,)+l . Λ . — 1

P 3 = g \/? = '' I log r| ,/g = rκ> 2> | logr | .

But,

δ = (2(o, + α 2 ) + 1) - (2(A, + sλ2) + 1) > 2(o, + α 2 ) -

> 2α, + 2()S, - α,) - 2 (by our hypothesis)

= 2βχ - 2 > 0.
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Thus r I log r| < 1 (b suitably chosen), and consequently

P3 ^ #2>

2S P3>Q2

 b y t h e a b o v e >

Since 1 - £ 2 < 0,

2s + 1 < 2βχ + 1 < 2(αj + α 2 - /?2 + 1) + 1

<2(αj + C*2) + 1

by our hypothesis, which means p5>q2- Finally, p6 > Q2

 s i n c e Pe = P5
Thus, the Rayleigh-Ritz quotient of Δ^ on W^(β) is

Sf\dV
where dV = drdϋx dsdϋ2 dxdy, and E is given by (23).

But the right-hand side of (24) is the Rayleigh-Ritz quotient of the
differential equation on W^{ε) given by

(25a) β r ^ β ^ β * " 2 M ^ ^

with the boundary conditions unchanged; viz.,

(25b) / = Oona o^J(ε) and dj = 0 on dxw£{e).

Since w£(ε) is a product region, and ^2 only involves r, we may rewrite
(25a) in the form

where Δ^ is the standard Euclidean Laplacian on the "link" piece N
which is the r = constant slice. So

(27) Λ Γ = Γ 2 x [ α 1 , ^ 1 ] x / ) 2 ,

a compact manifold with boundary. If {λ^ε)} are the eigenvalues of Δ^

on W^{e) with the boundary conditions (25b), and {λ^ε)} are those of
(25a, b) (all in ascending order of /), then in view of inequality (24) we
see that

(28) W > l , ( β ) Vι.
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By separation of variables, {lz(ε)} = {ζj(e) + vk}jtk , where {vk} are
the eigenvalues of ANf + vf = 0 on TV, with vanishing Neumann data
on dN, and {ζj(e)} are the eigenvalues of the one-dimensional Sturm-
Liouville boundary-value problem on [ε, ft] given by

with the boundary conditions

(29b) /(β) = ^ ( * ) = 0.

Now, it is well known that for the compact manifold N with Neumann
boundary data (N has corners, but still) the heat trace Σk e~tVk < KΓ5/2 ,
for t e (0, T] and K > 0. So all we need to show, in view of (28), is that

(30)

for AT > 0 and independent of ε, and t is as above.
So we are reduced to the problem (29a, b) on the interval [ε, b]:

= r

2<*|logr| and 2£ = 2{aχ + α2) + 1 > 5,

where

(32) p = r Ίlogr| and 2γ = 2(βi + β2) + 1 > 2δ > 5,

and by the hypothesis of this proposition,

(33) 0 < y - ί < l .

The boundary conditions for (31a) are

(31b) /(ε) = ?f(b) = 0.
uT

This is a standard form equation, which, by the substitutions (19a),
(20a) on p. 292 of Courant-Hilbert [4], may be rewritten on a new interval
[ε , b'] as follows:

(34a) — j + (C - Φ)u = 0
at

with the boundary conditions

(34b) u(ε) = ^-iψ~{u){b') = 0,



256 VISHWAMBHAR PATI

where ψ = (pp)l/4 = r(<*+y)/2| logr|1/2 u=ψf\ and the new variable t is
defined by

(35) [ ^
Jo Jo r

which is valid in view of (33). Clearly t e [ε , b'], where the new end-
points are e' = Cεδ'y+X, *' = Ch*'7*1.

Finally, by the footnote on p. 292 (loc. cit),

l_\
T I

nπ A V" rnijn^ A_(\
(36) φ = — = = h -s I - — m — T I
V ^ r2 r2 | logr| V2 4|logr|/
where m = (δ -h y)/2.

Since the integrand of (35) is greater than 1, we see r < t. Combining
this with (36) gives

c'
Φ{i) > —, where C' = m(m - 1) - k,

and k may be made arbitrarily small by making b small enough. Since
m = (δ+γ)/2 > 5/2 by (32), we may choose b and hence k small enough
so that C' > ̂  . From this one concludes that the eigenvalues ζ^e) of
(34a, b) are greater than or equal to those of the following Bessel-type
problem, call them

(37a) , +(f-^!Zί)..o,

(37b) u(ε) = £

by a comparison of the Rayleigh-Ritz quotients. We let {£,} be the eigen-
values of the limiting (singular) Bessel problem, which is (37a) together
with w(O) = 0, and the same right-hand boundary condition as (37b). It
is proved in Chapter VI, §2.4, of [4] that

(a) ζz. = l i m ε ^ ( ε ) < C > ) .

(b) The solution to the limiting problem is y/lJ2(tyζ).
Applying the (right-hand) boundary conditions, and the facts about ze-

ros of BessePs functions (loc. cit.), one has that

(38) ^
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where C(br) is a constant depending only on the length of the interval,
b'. As a consequence we have

for # > 0, independent of ε, and t e (0, T]. This proves the proposi-
tion, q.e.d.

It remains to show that the condition assumed in the hypothesis of this
proposition can be realised in all the regions of the type Wn . This can
be achieved by enough type-B operations (cf. [7, §2.1]), as the next lemma
shows.

3.4. Lemma. The condition

can be realised by enough type-B operations, in all the Wu type regions.
Proof. Recall that

a% bΛ Λ (a, b

so that

, 3 , ,
a\°\

A type-B operation creates two new charts, both of type W^, one in
which α are replaced by (Λz+iz),and b{ are unchanged, and the other in
which a{ are unchanged and bt are replaced by a( + bi. In either case the
determinants which occur in the numerator of the expression (29) above
remain unchanged, whereas the denominator strictly increases by at least
one. Hence in a finite number of steps we are done.

Remark. In the above, by putting w = 0, we will get another proof of
the heat estimate for W(+) regions in the surface case of [6].

We now deal with the W^ type regions. Much of the analysis is very

similar to that of the W^ type regions above, so we will make it brief.

3.5. Proposition. For the regions Wm(e), with the additional condi-
tion

0<{βχ-aχ)^{β2-a2)<\

{see definitions below), we have the same trace estimate as in Propo-
sition 3.3.
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Proof First some introductory remarks on the regions Wm. For a

triple point p, which is a point of intersection of three components of the

singular divisor E, we show in [7, Propositions 2.2.11, 2.3.1] that there

is a (u,υ, w) polydisc neighborhood U of p = (0, 0, 0) such that

(i) t/n£ = (κ = 0)U(t; = 0)U(tι; = 0),

(ii) thepullback π*g (g defined in Proposition 3.1) is quasi-isometric

on U-E to Σ^= 1 dζi dζi, where ζ. = udivbiwCi, where a3 > a2 > ax > 1,

b3 > b2 > bχ > 1, c3 > c2 > c{ > 1 are positive integers. We define

*ra = {0<r<b}ΠU.

There are again two kinds of operations on such a region. The first is

a type-A operation, which is blowing up the point p = ( 0 , 0 , 0 ) . This

results in

(a) regions of the type w£ with a = I, II of the kind dealt with above in

Propositions 3.1,3.3, together with three new type W^ regions centered at

three new triple points, and with changed exponents, respectively (αJ.+6J.+

ci, bf, c.) corresponding to the substitution u —• u\ v -> uv\ w -> uw ,

(α z , at + £,. + cz , cz) corresponding to u ^ uυ υ -> t; ty -> vtί; and

(αf., 6Z, αz -h bt + Cj) replacing the original exponents (αf., Z?/, c ) .

Similarly there are type-B curve blow-up operations which result in re-

gions of the type W* with a = I, II, as well as

(b) two new triple-point centered W^ regions with changed exponents.

For example if this operation is performed on the w-axis (u = v = 0 ) ,

the two new sets of exponents are (at + bt, bt, cz) from the substitution

w —• w υ -^ uv w -+ w , and (α z , #z + &z, cz) from the substitution

u -+ uv\ v —> υ; w —> ti;. Similarly, analogous changes of exponents

for type-B blow-ups of the other axes. These facts will be used in proving

Lemma 3.4 below.

We refer to the proof of Proposition 3.1.8 of [7], where we showed that

*ra = (0 < r < *) x ((s, t)eA)xT\

where A is a triangle in R2 with vertices

β-φ.ί 1 ) and *-(&.*).

Note that all these vertex coordinates are greater than or equal to one. The

T factor has dz = arg ζ( as coordinates. In this description, the induced

Fubini metric is quasi-isometric to

(40) g = dr2 + r2dϋ\ + r 2 '((logr) 2ds 2 + dϋ2

2) + r 2 /((logr) 2dt 2 + dϋ\).
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Again, we should write rχ = \ζχ\ instead of r in (40), but as remarked in
the last two propositions, the proof of Lemma 3.3 of [5] applies, and the
quasi-isometry class of the metric is unaffected by replacing rχ by r.

We now define

<«> ->-"*{%•%•§•
Note that these α^s and Λ.'s are not the same as the ones defined in
Proposition 3.1.8 [7] cited above. We write the Laplacian for the metric
in (40), and consider its energy form

where the subscripts of / denote partial derivative, p = g"^/g, and
2 2 1 2

Now, applying the hypothesis (βχ - aχ) + (β2 - a2) < 1, together with
α, , βι > 1, and using the same arguments as in Proposition 3.3, we obtain

Pi = y/gg > r I logr| = qχ (say),

p. = ./gg" > r

2«i+2«2+i i l o g Γ | 2 = Qi ( s a y ) 9 for 2 < / < 6,

and y/g < q2. From this point on, the proof proceeds in exactly the
same way as that of Proposition 3.3, equation (24) onwards, δ and γ are
defined in the same way in terms of the α/s and β^s in (41) and (42), as
they were in (32), (33), and obey the same inequalities. This proves the
proposition.

It remains to achieve the hypothesis of the previous proposition. We
do this next.

3.8. Lemma. Enough type-B operations (cf. [7, §2.1]) ensure the con-
dition

in all the W^-type regions.
Proof. Let us consider the triangle A described above in the last propo-

sition, with the vertices
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A type-B operation on, say, the "a" and "c" columns leads to two new
charts, both regions of type WJ^. These two regions would have the new
triangles PQR! and P'QR associated to them, where P' = R* is the new
point subdividing the edge Pi? in the ratio ax : cχ, so that

where

μχ =max I *—, *— I (I - μχ) = mm I •—, -— ).

Clearly, the lengths of the subdivided pieces satisfy

(44) \\PK!\\ = \\PP'\\ < μχ \\PR\\ \\PfR\\ = \\RfR\\ < μχ \\PR\\.

In general, if we repeat type-B operations along this edge, we will have
further subdivisions, so as to subdivide PR! and P'R into two segments
each. We will thus get two ratios μ^], μψ analogous to μχ above;
namely,

(i) / ax ax +cx \ ax +cx

μ\} = max -—*—, ^ = ̂
^ 2 \2ax+cx 2ax+cxJ 2ax+cx

Similarly,

Therefore we see,

Similarly, μψ < (2 - /ί,)"1. Thus, after n operations, the length of the
largest segment, called /max(w), among the 2" segments into which Pi?
is subdivided, satisfies

(45) /m aχ(«)< KK-xK-i ••/*, 11**11,

where

(46) μi<{2-μt_x)-ϊ.

It is easily checked by induction that if the initial μx = a,/(α, +cχ) = | ,
with q > p clearly, then the inequality (46) implies that

(47) a < ( » - l ) g - ( n
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so that from (45) and (47) we have

'maxW ^ Γ Γ H I P Λ H ^ / P x \\PR\\ = ~ (T^1—) WPR\\ >

which clearly -> 0 as n -• oo.

Thus enough type-B operations along the PR edge produce segments of
arbitrarily small length. Similarly for any other edge. So sufficiently many
type-B operations produce triangles of arbitrarily small sides. Since the
quantity

is the sum of the lengths of the projections of the triangle A along the x
and y axes, this sum can also be made arbitrarily small.

We remark here that type-A operations (cf. [7, §2.1]) will create three
new charts, the triangles corresponding to which will be the three triangles
formed by joining a new vertex with coordinates

a3 + ^3 + C3

which is created in the interior of A, to the original vertices P, Q, R.
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