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CONVERGENCE OF CURVATURES
IN SECANT APPROXIMATIONS

JOSEPH H. G. FU

1. Introduction

It has long been known that a closed polyhedron P in Euclidean space
En admits certain curvature measures analogous to classical curvature in-
tegrals (cf. [3], [11], [17], [1], [15]). If P 1 , P2, . . . is a sequence of such
polyhedra converging to a smooth submanifold of M c En , it is natural to
ask whether the curvature measures of the Pι converge to the correspond-
ing curvature integrals of M. (In view of well-known examples in area
theory (cf. [16,1.1.10]) it is of course necessary to take some care in for-
mulating the hypothesis precisely.) An intrinsic analogue of this equation
has been answered positively in [5] by Cheeger, Mϋller and Schrader, who
have also asserted that their method applies equally well to the extrinsic
question above. Our aim in the present article is to give a solution to the
extrinsic problem that is conceptually much simpler than the solution of
[5].

Our approach rests on the observation that the curvature measures (or
integrals) of polyhedra P (or smooth submanifolds M) in En may be
computed in a universal way from a certain integral current, canonically
associated to P (or M), living in the tangent sphere bundle SEn = En x
Sn~{ (cf. [19], [20], [6]). If M is smooth, then this current is given by
integration over the canonically oriented (n - l)-manifold N(M) of unit
normals to M. We may associate a similar object N(P) to a polyhedron
P although N(P) is no longer a submanifold of SEn, it is an integral
current of dimension n - 1, called the normal cycle to P. To obtain the
curvature measures of P, we observe that there are universal differential
(n - l)-forms κ0, , κn_{ in SEn such*hat the curvature measures of
P are given by
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where π: SΈn —• En is the projection of the bundle. The curvature inte-
grals of M may be computed from N(M) by the same formula.

Recently we have been able to characterize the normal cycle of a com-
pact subset of En in a particularly simple way (Theorem 3.2 of [14]). This
characterization is the key to our approach to the convergence theorem. In
fact, the main theorem of the present article is a corollary of the following

General convergence theorem. Let M c En be a compact C 1 ' 1 sub-
manifold with C 1 ' 1 boundary. Let Pι, P2, ••• c En be a sequence of
polyhedra, all contained within a common compact set in En, such that

(la) M(N(Pj))<K<oc, j= 1,2, . . . , and

(lb) fora.e. (υ,t)eSn~ι x R ,

where Hv t is the closed half-space {x e En: x υ < t}.

Then lim . ^ ^ N(Pj) = N(M) in the flat metric topology. In particular,
P \A

lim. ^Φy7' = Φf. in the sense of weak convergence of measures on En,
i = 0, ••• , n- 1.

Proof By the compactness theory for integral currents ([10] or [18]),
there is a subsequence PJ and an integral current T e ln_x(SEn) such

that liin,./^^ N(PJ') = T in the flat metric topology. It is clear that T
is closed, compactly supported and legendrian in the sense of [14]. Using
the notation of [14, §3], we have for a.e. (υ, t) e Sn~ι x R

./-•Go

and therefore

, v, 0(ιc0) = ω^ιS(N{Ps), v , t)(κo)

By Theorem 3.2 [14], it follows that T = N(M). As this outcome is inde-
pendent of the choice of convergent subsequence, we have lim. ^ N(Pj)
= N{M).

Remark. The reader of [14] will realize that the statement of the the-
orem above can be broadened considerably.
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2. Basic definitions, and statement of theorem

Let M c En be a compact fc-dimensional submanifold-with-boundary
in En , of class C 1 ' 1 . Then M has positive reach in the sense of [9]: i.e.,
there is e > 0 such that if dist(x, M) < ε then there is a unique point
ξ(x) e M such that

It is convenient to work with an extension of M, i.e., an open C 1 ' 1

submanifold M D M of En . Let ζ^ be the nearest point retraction to
M, defined on an open set U D M. One computes easily that ξ is
differentiate in U, with

Dξ(x) = orthogonal projection onto Tξ,χ)M;

it follows that ξ is even C 1 ' ι in U.
Let P cEn be a /c-dimensional polyhedral submanifold-with-boundary

(i.e., a manifold which is a union of affine simplices). We say that P is
inscribed in Λf if

(i) all vertices of P lie in M, and
(ii) all vertices of d P lie in d M.

P is closely inscribed in M if additionally
(iii) P c domain { and ξ\P is one-to-one, and
(iv) dP c domainξd M and ζdM\dP is one-to-one, where ξdM is the

projection onto dM.
Let σ eEn be a Λ>simplex with vertices vQ, , vfc . The size of σ is

η(σ) := ^

and the fatness of σ is

θ((j) := min{^J(μ)/η(σ)j : μ is a 7- dimensional face of σ,

7 = 0, ... ,k}.

The fatness of a polyhedron P is

Θ(P) := sup{min{θ(σ): σ is a fc-simplex of Δ} :

Δ is a triangulation of P}

Observe that our definition of the fatness of P generally exceeds that
of [5]. This has the effect of weakening the hypothesis in the theorem
below. In particular, we do not assume that the approximating polyhedra
Pι necessarily become arbitrarily fine; such approximations, satisfying the
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hypothesis of the theorem, may occur when the limiting submanifold M

has large flat regions.

Theorem. Let Pι, P2, c En be a sequence of k- dimensional poly-

hedral submanifolds with boundary, closely inscribed in M. Suppose that

PJ -> M and dPJ -+ dM in the Hausdorff metric on subsets of En,

and that Θ(PJ) > c, j = 1, 2, ••• , for some constant c > 0. Then

lim. ^ 0 ^ = 0 ^ . , i = 0, , n - 1, in the sense of weak convergence of

measures on En.

To prove this theorem we need only verify conditions (la) and (lb) of

the General Convergence Theorem of §1.

3. Some lemmas

We show first that the hypothesis of the theorem implies Lipschitz con-
vergence of the Pι to M.

Definitions. Let TM be the tangent bundle to M, naturally embed-
ded into 7Έn . Given a simplex α c E " , let (σ) denote the vector sub-
space of Rn generated by σ, and let

Tσ:=σx (σ) c En x Rn £ TΈn.

Given a polyhedron P c En , let

TP:=\JTσ,
σ

where σ ranges over all the simplices of P.
Although the sets TM, TPι c TEn are not compact, it still makes

sense to consider the Hausdorff metric on such sets as the metric induced
by the homeomorphism

TP~TPΠ(En xB(0, 1)).

We denote the Hausdorff distance between sets A, B by h(A, B), whether
in the usual or the generalized sense.

Lemma 1. Let M c En be a compact C 1 submanifold. Suppose that
Pι, P2,... are compact polyhedral k-manifolds inscribed in M with fat-
ness

^ ^ o O , / = 1,2, .-- ,

and that lim^^P1 = M in the Hausdorff metric. Then l i m ^ ^ TPi =
TM in the Hausdorff metric.
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The failure of this lemma without the fatness assumption may be re-
garded as the crucial point of the example of [16] cited in the introduction;
cf. the corollary below.

Proof. Let k = dim M. The lemma follows immediately from the fol-
lowing assertion: if σχ, σ2, . . . is a sequence of Λ>simplices with vertices
in M, p e M, and

(ii) l i m ^ ^ sup;c€σ dist(x, M) = 0,

(iii) l i m ^ ^ dist(p,' σt) = 0,
then Km^σg) = TpM.

Let e > 0 be given. Because of the bound on the fatness of the σi and
the continuity in q of Ί M, there is δ > 0 such that if //(σ() < δ and
dist(p, σ( ) < δ then

h{(σt), TpM) < h{{Oι), TVM) + h{TυM, TpM)

_ \
+ O{\p-v0\)<e,

where VQ , ,υι

k are the vertices of σz and ΓpΛf is a unit /c-vector in
the direction of Tp M.

On the other hand, σ[, σ'2, . . . is a subsequence with f/(â ) > δ for
all 7 , then we may find a further subsequence σ", σ^, . . . with vertices
vo ™* uo' * " ' vit -^ uk-^y the hypothesis, the points uQ, , uk are
the vertices of a nondegenerate fc-simplex σ^ c M, with p e σ^. Thus

7^Λf = (σ^) = limJ._+oo(σ/ ) . As this is true independently of the chosen

subsequences we find that TpM = lim._^oo(σI

/) in this case.

Corollary, t/wrfer ίΛe hypothesis of the theorem, we have

Proof In view of our characterization of the derivative Dξ, Lemma
1 implies that the Jacobian of the restriction of ξ to the interior of any
fc-simplex of Pι is uniformly close to 1 for large i. Using the hypothesis
that ξ\Pι is one-to-one, the area formula now gives

On the othei^hand, the condition that dPι -> dM implies that for large
i, ζ(Pι) C M differs from M only by a region confined to a narrow band
around dM therefore l i m ^ β^k{ξ{P1)) = J^k(M). q.e.d.
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For the rest of the paper, the symbol C will denotes a generic positive
constant.

Lemma 2. Under the hypothesis of the theorem, there is a constant C
such that for any simplex σ of any approximating polyhedron Pι, the
number ofsimplices of Pι incident to σ is less than C.

Proof By the bound on the fatness of Pι, whenever σ is a fc-simplex
of Pι and c e a, we have

for all small r > 0. Therefore, since D(ξ\σ) is close to the identity,

*k{B(ξ(x), r) Π ξ(σ)) 3 JTk(ξ[B(x, r) n σ]) > Crk

for all small r > 0. Since ^ ^ ( ^ ( ^ ( J C ) , r))/r*) = α(ik) = volume
of unit Λ>ball in E* , and the interiors of the ξ(σ) are disjoint, the lemma
follows.

Lemma 3. There are constants C, δQ > 0 such that whenever P c En

is a k-dimensional polyhedral manifold without boundary\ and there exists
a k-plane Π c E n such that if δ := supσ h((σ), Π) < δ0 (where σ ranges
over the k-simplices of P) we have

sptiV(P) cPχ{v£ Sn~ι : dist(v, Π x ) < Cδ}.

Proof Putting Ap{x) := dist(x, P), and Pε := {x eEn : dist(;c, P) <
ε}, we have by [14] and [12]

= limN(Pε),

sptN(Pε) c | ( x , υ) € En x 5"'1 Δ p(x) = β, t; =

where, st > 0, q. e P and |JC - qt\ = ε > .

Thus it is enough to show that if x £ P, qi e P for / = 0, 1, and
Ap(x) = l x - ^ l, then

(3a) ^ [ ± Z Ϊ L 9 π L > ) < C δ , 1 = 0 , 1 ,

and

(3b) \qo-qι\<CδAp(x).

To prove (3a) we may assume that Π passes through the point q = qr

It is enough to show that

(3c) \ξn(x)-q\<Ap(x)O(δ).
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If υ is any unit vector pointing along Π, then we have for any t e R

(3d) \x-{q + tv)\2 = \{x-q)-tv\2

= Ap{xf + t2- 2t(x -q) υ.

Now if δ is sufficiently small then we may express P as the graph of a
piecewise-linear function φ: Π -»IT1 letting u = υ+Dvφ(q) e HQTI1 =
Rn , we have \u-v\ < O(δ). The vector u is tangent to P at q in the
sense that q + su e P for small s > 0, so in view of the hypothesis that
\x - q\ = Ap(x) we must have u (x - q) < 0. Substituting w + O(δ) for
ί; in (3d), we get

\x-{q + tv)\2 = Δ^JC)2 + ί2 - 2*(JC - ί) ii + ίΔp

and it follows (since Δp(x) < An(x)) that the distance from x to Π is
realized within distance Ap(x)O(δ) of #, which relation is precisely (3c).

To prove (3b), let σ(t) be the straight line path of unit speed joining
£π(#o) t 0 £π(*i) R e ali zing P a s Λe graph of φ: Π —• Π"1 as above, put
γ(t) := (σ(t), ?>(<τ(ί))) to be the corresponding path in P connecting q0

to q{. By the hypothesis we have

|/(0-σ'(0l<C<5
whenever γ\t) exists. It follows that

and, putting σ to be the segment connecting q0 and ̂ t ,

Λ(σ, γ) < h(σ, σ) + A(<τ, y) < C(5 length(σ).

Since

Λ /length(σ)
ί

(σ)\2V/2\2V

(see Figure 1, next page), we have

Ap(x) = dist(x, γ) < dist(x ,σ) + Cδ length(σ)

)2 + Cδlength{σ)

or
\qo-qι\=length(σ)<CδAp(x),

as claimed.
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FIGURE 1

The next two lemmas give a mild generalization of the Poincare-Hopf
theorem. Let M be a C 1 ' 1 manifold without boundary, and let U c M
be a Lipschitz domain. Given a Lipschitz function a: M -» R, let D*a
be its generalized differential in the sense of Clarke [7, Chapter 2]. Let μ
be a Lipschitz vector field defined on a neighborhood of U. Then μ is
said to point out of U at Λ: G bdry {/, provided there exist a neighborhood
F of x in Af and a Lipschitz function a: V —• R such that C/ Π F =
αΓ1 (-oo, 0) and such that for every ξ e D*a(x) we have (μ, ξ) > 0. We
say that μ points out of U if μ points out of (7 at every x e bdry U.

Lemma 4. Suppose the Lipschitz vector field μ points out of the
Lipschitz domain U and has finitely many zeros in U. Then

i n d e χ ( μ > z )
μ(z)=0

Proof. Let φ(t, x) be the flow of the vector field - μ . Then φ maps
[0, oo) x U into U. For if p e bdry U, and α: F -+ R is as above then
for x e V

a(φ(t,
ί=0

, x)) < sup{(£, -μ(x)):ξ€D a(x)}<0

(by [7, pp. 25, 271)

for x sufficiently close to p, since D*a is upper semicontinuous. Now
apply the Lefschetz fixed point theorem as in e.g. [8, VII. 6.6].

In order to apply this we will need
Lemma 5. Let U, U' be Lipschitz domains in M, and μ a Lipschitz

vector field pointing out of U at every point of bdry U Π U1, and out of U'
at every point of bdry U' Then μ points out of UnU'.

Proof We need only verify the criteria of the definition above for
points x e bdry U Π bdry U'. Let a, a : V -> R be functions as in that
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definition for U and U' respectively, x eV. Then αVα := max{α, a}
has ( α V α W o o , 0) = U'nUnV, and D*{aVa'){x) C {/f+(l-/);/: { €
D*a{x), 1/ € D V ( * ) , 0 < ί < 1} by [7, 2.3.12], from which the lemma
follows.

4. Proof of the theorem

We establish first the mass bounds (la). We first bound the mass
.π'^intP')) of the part of N(Pι) lying over the interior of Pι.

Since M is C 1 ' 1 (i.e., has bounded principal curvatures), we may find
constants A < oo and δ0 > 0 such that if σ is any fc-simplex with vertices
in M and

θ(σ) > c, η(σ) < δQ,

then

(4a) dist((σ), TpM)<Aη(σ)9

where p € M may be taken to be any vertex of σ. By the bound on the

fatness of the Pι there is δx > 0 such that if τ is a ./-simplex of Pι with

η(τ) < δχ, then any Λ -simplex σ of Pι incident to τ has size η(σ) < δQ.

Let Ej be the set of all interior y'-simplices (i.e., simplices not included

in dPt) of Pι of size < δχ, and let Fι. be the set of all other interior
7-simplices.

Now by the additivity property

N{X U Y) = N(X) + N{Y) - N(X Π Y)

(cf. [14], [6] or [20]) and the simple nature of the normal cycle of a simplex,
we find that

, x If τ is any simplex of Pι, then
(4b) i - l . _L n-\ n n-\

spt(N(P )ι_7Γ (intτ)) C T X ( T ΠS ) c E x » S ,

and

the multiplicities of the integral currents N(Pι) are

uniformly bounded by a constant C,

as follows at once from Lemma 2. Thus if τ e Eι. then

(4d)

<

{υ e Sn~ι : dist(t;, TML) < Cιj(τ), v e τ x })
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by Lemma 3, where p is a vertex of τ . The last factor is maximized when

the (n - 7*)-plane τ1' contains the (n - fc)-plane (TpM)± , in which case

it is O(η(τ)k~j~ι) so we conclude that for τ e Eι. we have

(4e) M(N(P\π~l(intτ)) = O(jrj(τ)η(τ)k~j)

= O(η(τ)k)

by the fatness bound. On the other hand

M N(P\ \J τ'ι(intτ) < C ^ M{N(τ)Lπ~ι(intτ))

which remains bounded as / —> oo by the corollary to Lemma 1. Thus

we need only bound the sum of the expressions (4e), i.e., Σ τ 6 £ :» η(τ) .

But by the fatness bound, we have η(τ)k = O ( Σ σ * > τ ^ ( σ ) ) , where the
sum runs over all λ>simplices σ with τ c dσ, and by Lemma 2 we

have ΣτeEΣσk>τ*'k(σ) = O(βTk(Pi))9 so the desired uniform bound

follows from the corollary to Lemma 2.

To bound the mass of N(Pι) lying over dPι, we may argue as above

with dPι and dM replacing Pι and M, respectively. The only point

that needs to be checked is the bound on the support of N(Pι)Lπ~ι(Pι),

i.e., that for large i and small y'-simplices τ of dPι we have

cτx{ve Sn~l: dist(v, Tp(dM)^) < Cη(τ)}

(cf. (4d)) for appropriate points p. To see this we need to modify Lemma
3 as follows:

Lemma 3' . There are constants C, δ0 > 0 such that whenever P c En

is a k-dimensional polyhedral manifold with boundary, and there exist a
k-plane Π and a (k - \)-plane π c Π such that

(4h) δx := sup dist((σ*), Π) < δ0

σkeP

and

δ2:= sup άist((τk~l),π)<δ0,
τk~ιedP
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then we have, putting δ := m3x{δ{, δ2},

sptΛΓ(P) c P x { ^ Sn~l : dist(u , IT1) < Cδ}

U dP x {w s Sn~l : dist(iί;, π±) < Cδ}.

Proof. We may follow the proof of (4h) in Lemma 3 to show that

<Cδ

for x £ P and \x - q\ = Ap(x), where μ = Π or π depending on
whether q belongs to intP or dP. It remains to prove (4j) in the case
where qQ e intP and qχ e dP (it is not necessary to consider the case
where qQ and qχ belong to distinct components of dP, since we are only
interested in the case of points x lying very close to P). For this we again
express P as the graph of a function φ: U —• IT1, where U is a domain
with polyhedral boundary ξn(dP). Let σ(t) be a unit speed path in U
joining £π(#0) to ξ^q^. This may no longer be taken to be a straight
line, but condition (4j) implies that we may choose σ so that, for all t,

(7(0- <Cδ.

The proof then proceeds like that of Lemma 3. This completes the proof
of the mass bounds (la).

We now prove (lb) whenever t is a regular value of the restriction of
M of the height function x H-> X υ . Fixing v e Sn~ι for the rest of the
section, we denote this height function by h. Given a set X c En and
subset / c R we put also X3 := X Π h~ι(J) we abbreviate Xrt, to JΓ,
for ί € R. We may also express M as

M = MΓ)φ~l(-oo, 0],

where φ: En —• R is a C 1 ' 1 function and 0 is a regular value of φ\M.
The condition that ί be a regular value of h\M includes the condition that
Ah and Aφ are antipodal nowhere in the neighborhood of φ~ι(0)Γ)Mt =

(dM)t, where Δ denotes the gradient in the manifold M. It follows
that the Lipschitz vector-field μ := VΛ/|Vλ| + Vφ/\Vφ\, defined in the
neighborhood of ΘMΓ\h~ι(t), satisfies

(4k) (dφ,μ)>0,

(4m) (dh,μ)>09



188 JOSEPH H. G. FU

and we may extendju to a Lipschitz vector field, again denoted by μ and
defined on all of M, such that (4k) holds on (0M)t and (4m) holds on
Mt. In other words, the vector field μ points out of Λf^^ ^ .

After performing a suitable homotopy on Mt fixing a neighborhood of
dMt, we may alter μ so that it has a unique zero at a point p € M^^ ^ .
By the generalize Poincare-Hopf theorem (Lemma 4), we have

Since ξ\Pι is one-to-one for each i, in order to verify (lb) we may
check that /(Aί^^^j) = z(ί(P('LOOί/])) for all large i . The hypothesis of
our theorem implies that, for large i, the point p is the unique zero of
μ lying in the domain £/ = ξiPΪ^ t]). Thus if we apply Lemma 4 it
is enough to show that μ points out of Ui. Applying Lemma 5, this is
accomplished by showing that there are domains U[ and U" such that μ

points out of both U[ and U", and Ui = U[ Π U".

We take U[ := ξ(Pι). By Lemma 1 and the fact that Dζ(x) is pro-
jection onto Tξ,,M, we see that ξ{Pι) is a Lipschitz domain in M,
with boundary close to dM is the Lipschitz sense. From this it is easy
to see that μ points out of U[ at all points x at the boundary with
(h o ( ί lP 1 ' ) " 1 ^) - 0+ sufficiently small.

To construct U", we consider Q* := dξiP^^) = ξidP*). This is an
open Lipschitz hypersurface in M, and for large / it is Lipschitz-close to
the Lipschitz hypersurface Mt. Thus it admits a Lipschitz extension Qι

which is again Lipschitz close to Mt for in C 1 ' 1 local coordinates this
latter hypersurface may be expressed as the graph of a constant function,
and the former as the graph of a Lipschitz function g with small Lipschitz
constant. We may assume that M^^ t] corresponds to the set of points
lying below the graph of the function. This second function g is only
defined up to points corresponding to ξ(dPι) taking a Lipschitz extension
g, we take U" to be the set of points lying below the graph of ~g. The
Lipschitz constant of ~g may be controlled by that of g ([8, 2.10.43], and
it follows that μ points out of U" for large enough /.

5. Concluding remarks

It should be noted that the authors of [5] obtained a slightly stronger
result than simple convergence of curvature measures, namely an estimate
of the rate of convergence in terms of the magnitudes of the curvature
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tensor of M and of its covariant derivative. As the method of the present
article relies on a compactness theorem, we have obtained no such esti-
mate; on the other hand, the manifolds M subject to our theorem will
generally have a curvature tensor which is discontinuous, so the estimate
of [5] cannot even be formulated in these cases.

Another interesting convergence theorem was obtained by Brehm and
Kuhnel [2]. These authors considered the approximation of a compact
polyhedral surface without boundary in E3 by smooth surfaces. Using
intricate geometric constructions they showed that one may find such an
approximation in which the total absolute curvature measures converge.
This sort of result is beyond the range of our method.

We would like finally to mention that the possibility of an argument as
in the present paper was suggested to us by M. Zahle, cf. [21].
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