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RIGIDITY OF PROPER HOLOMORPHIC MAPS
BETWEEN SYMMETRIC DOMAINS

I-HSUN TSAI

In 1973 Mostow [21] proved a strong rigidity theorem to the effect that
for compact Riemannian locally symmetric spaces of negative Ricci cur-
vature the fundamental groups essentially determine the geometry (with
obvious exceptions). Four years later, Margulis's Superrigidity Theorem
gave as a consequence that for irreducible Riemannian locally symmet-
ric spaces X and Y of negative Ricci curvature and finite volume, any
"nondegenerate" continuous map / : X —> Y is homotopic to an isomet-
ric immersion (up to normalizing constants), provided that X is of rank
> 2. In the last decade much work has been done in connection with
the above rigidity theorems of Mostow and Margulis, e.g., [3], [4], [5], [6],
[10], [19], etc. In 1978 Siu studied the strong rigidity of Kahler structures
of compact quotients of bounded symmetric domains and obtained

Theorem 1 [24], [25]. Let M be a compact quotient of an irreducible
bounded symmetric domain of complex dimension > 2. Suppose that X
is a compact Kahler manifold homotopic to M. Then X is either biholo-
morphic or conjugate-biholomorphic to M.

Siu's theorem covers the Hermitian case of Mostow's strong rigidity the-
orem for the reasons that any two compact K(π, l)-spaces with isomor-
phic 160fundamental groups are homotopic and that any biholomorphism
between Hermitian (locally) symmetric spaces of noncompact type is nec-
essarily an isometry (up to normalizing constants). In connection with
this, it is natural to study the rigidity problem for holomorphic mappings
between Hermitian locally symmetric spaces of noncompact type. Indeed
the following theorem was established by Mok in the compact case and
by Mok and To in the finite-volume case as a consequence of their metric
rigidity theorems.

Theorem 2 [16], [26]. Let (X, g) be a Hermitian locally symmet-
ric space of finite volume uniformized by an irreducible bounded symmet-
ric domain Ω of rank > 2. Suppose (Y, h) is any Hermitian locally
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symmetric space of noncompact type. Then any (nonconstant) holomorphic
map is necessarily a totally geodesic isometric immersion (up to normaliz-
ing constants).

In contrast with the consequence of the Superrigidity Theorem of Mar-
gulis as stated previously the result of Mok and To tells us that the holo-
morphic map / is already an (totally geodesic) isometric representative
in its homotopy class.

In this article we are interested in the rigidity problem for holomor-
phic maps between bounded symmetric domains. We prove the following
theorem which resolves a conjecture of Mok [18].

Main Theorem. Let (Ωχ, gχ) and (Ω2, g2) be bounded symmetric
domains. Suppose that Ωχ is irreducible and rank(Ωj) > rank(Ω2) > 2.
Then any proper holomorphic map f:Ω{ —• Ω2 is necessarily a totally
geodesic isometric embedding (up to normalizing constants).

When Ωj = Ω 2 , our Main Theorem was proved by Henkin and Novikov
[12] by using results of Bell [1], Tumanov and Henkin [28]. Namely any
proper holomorphic self-map / : Ω —• Ω on an irreducible bounded sym-
metric domain of rank > 2 is an automorphism. For further connection
with the subject, proper holomorphic mappings in complex analysis, we
refer readers to recent (survey) articles by Bell [2] and Forstneric [8].

In the Main Theorem the condition that rank(Ωj) > rank(Ω2) is in-
dispensible as we can see from the following example. Consider a holo-
morphic map / : D I(2, 2) —• D1^, 3) induced by the map which sends
2 x 2 matrices B = (zij)ι<i j<2 to 3 x 3 matrices B = (zkl)x<k / < 3 in
such a way that z/. = z{. for 1 < i, j < 2, zi3 = z3/ = 0 for ϊ < / < 2

and z 3 3 = g for a holomorphic function g defined on Dι(2, 2) such that
\g\ < 1. Then clearly we can choose g so that / is proper but not to-
tally geodesic. The condition excluding rank-one situation is also needed
as there exist proper polynomial maps / : Bn —• BN for N > 2n - 1,
which are not totally geodesic, e.g., the map f:Bn -+ B2n~ι defined by

/ ( * ! > • " > * ! , ) = ( * ! > • " >Zn-l>ZlZn> > ZnZn)

We remark that in previous rigidity theorems one usually requires the
condition of compactness or finite volume imposed either on domain-
manifolds or on both domain-manifolds and target-manifolds. Our result
throws some light on problem of extending rigidity theorems for holomor-
phic maps to the situation where the finite-volume condition is relaxed. In
this direction Mok conjectured that the statement of Theorem 2 remains
true when the finite-volume condition on X is replaced by the weaker con-
dition that the fundamental group nx(X) acts ergodically on the Shilov
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boundary of Ω. The case where rank(Jf) = rank(Γ) has been observed
by Mok, based on the proof of the Main Theorem of the present article.
The idea is to consider the lifted map F between their respective universal
coverings and to consider nontangential limits on the Shilov boundary. It
is, however, not known how to extend this result to the general situation.

In the rest of this introduction we shall present an outline of our proof
of the Main Theorem. Our idea is heavily based on the framework of [16]
and [20]. There are usually two main difficulties for proving this type of
theorem: analytical on the one hand and geometrical on the other. Lack
of boundary regularity usually presents a serious analytical difficulty. In
[20] this problem was overcome by passing to a moduli map /* (which
is defined between moduli spaces of certain Hermitian symmetric sub-
manifolds; see below). In the proof of the Main Theorem, the (partial)
regularity of / can be thus obtained as in [20]. The genuine difficulty
that we encounter here comes from the geometrical side, i.e., the prob-
lem of proving that / is totally geodesic. Our proof contains two main
steps after reduction to the case where Ωj = D™ (rankD^ = 2) and
rank(Ω2) = 2. The first step is to prove that / cannot be infinitesimally
of rank 1, i.e., to prove that there exists a point p such that df(Tp(Ωχ))
is not the tangent space of a totally geodesic three-ball. This step is con-
nected with the work of [31] and [16]. In the second step, given that / is
infinitesimally of rank two (meaning that df{T{ΩJ) is the tangent space
of a symmetric submanifold of rank two for generic p), we prove an inte-
grability theorem for some distribution induced by / . This leads us to the
notion of invariantly geodesic submanifolds. We remark that the notion of
such manifolds is already implicitly used in [20]. A new ingredient in the
present article is to exploit the geometrical/algebraic aspect of invariantly
geodesic submanifolds, on which the integrability theorem is based. We
now explain our approach as follows. Fix an irreducible bounded symmet-
ric domain Ω = Go/K of rank r > 2, and denote its compact dual by X.
In Ω there are distinguished 1-dimensional totally geodesic submanifolds
called minimal disks Δ. The compact dual P1 of Δ, embedded in X,
generates H2(X, Z) as a homology class, and is called a minimal rational
curve of X. Denote by ^ the set of all those minimal disks containing
the origin o of Ω. Each minimal disk Ae^0 defines an element [Γ0(Δ)]
in ΨTo(Ω), and the union of all such elements is in fact the characteris-
tic variety cSζ(Ω) of Ω as initially defined by Mok [16]. There are also
distinguished totally geodesic submanifolds M of higher dimension and
rank(Λf) = r - 1, called maximal characteristic symmetric subspaces by
[20]. To each M containing o there corresponds a minimal disk Δ such
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that Δ x M embeds in Ω totally geodesically, and the union of all such
AxM's exhausts Ω. Moreover, for each b e dA, bxM is contained in
<9Ω and is in fact a "boundary component" of Ω (cf. [30]). The nullity
of Ω is defined to be the dimension of M.

As in [20] we consider radial limits of submanifolds {t} x M C Δ x M C
Ωj as t —• dA, and then use the boundary structure of Ω2 to show that
each boundary component of Ωj is mapped into a boundary component
of Ω2 . As a consequence of the maximum principle, we obtain a moduli
map /* which is defined from the moduli space Λίj for characteristic
symmetric subspaces of Ωj to the moduli space Jf2 for corresponding
characteristic symmetric subspaces of Ω2. By an induction argument it
suffices for the proof of the Main Theorem to consider the case where
both Ωj and Ω2 are irreducible and of rank two. Since any irreducible
bounded symmetric domain of rank at least two can be exhausted by totally
geodesic submanifolds isomorphic to a Type-IV domain D of dimension
three (which is biholomorphic to the Siegel upper half-plane for symmet-
ric two-by-two matrices), we need only consider the case Ωj = D. Since
both domains are of rank two and D is known to be of nullity one, from
the moduli map f* just defined (Jtχ = {minimal disks}, Jt2 = {rank-one
characteristic symmetric submanifold}) we conclude that / is character-
istic, namely, df(S*p(D)) c 5?*^x(Ω2) for generic points p .

We remark that minimal disks as introduced previously coincide with
extremal disks in the sense considered by L. Lempert [13] who, in a dif-
ferent context, proved some boundary regularity results of biholomorphic
mappings with extremal disks [14]. In a similar vein the notion of moduli
maps was considered by J. Faran [7] where the linearity of proper holo-
morphic maps between balls in the low codimension case was proved.

To exploit the preceding infinitesimal information we have first of all
that the characteristic subvariety of D is a rational curve of degree two
in PΓ0(Z>). Define 3 to be the set of rational curves of degree two in
<5^(Ω2). 3 has two types of curves. Every curve of the first type is
contained in the projectivized tangent space of a totally geodesic rank-one
submanifold B3. If df sends 3^p{D) onto a curve of the first type for

p

generic points p, then f(D) is tangent to such a B3 at f(p). In this
situation / is said to be infinitesimally of rank one.

When Ω2 is of nullity one, the Main Theorem can be deduced from
the fact that minimal disks of D are mapped to minimal disks of Ω2.
Ω2 is of nullity one exactly when it is a Type-IV domain (i.e., a bounded
symmetric domain dual to the hyperquadric).
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Our proof of the Main Theorem contains two essential steps. First we
show that / is not infinitesimally of rank one, and then that / maps D
into some Type-IV domain to finish the proof.

An evidence eliminating the case where / is infinitesimally of rank
one is suggested by the argument of P. Yang [31] or N. Mok [16], which
says that a polydisk cannot support a complete Kahler metric of curvature
pinched between negative constants. For this approach to work one would
try to prove the boundary regularity of / and to do some curvature es-
timates. The present proof uses a different approach. We first show that
/ : Ωj —• Ω2 has a rational extension / : Xχ -* X2 between respective
compact duals of Ω{ and Ω2, and then prove that the condition that /
is infinitesimally of rank one cannot hold at a boundary point of Ωt at
which / is regular. The idea of the proof involves the analysis of the
boundary structure for irreducible bounded symmetric domains of rank
two.

To show that / maps D into some type-IV domain Ω; we try to prove
an integrability theorem for a distribution induced by / . The present
proof uses the affine structure of the Harish-Chandra realization together
with the fact that characteristic varieties of a bounded symmetric domain
Ω are parallel with respect to the Euclidean coordinates of Ω, and is
achieved via the notion of invariantly geodesic submanifolds. In order to
exploit the Euclidean coordinates of Ω2 we will actually show that f(D)
is contained in some distinguished subdomain Ω2 which is not only affine-
linear in Ω2, but is such that the transform of Ω2 by any automorphism
of Ω2 remains affine-linear. Such a domain Ω2 corresponds to the in-
tersection of Ω2 and some Hermitian symmetric submanifold M of X
(X denoting the compact dual of Ω2) with the property that M is totally
geodesic with respect to any canonical metric of X. These distinguished
submanifolds M and Ω2 will be called invariantly geodesic submanifolds.
Another characteristic of the subdomain Ω2 is the complex analyticity of
its orbit space under the isotropy subgroup K of Ω2. Namely a totally
geodesic subdomain Ω2 is invariantly geodesic if (and only if) the set of its
A'-orbits naturally inherits a complex structure. We classify all invariantly
geodesic submanifolds and prove that for any irreducible rank-two Hermi-
tian symmetric manifold there exists an invariantly geodesic submanifold
isomorphic to a hyperquadric. From the fact that / is characteristic and
that / is not infinitesimally of rank one we prove that f(D) is tangent
at generic points p to a unique invariantly geodesic hyperquadric Qp to
the second order. Then we show that the preceding results of the order of
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contact and of the uniqueness are sufficient for the distribution p -> T(Qp)
to be integrable. Thus f(D) is contained in an invariantly geodesic hy-
perquadric and hence in its dual domain Ω'2 c Ω2 . Since the special case
where D and Ω'2 are Type-IV domains has been treated already, the Main
Theorem follows.

1. Preliminaries

We set up notation and review some results of [20].

Let XQ = Go/K be an irreducible Hermitian symmetric space of non-

compact type of rank r > 2, and X = G/P = GJK be its compact

dual. The Lie algebra g0 of Go has a Cartan decomposition &0 = t + m0

with respect to t. Complexifying m0 gives m = m0 = m+ Θ m~ so

that m+ is identified with Tl)0(X0). The Harish-Chandra embedding

Xo c m+ ~ Cn c Xo realizes Xo as a bounded symmetric domain Ω. Set

p~ = exp(m~) and the complex Lie group Kc c G to be the complexifi-

cation of K.

In Ω (= Xo) there are distinguished 1-dimensional totally geodesic

submanifolds called minimal disks Δ. The compact dual F1 of Δ, which

embeds in X, is homologically a generator of H2(X, Z), and is called

a minimal rational curve of I . By the first canonical embedding of X

into some complex protective space FN [22], minimal rational curves are

mapped to projective lines in P ^ . To each minimal disk Δ in Ω, there

corresponds an irreducible symmetric submanifold ΩA of rankr - 1
Λr-ί

such that Δ x ΩΛ with canonical metric embeds in Ω as a totally

geodesic submanifold. Moreover, b x ΩΛ is a boundary component

of Ω for every b e dA (cf. [30]). These Ώ Λ 's are called maximal

characteristic symmetric subspaces of Ω by [20], and all intermediate

characteristic symmetric subspaces ΩΛ of Ω, 1 < / < r - 2, can be

obtained from ΩΛ 's inductively.
Let / : Ωj —• Ω2 be a proper holomorphic map between irreducible

bounded symmetric domains of rank > 2. By regarding / | Δ x Ω as
Λ r - 1

a family of bounded holomorphic functions defined on ΩΛ and using

the existence of radial limits for this family we showed the following in

Proposition 2.2 and Proposition 2.3 of [20]:

Proposition 1.1. In the notation as above, let ΩA be a characteristic
i

symmetric subspace of Ω{. Then / (Ω Λ ) is contained in some character-

istic symmetric subspace of Ω 2 .
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We assume now that rank(Qj) > rank(Ω2). By Proposition 1.1 and in-
duction any characteristic symmetric subspace of rank 2 must be mapped
into some characteristic symmetric subspace of rank < 2. It is well known
that there is no proper holomorphic map from bounded symmetric do-
mains of higher rank into balls; we have thus shown

Proposition 1.2. Let f:Ωχ-+Ω2bea proper holomorphic map be-

tween irreducible bounded symmetric domains with rank(Ωj) > rank(Ω 2) >

2. Then r a n k ^ ) = rank(Ω2).

To state the next result we need to discuss characteristic varieties of
Hermitian symmetric spaces as initially defined by [16]. Let o be the
origin of Ω. The characteristic variety at o is a subset of ΨT0{Ω) defined
to be

= U [T0(A)] (Δ 's are minimal disks).

Fix [a] of c5^(Ω) and assume that | |α| | = 1. Then one has an orthogonal
decomposition of T0(Ω) with respect to a [16].

such that

for any unit vector β e ^ and

for any γ e Jfa . The dimension of jVa is defined to be the nullity of Ω.

The point is that %*a can be naturally identified with Γ [ α ] (^(Ω)) by [16].

Moreover, ^ ( Ω ) is a compact Hermitian symmetric space of rank 2, and

the inclusion map ^ ( Ω ) *-> VT0(Ω) is identified with the first canonical

embedding of ^0(Ω) except for Ω = Dm(n, ή), n > 2 (in which case

the inclusion ^ ( Ω ) «-» PΓo(Ω) is identified with the second canonical
embedding). For more detail about ^ ( Ω ) we refer readers to [16], [17]
and [18].

We now restrict ourselves to the case where rank(Ωj) = rank(Ω2) = 2.
In this situation the only nontrivial characteristic symmetric subspaces
of Ωj and Ω2 are isomorphic to balls. Fix a characteristic symmetric
subspace Bn of Ωx and a vector a (φ 0) e T0(Bn), The disk Cα Π
Bn = Cα Π Ωj is minimal in Bn , hence minimal in Ωχ. We thus have
VT(Bn) c ^ ( Ω j ) . Conversely given [β] € ^0{Ωχ) by the transitivity
of the ^-action on ^(Ω), Ωχ Π Cβ is contained in some characteristic
symmetric subspace Bn . As a consequence, by Proposition 1.2 we have
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Proposition 1.3. In the notation of Proposition 1.2, assume that f has
maximal rank at p e Ω Γ Then the image of ^p(Ωχ) by the induced map
[dfpY PΓp(Ωi) - rτf(p)(a2) is contained in ^ W ( Ω 2 ) .

This proposition motivates the following.
Definition 1.4. Let U be an open subset of Ω{, and / : U -» Ω2 a

nondegenerate holomorphic map. Then / is said to be a characteristic
map if, at generic point p, dfp(a) is a characteristic vector of Ω2 for any
characteristic vector a e Tp(Ω{).

2. The case where Ω, and Ω2 are Type-IV domains

In this section we will prove the Main Theorem in the case where Ω{

and Ω2 are Type-IV domains; the general case will be reduced to this case

(§5).

Recall that a hyperquadric Qn is isomorphic to a hypersurface of P Λ + 1

defined by

and a Type-IV domain D™ is the noncompact dual of Qn . We are going
to prove the main result of this section.

Proposition 2.1. Suppose f: (D1^, g) -• (D™, h), n>3, is a proper

holomorphic map. Then f is a totally geodesic isometric embedding (up

to scaling constants).

Our proof uses the following lemma which says essentially that / is in
fact "algebraic."

Lemma 2.2. Let f:Ω{ —• Ω2 be a proper holomorphic map between
irreducible bounded symmetric domains of rank > 2. Suppose that each
minimal disk of Ω{ is mapped into a minimal disk of Ω 2 . Then f extends
rationally from Xχ to X2, where Xt 's are compact duals ofΩi

 rs (i = 1, 2)
respectively.

Proof of Lemma 2.2. The proof follows Proposition 2.10 of [20]. First
observe that

(*) f{p) = p | /(Δ) (Δ 'S are minimal).

By using the condition that minimal disks are mapped to minimal disks,
we first arrive at a rational extension f between moduli spaces of min-
imal rational curves (by the pseudoconcavity of moduli spaces). Then
by regarding a point as an intersection of minimal rational curves using
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(*) we get from /tt down to a rational extension / : Xχ —• X2 over base
manifolds. For more detail we refer readers to [20]. q.e.d.

We are ready to give a proof of Proposition 2.1.
Proof of Proposition 2.1. Since nontrivial characteristic symmetric sub-

spaces of D™ are minimal disks, the condition of Proposition 2.2 is sat-
isfied in view of Proposition 1.1. Hence the previous lemma shows that
/ : I*™ -> D™ is algebraic. Write f:Xχ -> X2 for the rational exten-
sion between compact duals of D™ and D™. We claim that there exists
a minimal rational curve / of Xχ, such that f\, is a biholomorphism
onto its image.

Let D be the indeterminancy of / , which is of codimension > 2,
and R be the subvariety where df is degenerate in Xχ\D. Choose a
point q e D™ such that f~l(q) consists of finitely many points and that
f~X (#)Πi? = 0 . Since there are only finitely many minimal rational curves
connecting any two points of / " (q), one can find a minimal rational
curve / such that / contains just one point of f~l{q) and /nDY Φ 0 .
It follows that f\, is one-to-one. Since f\, is still minimal, it is then
a biholomorphism, proving the claim. As a consequence, there exists a
minimal disk D of D™ such that f\D> is biholomorphic onto its image
for all minimal disks D 's sufficiently close to D.

Now we are going to show that / is actually a totally geodesic isometric
embedding. Fix a minimal disk Da such that f\D is a biholomorphism.
From § 1 one knows that there exists a maximal characteristic symmetric
subspace Ωj of DY (which is also a minimal disk in this case) such that
ΰ Q x Ω 1 embeds as a totally geodesic submanifold of D™ . Moreover, we
have To{Ω{)^J^ (Proposition 1.8 of [20]). By using the Harish-Chandra
embedding we can write

Denote by g and h the canonical, normalized metrics for D ^ and D* v

respectively. We know that the induced metrics on minimal disks are
Poincare metrics. By our assumption on / it follows from the Schwarz
lemma that f\D t is an isometry for every [Da,] sufficiently close to Da .

Let (Zj, z2,
Qz3) stand for the Euclidean coordinates with ( 0 , 0 , 0 )

being the origin and

±-(o) = aeT0(Da) and jΓJp) = q.

Note that (zχ, z 2, z3) is also a complex geodesic coordinate system of
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(Z>3V, g) at the origin; i.e.,

—ι-i(o) = 0 for 1 < i, j , k < 3.
dzk

We assume that rf/ has maximal rank at o . At o computing the holo-
morphic bisectional curvature spanned by a and q with respect to the
locally defined metric f*(h), denoted also by h for simplicity, yields

dϊϊffF2 dT2^T2
2 2 \<u,v<3 2 2

Since f\D § is biholomorphic for any Da, near to Da , the first term in the

above expression vanishes as f*(h)\D t is the (unique) Poincare metric on

Daι. Moreover h is seminegatively curved; it follows that

- 7 ^
dz2

= 0 for 1 < v < 3.

Since we have used complex geodesic coordinates at o, thus

where V is the covariant differentiation with respect to g. By a polariza-
tion argument as in [16], we have Vh = 0 almost everywhere, and hence
h = g upon normalization. This shows that / is indeed an isometric
embedding.

To see that the embedding is totally geodesic we proceed as follows. Let
us retain the same notation for the images of a, q and D™ under / .
From

= \\σ(a,q)\\2,

where σ(α, q) is the second fundamental form for the embedding / , it
follows that σ(a, q) = 0. Again by polarization σ = 0 at f{o). Since o
is arbitrary, σ vanishes everywhere. Our proof is then completed.

3. / cannot be infinitesimally of rank 1

Throughout this section we denote by Ω{ the Type-IV domain Z)^ of
dimension 3, by Ω2 an irreducible bounded symmetric domain of rank 2,
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and by gχ (resp. g2) canonical metrics of Ωj (resp. Ω 2 ) . By Proposition
2.1 we can furthermore assume that Ω2 is not a Type-IV domain.

Let / be a proper holomorphic map from Ωj to Ω 2 . We have shown

in Proposition 1.3 that / is characteristic; i.e., df(S*o(Ωχ)) c ^ ζ ( Ω 2 ) . By

[18] one knows that ^(D™) is isomorphic to a rational curve of degree

2 embedded in ΨT0(DY). To obtain more information about / , we will
examine the set 2 of all rational curves of degree 2 in ^ ( Ω 2 ) . In fact

3 consists of two connected components 3χ and 32 . For each rational

curve C in 3X there exists a totally geodesic submanifold B3 such that

C c FT0(B3) c PΓ 0 (Ω 2 ). If it occurs that df(Tp(Ωχ)) e 3χJ{p) for

generic point p, we will say that / is infinitesimally of rank 1. Our task

in this section is to establish the fact that / cannot be infinitesimally of

rank 1.

Let X denote the characteristic variety of Ω 2 , X <-+ ΨN £ PΓ0(Ω2)

the first canonical embedding, and φ:Ff <^ X ^>ΨN a rational curve of

degree 2 embedded in I . It is well known (cf. [9]) that C = φ(¥ι) is

contained in a projective 2-plane Ψ2

C (uniquely determined by C), and

/: C -̂> P^ is essentially the Veronese map. Define two sets of embedded

rational curves of degree 2 in X as follows:

3fλ = {[C]: P2

C CX}, &2 = {[C]: Ψ2

C £ X}.

Since Auto(Z) extends to a subgroup of AutίP^), both 3χ and 31 are
preserved under Aut0(ΛQ-action. Moreover, we have

Proposition 3.1. Auto(X) acts transitively on 3f{ and 32 respectively.
The proof of Proposition 3.1 will be postponed until §6. Before pro-

ceeding further, we have
Lemma 3.2. Let X be a compact Hermitian symmetric space seated in

ΨN by its first canonical embedding. Suppose that H c &0{X) c WTo{X)
is a projective n-plane. Then H is the projectivized tangent space of a
projective (n+l)-plane P n + 1 contained in X.

Proof. Let V be the linear subspace of T0(X) such that ΨV = H.
Let Ω be the noncompact dual of X and set M = V Π Ω. For any
a e V, Δα = Cα Π Ω is a minimal disk, hence is totally geodesic in Ω.
Let σ denote the second fundamental form of M in Ω. Therefore we
have σ(a, α) = 0 for any a e V, and this yields σ = 0. M is then a
totally geodesic submanifold of constant holomorphic sectional curvature;
this clearly implies the lemma, q.e.d.

By the preceding lemma we can state the main result of this section:
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Proposition 3.3. In the notation as before, suppose that f: Ω{ -> Ω2 is
a proper holomorphic map. Then there exists an open set U of Ωχ such
that

for every p e U, or equivalently f cannot be infinitesimally of rank 1.
The present proof of Proposition 3.3 is achieved via the rational ex-

tension / of / . Recall that in Lemma 2.2, / was obtained in the case
where Ω{ and Ω2 are Type-IV domains. Here we are going to generalize
it to the equal rank case. By an induction argument as in § 1 it suffices to
do so in the case of rank two.

Recall (§1) that if Ω is an irreducible bounded symmetric domain of
rank two, its maximal boundary components and maximal characteristic
symmetric subspaces are isometrically isomorphic to the ball Bk with the
Poincare metric, k denoting the nullity of Ω. To prove the existence of
/ we use the following lemma.

Lemma 3.4. Let Ω be an irreducible bounded symmetric domain of
rank two and nullity k. Let B be a maximal boundary component, and
M a maximal characteristic symmetric subspace of Ω. Suppose that b is
a boundary point of Ω, which is contained in both dM and B. Let Hχ

and H2 be complex affine linear subspaces which contain B and M as
open subsets respectively. Then we have HχC\H2 = {b}.

Proof There exists a totally geodesic embedding

such that {0} x M is identified with M of Ω. Since b e dM n B and
B is a boundary component, we have

Ax{b}cB.

Working with the compact dual P1 x M (resp. X) of Δ x M (resp. Ω)
via the Harish-Chandra embedding, we have a totally geodesic embedding
of^xlinl

AxM -> Ω

1 _ 1
P1 x M -> X

with respect to some canonical metric h of X.
We are going to prove the lemma by contradiction. Assume that H{

and H2 contain a common nonzero vector ξ at b. Let η Φ 0 be a vector
contained in Tb(A x {b}) c Tb(Hx). The compact dual P* of B contains
Hλ and is totally geodesic in X. Hence



RIGIDITY OF PROPER HOLOMORPHIC MAPS 135

On the other hand, with respect to the product metric g of P1 x M one
has

Rζ-ξηTj(¥lxM,g) = 0.

Since (P1 x M, g) is totally geodesic in (X, h), the contradiction is
reached. The proof of the lemma is now completed, q.e.d.

We proceed to prove the existence of the rational extension / .
Lemma 3.5. Let f: Ωχ —• Ω2 be a proper holomorphic map from the

3-dimensional Type-TV domain Ωχ to an irreducible bounded symmetric
domain Ω2 of rank two. Denote by Xχ and X2 the compact Hermitian
symmetric spaces dual to Ωχ and Ω2 respectively. Then there exists a
rational map f:Xχ -+ X2 which extends f via the Harish-Chandra em-
beddings Ω cΛΓ., ι = l , 2 .

Proof. The proof uses the moduli map defined as follows. Denote
by Jtχ the set of all minimal disks of Ωχ, and by JK χ the set of all
minimal rational curves of Xχ. One knows that Jfχ embeds in Jί χ as an
open subset. For any fixed minimal disk D of Ωχ (= D™) we have, by
Proposition 1.1 and the condition rank(Ω2) = 2, that f(D) is contained
in a characteristic symmetric subspace M of rank one. By using the
Harish-Chandra embedding M is an (complex) affine linear subdomain
of Ω 2 , and hence f(D) spans (linearly) an (complex) affine subdomain
MD of M (which is still a totally geodesic submanifold of rank 1). Let
k be the dimension of MD for a generic minimal disk D of Ωχ. Let
JK2 (resp. Λf 2) denote the set of all those Λ>dimensional totally geodesic
submanifolds of characteristic symmetric subspaces M (resp. ~M) in
Ω2 (resp. X2). Then clearly Jf2 is a complex homogeneous manifold
and embeds in Jt\ as an open subset. Define a (meromorphic) map
/*: Λfj -> Λf2 by sending [D] e Jίχ to [MD] e Jί2. Then f admits a
rational extension (in the same notation) f\Jίχ —• Jt\ by the proof of
Proposition 2.6 [20].

For generic points p e Ωχ, the subdomains

are of the same dimension, say d. Let JKd (resp. Jίd) be the set of all d-

dimensional totally geodesic submanifolds B (resp. P ) of characteristic

symmetric subspaces M (resp. compact duals M) in Ω2 (resp. in X2).

Define a (meromorphic) map / : Ωχ —• Jίd by sending p to [5^] e dίd .

We claim that / has a rational extension from Xχ to Jt'd , which will

be denoted by the same notation / . Recall that the map which arises
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from the assignment D —• MΌ admits a rational extension /*: / —> Af7,
where / denotes minimal rational curves in Λfj . Therefore, we can define
a rational map / from Xχ to Jt'd by

which clearly give the desired extension.
To obtain a rational extension of / it suffices to show that d = 0

since Jtd = Λf2 in this case. Let Δ x Δ be a bidisk in Ωj. We have that
/(Δx {0}) and /({/} xΔ) are contained in maximal characteristic symmet-
ric subspaces M and Bt respectively by Proposition 1.1. Using Lemma
3.4 we obtain

for boundary points b e dΔ, where Bb is the boundary component con-
taining b. Since f*\Jtχ —> ΛΓ2 is rational, without loss of generality we
can assume that /* is regular at {6} x Δ. Thus, for some t e A, BtnM
is just the point /({ί} x {0}) by the continuity of f*. Since those points
t where BtΓ\M is of dimension greater than zero form a subvariety V
of <5, we have proved that F Φ Δ. The proof of Lemma 3.5 is now
completed, q.e.d.

We are now ready to give a proof of Proposition 3.3.
Proof of Proposition 3.3. Suppose / is infinitesimally of rank one;

we shall derive a contradiction. By Lemma 3.5, / : Ωj —> Ω2 admits a
rational extension f:X{ —> X2 between compact duals of Ωj and Ω2.
Take a maximal boundary component B and a point b e B at which
/ is regular. From the assumption that / is infinitesimally of rank one
it follows that df{Tb{Xx)) is the tangent space of a totally geodesic P3

at f(b). Let M be a characteristic symmetric subspace of X2, which
contains P 3 . Since / is regular at b, one sees that M Π Ω2 Φ 0. Take a
bidisk Δ x Δ of Ωj with b = (1, 0). The complex curve

is therefore contained in B by the definition of boundary components (cf.
[30]). Now we have

MΠBD dfiT^X^ΠBD Tf{b)(C).

Since C is regular at f(b), MnB contains a nonzero vector. We have
reached a contradiction by Lemma 3.4. The proof of Proposition 3.3 is
now completed.
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4. Invariantly geodesic submanifolds

An intermediate step in the proof of the Main Theorem is the study of a
class of complex submanifolds, called invariantly geodesic submanifolds,
of a Hermitian symmetric space. In this section we will be interested in
finding all such complex submanifolds. Fix a compact Hermitian symmet-
ric space X = G/P and a canonical metric h . Let Ω be the noncompact
dual of X and Ω c t n + - C " c ί be the Harish-Chandra embedding.

Definition 4.1. Let M c X be a complex submanifold of X and S be
a subset of G. M is said to be an S-invariantly geodesic submanifold of
X if φ(M) is a totally geodesic submanifold of (X, h) for every φ e S,
or equivalently M is totally geodesic with respect to canonical metrics
φ*(h) for any φ e S. For simplicity by invariantly geodesic submanifolds
we mean G-invariantly geodesic submanifolds.

Example 4.2. (i) Minimal rational curves. A rational curve / of X is
minimal if / is a projective line by the first canonical embedding X <-^
ΨN. Since all minimal rational curves are totally geodesic in X and G-
action preserves the minimality, minimal rational curves are invariantly
geodesic submanifolds.

(ii) Characteristic symmetric subspaces. These submanifolds are defined
in [20] (cf. §1). By Proposition 1.12 of [20], and Lemma 4.4 below they
are invariantly geodesic submanifolds.

We give first of all a criterion for a complex submanifold to be invari-
antly geodesic. We will use the notation introduced in §1.

Lemma 4.3. Let M be an invariantly geodesic submanifold of X,
which contains the origin o. Then Lie brackets

[[m-,T0(M)],T0(M)]

are contained in To(M). Conversely, suppose that V c m~ is a complex
linear space such that

[[m",F],F]CF.

Then V is the gangent space of an invariantly geodesic submanifold M.

Proof Part of the proof in a special case was worked out in Proposition

1.12 of [20]; for the sake of self-containedness we give a complete proof.

Suppose first of all that M is only totally geodesic. By the general theory

of symmetric spaces Λ/Πm+ is complex linear, and can be identified

with T0(M). Assume now that M is invariantly geodesic; in particular

φ{M) is totally geodesic for every φ e exp(m~) = P~ . Since the adjoint
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action of P~ is, by using [m~, m+] = tc, trivial on T0(X), one has
that φ(M) = M by the uniqueness of the totally geodesic submanifold.
We are going to prove the first half of the lemma by making use of the
fact φ(M) = M for the invariantly geodesic submanifold M and every
<peP~.

Fix η e To(M). The action of φ = exp(ξ) on the curve η(t) = tη c m+

is given by
φ(η(ή) = exp(Ad(φ) - tη) o.

To prove the first half of the lemma it suffices therefore to show that the
second-order term of <p(η(ή) is [η,[ξ, η]]. Now one has for φ = exp(ξ)

by using [ t c , m~] = m~ and [m~ , m~] = 0. Hence

where γι=[ξ,η]et and γ2 = j[ξ, [ξ, η]] e m . Expanding (*) out
by using the Hausdorff-Campbell formula [29], we have

(*) = exp(tη) exp ί y {[η, γx + γ2]) J expi^j^ + γ2)) o + O{t3).

Since exp(m" + f) . o = o and [q, y2] = £[IJ, K, K, ill] € t c , the
second-order term is given by

ί j[η,exp ί j[η, γ2]\ o = exp ί j[η, [ξ, η]]\ o,

as claimed. The first half of the lemma is proved.
For the second half of the lemma we note first of all that the condition

that [[m~, V], V] c V a fortiori gives a Lie triple system:

[[V,V],V]CV

(cf. [11]). Hence V is the tangent space of some totally geodesic subman-
ifold M (cf. [11]). Moreover by using the Hausdorff-Campbell formula

— (Π

and exp(m +1 )-o = o as before, one sees that η(t) is contained in M
provided that [[m~, V], V] c V (since all higher-order terms are con-
tained in either V or m~ + tc). Hence φ(M) = M.

To finish the proof it suffices to show that M is AΓc-invariantly geodesic.
Fix keKc.We have

k{M) = exp(Ad(A:) V) o.
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Now Ad(k) F c m+ to show that k(M) is totally geodesic we need to
show that Ad(fc) F is a Lie triple system (cf. [11]). We have

(tt) [[ad(fc)F, ad(k)V], ad(A:)F] = ad(fc)[[F, ad(Oad(fc)K], Π

But

The condition [[m~ , F ] , F] C F then yields that (tt) is contained in
ad(fc)F. The proof of the lemma is now completed, q.e.d.

As a consequence we have
Lemma 4.4. If M is invariant geodesic, then φ(M n Cπ) Π C" is a

complex affine linear subspace for φ e G. Conversely if φ(M Π C ^ Π C "
is complex affine linear for all φ e P~ , then M is invariantly geodesic.

Proof Assume that o e M. If M is invariantly geodesic, then as seen
in Lemma 5.3 φ{M ΠCn) = M for every φ e P~ and is complex linear.
Since Kc acts on Cn = m+ as linear transformations and P + = exp(m+)
acts as Euclidean translations, φ(M Γ\Cn) is complex affine linear for
φ e P+ - Kc P~ . The general theory of symmetric spaces ensures that
P + K€ P~ is an open dense subset of G the first assertion follows.

Conversely suppose that φ(Mf\Cn) is complex linear for every φ e P~
in particular M Γ\Cn is linear. Since dφ(0) = id for every φ e P~ , by
linearity one has φ(M) = M. The proof of Lemma 4.3 then gives

llm~,V]9V]CV;

this in turn implies that M is invariantly geodesic by the same lemma.
Using a result of Mok [18] we now prove the following proposition,

which is essential for us to find invariantly geodesic submanifolds.
Proposition 4.5. Let M be an invariantly geodesic submanifold of X.

Then (i) any minimal rational curve of M is also a minimal rational curve
of X, and consequently S^0{M) c^0(X); (ii) <9"0(M) is an invariantly
geodesic submanifold of <S?0(X)

Proof Let / be a minimal rational curve of M. From the invariant
geodesy of M in X it follows that / is also invariantly geodesic in X,
and we conclude that / is a minimal rational curve of X (cf. Propositon
3.4 of [27]). For the second assertion one knows that T[a](^0(X)) can be
identified with ^ for a fixed [a] e ^O{X) see §1. Fix a canonical metric
g of X g induces a Study-Fubini metric g0 on ΨT0(X). A result of
Mok (the remark on p. 249 of [18]) tells us that
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for η e ^ via the identification: T[a]{^o(X)) « &a . Suppose now that

M is totally geodesic with S?0(M) c<9*0{X). Then from

RηmW > S\M) =

and (*) we have

showing that σ(f/, */) = 0, where σ is the second fundamental form of
&0{M) in SPQ{X). Hence σ = 0, and <2*0(M) is totally geodesic in
<5"0(X). Assume now that M is invariantly geodesic. Then we conclude
that ^0{M) is totally geodesic with respect to these canonical metric g0 's
of S*0(X). Since Kc/ center ^ Auto(<5^(X)), g0 's exhaust all canonical
metrics of S?0(X) the second assertion follows.

Next we are going to determine all invariantly geodesic submanifolds.
Proposition 4,6. Let S be an invariantly geodesic submanίfold of

S"0(X). Then there exists an invariantly geodesic submanifold M of X
such that ,9?

0(M) = S.
Proof. We shall prove the proposition case by case.
(i) X = G(n,m); S?0{X) s P*" 1 x P" 1" 1 (assume m>n).

The invariantly geodesic submanifolds of Fn~ι x ψm~ι are embeddings

where i j : P7""1 -^ P^"1 and i 2 : P 2 " 1 -> Fm~ι are linearly embeddings (cf.
Proposition 3.4 of [27]). Then a natural embedding

has P r ι x P5 ι as characteristic variety. Precisely, the embedding is
defined as follows. G(n, m) has Lie algebra m~ and m+ consisting of
(m + n) x (m + ή) matrices of the following type:

m~ =

where B (resp. C) is a n x m (resp. m x ή) matrix. Consider the
following subspaces of m~ and m+ , respectively:

where 5 ' (resp. C7) is any nxm (resp. mxn) matrix with last (n - r)
rows and (m-s) columns (resp. (m-s) rows and (n-r) columns) being
zero. Clearly m/+ gives rise to a totally geodesic submanifold isomorphic
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to G(r, s). A simple verification shows that [[m~ , m'+], m'+] C m/+

hence G(r, s) is also invariantly geodesic in G(n, m) by Lemma 4.3.
All invariantly geodesic submanifolds containing o are thus ΛΓ-orbits
(isotropy subgroups of isometries of X) of submanifolds j : G(r, s) «-•
G{n, m), 1 <r <n, 1 < s < ra, as described above.

(ii) X = Gι\n, n) S"0{X) a G(2, * - 2).
The invariantly geodesic submanifolds 5 of G(2, n — 2) are given in

case (i). Hence

5 f ^ P 5 , 5 < « - 2 , or S&G{2,s),2<s<n-2.

In case 5 = P5, by Lemma 3.2 there exists an invariantly geodesic sub-
manifold Fs+1 such that Γ0(P5+1) = P5. In case S<=*G(2,s),a standard
embedding j : Gn(s + 2, s + 2) —> Gπ(«, «) defined analogously as in case
(i) will do the job. All invariantly geodesic submanifolds containing o are
then AT-orbits of the representative described above.

(iii) X = Gιι\n, n) 3>0{X) s &n~x.
As before representatives of invariantly geodesic submanifolds in this

case are the natural embeddings: Gm(m, m) «-> Gm(n, ή), m <n .
1(iv) X = 0* ^

We start with invariantly geodesic submanifolds of Q2 = P1 xP 1 . Those
are of the forms P1 x {pt} or {pt} x P1 and are minimal rational curves
of P1 x P 1 . Thus by using S*0(Qn) * Qn~2 [18], induction and Lemma
3.2, all invariantly geodesic submanifolds M of Qn are of rank 1 and are
projective linear by the embedding M «-> Qn <^ P"+ 1.

(v) X s £6/spin(l) x Sι S%(X) s Gπ(5, 5).

By (ii) invariantly geodesic submanifolds of Gιι(5, 5) are either projec-
tive linear in VTQ{X) or isomorphic to Gπ(4, 4) 2 (26 (note Gπ(3, 3) 2
P 3 , Gπ(2, 2) £ P1). By Lemma 3.2 we are left with finding an invariantly
geodesic submanifold M of X such that S?0{M) = Q6. An easy way to
see this is the following.

By the classification theory, the maximal boundary components of the
irreducible bounded symmetric domain Ω' of exceptional type EΊ are

IV

isomorphic to Z>10 , cf. [30]. One then knows (cf. §1) that maximal char-
acteristic symmetric subspaces N of Ω' are isomorphic to D1^. By Ex-
ample 4.2 (ii), characteristic symmetric subspaces are invariantly geodesic,
and hence ^0{N) = Q* is invariantly geodesic in ^ ( Ω 7 ) by Proposition
4.5. By the classification of characteristic varieties [18] ̂ ( Ω 7 ) = X =

2?6/spin(l) x Sι. Thus taking M to be.^(JV) does the job.



142 I-HSUN TSAI

(vi) X = EΊ/E6 x Sι &0{X) ^ EJ spin(lθ) x Sι.
From case (v) it follows that invariantly geodesic submanifolds of X are

either of rank 1 or maximal characteristic symmetric subspaces isomorphic

t o e 1 0 .
We have completed the list of all invariantly geodesic submanifolds;

Proposition 4.6 is proved, q.e.d.
Remark. One can see by the construction above that AΓ-orbits (=iso-

tropy subgroup of isometries of X) are the same as P-orbits on the set of
all invariantly geodesic submanifolds containing o.

As a corollary to the proof of Proposition 4.6, together with Proposition
3.1, one has

Corollary 4.7. Let X be an irreducible compact Hermitian symmetric
space of rank 2. Suppose that X ψ Qn . Then any rational curve / of
degree 2 in ΨT0{X) with [/] e 3f2(<9"0(X)) is the characteristic variety of a
submanifold N isomoprhic to Q3. N is not invariantly geodesic, while it is
totally geodesic with respect to some canonical metric of X. Moreover N is
contained in an invariantly geodesic submanifold M {uniquely determined
by N) isomoprhic to a hyperquadric.

Proof In fact we have the following list from the proof of Proposition
4.6:

(i) X^G{2,n), M*QΛ;

(iii) X s E6/ Spin(lO) x Sι, M 3 Q*.

5. Integrability of the distribution y -• Ty(Q").

Proof of the Main Theorem

We will derive the Main Theorem from the following proposition.

Proposition 5.1. Let U be an open subset of Q3 and X ψ Qn be an
irreducible compact Hermitian symmetric space of rank 2. Let f:U->X
be a nondegenerate holomorphic map. Suppose that f is characteristic
and that f is not infinitesimally of rank 1 (§3). Then f(U) is contained
in some invariantly geodesic submanifold M {of rank 2). In fact M is
isomorphic to a hyperquadric.

Assuming Proposition 5.1 we can prove the Main Theorem.
Proof of the Main Theorem. We first assume that Ω2 is irreducible.

By the same proof as Proposition 2.1 it suffices to show that / maps
minimal disks of Ωj to minimal disks of Ω 2 . The isometry group Go

of Ωj acts transitively on the set of minimal disks. By Corollary 4.7
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Ωj contains a totally geodesic submanifold M isomorphic to D™ with
<5^(DY) C ̂ ( Ω J ) thus any minimal disk of Ω{ is contained in some M
as such. By Proposition 5.1 and Proposition 2.1 it follows that minimal
disks are mapped to minimal disks. The Main Theorem is now proved
under the assumption that Ω2 is irreducible.

To complete the proof of the Main Theorem we are going to show that
Ω2 cannot be reducible. Suppose otherwise. Without loss of generality we
can assume that Ω2 = Ω2 x Ω2 , where Q[, Ω2 are irreducible. For such
reducible bounded symmetric domains as Ω2, the boundary components
(resp. characteristic symmetric subspaces) are of the form: C' x C" (resp.
D'XD") , where C' and C" (resp. D1 and D") are boundary components
(resp. characteristic symmetric subspaces) of Ω2 and Ω2 respectively.
One then sees that in the reducible case the analogous results as in § 1 can
also be obtained. It follows that / is characteristic. But ^ ( Ω 2 ) is a
disjoint union of ^ ( Ω 2 ) and <5ζ(Ω2). It follows that df(^(Ω{)) is
contained in either J^(Ω2) or ^ ( Ω 2 ) , say ^ ( Ω 2 ) . This implies that
/(Ωj) c Ω2. But now rank(Ω2) is strictly less than rank(Ωj); this is
impossible in view of Proposition 1.2. The proof of the Main Theorem is
now completed, q.e.d.

The remainder of this section will be devoted to the proof of Proposition
5.1.

Throughout this section denote by (A) the vector space linearly spanned
by a set of vectors A. Let / and X be as stated in Proposition 5.1. Since
/ is characteristic and not infinitesimally of rank 1 by our assumption,
from Proposition 3.3 we have that

for every p eU after shrinking U if necessary. By Corollary 4.7 for each
p e U, df(T (U)) is thus contained in the tangent space at /(/?), of
a uniquely determined, invariantly geodesic submanifold Mp isomorphic
to a hyperquadric. (Mp depends on p a priori.) Our objective in this
section is to show that f(U) lies in one invariantly geodesic submanifold,
i.e., Mp 's are identical.

To start with, by using the Harish-Chandra embedding we can think of
/ as a holomorphic map from a bounded domain U c C to f(U) c Cn

with f(o) = o. By a ^-transformation of X we can assume without loss
of generality that df(T0(U)) is the tangent space of some totally geodesic
submanifold isomorphic to β 3 (Corollary 4.7), and we will henceforth
identify T0(U) with df(T0(U)). We shall deduce Proposition 5.1 from
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the following lemmas:

Lemma 5.2. In the notation as above, we have

([m-,df(T0(U))],df(T0(U))]) = T0(M0).

Lemma 5.3. In the notation as above, we have

dμdJ(o)CMo forμ,veTo(U).

Deduction of Proposition 5.1 from Lemma 5.2 and Lemma 5.3. The
idea is first of all to construct a distribution associated to / , and then by
invoking the Frobenius theorem we can conclude the proof of Proposition
5.1 with Lemma 5.2 and Lemma 5.3. We proceed as follows.

Let X = G/P = Gc/K be an irreducible compact Hermitian symmetric
space, and M an invariantly geodesic submanifold of X. We know that
the (?c-orbit of M is identical with the G-orbit of M (by the remark
after Proposition 4.6). Denote this orbit by Jί. Then Jt is a compact
complex manifold. Write GrAm, T (X)) for the Grassmannian of m-
planes seated in Tp(X) and set

Gr(m, T(X)) = \J Grp(m, Tp(X)).
pex

For an m-plane H c Tp(X) we denote by [H] the point in Gr^ra, Tp{X))
b &Jί f G(T{X)) i d M

p ^ p

it defines. Define a subset &Jί of Gr(m, T{X)) associated to M to be

MZJt

is a compact complex submanifold of Gr(m, T(X)). Define a lifting
M for M e Jί by sending x € M to [Tχ{M)] e ^J?. Since M's are
totally geodesic, M is disjoint from M2 if M2 Φ Af2, and hence K #
is foliated by M 's. Write & for this holomoφhic foliation. «S# can
now be regarded as a "universal family" of M 's over the orbit-space Jf.
Define a lifted map / : Ό -> S # for / by sending x to [Tf{χ)(Mχ)].

To prove Proposition 5.1 is then equivalent to proving that f(U) lies
in one single leaf. Think of the leaves of ^ as integral manifolds of
a distribution T(&~) then by the Frobenius theorem it comes down to
showing that T(f(U)) constitute a subdistribution of T(&). By using
the Harish-Chandra embedding M is complex linear in m+ = Cn and we
can identify T(M) c Γ(^) with T(M), and therefore with M, too.

To show that T(f(U)) constitute a subdistribution, without loss of
generality, it suffices to show that

x]{o) C TO(MO).
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By Lemma 5.2, Tf{χ)(Mχ) is linearly spanned by

Hence for w eTo(U),

W ( * ) M J ( o ) £ <βw[[m"> Oμf(x)]9 dj{x)])

By Lemma 5.3 we have

dμdj(o) c Γ0(Λ/0).

Hence,

Ko) C ([[m-, T0(M0)}, T0{M0)})

where the second inclusion is due to Lemma 4.3 since MQ is invariantly
geodesic; Proposition 5.1 follows, q.e.d.

Now we prove Lemma 5.2.
Proof of Lemma 5.2. It suffices to prove the following (stronger) state-

ment:

(*) For Qn , fix [α] € ^o(Q
n), and ζ e J^ ( s e e § 1 for the def-

inition of JT); set V = CaΘCζ. Then ([[m~ , V], V]) =
n

We divide the proof into two steps:
(i) π = 4.
We use the identification /)" S D I ( 2 , 2). TO(D\2, 2)) is the set of

all 2 x 2 matrices. From the structure of Lie algebra α3 one knows that
there are four noncompact positive roots γ.j (1 < /, j < 2) with root
vectors eγ corresponding to E.j% 2 x 2 matrices with (/, j) entry 1
and 0 elsewhere. Let

a = [ θ θ j = ^ π a n d ζ = { θ l J = V
Then a direct verification shows

establishing (*) for n = 4.
(ii) n > 5.
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The proof is based on (i). Write Qn = GJK, and then S^(β") =
K/Ka . Recall from §1 that

since jVa = Cζa in the case of hyperquadrics, and that

When n > 5, ^ ( Q n ) = <2"~2 is Hermitian symmetric and irreducible,
one can consider the characteristic variety of <9p

0(Qn) at [a]:

and the linear span

by the irreducibility. To prove the lemma it suffices therefore to show

Cα + Cζ + <[m" , a], ζ) D <9>[a](<9>0(Qn)).

Note first of all that there exists a totally geodesic embedding Q4 -̂> Qn

with ^ ( Q 4 ) C ^0(Qn). Assume furthermore that T0{Q4) DCa + Cζ.
Denote the transform ka Q4 by Afα for some ka e Ka. To(Ma) con-
tains Cα -I-Cζ (since CAd(ka) -a = Ca and ka is an isometry, we have
CAd(ka) C = Cζ as well), and therefore by (i) for n = 4 we are reduced
to showing

Now S"o(Q4) <-> ̂ ( Q " ) ̂  PΓ0(β") contains a projecting line / which
passes through [a]. More precisely in the notation of (i)

is a projection line contained in ^(Q4) since one can easily see that

Thus

Since Ka acts transitively on ^?

[a](<9p

0(Qn)) and FΓ[α](/) is identified

with [eγ ] G PΓ0(β ), our assertion follows and the lemma is proved,

q.e.d.
We turn now to
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Proof of Lemma 5.3. / is characteristic; thus [daf(x)] £ S?f{χ){X) for

[a] e ^ ( β 3 ) . Note that in the following we have used Harish-Chandra

embeddings so that {^(<2 3)} p 6 C3 and {<5*p(X)}p€C« are parallel in the
sense of Euclidean geometry [16], Hence we have

dβdJ(o)eT[a](^o(X)) fornnyβeTo(Q3).

Suppose furthermore that [β] e ̂ 0{Q3). Then,

dβdj{o) = dadβf(o) e T[

By identifying ^ with T[a](^0{X)) (§1) we have

if [α], [β] E <S?0{Q ) . In the case of quadrics Qn it is known that if
[a] e <9>0{Qn), then JKa is of dimension 1 and [yΓ\ e &0{Qn) [18]. We
assert

Lemma 5.4. In the notation as above, there exists some [a] e
such that

CM

for ζa

Assuming Lemma 5.4, we continue with the proof of Lemma 5.3. Let
aQ and ζ0 be the vectors satisfying Lemma 5.4. By using the polarization
[16] it suffices to show

dadζf(o) c T0(M)

for any [a] e <9*O(Q3) and ζ eJ^iQ3). By the previous discussion we are
reduced to showing that

for a, ζ as above. Now

and therefore /(£/) has the same tangent space as a totally geodesic sub-
manifold N (= Q3) does at o (up to ^-transformations; see Corol-
lary 4.7). Since dfo(S^o(U)) = S^0{N), one can then find an isometry
k of N fixing o such that k a0 — a by using the transitivity. Since

3) = dimy^o(Q3) = 1, one has also k ζQ = ζ. Therefore,

/ , n/ κ =k-βf nfc ^ ck-T(M).
/c α 0 K ς 0 α 0 ς 0 o v
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Now k extends to an isometry of M D N we have k - M = M. The
assertion follows, and hence Lemma 5.3 is proved, q.e.d.

The remainder of this section will be devoted to the proof of Lemma
5.4.

Proof of Lemma 5.4. We shall prove the lemma case by case. The
problems being local, we can work with the noncompact dual Ω of X.

Case (i). Ω = Dι(2, n); M*Σζ.

Let i: D™ 3 Dι(2, 2) ^ Dι(2, ή) be the embedding such that

T0(Dι(2, 2) = {B = (bu) € M(2, n C) = ^ ( ^ ( 2 , *)): btJ = 0 for j > 3},

and j : D™ «-• D ^ be the embedding such that

TO(D?) = { ΰ e T0(Dl(2, 2)): 'JB = 5 } .

Then i, 7 are totally geodesic embeddings and are characteristic. Now let

By using the curvature formula [18]:

for X, r € T0(Dι(2, ή)), one sees that

c (S ?)

where (*) denotes constants. Hence

* 0 •••
0 0 ...

as claimed.
Case (ii). D - J£>π(5, 5) M 3 2>*v.
We have

T0{Dll{5, 5)) = {B € M(5, 5 C) = ^ ( ^ ( S , 5)): ιB = - 5 } ,

and

j ί i ) 1 ^ , 4)) = {B = (fty) G ̂ ( / ^ ( S , 5)): bi5 = A5ί = 0, 1 < ί < 5}.
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Let

then
••(

0 -1

By using the curvature formula as in case (i), one has

0
- C , - C 2

and

C, 0 - C 3

C2 C3 0

0 - C 4 0 0 - C 5

c 40
0

^ 5

0
0
0

c6

0
0
0
0

0
0
0
0

-c
0
0
0

where C, 's (1 < i < 6) are constants. Hence,

ί c ro(z>n(4, 4)).

Case (iii). Ω = £ 6 / spin(lθ) x 5 1 M £ Z)JV.
To prove the lemma in this case we are going to write down explicitly

an invariantly geodesic submanifold isomorphic to Q*. The existence of
such a Q8 (or D™) is guaranteed by the proof of Proposition 4.6. We
shall make use of Lemma 5.2 to do the job.

To start with, the root system associated to E6 is listed as follows (cf.
[Z]):

simple roots:

positive roots:
Xi-Xi+i>l<i<5'>X4 + x5 + x6

Xt - Xjr , 1 < ϊ < j < 6 X, + Xjr + J

ί = l

positive noncompact roots: x t - xJf, 2 < i < 6 xχ + Λ:̂  + Xj,

2 < i < j < 6

maximal strongly orthogonal

noncompact positive roots: xx - x2 xx + x 2 + *3
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Without loss of generality we assume

By the proof of Lemma 5.2, we have

Since β 8 is invariantly geodesic, using Lemma 4.1 we obtain

([[m~(£ 6),α], ζ])C To{Q*).

Now m~(Q8) c m~(E6) the above then yields

(*) Cα + Cζ + ([πΓ(E6), α] , ζ]} = T0{Q%).

We are going to find TO(QS) by using (*). To do this we have to
calculate

In the following by Vλ~V2 we mean CFj =CV2. We have

since -(xι-x3)+(xι-x2) = x3-x2 isarootand (x3-x2)+{xι+x2+x3) =
2x3 + xχ is not a root by the preceding list of roots. Likewise, we have:

[le-ix x χ)>eχ - x ] > e χ x x 1 ~ e

x -x ' 4 < / < 6

for η being the following vectors:

p-ix , v , v P e_(x +xΛ2<j< 6) and e_( (j = 5, 6).

Hence we conclude that To(Q ) is linearly spanned by the following vec-
tors:

β _ , e _ , e ,

P P
xx— x5 ' x

Next we want to show that

or equivalently
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By the classification of boundary components, the maximal boundary com-
ponents of Ω = Eβ I spin(lθ) xSι are isomorphic to B 5. Hence dim./Γ =

f~β]f= 5 by Proposition 1.8 of [20]. Now Ra-βj = \\[a9 ~β]f so that

if and only if

By a direct verification, we have

Λf = (p p p p p \
, . a \ xχ+x2+x3 ' xχ+x2+x4 ' xχ+x2+x5 ' x{+x2+x6 ' xι+x2+x3+x4+x5-\-x6' '

Af — I \

In view of (*), (**) and the root system for E6 , we obtain that

proving the desired. The proof of Lemma 5.4 is now completed.

6. Proof of Proposition 3.1

We will prove Proposition 3.1 in this section. Our proof is based on
a case-by-case examination. Let Ω ψ DlY be an irreducible bounded
symmetric domain of rank 2. Then Ω is biholomorphic to one of the
following domains:

Dl(2,n), D Π (5,5), and DY

where DY corresponds to the exceptional Lie algebra E6. A precise de-

scription of Dι and Du domains is given as follows.

D\p, q) = {Ze M(p, q C)* Cpq: Iq - *ZZ > 0 } ,

Dι\n ,n) = {Ze Dι{n ,n):lZ = - Z } .

One has also their characteristic varieties [18]:

where G(2, 3) and Gπ(5, 5) are the compact duals of DJ(2, 3) and
Z)π(5, 5) respectively. Moreover, the inclusion map i: «S (̂Ω) <-> VTO(Ω)
is identified with the first canonical embedding of -5^(Ω) (this is true for
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all irreducible bounded symmetric domains except Type-Ill domains) [22],
[18].

Throughout this section set X = ^ ( Ω ) , and fix a bisphere P1 x P1 of
X, containing the origin o. Write φs for the composite map

where Δ is the diagonal embedding, and Cs for ^ ( P 1 ) . The proof for

X^¥ι xVn~ι uses the following lemma.

Lemma 6.1. Let φ = (φχ, φ2): P1 «-> P1 x P"" 1 «-> V2n~ι be an embed-

ded rational curve of degree 2 in ψln~ι. Then either

(i) ? j 6 Aut(P*) α«rf ^ 2 is a projective linear embedding or

(ii) φχ is a constant map and φ2(fl) is an embedded rational curve

of degree 2 in Ψn~ι.

Proof Let H denote the hyperplane line bundle on projective spaces.

The map i: S?χ (Ω) —> PΓ(Ω) is in fact the Segre map given by the com-

plete linear system of the line bundle π\H®π\H on P1 x Fn~ι [18], [9].

By the assumption that ^(P1) is of degree 2, one has

If dχ = deg(H\πMFi))) = 1 and d2 = deg(i/|π 2^ ( p I ) )) = 1, then (i)

occurs. If dx = 0 and d2 = 2, then (ii) occurs. The case where dx = 2

and d2 = 0 cannot occur since otherwise φ would be ramified. Hence

the proof is completed.

Now each F2

C c X £ P1 x P*"1 is of the form {pt}x a projective 2-

plane. Clearly Auto(Z) acts transitively on the set of those P c ' s contained

in X so does Auto(P^) c Auto(JQ on the set of all rational curves of

degree 2 in F2

C. The transitivity of the Aut0(X)-action on 3fχ follows;

so does it on 22 from the lemma. Hence Proposition 3.1 in the case

I ^ ^ x P " " 1 is proved.
To prove Proposition 3.1 in the remaining cases we start with
Lemma 6.2. Let X be an irreducible compact Hermitian symmetric

space and C be an embedded rational curve of degree 2 such that [C] e
32. Then P(Γ(C)) Π^(X) = 0 .

Proof Suppose otherwise. Fix [υ] e FTO(C)Π^O(X). Then we can

find a minimal rational curve / of X such that To(/) = Cv . Since X is

seated in some P^ via its first canonical embedding and F2

C is projective

linear in P^, it follows that / is a projective line in FN and is therefore



RIGIDITY OF PROPER HOLOMORPHIC MAPS 153

contained in Ψ2

C. Since Cφl, deg(p£, ΠX)> deg(C U / ) > 3. On the

other hand considering Cs, we have P^,nI = C ί . Hence deg(P^ nX) =

2. This is a contradiction unless Ϋ2

C c X. This again violates the choice
of C the lemma is proved.

Proof of Proposition 3.1 in the case X ^ (7(2, 3) <-+ P 9. To facilitate
the proof we work with the noncompact dual

By the preceding lemma and the polydisk theorem (cf. [30]) we can assume
without loss of generality that

φ(0) = o,

for the rational curve φ: P1 «-» G(2, 3) of degree 2. Suppose

l
where the φ.9 1 < i < 6, are rational functions. We claim first of all that

One knows that the first canonical embedding of the Grassmannian
G(n, m) is just its Plϋcker embedding. Under the Plϋcker embedding
the point

Γan al2 al3

is mapped to the point in P9 with coordinates given by determinants of
all 2 x 2 submatrices of the following matrix [9]:

au al2 α1 3 1 0
a2ι a22 a23 0 1

Let Δ be the least common denominator of the (inhomogeneous) coordi-
nate-functions of φ by the Plϋcker embedding. Since C = φ(V{) is of
degree 2 in P 9 , one has that the degree of Δ must be less than or equal to
two. Since the functions φ5 and φ6 are still coordinate-functions under
Plϋcker embedding, by using the condition on φ(0) and dφ(0) we can
set

at2

 A bt2

φ - = — and φ, = — ,
-> Δ Δ

for some a, b eC. We have to show that a = b = 0. Suppose otherwise.
Write

_ t I .
1 A ι' ~~ ~
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Then from the assumption on dφ(Q) it follows that

is not identically zero; hence neither is

i Vi

Thus, without loss of generality we assume

9i ί

<P6

is not identically zero. But

By the Plϋcker embedding

φχ a

<P5

9*

should be a polynomial of degree < 2 . From the assumption that φ(0)

0, we have

Hence

Δ

must be a polynomial. This will contradict the condition that (*) is a

polynomial of degree < 2 unless

9\ a
φ'i b

= o,

again a contradiction to our choice that

Our claim: φ5 = φ6 = 0 is now proved.

Next we are going to find age Auto((?(2, 3)) such that g(C) = Cs

As before
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is one of the coordinate-functions of φ by the Plϋcker embedding; the
φ\ 's can therefore only be linear functions. We claim that

-φ'3 -φ'\<P3 V

Assuming the claim (fl), write

-φ'2 = Cι2t, φ\ = C22t+l,

and define g e exp(m~) to be the element such that

λ - i

where
f c c

C=\ C,
0 0

and Z is any 2 x 3 matrix. Then a direct computation by using φ5 =
φ6 = 0 shows that g(Cs) = C,

(note that Cs = φs(Fl), φs(t) = [ j ° ^]) ,

proving the proposition. To see (D), note that

Ψι Ψ4 Δ :

As in the first half of the proof

Δ

r
Δ 5

<P2

is a polynomial of degree < 2. This yields, since t \ Δ as before, that
Δ = Cδ for some constant C. The normalization on φ(0) and dφ(0)
gives C = 1. Hence,

- 1 >

Substituting

(

into the right-hand side of the above equality proves the claim (ft). The
proof of Proposition 3.1 in the case X = G(2, 3) is now completed.
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We turn now to the proof of Propositoin 3.1 in the case X = G ( 5 , 5 ) .
The proof is analogous to the previous case. We work with the noncompact
dual Z>π(5, 5) . As described in the beginning of this section, Da(5, 5) is
an open subset of the space of all 5 x 5 antisymmetric matrices over C.
Moreover a typical characteristic vector

rθ -
1 0

0

0

0
eT(Du(5,5))

is o f rank 2. Conversely any rank two, 5 x 5 antisymmetric matrix is a
characteristic vector [18]. Define φ : P 1 <->• Gn(5, 5) to be

Ψ,(t) =

ΓO -t

0

0

t

0

0 - /
t 0

0 OJ

Normalize φ: P1 <—> Gn(5, 5) in such a way that φ(Q) = 0 and dφ(0) =
dφs(0). Let φ^ be coordinate-functions of φ, 1 < ί, j < 5. Clearly
Proposition 3.1 in this case will follow from the following two lemmas.

Lemma 6.3. φi5 = -φ5i = 0, 1 < / < 5. Consequently φ(C) c

Gn(4,4)2έQ6.

Lemma 6.4. Suppose C, and C2 are rational curves of degree 2 in

Q", n>4, such that ¥2

C <£ Q" (i = 1,2). Then g{Cχ) = C2 for some
geAuto(Qn).

Proof of Lemma 6.3. Our proof is to make use of the composite map

j

Gιι(5,5) N •(ϊ)-'
where the first map is the inclusion and the second map is the Plucker
embedding. One sees that a minimal rational curve / of Gπ(5, 5) (which
homologically generates H2(Gιι(5, 5), Z) cf. §1) is mapped by j to
a rational curve of degree 2 in P^; j is in fact the second canonical
embedding of Gιι(5, 5). Thus C = φ(Pι) is a rational curve of degree 4
in P^. As the proof of the lemma is similar to that in the previous case,
we give only a sketch.

Let Δ be the least common denominator of inhomogeneous coordinate-
functions of φ by j . The normalization condition on φ(0) and dφ(0)
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gives
t2

φi5(5) = — a polynomial, 1 < i < 4.

Suppose that φi5(t) φ 0 for some i > 4 {φS5(t) = 0 always). By using
the normalization on φ(0) and dφ(0) we can replace some column of
the matrix ( ^ ( 0 ) K , - 7<4 ^y (ί^5(0)i<, <4 so that the determinant of the
resulting matrix (Φij(t))ι<i J<4 is not identically zero. Now by normal-
ization one has

where ψ.. are polynomials. Thus the determinant of (φjΛt)) is equal to

A

for some polynomial P(t) φ 0. We are going to deduce a contradiction.
|(0. ;)| can be seen to be one of coordinate-functions by 7; thus Δ K .̂.)! =

(ί5/Δ3) P(t) must be a polynomial of degree less than or equal to four.
From t \ Δ, it follows that

must be a polynomial of degree greater than four if P(t) φ 0. Hence our
assertion that φiS{t) = 0, 1 < i < 4, follows.

Proof of Lemma 6.4. The lemma is true for n = 4 as shown in the
proof of the case X = G(2, 3). For n > 5 it suffices to find some χ e
Auto(QΛ) such that #(C.) c Qn~ι for some totally geodesic submanifold
Qn~ι. Then, from A\xto(Qn~ι) c Auto(Qn) and induction the lemma
follows.

Let φ: P1 ^> Qn be either of the rational curves stated in the lemma,
and Cs be the curve as before. Qn is isomoprhic to a hypersurface in
Ψn+ι defined by

Let Q"~ι c Q" be defined by

i=2

One can see that Qn~x is totally geodesic in Qn . Let φ{ (0 < / < n + 1)

be the coordinate-functions of φ: P1 «-• β" ^ Pπ + 1 Assume that p(0) =
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(1, 0, , 0). ^(P1) being of degree 2, then φ. 's can be chosen to be
polynomials of degree less than or equal to two. Write

φ. = att Λ-bj, 1 < i < n,

by the normalization of φ(0). We claim that there exist constants e .'s e
C, I <j <n, such that

n n

Ξ 0 and ^ 2

Granting the claim we can then find constants e^'s £ C, 2 < / < n,

1 < 7 < /ί, together with ^ = e such that the map χ defined by

sending

7=1

preserves the quadratic form

Define ^eAut(P n + 1) by

Then clearly χ e Aut o(Qw). By the construction of χ , we have χ{C) c

Qn~ι, and the proof is then finished.
We turn now to the proof of the claim (*). Actually we will take e. 's

from R. Recall that φi = att
2 + btt for 1 <i<n. The condition

7=1

is equivalent to

7=1 7=1

If βj's e R, by separating the real parts and imaginary parts of the above
system we get an equivalent system of four linear equations over R. Since
n > 5, the system has a nontrivial solution e^s e R. By normalizing e. 's,
the condition

n

Σ ί-'
7=1
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can also be satisfied. The proof of Lemma 6.4 and the proof of Proposition
3.1 are now completed.

Remark. Lemma 6.4 is also true for n = 3 as can be seen from the
proof in which X = G{2, 3) by using the (totally geodesic) embedding

i(D™) = {Ze Dτ{29 2): *Z = Z}.

Then the construction of g such that g(C) = Cs shows that g e Aut(β3)

if C c β 3 .
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