
J. DIFFERENTIAL GEOMETRY
37(1993) 191-198

HODGE THEORY AND THE HILBERT SCHEME

ZIVRAN

In Mori's "bend and break" method [6], [7], on which his theory of
extremal rays is based, a key technical role is played by a fundamental
estimate, due to Grothendieck, on the dimension of the Hubert scheme
of curves in an algebraic manifold [4]. Specifically, and more generally,
if X is an algebraic (or complex) manifold and Y c X is a submanifold
with normal bundle N, then Grothendieck's estimate states that any com-
ponent %? of the Hubert scheme (or Douady space) %*ilbχ containing
{Y} satisfies

(1) dimJ^>hO(N)-hι(N).

In view of the fundamental, and very general, nature of the estimate
(1), one naturally wonders whether it might be possible to improve it
in some interesting special cases. One such improvement of a Hodge-
theoretic nature is due to S. Bloch [2], generalizing some earlier work by
Kodaira-Spencer in the codimension-1 case: Bloch defines a certain map

π: Hι(N) -> Hp+l(Ω?χ~
l), p = codim(7, X),

which he names the semiregularίty map, and proves that if π is injective,
then ^ilbχ is in fact smooth at {Y}, so that the estimate (1) may be
improved to

(2) d i m ^ = h°(N)

(as is well known, h°(N) is the embedding dimension at {Y} of ^ilbx,

hence d i m ^ < h°(N) always holds, with equality iff %*ilbχ is smooth

at {¥}).
Now as Bloch's semiregularity map π can rarely be injective, his di-

mension estimate (2) is not very useful as it stands. However, there is a
natural generalization of (2) which seems a priori quite plausible (as well
as more useful): namely, the estimate

(3) d i m ^ > h°(N) - hl{N) -hdimim(π).
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The purpose of this note is to prove that the estimate (3) (in fact, a rather
more precise result) is indeed valid, and to give some applications of this.
The general result is as follows.

Theorem 1. Let f:Y<-+X be the inclusion of a codimension- p sub-
manifold in a compact Kάhler manifold with normal bundle N, let

π: Hι(N) -> Hp+\tf~l)

be the associated semiregularity map, and put p = dimim(7r). Then the
natural map Def(/) -• Def(Z) factors through a diagram

Def(/)

in which B is a ball of dimension h°(N), DQ is the locus of deformations
of X over which the cohomology class [Y] remains of Hodge type (p, p),
and the image of j is defined by at most hι(N) - p analytic equations.

Corollary 2. In the above situation, the estimate (3) holds for any com-
ponent %? of %"ilbχ through {Y}, even if X is not Kάhler.

Proof The germ of %*ilbχ at {Y} is nothing but the special fiber of
the map Def(/) —> Def(JΓ) moreover, it will be seen from the proof of
Theorem 1 that the part involving %?ilbχ does not require the Kahler
hypothesis.

Corollary 3. In the above situation, suppose we have equality in (3)
for some %?. Then the map Def(/) -> DQ is surjective; i.e., in any small
deformation of X, Y lifts iff [Y] remains of type (p,p), and in particular
Y lifts iff any algebraic cycle homologous to a nonzero multiple of Y lifts.

We now apply Corollary 2 to move some cycles Y. To do so, we
obviously have to find some conditions under which the right-hand side of
(3) may itself be estimated. This is most easily done in the case where Y
is a curve. First, because of Riemann-Roch, (3) becomes in this case

(4) dim F > χ{N) + dimim(π) = -Y Kχ + (n - 3)(1 - g) + p,

where g is the genus of Y and n = dimX. Second, the semiregularity
map π is in this case by definition (cf. [2]) dual to the map

' π : H°(Ωχ) -> H°(N* ® Ω y )

which is deduced from the following diagram:
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Now a couple of easy observations are in order:
(a) If ω is a 2-form on X which is nondegenerate at some point y e Y,

then 'π(ω) cannot vanish at y, and in particular π is nontrivial.

(b) In case n = 3, Λ2 ^ * *s a l i n e bundle on Y of degree v =
- deg(iV) = Y Kχ- (2g - 2). If, e.g., this is negative, then 'π(ω) cannot
vanish unless ω itself vanishes identically on Y.

Combining the first observation with the estimate (4) leads to the fol-
lowing.

Corollary 4. Let X be a symplectic complex manifold, i.e., X carries
a everywhere nondegenerate holomorphic 2-form. Then any rational (resp.
elliptic) curve on X moves in a family of dimension at least d imZ - 2
(resp. 1).

Corollary 5. Let X be a 3-dimensional complex manifold such that
Ω2

χ is globally generated outside a finite set. Then
(i) Kχ is nef\

(ii) any smooth curve Y c X with Y Kχ = 0 moves on X, hence any
pluricanonical morphism of X cannot have isolated smooth l-dimensional
fibers; and

(iii) if in addition X is Kάhler, then any Y as in (ii) cannot be rational

Proof (i) follows from the fact that 2Kχ = det(Ω^) has finite base
locus; (ii) follows from (a) and (4) above; as for (iii), if it were false then,
by compactness of the Douady space, X would contain a ruled surface
E. But since a desingularization of E cannot carry any 2-forms, we get a
contradiction to our hypothesis about X carrying many 2-forms.

Remark. Hopefully, the smoothness hypothesis in (ii) can be removed.
In order to take advantage of observation (b), let us define the following

invariant of X:
(5)

λχ = max{fc: H°(Ω2

χ) contains a fc-dimensional subspace A

all of whose nonzero elements have isolated zeros}.

Corollary 6. Let Y c X be a smooth curve of genus g on a complex
3-foldf and put v — Y Kχ- (2g - 2). Then Y moves on X in a family
of dimension at least -Y Kx + λx - ε, where:

ε = 0 if v < 0

β = l i/i/ = 0;

e = v if v > 0 and g > 1
e = i//2 if 0 <v <2g - 2 and Y is nonhyperelliptic\
e = v + I if v >0 and g = 0.
Proof Easy from (4), (5), and observation (b), noting that ker('π|^)
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injects into H°(/\2 N*), whose dimension may be easily estimated (the
fourth case uses Clifford's theorem).

In particular, if λχ > 0 (i.e., X carries a 2-form with isolated zeros)
then any smooth curve Y c X of genus > 2 with Y Kχ < 0 must move.
We thus have a mechanism whereby 2-forms can move curves, even ones
meeting Kχ nonnegatively. (This is unfortunately restricted at present
to smooth curves, a restriction which we will try to remove in the future;
if this can be done, one should expect some analogue of the "bend and
break" method (with or without the "break" part) when λχ is adequately
large, which might imply in some cases that Kχ is ample.)

Note that an obviously necessary numerical condition for a 3-fold X
to have λχ > 0 is that c3(Ω2

χ) > 0, i.e. c3{X) < 0.
It remains to pay the piper and prove Theorem 1. The proof will be a

modification of Bloch's argument in [2]. First of all, it is well known (and
clear) that the natural map of deformation spaces (or functors) Def(/) ->
Def(X) factors through a morphism ψ: Def(/) —> Do moreover, as the
special fiber of ψ is the germ of β?ilbχ at {Y}, we have that the relative
tangent space of ψ is H°(N). By general principles of deformation theory
(cf. [1], [2], [4], [6]), it will suffice to prove that the relative obstruction
space of ψ is kerπ, since this has dimension hι(N) - p.

Let (R, M) be an Artin local C-algebra of exponent k > 2, i.e.,

Mk+ι = 0, Mk φ 0, and put S2 = Spec(Λ), Sx = Spec(R/Mk), and

SQ = Spec(R/Mk~ι). Suppose

(6) fJS^YJS^XJS,

is a deformation of / , and X/S is a lifting of Xχ /S{ within Do. We
must investigate the obstruction to lifting (6) to

(7) f/S2:Y/S2->X/S2.

Let Xo/So be the restriction of Xι/Sι, and similarly for Yo/So, etc.

Now define sheaves T'γ l γ for / = 0, 1 by the exact sequence
Λi'Λi

0 -> τxi/si -> τxi/si -> NY./X. -* °

Note the exact sequence

0 -» 7> ® {Mk-X/Mk) - TXιlSχ - TXo/So -> 0

with analogous and compatible sequences for N and T'. Now put

Tχo/so =
 τx0,s0 ® W ^ * ) Tχί/Sι = Txjsί ® M>
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and similarly for Nγ ,χ and 7^. ,s . We thus have the following exact
diagram:

0 0 0

1 _i _l
0 - T'χΘMk - fXι/Sι -> 7^ i / S o - 0

i I I
(8) 0 -• Γ.φA/* ^ L , , -» Γ r / ς ^ 0

_ _
0 -» iVlgM^ -> Ny.y -> Ny.y -» 0

1 i I
0 0 0

Now, as in [8] and [9] (see Appendix), (6) gives rise to an element
a0 e Hι(T'χ ,s ), while the deformation X/5 gives rise to an element

βχ e Hι(Tχ ,s ), such that α 0 and β{ induce the same element β0 in

HX{TY 7« ), and the problem of constructing (7) is equivalent to that of

finding an element aχ e Hι(Tχ ,s ) which induces both aQ and β{. This

leads us to study the following cohomology diagram of (8):

H°(N) ®Mk^ H°(NYι/Xχ) - H°(NYQ/XQ) Λ Hl(N) ® Mfc

I hi I I

Our problem is to find α^ G Hx(j'χ / s ) such that ^ ( α j ) = aQ and

^ ( α j ) = βx. This may be "broken up" as follows:

(i) find a[ G Hx(T'χ /s ) such that cx{a\) = βx

(ii) find vχ eH°(NYι/Xι) such that r^b^vj) = a0 - r{{a{).

Then our desired aχ is just aχ + ^(^j).

Now, define a sheaf Ω^ ,s analogously to Tχ jS and note the com-

mutative diagram:
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where π is deduced from the semiregularity map for / : Y «-• X, and
K is the cup-product with the cohomology class [Y] e Hp(ΩFχjS). As is
well known [5], κ(β) is essentially the obstruction for the cohomology
class of [Y] to remain of type (p, p) in X/S since X/S lies in DQ by
assumption, we have κ(β) = 0, and in particular dx{βx) e keτπχ.

Of course, dx(βx) is precisely the obstruction to solving problem (i)
above. Now the crucial point is the following commutative diagram:

*o

in which h is infective by Hodge theory [3] (provided either X is Kahler

or the deformation Xι/Sι is trivial). This implies first that i m ί c kerπ

and second, since dχ (β{) dies in Hι (Nγ ,χ ) , that we may identify dχ (βχ)

with a uniquely determined element of k e r π / i m J . We have thus identi-

fied the obstruction group for problem (i) with ker π/ im δ, and to com-

plete the proof it will suffice to show that the obstruction group to solving

problem (ii) once problem (i) has been solved is im δ. However, this

is clear: indeed given any a\ such that cχ{a\) = βχ, rχ{aχ) and α 0

both map to β0 e Hι(Tχ ,s ) , so that aQ - rχ(aχ) comes from some

x e ί*(Nγ l γ ) , and the obstruction to solving problem (ii) is precisely
0' 0

Appendix: Canonical elements over a general base

The results of [8] and [9] were formulated for deformations parame-
trized by "arcs," i.e., schemes of the form Spec C[ε]/(εk). Here we indicate
a variant of the method of [8], valid over general Artin local rings. We will
consider the case of deformations of (abstract) manifolds, as other cases
are similar.

Let Xo be a compact complex manifold, and Xχ/Sχ its universal first-

order deformation, Sx = Spec(i?j). Then we have the canonical element

α ^ e Hl{Tχ <g> Mχ) = H\τχ /S <g> Mχ), where Mχ c Rχ is the (square-

free) maximal ideal: aχ corresponds to either one of the extensions Tχ
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or Fχ given by:

l Xo 1 *iA>i

0 — • Λf, (g) <^v — • ΨΛ — • Ω
χ χ —>0

Note that Mχ = ΩR ®(RJMX) and we have the following Rχ -linear exact
sequence:

0 - Ω Λ Θ ^ -*Ωχ ^ΩXι/Si ^ 0

i i II
1 Λ 1 Λ / Λ

In particular, there is a natural derivation dx: @χ ->FX.

Now suppose (7?2, Aί2) is a local C-algebra with M2 = 0 and R
Rχ, and put S2 = Spec(i?2). We consider the problem of lifting Fχ to a
sheaf F 2 fitting in the diagram

o > ( M 2 / M 2

2 ) ® ^ . FX , aXχlSχ . o

or equivalently, that of lifting aχ to some element a2 e Hι(Tχ ,s ®M2).

Obviously, the obstruction to doing this lies in H2(Tχ)<8> M2 . We claim
that to such a lifting T2 we may canonically associate a second-order
deformation Λ^/S^ lifting Xχ/Sx: indeed define a sheaf @2 by apullback
diagram

F ^ F

i.e., @2 = {(ω, h) e F2 Φ&x : φ{co) = dx(h)}, and define multiplication

on (?2 by the rule (ωχ, hχ) (ω 2, Λ2) = (ωjA2 + ω2Aj, hχh2).
Then it is easy to see that this makes <92 into a sheaf of flat iϊ2-algebras,

i.e., (̂ 2 = @χ for a flat deformation ^ 2 / 5 2 extending Xχ/Sx. Moreover,

the map d2 is a derivation by construction, hence if we define a sheaf F2

by a pullback diagram
F2 -+ Ωx2/s2

F2 ~^ axjsx

then the derivation (d2 9d):#x -+T2®Ωχ /s obviously factors through

a derivation d2\@χ -> F2, so the construction may be continued.
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Thus, quite generally, given an Artin local C-algebra (R, M) with

Mk φ MM = (0) and a deformation X/S, S = Spec(R/Mk), we may

proceed inductively and define a canonical element

whose liftings to Hι(TΊ/^ <g> M) yield liftings of X/S to AT/ Spec(i?).

Acknowledgment

I am grateful to F. Bogomolov for his encouragement and for alerting
me to the problem of moving curves meeting the canonical bundle non-
negatively.

References

[1] M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968) 277-291.
[2] S. Bloch, Semi-regularity and de Rham cohomology, Invent. Math. 17 (1972) 51-66.
[3] P. Deligne, Theoreme de Lefschetz et criteres de dέgenerescence de suites spectrales, Inst.

Hautes Etudes Sci. Publ. Math. 35 (1968) 197-226.
[4] A. Grothendieck, Fondements de la geometrie algebrique, Secretariat Math., Paris, 1962.
[5] N. M. Katz, Algebraic solutions of differential equations, Invent. Math. 18 (1972) 1-118.
[6] S. Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979)

593-606.
[7] , Threefolds whose canonical bundles are not numerically effective, Ann. of Math.,

(2) 116 (1982) 133-176.
[8] Z. Ran, Deformations of manifolds with torsion or negative canonical bundle, J. Algebraic

Geometry 1(1992) 279-291.
[9] , Lifting of cohomology and deformations of certain holomorphic maps, Bull. Amer.

Math. Soc. 26 (1992) 113-117.

U N I V E R S I T Y O F CALIFORNIA, R I V E R S I D E




