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AN EXOTIC MENAGERIE

ROBERT E. GOMPF

0. Introduction

Among the most peculiar examples in topology are the exotic R4's.
These are smooth 4-manifolds which are homeomorphic to a Euclidean 4-
space R4 but not diffeomorphic to it. Exotic R4's represent a phenomenon
which is fundamentally unique to dimension 4, since it is a central result of
smoothing theory that, for n Φ 4, any smooth manifold homeomorphic
to Rn must be diffeomorphic to it. Consequently, exotic R4's provide
counterexamples to various basic conjectures about the extension of high-
dimensional topology to dimension 4. For example, in contrast with high
dimensions, exotic smooth structures on 4-manifolds cannot be adequately
analyzed via an obstruction theory (since R4 is contractible).

There are two main approaches to constructing and distinguishing exotic
R4's, and these yield manifolds with rather different properties—exotic
R4's of one type are much "larger" than those of the other type. Both
constructions rely on work of Freedman and Donaldson, and the roots of
both constructions can be traced to work of Casson [4]. We will discuss
these constructions in chronological order.

The original exotic R4 resulted from an observation of Freedman, who
noted that in the presence of his own work [8] and Donaldson's nonex-
istence theorem [6], a certain construction of Casson yielded a manifold
homeomorphic to R4 , whose end was not diffeomorphic to S3 xR. In fact,
it was easily seen that this exotic R4 contained a compact, codimension-
zero submanifold which could not be smoothly embedded in S4. Subse-
quently, it was shown that more than one such example existed [12]—in
fact, infinitely many [13]. Then Taubes [22] solved a problem in gauge
theory posed by Freedman, which yielded an uncountable family {Rt\ t e
(0, 1)} for which Rt embedded in Rt> if and only if tt < t'. In [13], this
was extended to a two-parameter family {Rs t\s, t e (0, 1)} with natural
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inclusions Rs t <-+ Rs> t> for s < s' and t < t1, but with no embedding

existing if s > s' or t> t'.
This last nonembedding result can be strengthened via the following

definition: We say R < R' if any compact, smooth, codimension-zero
submanifold of R embeds in R'. We call R and R' compactly equivalent,
R ~ R', if R < R' < R, i.e., if R and R' have the same compact
submanifolds. The set of all compact equivalence classes of manifolds
homeomorphic to R4 is partially ordered by < , and admits a metrizable
topology with countable basis [15]. It follows from [13] that Rs t< Rs> y
if and only if s < s' and t < t'. In particular, no two members of this
family are compactly equivalent.

In a more recent development, Freedman introduced the second type
of exotic R4 construction by expanding another of Casson's arguments.
This construction relied on the failure of the Λ-cobordism theorem (see,
for example, [7]). The resulting manifold R! embedded in R4 (with its
usual smooth structure), and therefore R! was compactly equivalent to
R4. In fact, DeMichelis and Freedman [5] constructed a one-parameter
family {R!t\ t e (0, 1)} with natural inclusions Rf

( C R[. C R4 for t < t',
and showed that the family contained uncountably many diffeomorphism
types (with the cardinality of the continuum in ZFC set theory). Thus, the
compact equivalence class of R4 contains uncountably many exotic R4's.

In the present article, we describe various phenomena involving exotic
R4's and related examples. Much of this is related to the DeMichelis-
Freedman paper, to which we refer for details when necessary. Our arti-
cle consists of four essentially independent sections. In the first section,
we show how to combine the work of DeMichelis and Freedman with
earlier results involving the larger exotic R4's to obtain an uncountable
(one-parameter) family of distinct compact equivalence classes of exotic
R4's, each of which contains an uncountable family analogous to that of
DeMichelis and Freedman. This suggests the following open question: Do
all compact equivalence classes have uncountably many representatives?
Our argument fails to extend to the second parameter of [13]. In fact, it
is at least plausible that the universal R4 of Freedman and Taylor [10]
is unique in its compact equivalence class, but this is presently an open
problem.

The second section deals with a related question: Which topological 4-
manifolds admit uncountably many diffeomorphism types of smooth struc-
tures? Furuta and Ohta [11] have conjectured that for a closed, simply-
connected topological 4-manifold M, M - pt. admits uncountably many
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smoothings, and they have proven most cases of this. Our main theorem
in §2 states that for any topological 4-manifold M (possibly noncompact,
with boundary, nonsimply connected or even nonorientable), M — pt. ad-
mits uncountably many smoothings. It seems natural to conjecture that
any noncompact 4-manifold can be smoothed in uncountably many dis-
tinct ways. (By Quinn [21], such a manifold is always smoothable.) Some
caution is required, however, since we can at least imagine the possibility
of a manifold M so complicated that in any smoothing all of its ends
are forced to be universal (in the sense of [10]). For such a manifold, the
smoothings would be classified up to isotopy by the Kirby-Siebenmann
obstruction group H3(M, dM Z2), which might be finite or even trivial.

In §3, we address a problem posed in [5]: Can an exotic R4 be de-
scribed explicitly (for example, by a handlebody picture)? How simple a
description can be obtained? So far, the best type of candidate for this is
the type described in [5]. Such an exotic R4 has the following descrip-
tion: Begin with a certain type of ribbon link in dB4 . Remove tubular
neighborhoods of the ribbon disks in B4. We could recover B4 by gluing
in 2-handles along meridians of the deleted ribbon disks. Instead, how-
ever, we glue in Casson handles [4] or "pinched regular neighborhoods of
convergent towers" [9] (henceforth, referred to as Freedman handles). For
sufficiently complex Casson or Freedman handles, the interior of the result
will be an exotic R4, of a type called a ribbon R4 in [5]. DeMichelis and
Freedman make no attempt to estimate the complexity of the ribbon link
or the Freedman handles, but suggest that such a task might be possible.
Their examples are constructed by analyzing (any) simply connected, non-
trivial five-dimensional Λ-cobordism, and the complexity of the associated
link (in particular, the number of components) is determined by the com-
plexity of the intersection of ascending and descending 2-spheres in the
middle level. In §3, we observe that a certain nontrivial Λ-cobordism of
Akbulut [2] has the simplest possible pattern of intersections: There are
unique ascending and descending spheres, and these have a unique pair of
extra intersections. Furthermore, the complement of the union of these
spheres is simply connected. It follows [5] that an exotic ribbon R4 can
be constructed from the obvious ribbons for the 2-component link shown
in Figure 1, next page (which is [5, Figure 3.8]).

§4 describes a certain group action which yields several unusual
branched-covering involutions on exotic R4's. The first such interesting
involution was constructed by Freedman (unpublished) in 1985. An exotic
ribbon R4 Rf c S4 was shown to admit a smooth (branched-covering)
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FIGURE 1

involution which was topologically standard (i.e., Rf was equivariantly
homeomorphic to R2 x R2 with the involution acting as 180° rotation
on the first factor and trivially on the second). The quotient of Rf by
this involution was diffeomorphic to R . Thus, R' was realized as a 2-
fold branched cover of R4 along a smooth, topologically standard R2.
A seemingly unrelated example was exhibited in [5]: the end of R! was
shown to admit an involution which could not be smoothly extended over
R!. We will show how both of these examples fit into a more general
picture, and simultaneously provide more examples with different proper-
ties. In the process, we will uncover a startling relation between the two
seemingly different methods of constructing exotic R4's.

For perspective, it should be noted that exotic R4's which admit invo-
lutions or other group actions are easy to construct, although these easy
examples will not have the special properties described above. For exam-
ple, if G is any finite subgroup of 0(4), then G acts on many exotic
R4's. Alternatively, we may take G to be any group acting smoothly on
R , whose action on some open subset is properly discontinuous. (For
example, consider Euclidean or hyperbolic isometries.) To construct such
an exotic (7-space, first let G act on R4 (= R3 x R). Then equivariantly
end-sum with copies of any fixed exotic R4, adding one copy for each
group element. (End-sum is the noncompact analog of boundary sum. It
is compatible with < in the sense that R{ < R2 and R3 < R4 imply
Rχ\\R3 < R2\\R4. See [13] for details.) The resulting manifold R{ will
be an exotic R4 (since no exotic R4 has an inverse under end-sum [13].)
The (/-action on R{ will be topologically equivalent to the G-action on
R4 (since the end-sums are topologically trivial). If the quotient R4/G
is diffeomorphic to R4 (as in the case of the standard involution), the
induced quotient space R2 will be an exotic R4 . This yields (for exam-
ple) topologically standard involutions inducing 2-fold branched coverings
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Rχ -+ R2 between exotic R4's. Note, however, that the following con-
straints are built into the construction: (1) R{ and R2 are both exotic.
(2) R{ > R2. (In fact, R{ is an end-sum of copies of R2.) (3) Rχ is
compactly equivalent to R4 if and only if R2 is.

We will produce examples which violate all of these constraints. We call
an exotic R4 small if it is compactly equivalent to R4 and large otherwise.
Freedman's example with R{ a small exotic R4 and R2 standard violates
(1) only. We will exhibit an example with Rχ large and R2 standard, vi-
olating both (1) and (3). We will also obtain an example with R{ small
(exotic) and R2 large, violating (2) and (3). By combining these examples
with the techniques of the previous paragraph, we obtain smooth, topo-
logically standard 2-fold branched coverings R{ -> R2 , where Rχ and R2

can be independently chosen to be large or small. If R2 is small, it may
be chosen to be either standard or nonstandard (by summing with a small
exotic R4 if necessary). It is still an open question whether can we have
R{ standard and R2 exotic. In particular, can we violate (1), (2), and (3)
simultaneously?

Our examples fit into a larger group action. We will construct R*, a
small exotic R4 which embeds in S4 . R* is not known to be ribbon, but
it is complementary to a ribbon R4 R! , in the sense that the construction
provides related embeddings R!, R* «-• S4 with Rf UR* = S4. (It follows
that Rr Π R* is homeomorphic to S3 x R. In our case, it will be an exotic
S3 x R with no smooth S3 representing its homology.) R* will admit a
smooth G = Z2 Θ Z2 action which is topologically standard (equivariantly
homeomorphic to the action on R3 x R given by 180° rotations about
the three axes in the first factor). Two of the three nontrivial elements
of G will have quotients diffeomorphic to R 4, and the quotient R*G of
i?* by the entire group action will also be standard. (In fact, both of
the induced 2-fold branched coverings of R*G will be smoothly standard,
although they must somehow clash with each other.) In contrast, the re-
maining element of G will have quotient i?* which is a large exotic R4 .
The 2-fold branched coverings R* -+ R*x -^> R*G provide our new exam-
ples. (The other involutions on R* provide other examples with the same
behavior as Freedman's example.)

We will simultaneously construct a smooth Z2 Θ Z2 action on the con-
nected sum S2 x S2#Rf, with Rf a ribbon R4 complementary to R*.
Topologically this will come from a well-known action on S2 x *S2 by re-
moving a fixed point. Again, two of the three quotients by involutions
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will be smoothly standard (R4 and CP - p t . ) , as will the quotient by the
entire group (R 4). (The two corresponding branched coverings over this
latter R4 will also be standard.) The remaining quotient will be an exotic
CP2 - pt. which contains no smooth C P 1 . If we restrict the Z2 θ Z2

action to the end of S2 x S2#R', we obtain an action on the end of Rf.
One of the involutions of the end extends over all of R' (by surgering out
the S2 x S2), yielding Freedman's branched covering Rf -> R 4 . The other
two involutions cannot extend, by [5]. (One of these is explicitly described
in [5]; the other is similar.) We will examine the quotients of these two
actions. The one from [5] has quotient which is the end of the exotic
CP2 - pt. and cannot be the end of any exotic R 4 . The other quotient,
however is the end of the standard CP - pt., so it is also the end of the
standard R4 (even though the involution itself cannot extend over R').
We will give an explicit ribbon description of R* in which the Z2 θ Z2

action of its end is clearly visible, as is Freedman's involution of all of
R'. (In fact, Freedman's involution can also be seen as rotation about the
y-axis in Figure 1.)

1. Even more exotic R4's

The goal of this section is to prove the following:
Theorem 1.1. There is a one-parameter family of distinct compact equiv-

alence classes of exotic R4 's (with the order type of (0, 1) under <) , such
that each class contains an uncountable family (with the cardinality of the
continuum in ZFC) of distinct diffeomorphism types.

The proof relies on two ingredients: [13] and [5]. First, we consider
the two-parameter family of distinct compact equivalence classes given in
[13]. The construction of this begins with R (denoted RΓ in [13]), an ex-
otic R4 which embeds in CP2. This is exotic because it contains a certain
compact, codimension-zero submanifold X which cannot embed in S4,
or in any negative definite manifold. (If such an embedding existed, we
could construct a counterexample to Donaldson's Theorem [6] on nonex-
istence of 4-manifolds with nonstandard, definite intersection forms.) We
identify R topologically with R 4 , and consider the family of all open balls
of radius r > N, where N is chosen large enough so that X lies in each
ball. Since each ball is an open subset of R, it inherits a smooth struc-
ture, resulting in a one-parameter family {Rt\t € (0, 1)} of exotic R4's
with Rt c Rt> for t < t'. Using Taubes' extension [22] of Donaldson's
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Theorem to open 4-manifolds with "periodic" ends, it can be shown that
Rt < Rt, if and only if t < t'. To obtain the second parameter, we let

Λ, denote Rt with reversed orientation (so that ^ c C P ) and let Rs t

be the end-sum Rs \\ if,. Again, Taubes' work implies Rs t < Rs> t> if and

only if s < s and t < t'.
The other ingredient for our construction is the family R't c R4 of

[5]. This construction begins with Rf, an exotic R4 which embeds in
R4. The exotic nature of Rf is detected via the failure of the smooth
five-dimensional Λ-cobordism theorem, which in turn is detected by Don-
aldson's invariants [7]. The family {R[} is constructed from Rf using a
radial family of topological balls, as above. Uncountably many diffeomor-
phism types are distinguished using an extension of Donaldson's invariants
to manifolds with periodic ends.

For convenience, we choose our Λ-cobordism carefully. We want to use
a Donaldson invariant with simple behavior under blow-up. The invariant
of Kotschick which appears in [5] depends on a chamber structure after
blow-ups, so we switch to a different invariant which has been studied
by Mrowka [17], and choose our Λ-cobordism accordingly. Let B be
a simply connected, nonspin elliptic surface with ft+ = 3. (A simple

example would be K3#CP .) Let Q be the connected sum of ±CP2

with the same intersection pairing as B. Then by Wall's work [24], B
and Q are Λ-cobordant. We use this Λ-cobordism to construct R!t.

We distinguish B and Q using the Donaldson invariant of [17], For
any M in the homotopy type of B, we define the invariant as follows: For
any class η e H2(M; Z2) with η2 = 2 (mod 4) there is a unique SO(3)
bundle P over M with w2(P) = η and p{(P) = - 6 . For a generic metric
on M, the moduli space of anti-self-dual connections on P is a compact
manifold of dimension -2p{ - 3(1 + b+) = 0. The Donaldson invariant
yM{η) G Z is the number of points in this space, counted with suitable
sign. For Q we have γQ(η) = 0 for all η, since Q splits as a connected
sum of two pieces with b+ > 0. However, for B there are classes η with

γB(η) φ 0. If we extend η trivially to a class in H2(B#nCP Z2), we

B*nCP

Now we construct our required family of exotic R4's. Let R's t denote

the end-sum R's \\ Rt. Since R's ~ R4 , it follows immediately that R's t

R S i R R if d l if ' h R' R!Rt. Since Rt < Rt> if and only if / < t', we have R's ( < R's, t, i

and only if t < t'. (In addition, R!s t embeds in R!s, t, if t < t', sinci

if

since
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the given embeddings R's C R4 and Rt c Rt> can be assumed to be
"shaved" in the sense of [13].) Thus, t parametrizes a family of compact
equivalence classes which are ordered like (0,1) under <, and for each
t, s parametrizes a family within the given equivalence class.

It remains to show that for any fixed t, {R's t\s e (0, 1)} contains
uncountably many diffeomorphism types. We generalize the method of
[5]. According to this method, a certain compact, codimension-zero sub-
manifold K c R! is constructed. We may assume K c R!s for all s.
DeMichelis and Freedman showed that for s > s there is no diffeomor-
phism (or even embedding) (R's, K) -+ (R's,, K) which is the identity on
K. Since there can be only countably many embeddings of K in R!s (up
to isotopy) it follows that there are only countably many manifolds R!s

diffeomorphic to any given one, and their theorem follows immediately.
To generalize the argument to our case, it suffices to prove the following:

Lemma 1.2. If s > s', there is no embedding (R!SJ,K)<-^ {R!S, t*, K)
restricting to the identity on K.

Remark. This suggests the utility of defining a relation < on pairs
(R,K).

Proof. Suppose such an embedding exists. We have ("shaved") embed-

dings R's> C R'S (with compact closure) and "Rt c CP . Combining these

yields an embedding R's, t* ^ R'S#CP with compact closure, restrict-
ing to the identity on K. Using the hypothesized embedding, we obtain
R'scK,t^Kt,t^K#^p2^ Yielding an embedding d: R!s^ R!S#CP2

with compact closure, and with d\K the identity.
2

We now apply the argument of [5], carrying along the extra CP . The
construction of R' gives us embeddings i: Rf -̂» B and j : R* c-^ Q,
such that the given Λ-cobordism from B to Q defines a diίfeomorphism
B - i(K) « Q-j(K). Let Bn denote B#nCP2. Restricting / gives
i0: R's <-+ Bo. Inductively define in: Rf

s ^ Bn = Bn_{#CP2 by in =

(in_ι # id—2) o d. Since Imd has compact closure, the maps ι0, , in

determine n successive rings on Bn - i{K). Each ring is diffeomorphic

to i?^#C? - Imrf. As in [5] we may put Riemannian structures on
the manifolds Bn so that the rings are all isometric, and the structures
on the various Bn's agree elsewhere. We obtain a limiting Riemannian
manifold B^ by throwing away the part of Bn containing K and adding
an infinite periodic end (with infinitely generated homology). Now, using
the diffeomorphism B-i(K) « Q-j(K), we create an analogous structure
for Q: Metrize Qn = Q#nCP2 by identifying Qn-j{K) with Bn-i(K)
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and extending the metric over j(K). The limiting Q^ will be isometric

Let η e H2(B Z2) be a class for which γB(η) is defined and nonzero.

Then η extends trivially to classes η e H2(Bn Z2) and η e H2^^ Z2)

(and the latter is compactly supported). Via the diffeomorphism B -

i(K) « Q - j(K) we obtain corresponding classes η in Qn and Q^.

(Note that K is separated from the cohomology of Bn by a flat topo-

logical S3.) Since the work of Taubes explicitly allows negative definite

2-homology in periodic ends, the arguments of [5] go through with little

change in our case to show that γR (η) and γn (η) are well defined.

(For example, the closed 2-form ψ used in the proof of Point 2 in [5]

is self-dual, so it is still trivial in H^κ in the presence of negative defi-

nite 2-homology.) Furthermore, γB (η) = γB (η) = γB(η) φ 0. Similarly,
oo n

γ (η) = γo (η) = 0. (This vanishes for any class η in Qn .) However,

there is an isometry 5 —> Q_ sending η to η , so γR (η) = γn (η),

and we have the required contradiction, q.e.d.
Remark. We also see that the family R's (or R's n t fixed) has un-

countably many diffeomorphism types of ends. (We say two exotic E4's

have diffeomorphic ends if there is a diffeomorphism outside of suitably

large compact sets.) This follows from the observation that there are only

countably many exotic R4's which can have a given end. As a corol-

lary, there are uncountably many diffeomorphism types of exotic S 3 x R's

which embed in R4 and do not admit any smooth S3's generating their ho-

mology (or even any homology spheres lacking nontrivial representations

2. Exotic punctured manifolds

Next, we prove:
Theorem 2.1. Let M be a connected, topological 4-manifold (possibly

noncompact, possibly with boundary). Then M - pt. admits uncountably
many nondiffeomorphic smooth structures (with the cardinality of the con-
tinuum).

PROOF. First, suppose M\ is noncompact. Then by Quinn [21] (see
also [11]), M is smoothable. Fix a smoothing and consider the family
{M#Rt}, where {Rt} is any family of exotic R4's with uncountably many
diffeomorphism types of ends (for example, from §1 or [13]). Since these
manifolds are all homeomorphic to M - p t . , it suffices to show that there
are uncountably many diffeomorphism types. This is clear, except for
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one technicality: We must beware of diffeomorphisms which permute the
ends of M - pt. But M can have only countably many ends which are
topologically collared by S3 x R, so for uncountably many values of t no
end of M will be diffeomorphic to that of Rt.

Now suppose M is compact, and that the Kirby-Siebenmann obstruc-
tion ks(M) vanishes. Then for sufficiently large n, M#nS2 x S2 is
smoothable. (See, for example, [11, §8.6].) Take n > 3, choose a smooth-
ing, and let N denote the resulting smooth manifold. Let U c N be the
open submanifold consisting of (#nS2 x S2) - pt. By Casson [4], we can
represent the homology of U by an open set V c U consisting of In Cas-
son handles attached to a 4-ball along n 0-framed Hopf links. Similarly,
if N1 denotes K3#(n - 3)S2 x S2 , we can find such an open set V' c Nf

representing the hyperbolic part of the intersection form of N*. Since any
two Casson handles have a common refinement, we may assume there is
a diffeomorphism φ : V —• V1. Because any Casson handle is homeomor-
phic to an open 2-handle [8], V is homeomorphic to (#nS2 x S2) -pt. Let
K c V be a compact, topologically embedded copy of {#nS2 x S2) - B4

with flat boundary, and let W = N-K, W1 = N'-φ(K). Clearly, W and
W1 are smooth manifolds with diffeomorphic ends (via φ). W is home-
omorphic to M - pt., since the closure of U - K in W has the proper
homotopy type of B4 - pt. and is therefore homeomorphic to it. W1 is
homeomorphic to |JE

t

8|#|£'8| — pt. where |2sg| denotes Freedman's closed,
simply-connected manifold with intersection form (negative definite) E%.
Now identify V - K topologically with B4 - pt. (with K corresponding
to pt.), and let Wt(0 < t < 1) denote the manifold obtained from W
by deleting the closed ball of radius t from B4 - pt. c W. Each Wt is
still homeomorphic to M - pt., but no two of these manifolds can be dif-
feomorphic, by a standard argument. If Ws and Wt were diffeomorphic,
with s < t, we could stack together an infinite sequence of copies of the
topological annulus Ws — Wt to obtain a smooth manifold homeomorphic
to S3 x R with a periodic end in the sense of Taubes [22]. We could
then splice this onto Wr to obtain a smoothing of |/?8|#|lsg| - pt. with
a periodic end. This would violate Taubes' generalization of Donaldson's
Theorem to end-periodic manifolds. (See [13] or [22] for details).

Finally, consider the case with M compact and ks(M) Φ 0. Let Σ
denote the Poincare homology sphere, with its usual orientation as the
boundary of a (negative definite) E% plumbing P. Let Σ denote Σ with
the opposite orientation. Then Σ bounds a contractible topological mani-
fold Δ [F]. (See also [11].) Δ embeds in S4 (realized as the double of Δ),
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so we may assume Δ is embedded in M (preserving a preassigned orienta-
tion if M is orientable). Let Mo denote the compact manifold M - i n t Δ .
Since the Kirby-Siebenmann obstruction adds under gluing in dimension 4
(see [11], Section 10.2B), and since PUΣΔ = \E%\, we have ks(Δ) Φ 0 and
ks(M0) = 0. In particular, we may apply the previous argument to M o .
We obtain a smoothing of MQ - pt. with end diffeomorphic (preserving
any specified orientation) to the end of a smooth manifold WQ homeo-
morphic to |i?8|#|2?8| - pt. Next, we smooth Δ - pt., obtaining an end
diffeomorphic to that of a smooth W[ — P UΣ Δ - pt. which is homeomor-
phic to |1?8| - pt. Combining these smoothings, we obtain a smooth W
homeomorphic to M — 2 points, with (disconnected) end diffeomorphic
to the end of W1 = Wfiw[ (homeomorphic to #3 |£ 8 | - 2 points). Let
/' c W' be a smooth, properly embedded line connecting the two ends of
W1. (Such an /' is unique up to smooth isotopy.) For a suitably chosen
U' c W' containing /' and a neighborhood of the ends, we can find a
neighborhood U of the end of W, which is diffeomorphic to Uf. Let /
be the image of /' in U. Then W - I and W1 - ΐ have diffeomorphic
ends, W -1 is homeomorphic to M - pt., and W' - /' is homeomorphic
to #3|i?8 | - pt. Now we can form a radial family of smoothings Wt of
M - pt. as before, and no two can be diffeomorphic, by Taubes' Theorem
applied to #3|1?8| - pt. q.e.d.

3. A simple exotic ribbon R

We now verify that an exotic ribbon R4 can be constructed, starting
with the obvious ribbon disks for the 2-component link given in Figure
1. According to [5] (see also §4) it suffices to find a (simply connected)
nontrivial Λ-cobordism with exactly two handles (a 2-3 pair) such that
the ascending sphere A and descending sphere D in the middle level
have only one extra pair of intersections, and such that ADD has simply
connected complement.

It is worth noting that nontrivial Λ-cobordisms with exactly two handles
are easy to construct. There are many known examples of compact, simply
connected, smooth 4-manifolds M and M1 which are homeomorphic
but not diffeomorphic. Frequently, M and M1 are known to become
diffeomorphic after sum with a single S2 x S2 (see, for example, [19],
[20]). Thus, if a five-dimensional 2-handle is added (with correct framing
in the spin case) on top of each of M x / and Mf x I, the resulting top
boundaries will be diffeomorphic. If we turn one of these manifolds upside
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FIGURE 2

down and glue it on top of the other one, we will obtain a cobordism from
M to M' with a unique 2-handle/3-handle pair. In general, this will not
be an Λ-cobordism, but if either M has an indefinite intersection form or
b2(M) < 8 (and dM is empty or a homology sphere) then Wall's work
[23] shows that any automorphism of the intersection form of the middle
level M#S2xS2 is realized by a diffeomorphism. Composing the gluing
map with a suitable diffeomorphism, we can arrange for the two handles
to algebraically cancel, yielding an Λ-cobordism .

It is a much more delicate matter to minimize the intersections between
A and D. For this, we must work with an explicit example. The sim-
plest known example seems to be that of Akbulut [2]. (Other examples
can be constructed from [16], but the simplest such example appears to
have two extra pairs of intersections.) Akbulut constructs two compact
manifolds with boundary, Q{ and Q2, which are homeomorphic but not
diffeomorphic and have the same homotopy type and intersection form as
CP2-B4. Akbulut's Figure 10 implicitly describes a suitable Λ-cobordism
(rel d) from Qχ to Q2 . (A similar Λ-cobordism using contractible man-
ifolds is described explicitly by Akbulut in [1], but the former example
seems better suited to the present purpose.)

Figure 2 shows the middle level P of Akbulut's Λ-cobordism. P is
obtained from B4 by adding three 2-handles as shown. Since the curves
a and δ are each unknotted, they bound embedded disks in S3. By
pushing the interiors of these disks into B4 and adding the cores of the
corresponding 2-handles we obtain spheres A and D, respectively, in P.
Surgery on A (i.e., adding a dot to a) yields Q{, and surgery on D yields
Q2. Thus, we have diffeomorphisms QX#S2 x S2 « P « Q2#S2 x S2,
and we have exhibited an A-cobordism from Qχ to Q2 with middle level
P, one pair of handles, and ascending and descending spheres A and D,
respectively. (Note that the intersection number of A and D is 1, so that
the two handles algebraically cancel, as required.)
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The required properties of A and D in P are easy to verify. To check
that A and D intersect transversely in three points, simply draw them
in an S3 x I collar of dB4, with time representing the / coordinate.
To see that A U D has simply connected complement in P, first observe
that D has simply connected complement. (Since δ is unknotted, the
complement of D hasabelian nχ. But the 2-handle attached to a kills the
generator in homology.) Thus, πx(P-(A\JD)) is generated by meridians
of A. But the 2-handle attached with framing 1 kills these meridians.

To construct the required ribbon R 4, apply the procedure of [5]. Since
A U D already has simply connected complement, we do not need to add
intersections to AUD. Since there are only two extra intersections, we
need to add only two Casson or Freedman handles; this can be done auto-
matically ([4] or [9, Chapter 7]). The reduction to Figure 1 follows as in
[5]; also see the end of §4. It now seems feasible to complete the program
suggested in [5]—to build Freedman handles and explicitly compute their
ramification using the height-raising algorithms of [9]. This would provide
the first completely explicit description of an exotic R 4 .

Remarks. (1) For carrying out the above program, it may be useful to
recall that Qχ and Q2 remain nondiffeomorphic after connected sum with
any number of copies of CP2 (with its usual orientation) [2]. Thus, it suf-
fices to work in P # kCP for any k (by summing the entire Λ-cobordism
with CP 2 x / ) . For example, we may construct a framed transverse sphere
for A with a unique self-intersection. Begin with the embedded sphere
in P determined by the 1-framed 2-handle. Blow up CP2 to raise the
homological self-intersection number of this sphere to 2, then add a (+)-
self-intersection.

(2) The fact that our R4 is exotic follows directly from nontriviality
of the Λ-cobordism. (See, for example, [18].) For sharper results, it is
useful to recall that this Λ-cobordism can be extended to a nontrivial h-
cobordism of closed manifolds by gluing a certain product Mχxl onto the
lateral boundary [2]. Since the two corresponding closed 4-manifolds are
distinguished by Donaldson's invariants, the argument of [5] shows that
any homology sphere in the end of the exotic R4 must have a nontrivial
representation πx -> SO(3).

4. Some exotic G-spaces

We begin with a basic group action. Let M = S2xS2 and G = Z2 θ Z 2 .
There is a natural orientation-preserving G-action on M which possesses
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Mχ * CP 2

= S2XS2

branch
locus

FIGURE 3 FIGURE 4

fixed points. The three involutions rχ, ry , and rz are visible in the Kirby

calculus description of M in Figure 3 as 180° rotations about the three

coordinates axes. If M is represented by CP 1 x C P 1 , the action will be

given in affine coordinates by rχ(z 9w) = (w, z ) , ry(z ,w) = (z,w),

and r z (z, w) = (w, z ) . We use M^9 M 9 Mz9 and M G to denote the

quotients of Λf by τχ9r 9τz9 and G, respectively, and we use similar

notation for quotients of equivariant subsets of M. Mχ is well known

to be CP2

 9 with the branch locus of the ramified covering given by the

quadric S2 c C P 2 . This is seen in Figure 4 (cf. Figure 3). Since the

framings in Figure 3 are given by the plane of the paper, the same will be

true for Figure 4. Thus, the framing is + 1 , due to the (+) crossing of

the curve. Note that r and rz descend to the same involution f = fz

of Mχ . Mz is easily seen to be CP , the mirror image of Mχ . (Imagine

the two circles of Figure 3 as lying in perpendicular planes, and rotate 90°

about the y-axis.) Mz is shown in Figure 5. By the method of [3], M

is seen to be S4, with branch locus a standardly embedded T2 (Figure

6). Since the remaining involution fχ on M is the standard involution

fixing an unknotted *S2, we have MQ = S4. (This can also be seen from

Figure 4 or 5, where the remaining involution f is seen to be complex

conjugation on ± C P 2 . )

In [5] an exotic ribbon R4 Rf c S4 is constructed, together with a

proper Λ-cobordism from Rf to itself. Let N denote the middle level
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branch
locus

I I
branch locus

FIGURE 5 FIGURE 6

of this A-cobordism (Y in the notation of [5]). As in §3, we assume
the Λ-cobordism has only one 2-handle/3-handle pair, so that N is dif-
feomorphic to S2 x S2 # Rf. N is shown explicitly as the interior of the
4-manifold in Figure 7, next page (which is [5, Figure 3.2]). The wiggly
circles denote Casson handles. Here, we assume the ascending and de-
scending spheres have only one extra pair of intersections. We could eas-
ily deal with extra pairs of intersections by extending Figure 7 vertically
(choosing the handedness of the clasps so as to preserve the involution
rχ), but we will see that this is unnecessary. (For example, by §3, there is
an exotic R' as given in Figure 7.) Our constructions will also be stable
under additional ramification of the Casson handles.

There is an obvious embedding N c M. First, note that if we re-
place the Casson handles in Figure 7 by honest 2-handles, they will (G-
equivariantly) cancel the 1-handles, yielding M-B4 as in Figure 3. Since
any Casson handle has a standard smooth embedding (rel d) in a 2-handle,
we obtain our embedding N c M. The G-action on M-B4 is clearly
visible in Figure 7 (as rotations about the three axes), and we would like
this action to preserve N. By adding ramification if necessary, we may
assume the two Casson handles are the same, so it suffices to arrange each
Casson handle and its embedding into a 2-handle to be Z2-symmetric.
This is easily accomplished by constructing the Casson handle as follows:
Begin with a standard open 2-handle with the obvious involution (reversing
orientation on the attaching circle). Equivariantly add a pair of identical
Casson handles along the attaching circle to obtain a Casson handle with
an involution. This clearly has a standard Z2-equivariant embedding in a
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N~S2xS2 R'

FIGURE 7

larger 2-handle. Inserting these Casson handles in Figure 7, we obtain N
as a G-equivariant subset of M - B4. Note that topologically, each Cas-
son handle with Z2-action is simply an open 2-handle with the standard
involution. It immediately follows that N is (?-equivariantly homeomor-
phic to M - B4 . In particular, Nχ, N , Nz , and NG are homeomorphic

to CP 2 - B*, R 4, CP2 - B4, and R 4 , respectively.
Our goal is to prove the following theorems.
Theorem 4.1. The G-action on N « S2 x S2#R' has the following

characteristics:
(1) Ny and NG are diffeomorphic to R4, and Nz is dijfeomorphic to

CP - pt. The induced involutions on N and Nz are smoothly standard,
i.e., equivariantly diffeomorphic to the corresponding involutions on My -

pt. [rotation x id on R2 x R2) and Mz - pt. (complex conjugation on

CP2 - pt.).

(2) Nχ is an exotic CP2 - pt. It has no smoothly embedded sphere
generating its homology.

(3) (Freedmaή) The involution ry on N induces (by surgery) a smooth

involution of R' which is topologically standard. The quotient is diffeomor-

phic to R4, so R' is realized as a 2-fold branched cover of R4 along a

smooth, topologically standard R 2 .
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(4) The involutions rχ and rz restrict to involutions of the end of Rr

which cannot be extended to diffeomorphisms of Rf. (For rχ, this is proved

in [5].) The quotient of rz on the end of R! is diffeomorphic to the end of

R4, but the corresponding quotient of rχ cannot be the end of any manifold

homeomorphic to R (or even any negative definite manifold).
Theorem 4.2. There is a G-equίvariant open subset R* of M with

NuR* = M such that R* is a small exotic R 4. Surgery on N yields an
embedding of R* in S4 with RfUR* = S4 and RrnR* an exotic S3 xR
containing no smooth S3 generating its homology. The G-action on R* is
topologically standard (i.e., equivariantly homeomorphic to R3 x R with G
acting on the first factor by 180° rotations of the three axes). The action
has the following characteristics:

(1) R*, Rz, and R*G are all diffeomorphic to R 4. The induced invo-

lutions on R* and Rz are smoothly standard (so the branched coverings

R*y, R*z —• R*G are standard).

(2) R*χ is a large exotic R 4 . It embeds in Mχ « CP2, but has a com-
pact submanifold which cannot embed smoothly in any negative definite
4-manifold.

Remarks. Clearly, each of the three exotic R4's appearing above (Rf,
R*, and Rχ) can be described as a 2-fold branched cover of R4 along a
smooth, topologically standard R 2 . The G-manifolds N and i?* both
lie in one-parameter families as in §1. Within these families, no two of
the resulting Nχ*s or i?*'s will be diffeomorphic, since their ends will all
be distinct as in [13]. The manifolds R' will realize uncountably many
diffeomorphism types, by [5], and the Ws will be uncountable, by the
remark at the end of §1. It is not known whether the above theorems can
be assumed to hold for all parameter values, although the assertions about
quotients of rχ hold for all values, and all of Theorem 4.1 can be assumed
for values in a Cantor set (cf. [5, Theorem 3.2]).

The proof of Theorem 4.2(1) depends on the notion of cellularity. A
subset X of the interior of an π-manifold W is called (smoothly) cellular
if it is a nested intersection of smooth (compact) n-balls. For such an X,
there is a diffeomorphism from W-X to W-pt . with support contained
in a preassigned neighborhood of X. If D c int W is an almost smooth
2-disk (i.e., a topological 2-disk which is a smooth submanifold except
at a single interior point) then D is cellular. This is easily proven by
constructing isotopies with support in arbitrarily small neighborhoods of
D, which shrink D radially into small n-balls.
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Proof of Theorems 4.1 and 4.2. If CH is any Casson handle, Freedman
[8, Addendum A to Theorem 1.1] proves that there is a homeomorphism
Z)2xR2-* CH which is smooth near the boundary and sends the core disk
D2 x 0 onto an almost smooth disk D. If CH is standardly embedded in
a 2-handle H, we verify that D c H is topologically ambiently isotopic
(rel d) to the core of H. Since D is flat, with unknotted boundary in
dH, it suffices (by the s-cobordism theorem with π{ = Z [9]) to show
that nx{H - D) £ Z. But π^CT/ - Z>) = Z, and inclusion maps this
group onto πχ(H - D), since H - CH is two-dimensional (a generalized
cone on a Whitehead continuum). The result follows immediately.

We construct 2?* c M by constructing its complement N* c N. Fig-
ure 7 shows a compact manifold L with two Casson handles attached.
Let Lo c L be a compact submanifold obtained from L by removing a
G-equivariant collar of the boundary. For each Casson handle, we attach
a 2-disk to Lo as follows: By our Z2-equivariant construction, the Casson
handle is composed of two identical Casson handles glued together along
part of their attaching regions. In each of these Casson handles we locate
an almost smooth core disk. These fit together to give a Z2-equivariant
core for the larger Casson handle. We ambiently attach these topological
disks to LQ to obtain a G-equivariant compactum N* which is a defor-
mation retract of N. Now we let R* = M - N*. Thus, i?* is a smooth,
open G-manifold. Topologically, R* is obtained from the 4-handle of M
by trivially adding an open collar. (See the previous paragraph.) Thus,
R* is equivariantly homeomorphic to the interior of the 4-handle, so the
(7-action on R* is topologically standard, as required. R* is complemen-
tary to R' since we may surger the S2 x S2 out of N = S2 x S2 #Rf by
using an S2 contained in iV* to reduce M = N u /?* to S4 = Rf U Λ*.
By [5], R' Γ\R* (= N - N*) has no smooth 3-spheres carrying H3. (See
the last remark of our §3.) Thus, R* is a small exotic E4 with no 3-
spheres near infinity (or even homology spheres which lack representations

Now we analyze the various quotient spaces, beginning with N . This
space is shown in Figure 8. (Compare with Figure 6.) Ignoring the branch
locus, we find that N is obtained from SιxB3 by adding a Casson handle

along Sι x pt. and deleting the boundary. Thus, N is diffeomorphic to
the interior of a Casson handle. But any such manifold is known to be
diffeomorphic to R4. (The interior F of a Casson handle can be written
as a nested union (J Tn, where each Tn is a regular neighborhood of a
finite 1-complex, and each map Tn «-• Tn+ι is trivial in nχ. It follows that
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K. * R4

branch locus

FIGURE 8

V can be written as a nested union of smooth balls, so it is diffeomorphic
to R4.)

The surgery of TV to R! is equivariant under r . We simply trade

S2 x D2 (with an involution fixing Sι x /) for D3 x Sι (with involution
fixing D2 x S°). In Ny, the corresponding operation cuts out a 4-ball and
glues in another 4-ball, so Ny is preserved, but the branch locus is changed
by a surgery. In Figure 7, the surgery is accomplished by changing one 0-
framed circle to a dotted circle. The corresponding operation in Figure
8 is to ambiently surger the branch locus along one of the two obvious
trivial disks in B4 (whose boundary runs over a 1-handle of the branch
locus). Thus, the new branch locus appears as a ribbon disk in Figure 8.
Topologically, the 1-handle and Casson handle cancel, showing that the
branch locus is topologically equivalent to the standard E2 c E 4 . Thus,
the 2-fold branched cover N -> N has been surgered to a map R1 -• E 4

satisfying (3) of Theorem 4.1.

The above description of ry also allows us to identify the manifold

Ry. Since R* = M - N*, we obtain R* as My - N*, where My is

diffeomorphic to S4. N* consists of a 2-disk in S4 which is smooth away
from two points, together with a tubular neighborhood of its boundary.
We may delete this tubular neighborhood from N* without changing the
complement R*y. Similarly, we may shrink the disk to obtain a pair of
almost smooth disks connected by a smooth arc. Since almost smooth
disks are cellular, we see that R* is obtained from S4 minus two points
by deleting a smooth curve connecting the punctures. Such a curve in a
4-manifold cannot be knotted, so R* is diffeomorphic to E4 .
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The manifolds NG and R*G are now easy to identify. The remaining
involution fz on N is rotation about the z-axis in Figure 8. This is just
the given involution on the interior of our Z2-equivariant Casson handle.
By construction, the quotient of this involution is again the interior of a
Casson handle. Thus NG is diffeomorphic to R 4 . In fact, the involution
on N is smoothly standard. To see this, note that when we strip the

boundary off of our Z2-equivariant Casson handle, we are left with R
with the standard involution, equivariantly end-summed with two standard
R4's. R*G is diffeomorphic to R 4, since NG is essentially an almost smooth
disk. In addition, the branched covering JR* —• R*G is the standard one.
This follows immediately from the Z2-equivariance of our identification

* ; « R 4 .

In contrast with our previous discussion, the analysis of Nχ and R*χ

yields a surprising connection with the other method of constructing exotic
R4's. In particular, R* turns out to be a large exotic R4 which embeds
in CP but has a compact submanifold X which does not embed in
any negative definite manifold. We begin by recalling some details of the
construction of such an exotic R4 [12]. The construction begins with
the usual handle structure on CP 2 : A 2-handle attached to a -hi-framed
unknot in dB4 forms a Hopf bundle, to which a 4-handle attaches. Inside
the 2-handle, we find a suitably ramified Casson handle. This, together
with the interior of the 4-ball, forms an exotic open Hopf bundle U which
admits no smooth embedded 2-sphere generating its homology. If R c
CP2 denotes any open subset homeomorphic to R4 such that R U U =
CP2, then R will have the same end as a certain open manifold V with
nonstandard, negative definite intersection form. It follows easily from
Donaldson's Theorem that R is a large R 4, with the required X any
compact submanifold of R containing CP2 - U.

Now consider Nχ , as given by Figure 9. (Compare with Figure 4.) Ig-
noring the branch locus, we see a Whitehead link with a Casson handle
attached. But this is simply a Casson handle attached to a 1-framed un-
knot in dB4 , where the first stage has a single (+) self-intersection and is
drawn explicitly. Thus, Nχ is diffeomorphic to U, for a suitably chosen
Casson handle. (We obtain suitable ramification by additionally ramifying
the 0-framed Casson handle if necessary. We can ramify the first stage of
the 1-framed Casson handle by ramifying the link in Figure 7, but this
is unnecessary: By [14] it suffices to have only one (+) link at the first
stage.) The embedding N c Mx is the embedding U c C P 2 . Clearly,
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Nχ « exotic (CP2 - pt.)

FIGURE 9

R*xu Nx = c p 2 ' s o Λ * i s a lar&e exotic R4, and the map R* -> iϊ*
is a topologically standard 2-fold branched cover from a small exotic R4

to a large one. Note that rχ on N is the involution described in [5],
which acts on the end of Rf but cannot extend smoothly over R'. We
see that the quotient of this action on the end of Rf is the end of Nχ , an
exotic CP2 - pt. It appears, inside out, near the end of the large exotic R4

R = Rχ . It cannot be the end of any exotic R4 (or any negative definite
manifold), otherwise we could glue together this manifold and a suitable
V to contradict Donaldson's Theorem.

Finally, we analyze Nz and R*2 . To identify Nz , we refer back to Fig-
ure 7. The 1-skeleton here is a boundary sum of two Sι xD3's, with rz the
obvious involution which reverses both Sι*s. The quotient of this is B4 .
The two Z2-symmetric Casson handles each collapse to a single Casson
handle which is attached to B4 along half of its attaching circle. In Nz

each of these Casson handles represents a standard R4 end-summand, so
the only nontrivial topology in Nz comes from the two standard 2-handles
in Figure 7. These collapse to a single 2-handle as in Figure 5, so Nz is

diffeomorphic to CP - pt. The remaining involution fy on Nz (with

quotient NG « R4) is the one shown in Figure 5. Thus, the branched

covering Nz -• NG is (smoothly) the map CP2 - pt. -> R4 obtained

from the standard map CP2 —> S4 (induced by complex conjugation) by

deleting a point in the branch locus. Note that since r interchanges the
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N

FIGURE 10 FIGURE 11

two S2's of N, it gives an involution of the end of i?' which cannot extend
smoothly over Rf. (By the same argument applied to rχ in [5], we can
change the diffeomorphism type of a certain manifold by cutting out an
embedded R! and regluing it via the map rz .) However, this involution
is much different from the one determined by rv : its quotient is the end

2 3

of N2 « CP - pt., i.e., the standard end S x R. The compactum
N* c Mz « CP is obtained from a smoothly standard Hopf bundle by
gluing a pair of almost smooth disks to it, along arcs in the disk boundaries.
Thus R*z = Mz — N* is standard, as is its involution f , by reasoning
similar to that for R*y . q.e.d.

We now exhibit R! explicitly as a ribbon R4, so that the G-action on
the end is visible. It is routine to verify that Figure 7 is G-equivariantly
isotopic to Figure 10. (It may be easiest to work backwards.) We can
obtain Rf from this by surgering out the S x S —specifically, we can
change one component of the Hopf link to a dotted circle and cancel it
with the other component, and interpret the remaining circles as ribbon
disks in B . This must be done with care if we wish to retain the symme-
try. First, we restrict attention to the end of N by interpreting Figure 10
as (3-manifold) x R U (Casson handles). We G-equivariantly slide the
four ribbons over the 2-handles as shown by the arrows to free the Hopf
link which we then erase. (To preserve the symmetry, the four parallels of
the left 2-handle should be drawn as in Figure 11; the right handle should
be opposite.) The result is equivariantly isotopic to Figure 12, which is
essentially Figure 3.7 of [5] redrawn so that the full Z2 Θ Z2 symmetry is
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R'

R'

FIGURE 12

o
FIGURE 13

visible. This exhibits the end of Rf with its G-action. To see all of Rf

with its ry action we return to Figure 10 and break the other symmetries.

The entire 4-manifold N is given here as S2 xS2-B4 with two slice disks
removed and replaced by Casson handles. Each disk is unknotted, so it is
obtained by ambient surgery on the obvious genus 1 Seifert surface. Thus,
it is exhibited as a ribbon disk, and we may choose the ribbon to be given
by the appropriate dotted arc in Figure 10. (We have chosen these arcs
to preserve the r -symmetry.) We Z2-equivariantly slide these two bands
over the 2-handle as indicated in the right half of Figure 10. Then we surger
out the S2 x S2, eliminating the Hopf link. We necessarily obtain Figure
12 as before, but now it represents all of R' as the complement of a pair
of ribbon disks in B4 (with the indicated ribbons) union Casson handles.
The ry -symmetry on Rf is clear. Thus, Figure 12 simultaneously shows
the G-action on the end of R' and the extension of ry over all of Rf.
Figure 13 shows the same thing from a different perspective. (Compare
with [5, Figure 3.7].) Figure 12 is r^-equivariantly isotopic to Figure 1 with
the obvious ribbon disks, and with ry still appearing as rotation about the
y-axis. (The latter is Freedman's original description of his involution—
although he needed extra ramification, since our §3 was unavailable then.
Note that we may see directly that the quotient is diffeomorphic to R4

with a topologically standard branch locus. In fact, calculation shows that
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the quotient is again described by the link of Figure 1, with one component
giving the (unknotted) slice disk and the other giving the branch locus.)

Remarks. (1) Figure 1 also exhibits an orientation reversing symmetry,
the significance of which is unclear.

(2) It is instructive to observe how our construction of ry fails for rχ

(as guaranteed by Theorem 4.1). We could have chosen our ribbon disks in

Figure 10 to preserve rχ , but the handle slides would have been blocked.

In fact, Figure 12 possesses no ribbon disks with rχ symmetry. Otherwise,

we could mod out the rχ action on S4 to obtain a forbidden embedding

of the end of Nχ in S4. (Alternatively, we may check that the quotient

of Figure 12 by rχ is a trefoil knot, which is not slice.)

(3) Figures 12 and 13 also give a rough description of R* with its tr-

action, and the r^-equivariant splitting S4 = R' U R*. The complement in

S4 of the ribbon complement is obtained from B4 by adding 2-handles
along the dotted circles, and R* is obtained from this by removing certain
rz -invariant topological cocores of the 2-handles.

References

[1] S. Akbulut, A fake compact contractible 4-manifold, J. Differential Geometry 33 (1991)
335-356.

[2] , An exotic 4-manifold, J. Differential Geometry 33 (1991) 357-361.
[3] S. Akbulut & R. Kirby, Branched covers of surfaces in A-manifolds, Math. Ann. 252

( 1 9 8 0 ) 1 1 1 - 1 3 1 .

[4] A. Casson, Three lectures on new constructions in 4-dimensional manifolds, notes pre-
pared by L. Guillou, Prepublications Orsay 81T06.

[5] S. DeMichelis & M. Freedman, Uncountably many exotic R 's in standard 4-space, J.
Differential Geometry 35 (1992) 219-254.

[6] S. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential
Geometry 18 (1983) 279-315.

[7] , Polynomial invariants for smooth four-manifolds, Topology 29 (1990) 257-315.
[8] M. Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17

(1982) 357-453.
[9] M. Freedman & F. Quinn, Topology of 4-manifolds, Princeton Math. Ser., No. 39,

Princeton University Press, Princeton, NJ, 1990.
[10] M. Freedman & L. Taylor, A universal smoothing of four-space, J. Differential Geometry

24(1986)69-78.
[11] M. Furuta & F. Quinn, A remark on uncountably many exotic differential structures on

one-point punctured topological 4-manifolds, preprint.
[12] R. Gompf, Three exotic R4 's and other anomalies, J. Differential Geometry 18 (1983)

317-328.
[13] , An infinite set of exotic R4 's, J. Differential Geometry 21 (1985) 283-300.
[14] , Smooth concordance of topologically slice knots, Topology 25 (1986) 353-373.

[15] , A moduli space of exotic R4 's, Proc. Edinburgh Math. Soc. 32 (1989) 285-289.
[16] , Nuclei of elliptic surfaces, Topology 30 (1991) 479-511.



AN EXOTIC MENAGERIE 223

[17] R. Gompf & T. Mrowka, Irreducible four manifolds need not be complex, preprint.
[18] R. Kirby, The topology of 4-manifolds, Lecture Notes in Math., Vol. 1374, Springer,

Berlin, 1989.
[19] R. Mandelbaum, Decomposing analytic surfaces, Geometric Topology, Proc. 1977 Geor-

gia Topology Conference, 1979.
[20] B. Moishezon, Complex surfaces and connected sums of complex projective planes, Lec-

ture Notes in Math., Vol. 603, Springer, Berlin, 1977.
[21] F. Quinn, Ends of maps. Ill: dimensions 4 and 5 , J. Differential Geometry 17 (1982)

503-521.
[22] C. Taubes, Gauge theory on asymptotically periodic 4-manifolds, J. Differential Geom-

etry 25 (1987) 363-430.
[23] C. T. C. Wall, Diffeomorphisms of 4-manifolds, J. London Math. Soc. 39 (1964) 131-

140.
[24] , On simply-connected 4-manifolds, J. London Math. Soc. 39 (1964) 141-149.

THE UNIVERSITY OF TEXAS, AUSTIN






