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QUASI-SPHERICAL METRICS AND
PRESCRIBED SCALAR CURVATURE

ROBERT BARTNIK

Abstract

We describe a construction for metrics of prescribed scalar curvature on
S2 xR, based on a quasi-spherical coordinate condition. The construction
uses two arbitrary functions and requires the solution of a semilinear
parabolic equation on S , with the arbitrary functions and the scalar
curvature appearing as source terms. We obtain existence results for this
equation under various geometrically natural boundary conditions, and
thereby construct some 3-metrics of interest in general relativity.

1. Introduction

Riemannian 3-manifolds with prescribed scalar curvature arise naturally
in general relativity as spacelike hypersurfaces in the underlying spacetime.
If S = (Sij) > i9 J; = 19 ''' 9 3, is the induced (Riemannian) metric on the
spacelike hypersurface M, then the scalar curvature R(g) is determined
by the extrinsic curvature (second fundamental form) K-. and the space-
time energy-momentum tensor Taβ , via the Gauss-Codazzi and Einstein
equations:

(1.1) l6πT(eo,eQ) = R(g) - \\K\\2 + (trgK)\

where e0 is the (future) timelike unit normal of the hypersurface M,

II^H2 = gιkgilKijKkl9 XτgK = glJKij, and the Einstein equations are

Gaβ := Ricα£ ~jRgaβ = %πTaβ . The main situation of physical interest

is where R(g) > 0—for example, if M is totally geodesic (K.. = 0) and

the spacetime is vacuum (Taβ = 0), then R(g) = 0, and more generally

if M is a maximal hypersurface (tr^ K = 0) and the spacetime satisfies

the weak energy condition [18], then T(e0, e0) > 0 and thus R(g) >

0. Provided M is suitably constrained (for example, by the maximal

hypersurface condition), the metric structure of (M, g) reflects that of

the ambient spacetime, and therefore it is important to understand this

structure.

Received July 24, 1991.



32 ROBERT BARTNIK

In the present paper we describe a new construction for 3-metrics of
prescribed scalar curvature, based on the assumption of a foliation by con-
stant Gauss curvature 2-spheres. We term such a foliation quasi-spherical
(QS). Assuming further that the radius function r of the foliation is a
smooth coordinate, the metric can be written in the form

(1.2) g = u2dr2 + (βιdr + 2

where u and βA, A — 1, 2, are unspecified metric components. The
significance of this coordinate condition stems from the surprising fact that
the equation for the scalar curvature R(g) can be rewritten as a semilinear
parabolic equation (see (3.3)) for u, using the standard Laplacian on S2

and with logr playing the role of "time." The functions R(g) and βA ,
-4 = 1,2, then appear in source terms for the parabolic equation.

The major part of this paper is devoted to establishing properties of the
parabolic scalar curvature equation, beginning by determining explicit size
conditions on the source functions which ensure the solution u is strictly
positive and regular. The size conditions turn out to be mild (see Theorem
3.7), thereby giving a large family of metrics (1.2) with prescribed scalar
curvature. Here, and throughout this paper, by "prescribed" we mean
R(g)(r, ϋ, φ) = RM(r, ϋ, φ), where RM e C°°(R3) is given and (r, ϋ, φ)
are identified with the standard polar coordinates on R 3 . Although the
motivating problems concern nonnegative scalar curvature functions, the
construction works equally well (if not better) with negative prescribed
scalar curvature.

We consider three types of initial condition for u, corresponding to the
geometric conditions for regularity across r = 0 (Theorem 4.3), minimal
surface boundary at r = rQ > 0 (Theorem 4.6), and prescribed (positive)
mean curvature (Theorem 3.7, Corollary 3.6). We also describe natural
decay conditions for RM and βA which ensure the metric is asymptoti-
cally flat, in the sense required for the positive mass theorem ([26], [31])
(Theorem 4.2). The existence results for complete asymptotically flat so-
lutions are collected in Theorem 4.5, and stated in terms of rectangular
rather than spherical polar coordinates on R 3 .

By choosing appropriate RM and βA , particular solutions with inter-
esting properties can be constructed. For example, requiring βA = 0 = RM

for r < 1 (and βA , RM otherwise free, subject only to the size constraints
of Theorem 3.7), we obtain a family of metrics on R3 , each containing a
region isometric with a flat ball (Corollary 4.4). If in addition we choose
RM = 0 for all r, then this metric gives totally geodesic initial data for the
vacuum Einstein equations, and the resulting maximally extended space-
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time [8] is in general not flat, but contains a region which is isometric to
a region in flat Minkowski space.

A similar idea but with black hole (minimal surface) boundary condi-
tions, leads to a family of metrics with interior region isometric to parts of
the classical Schwarzschild metric. Recall that the Schwarzschild 3-metric
is

for r > 2M, where M is a positive constant, and r = 2M is a to-
tally geodesic S2 boundary (representing the intersection of the past and
future event horizons in the Schwarzschild spacetime [18]). Choosing
βA = 0 = RM for 2M < r < 2M + 1 (say), and imposing the singu-
lar initial condition u~ι(r = 2M) = 0 leads to metrics isometric to dslchw

for 2M < r < 2M + 1.

An interesting conjecture of Penrose ([24], [19], [16]) proposes that
^5Schw ^ a s ^ e l e a s t t o t a l (ADM) mass ([1], [3]) from among all 3-metrics
of nonnegative scalar curvature and having minimal surface boundary of
a fixed area. This may be considered a generalization of the positive mass
theorem, which proves that R3 is similarly distinguished from among com-
plete 3-metrics of nonnegative scalar curvature. Support for the Penrose
conjecture is provided by the class of QS metrics having divergence-free
shear,

(1.3) divj8 = V ^ = 0,

where V^ is the covariant derivative on S2 . The divergence-free condi-

tion reduces the freedom in βA to one function of three variables, as can

be seen from the Helmholtz-Hodge decomposition on S ,

for some functions fχ9 f2. Now div β = 0 is equivalent to fχ = const,
hence βA is determined just by f2.

Defining

(1.5)

we show under appropriate decay conditions on βA and RM (Theorem
4.2) that the total mass is given by w A D M = lim r^ o o M(r), and an easy
calculation using (3.3) and the divergence-free condition (1.3) shows

(1.6) ^-M(r) = ̂ - ί \u~2 (\Vu\2 + hβ(MR,Λ + irR.
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Note that M(r) agrees with the Hawking mass [10] when div/? = 0, but
not in general. Imposing the initial condition u~ι(r0) = 0 and assuming
RM > 0 we have mKΌU > \rQ, which is exactly the Penrose inequality.
This shows the Penrose conjecture holds for the class of QS metrics with
divergence-free shear and having interior boundary totally geodesic and
isometric to r2S2 . More formally, we have

Corollary 1.1. Suppose βA and RM satisfy the conditions of Theorems

3.7, 4.2, and 4.6 on A[r , = S2 x [ro; oo), and, in addition, suppose

(1.7) Λ M ^ 0 ' div£ = 0,

and let u be the solution of (3.3) with initial condition u~l(rQ) = 0. Then
the metric (1.2) has totally geodesic boundary at r = rQ and total {ADM)
mass

mADM ^ I r 0

An important motivational application concerns the extension problem,
which was suggested by the definition of quasi-local mass in [4]. This
problem asks:

given a bounded Riemannian 3-manifold (Ω, gQ), describe
the class of complete 3-manifolds (M, g) satisfying the
conditions of the positive mass theorem (in particular,
asymptotically flat with nonnegative scalar curvature) and
containing (Ω, g0) isometrically.

If we consider this as a problem of matching M\Ω with Ω across
Σ = d(M\Ω), then the condition that the scalar curvature be defined
distributionally and bounded across Σ leads to the geometric boundary
conditions

( L 8 ) 8\τΣ = 8θWdΩ' HΣ,g = HdΩ,g0 '

where HΣ is the mean curvature of Σ in (M, g), and the unit normals
of 9Ω and Σ are chosen oriented consistently, with the normalization
giving a sphere of radius r in R3 mean curvature +2/r. The condition
that the full curvature tensor be bounded is more restrictive, implying the
boundary condition for the full second fundamental form,

We will not consider this boundary condition in the present paper. Since
the mean curvature condition translates into a Dirichlet condition for u
(2.17), we see that if (<9Ω, g0) = (S2, r\da2) and HdΩ > 0, the QS
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technique provides a large class of metrics extending (9Ω, g0). We note
that it is not possible to construct such extensions using the traditional
conformal method [8], since (1.8) generates incompatible boundary con-
ditions for the conformal factor.

The Penrose conjecture argument above applies equally well to the ex-
tension problem, for the particular case where (<9Ω, g0) = (S2, r^dσ1)
and HdΩ g = const > 0. We thereby show that the Schwarzschild exten-
sion has the least total mass from among all quasi-spherical divergence-free
shear extensions of nonnegative scalar curvature, which satisfy the mean
curvature boundary conditions (1.8). This is in accordance with the static
metric conjecture of [4], which conjectures in general that the minimum
mass extension is achieved by a metric satisfying the spacetime static met-
ric equations.

In the final section, we analyze the behavior of the QS metric as r —> oc,
for the special case βA, RM = 0 for r > r0, and describe carefully the
decay to the Schwarzschild metric (Theorem 5.1). As well as illustrating the
spherical harmonic decomposition technique, this result should be useful
in the numerical construction of initial data metrics.

The shear vector βA gives two functions of three variables to describe
a 3-metric with prescribed scalar curvature, and on heuristic grounds one
might expect that this parametrization covers an open set of such metrics
(in the space of all smooth metrics, for example). In future work we will
show that this expectation is justified, by showing that the set of metrics
admitting a QS foliation contains an open set in the space of smooth
metrics, and that the local QS gauge freedom is determined by six functions
of one variable only [6].

The primary motivation for this investigation was the extension prob-
lem in the class of positive-mass metrics, which in turn arose from the
definition of quasi-local mass [4]. The idea of using a foliation by metric
2-spheres was suggested by work of P. Szekeres [29], who described a class
of dust spacetimes, generalizing the (spherically symmetric) Tolman-Bondi
spacetimes. The Szekeres spacetime metrics admit a foliation by metric
2-spheres (and the term quasi-spherical is due to him), but the metric form
in [29] uses coordinates which do not emphasize the quasi-spherical struc-
ture, and the shear vector is restricted to a 5-dimensional family of vector
fields on S2.

The idea of using a (topological) 2-sphere foliation to describe the dy-
namics of the Einstein equations is well known, occurring first in the
classical work of Bondi and Sachs ([7], [25]), and more recently in the
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detailed and pioneering analysis of the global small data existence ques-
tion for the Einstein equations by Christodoulou and Klainerman [9]. In
these works the foliation is determined by the affine distance function
along null geodesies generating a foliation by null 3-surfaces.

Geometrically-based foliations of 3-dimensional Riemannian manifolds
(space-like hypersurfaces) have been used in various attempts to prove the
positive-mass theorem. Geroch ([15], [19]) showed that a global 2-sphere
foliation satisfying the (parabolic) heat flow by inverse mean curvature
leads to a proof of the positive-mass theorem, and also to the Penrose
conjecture. However, existence results for this flow have only recently
been shown in flat R3 ([14], [30]), and it seems difficult to generalize these
to nonflat metrics. Kijowski [20] showed that a foliation defined by level
sets of a solution of a ^-harmonic equation also leads to the positive-mass
theorem, and existence results were obtained by Chrusciel [11]. Again, it
is unlikely the level sets will form a smooth foliation in general metrics.

The above applications of foliations are all descriptive—starting with
a space-time (or space-like hypersurface), a foliation is imposed, in or-
der to better describe the metric. The approach taken in this paper is
instead constructive, and is most commonly considered using the confor-
mal method [8]. However, there are some problems for which the QS
technique is more suitable than the conformal method. For example, as
has already been indicated, the conformal method is not compatible with
the geometric boundary conditions, and thus cannot be used to construct
extension metrics. In numerical relativity, the elliptic equations for the
conformal factor are expensive to solve [23], and it is interesting to note
that a coordinate-based parabolic construction has been suggested, in or-
der to sidestep this difficulty ([2], [28]). Although there does not appear to
be a natural geometric description of the foliation used in [2], the related
"polar" time gauge is also closely related to the quasi-spherical foliation
condition [5].

I would like to thank the Centre for Mathematical Analysis for its stead-
fast support of the work described here, and also to acknowledge numerous
helpful discussions with Piotr Chrusciel.

2. Curvature calculations

Let (M, g) be a Riemannian 3-manifold, with foliation function r e
C°°{M). This means dr φθ and the level sets

(2.1) Sr = {peM:r(p) = r}
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form a C°° foliation of M. We say r determines a quasi-spherical foli-
ation if r is positive and

(2.2) (Sr,g\s)*(S2,r2dσ2),

where dσ2 = σ2 + σ\ = Σ σA * s t ' i e standard metric on the unit 2-sphere

S2. We construct quasi-spherical coordinates

(2.3) (r,ϋ):M^IxS2, 7cR+,

as follows. Choose any C°° curve r ι-> c(r) transverse to the leaves Sr

and any unit vector field r \-+ v(r) along c(r) such that υ(r) is tangent
to Sr, and use c(r) and v(r) to determine an isometry (up to scaling)
Sr •=> S2—for example, use c(r) to fix the South Pole (ϋ = π in polar
coordinates) and v(r) to determine the Greenwich Meridian (φ = 0 in
polar coordinates). This defines a projection

(2.4) π:M^S2,

and angular coordinates π*(ϋ), ϋ e S2, on Λf such that

(2.5) g\TSr = r2π{dσ2)\TSr.

Following the standard abuse of notation we write ϋ for π*(ϋ), the an-
gular coordinates on M, and σA for π*(σA), the angular 1-forms on M.

Lemma 2.1. There are functions u(r,ϋ) and βA(r,ϋ), A = 1 , 2 ,
such that the metric g in the QS coordinates (r ,ϋ) on M determined by
the QS projection π: M —• S2 is

(2.6) g = u2dr2^J2(βAdr + rσA)
2.

A=\

The functions u and βA are described invariantly by

(2.7) u~2 = g(Vr, Vr), βA = -ru2σA(Vr),

where V is the covariant derivative of g, and Vr is the gradient vector.

Proof Since (dr, σA) are linearly independent in T*M, from (2.5) we

have g = r2 dσ2+dr (something), and the form (2.6) arises by expanding

something = 2rβAσA + {u2 + β2)dr, where β2 = β\ + β\ (note w2 > 0
since g is Riemannian). The formulae (2.7) follow from

(2.8) Vr

where vA e TSr, ̂ 4 = 1, 2, is the frame dual to {σA} . q.e.d.
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The coframe

(2.9) ΘA = βAdr + rσA, , 4 = 1 , 2 , Θ3

satisfies g = θ2 + θ\ + θ\, and has dual frame

(2.10) eA = r~lvA , A =1,2, e3 = u~\dr- r~lβAvA),

where {vA} is a frame tangent to Sr and dual to {σA}, hence eA are
tangent to Sr.

Since the calculations to follow are most naturally expressed in terms
of the geometry of the standard *S2 , we adopt the conventions that tensor
indices A, B, refer to the vectors {vA} , while indices A, B, refer
to the £-orthonormal vectors eA = r~ιυA so, for example

KAB = K^A . eB) = r~2KAB = Γ2K(vA , vB).

To avoid ambiguity about the metric used to raise indices, and thereby
emphasize that the indices A, B, refer to the 5f2-orthonormal frame
vχ, v2 , all indices will be written lowered. Geometrically, the calculation
of the curvature of g will be expressed in terms of the product metric
da1 + dr2 and derivatives rdr and V on S2 x R+ . For some purposes
it is also useful to present calculations in terms of rectangular coordinates
on R 3 , as described in §4.

We denote the connection of the metric g by V and the connection
matrix by ωtj = g(ei, Ve •), i, j = 1, , 3. The connection of the

metric dσ on the level set Sr is denoted V, with connection matrix
TAB '

TAB =

The structure equations of dσ (pulled back by π from S ) are

(2.11) dσA = -τABσB, FAB = dτAB + τACτCB,

where

(2.12) STAB = -\^ABCDσcσD = Γ: ΓABCD{-\ΘcθD + u~lβDθcθ3),

and ^ABCD = $AD^BC ~ ^AC^BD ^s ^ e C U Γ v a t u r e tensor of S . Denoting
the index covariant derivative of dσ2 by V^ = <A, the Ricci identity
becomes (β = βAvA)

(2.13) β
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The symmetrization β^B) and antisymmetrization βtΛ\BΛ of βA,B are
defined by

β(A\B) = \WA\B + ββ\λ) ' β[A\B] = ϊ(0A\B ~ ββ\A

and we note the following consequence of the Ricci identity:

(2.14) β(A\B)C ~ P(A\C)B — β[B\C]A

It is now readily verified that

where we use the formula

(2.15) dβA = βAlBσB - βBτAB + dr(βA)dr.

The connection 1-form ω . has components

(2 16) ΛB ΛB +

°>A3 = r'lu'i((SAB

where

τAB = dσ\vΛ, VvB) = τABCσc = τABC Γι(θA - u~lβAθ3).

From (2.16) the second fundamental form 11^ and mean curvature H
of the surface Sr are given by

(2.17) HAB = -gΦeeB, e3) = r~ιu-\δAB - β(Λ]B)),

(2.18) H = r~] u~\l - divβ),

where the normalization sets H = +2/r for a sphere of radius r in R3 .
The curvature 2-forms Ω--̂  and Ω- are now found to be

A o A 5

(2.19)

2 2 (δΛC ~ β(A\C))U\B -

~ r~ U~ (δAC ~ \) \

QΛ3 = r~lχfl^β{A\B)C + (δAB ~ β(A\B))U\c\θBθC

r~2u~\δAB - βA]B)u~\rdru - βcu{c) - uu{AB + rdrβ(A[B)

~ βcβ(A\B)C + β(A\B) + β[A\C]β[B\C] ~ βC\λβC\B$BP
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from which the curvature tensor1 Rijkl is

(2 20) R^BCD = r' &ΛBCD + r~ U~ USAC ~ β(A\C))(δBD ~ β(B\D))

~ (δAD ~ β(A\D))(δBC ~ β

(2 21) RABCl = r " ^

+ (δAC ~ β(A\C))U\B ~

(2.22)

~ r~2u~2KδAB ~ β(A\B))U~\rdrU " βC

U\C> ~ UU\AB

+ Γdrβ(A\B) ~ βcβ(A\B)C + β(A\B) + β[A\C]β[B\C] ~ βc

Observe these calculations are valid more generally for an «-dimensional
manifold M" with foliation leaves (Sr,gιτs) = (Σ"" 1, r2dσ2) for

(Σ"" 1, dσ2) any closed (n - l)-manifold with metric dσ2 and curva-
ture ^AB . Metrics of this general form might be called quasi-homothetic,
since the radial vector dr generalizes the usual homothety of R3 . With
only minor modifications, the following expressions for the Ricci tensor
Ric,y = g Riklj and scalar curvature RM — g'J Ric^ also generalize.
Using the form (2.12) of 3~AB , we have
(2.23)

RiCAB = r~2u'2[(δAB ~ l ^

- uu]AB + rdrβiA]B) - βcβ(AlB)C + β(AlB)

+ (δAB - β{A\B)) d i v β + β[A\C]β(B\C) + β(A\C)β[B\C]Ί '

(2.24) Ric ί 3 = r-\-\\ - divβ)u[A + β{A{B)ulB - u(β[AmB + βA)],

(2.25)

Ric33 = r 2u 2[(2-dWβ)u \rdru - βcu^c) - uAu

+ rdr(divβ) - βc{άivβ\c + άivβ- \β{AW\2],

where divjff = βA]A , \β{Am\2 = (βiμ)
2+ 2(β{im)2+ (β2l2)

2 , and the Ricci
scalar R(g) — RM is given by
(2.26)

r 2u 2[(2-divβ)u \rdru - βcu[c) - uAu + u -

{\β\2]rdr(divβ) - βc(divβ)ιc + 2divβ - {{divβf - {\β{A]B)\
2].

ιOuτ index convention for Rijkl sets Ωtj = -
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We now make the basic observation that, by viewing u as an unknown

function and RM and βA as prescribed fields, this gives a parabolic partial

differential equation for u on R+ x S2. In the following sections we will

study the solvability of this parabolic equation and the properties of the

resulting QS metrics.

3. Existence for prescribed scalar curvature

The parabolic form of the scalar curvature equation (2.26) indicates that
metrics with prescribed scalar curvature could be constructed by specifying
the scalar curvature function RM(r, ϋ), shear vector βA(r, ϋ), and initial
condition u(r = r0) = u0, and then solving (3.3) for u. In this section
we describe conditions on βA and RM under which global existence for
the initial value problem for u can be shown (Theorem 3.4). This implies
solvability of the geometric boundary problem (1.8) for prescribed strictly
positive mean curvature and boundary isometric to r2S2 (Corollary 3.6).
Size conditions on βA and RM and the initial condition u0 e C2'a{S2)
which ensure blowup for solutions of (3.3) in finite "time" are given in
Corollary 3.5, and show that the conditions of Theorem 3.4 are of optimal
form. Somewhat stronger conditions ensure the existence of a global solu-
tion, which is constructed as the limit of solutions of initial value problems
at r = rQ, r0 I 0 (Theorem 3.7). The arguments of this section are based
on standard results from the theory of nonlinear parabolic equations, as
described in [21] for example, together with a priori estimates for supw
and supw"1, which are needed to control the parabolicity of (3.3). The
behavior of the resulting solutions, asymptotically and at singular bound-
aries, is described in the next section.

As mentioned above, we consider (2.26) as a partial differential equation
on R+ x S2 equipped with the product metric. Defining the auxiliary fields

(3.1) γ = (1 - i d i v β ) " 1 , divjS = βAlA = VAβA,

(3.2) B = ±|div/?|2 + \\β(A\B)\
2 ~ rdr(divβ) + ^ ( d i v j ϊ ) μ - f div/?,

we rewrite (2.26) as

(3.3) 2rdru - 2βAulA = γu2Au + (1 + γB)u -γ(l- \RMr2)u\

Now introducing w = u~2 and m = \r{\ - u~2), we have two useful
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equivalent forms:

(3.4) rdrw - βAw,A = -γu~lAu - (1 +γB)w + y(l - jRMr ) ,

(3.5) rdrm - βAm^A = \ryu~ Δw - γBm + \rγ[B + (y~ - 1) + ^i?M^ ].

The existence theorems are stated in terms of Holder spaces, weighted
to reflect the scaling properties of the parabolic equation. For any interval
(open, half-open, or closed) / c R+ , let Aj = I x S2 . For any nonnegative
integer k and 0 < a < 1, define

(f) -

for all (r., d.) € ^ 7 , / = 1, 2, such that

r2 < 2r t , rj / r2

= Σ

Here V and \ϋx - ϋ2\ denote the covariant derivative and geodesic dis-

tance, respectively, on S2. For compact intervals / c R+ , the parabolic

Holder space Ok+a\Aj) is the Banach space of continuous functions on

Aj with finite || \\^k+ά) ι norm, and for / noncompact, C ( +a\Aj) is

defined as the space of continuous functions which are norm-bounded on

compact subsets of / . As usual, Ck'a(S2) is the Holder space on S2

with norm || \\k a. Spaces of tensors satisfying Holder conditions with

respect to the standard metrics (and covariant derivatives) on Aι and S2

respectively, will be denoted similarly.
The normalizing factors in the definition of the Holder norms ||. | | ( A : + Q ) ι

are chosen to provide simple behavior under dilation. For λ > 0 and
/ G C{k+a){Aj), let fλ be the function

(3.6) fλ(r,ϋ) = f(λr,ϋ),

defined on A" 1/ = {r e R + : λr e 1}. Then

+a),λ~lI ~ H /ΊI(*+α),/
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For any / e C°(Λ/) we define / * , £ : / - + R by

(3.7) l(r) = mf{f(r,ϋ):ϋeS2}, f*(r) = sup{f(r,ϋ): ϋ e S2}.

The local existence of solutions to (3.3) follows from the linear Schauder
theory and a standard implicit function theorem argument.

Proposition 3.1. Let I = [rQ; r{], 0 < r0 < rγ < oo, and let βA and

RM be given in Aj such that βA,γ, B, RMe C ( α ) ( ^ 7 ) , and

(3.8) 0<γ0<γ(r,ϋ) V(r,ϋ)eAn

for some constant γ0 > 0. Then for any initial condition

(3.9) u(ro,ϋ) = φ(ϋ)9 ϋ e S2,

where φ e C 2 'α(5 2) satisfies

(3.10) 0 < δ0 < φ~2{ϋ) < δ~l, ϋ e S2,

constant δ0 > 0, ίΛ̂  /w/ϊ/α/ value problem (3.3), (3.9) Λαs α

solution u e C^a\A[r .Γ + Γj) ./ϊw ̂ ome Γ > 0, wΛ̂ r̂  Γ depends on

^ l l ^ l l W H*ll p J U ^ Hllj). w, (), p U , .
The basic uniform interior Holder estimates which we need are sum-

marized in

Proposition 3.2. Let I = [1 b] and ϊ = [a; b] with 1 < a < b, and

suppose u G C(2+α\^4/) is a solution of (3.3) in Aj, with source functions

βA and RM such that βA,γ,B,RMe C(a){Aj), VAγ € C°(Λ/)- and

(3.11) 0 < y 0 < y ( r , d ) < y - 1 V(r,d)€Λ 7,

for some constant γQ > 0. Further suppose there is a constant δo> 0 such
that

(3.12) 0<δ0<u~2(r,ϋ)<δ~1 V(r,ϋ)eAr

Then, with m = \r{\ - u~2) as above, there is a constant C, depending on
a,b,γo,δo, \\βA\\{ahI, \\7\\{ahI, \WAy\\oj> \\m{ahI,and \\RM\\{a)J,
such that
(3.13)

If βA>y>B<RM e C^^iAj), k € Z+ , then there is a constant C,
depending on a, b,δo,γo,\\βΛ\\(k+ahI, \\γ\\(k+a)tI. \\B\\(k+a),t, and

(3-14) \\*n\\(k+2+a)J <C.
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Proof. Let /" = [\{\ + α), 6], so /' c /" C / . Writing (3.3) in
divergence form, and using

2 2 2 2

γu Au = div{γu Vu) - u y^Au,A - 2γu\Vu\ ,

we can apply [21, Theorem V. 1.1] to obtain the Holder estimate

(3.15) \W\\{a')j"<Cx

for some 0 < a < 1, a = a(γo,δo), and constant Cx depending on
a,b,γo,δo, ||£Jlo,/> \\B\\0J,*nd \\RM\\0J Without loss of general-
ity we may assume a < α . The usual Schauder interior estimates [21,
Theorem IV. 10.1] now give

NI(2W),/' < C2(Cι,\\βA\\(ahI, | |y| | ( β ) > /, p | | ( α ) > / , | | i ? M | | ( a ) ; / ) ;

in particular, u, UxA € C^a\AJf) with uniform bounds. Noting the linear
form of the lower order terms in (3.5) and that

rύ~ Au = u Am + 3ww,^m^,

from the Schauder estimates again we obtain (3.13), and (3.14) follows by
the usual bootstrap argument, q.e.d.

The use of the variable m rather than u, and the resulting linear form
of the estimate (3.13), will be important in the proof of decay estimates.
It is clear that in order to extend the interval of existence of the solution
of Proposition 3.1, we need to control u and u~ι. Suitable bounds will
be derived from the next result.

Proposition 3.3. Suppose u e C(2+α)(^4[Γ . r , ) , 0 < r0 < rχ, is a positive
solution of (3.3). Then for ro<r<rι we have
(3.16)

ru~2(r, ϋ) < r0K(r0

(3.17)

ru~\r, ϋ)>ro(u*(ro))~2exp
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If we further assume βA and RM are defined on AR+ such that the func-
tions

[ j ( )) ( / ( O y ) ds,
(3.19)

are defined and finite for all r e R+, then the estimates (3.16) and (3.17)
may be rewritten as
(3.20)

t Γ V , ϋ) < δ'(r) + ̂ ((«.(ro))~2 -<5>0))eχp ί-

(3.21)

Proof. Applying the parabolic maximum principle to the equation (3.4)

for w = u~2 gives (at the maximum of u(r, #))

rw'Sr) > -(1 + (γBγ)w,

Setting υ(r) = rexp(ff(γB)*(t)dt/t)wt, this can be rewritten as

v\r) > [y (l - ^ M ' 2 ) ) (ΌeχP { [

and hence, since t>(r0) = ΓQIU^Γ,)) ,

which is (3.17). Rearranging shows (3.17) is equivalent to (3.21) for r0 <
r< r,, and (3.16) and (3.20) follow by similar arguments, q.e.d.

We now prove the existence of semiglobal solutions of the initial value

problem and thereby the existence of a global solution (i.e., defined on

all ΛR+)
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( α )Theorem 3.4. Suppose r0 > 0, and βA e c ( α )(^[r0;oo))' RM €

C ( α ) ( A . x ) are such that the functions γ and B, which are defined from

βA by (3.1) am/ (3.2), ̂ / ^ 7 e C ( 1 + α )(Λ [ Γ ( ) ; o o )), 5 e C ( α ) μ [ Γ ( ) ; o o ) ) am/

(3.22) 0<y < 1 ( r )<y*(r )<oo VrQ < r < 00.

Further assume the nonnegative constant K, defined by

K= sup LlΓUl-lRMs2)) (s)

satisfies

(3.24) K < 00.

Then for every φ e C 2 ' a (S 2 ) ΛMCΛ Zλaί

(3.25) 0 < ί » ( d ) < l / v T VI?

t h e r e is a u n i q u e p o s i t i v e s o l u t i o n u € C ' 2 + a ) ( ^ ( / . . . ) o / ( 3 . 3 ) w i t h i n i t i a l

c o n d i t i o n

(3.26) u(ro,.) = φ.

Proof. First observe that u e C(2+a)(A[r ; o o ) ) satisfies (3.3) if and only

if u e C ( 2 + α ) μ [ 1 ; o o ) ) , δ(r, d) := u(ror, ϋ), satisfies2

(3.27) 2rdru - 2βAΰ^A = γu2M + (1 + j>5)fi - j>(l - ^ ^ r 2 ) ^ 3 ,

where

and γ and 5 , defined from βA by (3.1) and (3.2), also satisfy

γ(r, ϋ) = γ(rQr, ϋ), B(r, d) = B(ror, d).

Denoting the estimating functions of Proposition 3.3 for (3.27) by δ*(r)
and δ^(r), we see that

Γ{r) = δ*(ror), l ( r ) = δm(rΌr) V l < r < o o ,

This scaling transformation is nothing more than a log r translation of the partial dif-
ferential equation on R+ x S .
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and it is similarly verified that

κ - τ)ds} •
Hence the upper bound of (3.25) implies

(3.28) 0 < iφ{r) + -r{{φ*)~2 - 1(1))exp ( -

for all r > 1. By Propositions 3.1 and 3.2, there is T > 0 and ύ €
C( C4[i;i+Γj) satisfying (3.27) with initial conditions

(3.29) ϋ(l,.) = φ.

Furthermore, by Proposition 3.3 and (3.28) there are functions 0 < δχ(r) <
δ2(r) < oo, 1 < r, independent of T, such that

δι{r)<u{r,ϋ)<δ2{r) VI < r < 1 + T.

The precise forms of δ{(r) and δ2(r) follow from (3.20) and (3.21) and
do not concern us. Let U = {t e R+ : 3ύ e C ( 2 + α ) ( ^ [ 1 1 + ί ] ) satisfying
(3.3), (3.29)}. The local existence Proposition 3.1 guarantees U is open
in R+ and from the interior estimate (3.13) of Proposition 3.2, we have
an a priori estimate for ||fl(l + t, ) | |2 a (observe that / = [1 1 •+• t] is
compact, hence there are γ0 and δ0 satisfying (3.11) and (3.12) on Aj).
By Proposition 3.1 the solution can be extended to A[χ ι+t+T] for some
constant T independent of ύ, which shows that U is closed. Hence
ύ extends to a semiglobal solution ύ e C ( 2 + α )(y4 [ l o o )) which is clearly
unique, and the function u(r, ϋ) = u(r/r0, ϋ) is the required solution of
(3.3), (3.26). q.e.d.

Note that if RMr2 < 2, then K = 0 and the upper bound of (3.25)
is trivally satisfied for all (positive) φ e C2'a(S2). More generally, if
RM has compact support, then K < oo and initial conditions φ can be
found, for which there is a semiglobal solution. This contrasts with the
fact that if RM is sufficiently large and positive, then δ*(r) < 0 for some
r and therefore there can be no global solutions u satisfying u —> 1 as
r I 0. Geometrically, this says there are compactly supported functions
RM e COC(R3) such that there is no complete QS metric having prescribed
scalar curvature RM . Likewise, blowup is also possible for the initial value
problem, showing that the condition (3.25) is nearly optimal.

Corollary 3.5. Let r0, βA, RM, and K be as given in Theorem 3.4,

and suppose 0 < K < oo. Ifφe C 2 ' α (S 2 ) satisfies

(3.30) φ(ϋ)> 1/VK Vϋ e S2,
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then there is T > 0 and u e C{2+a)(A[r .r+τ)) satisfying the initial value

problem (3.3), (3.26), such that

(3.31) limsup{w*(r)} = oo.
r->ro+T

Proof. Arguing as before, the condition (3.30) ensures there is rχ > rQ

such that

τ ) ds

The lower bound (3.16) shows there can be no solution of (3.3), (3.26)
on A[r , r ] , hence there is a maximal T e (0; rχ - rQ) and a solution

u e C^2+a\A^r .Γ + Γj). Maximality and Proposition 3.2 show that the

lower bound (3.12) must fail, showing (3.31). q.e.d.
Another immediate corollary of Theorem 3.4 is the existence of exten-

sion metrics having boundary Sr with prescribed (positive) mean curva-
ture.

Corollary 3.6. Let r0, βA, RM, and K be as given in Theorem 3.4.

Suppose h e C 2 ' α (5 2 ) satisfies

(3.32) γ(ro,ϋ)h(ϋ)>2y/K/ro VϋeS2.

Then there is a QS metric with scalar curvature RM and shear vector βA,

having boundary Sr = rQS with mean curvature h .

Proof. Let φ(ϋ) = 2/(rQγ(r0, ϋ)h(ϋ)) then (3.32) is equivalent to

φ* < l/VK. Theorem 3.4 now constructs a solution u e C^2+a\A[r mQo^)

to the initial value problem (3.3), (3.26), and the resulting QS metric has

boundary Sr with mean curvature h(ϋ) by (2.17). q.e.d.

The semiglobal existence Theorem 3.4 can be used to construct global
solutions, without specified initial conditions.

Theorem 3.7. Let βA and RM be given on AR+ = R+ x S2 such that
M R

βA e C{a)(AR+), γ e C ( 1 + α )(ΛR +), B e C{a)(AR+), and RM e C{a)(AR+),
where γ and B are the derived functions defined by (3.1) and (3.2).
Suppose γ, B, and RM satisfy the global bounds

(3.33) 0<y,(r)<y»<oo,

(3.34) Q<δ^{r)<δ*{r)<oo
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for all r > 0, where δ^r) and δ*(r) are defined by (3.18) and (3.19).

Then there is a solution u e C(2+a){AR+) of (3.3), such that for all (r,ϋ)e

R + xS 2

(3.35) 1/yftw < u(r, ϋ) <

Proof Let φε e C 2 α ( 5 ' 2 ) , 0 < ε < 1, be any family of functions
satisfying

(3.36) δΛε)<φ;2(ϋ)<δ (ε),

and let w(ε) be the solution of (3.3) on A[ε , with initial condition φe

(the existence of w(ε) follows from Theorem 3.4). From Proposition 3.3
we have

(3.37) <J,(r) < (w(ε)(r, ϋ))~2 < δ*(r), ε < r < oo,

for all 0 < ε < 1. Now suppose r0 > 0 and u e C ( 2 + α )(Λ 7), / = [r0 4r 0],
is a solution of (3.3) satisfying

(3.38) δ^r)<u~2{r,ϋ)<δ*(r) Vre/,

and define w(r, #) = w(r/r0, ϋ). By applying Proposition 3.2 to ώ on the
interval [1;4] and then rescaling back, from (3.13) we obtain an estimate
of the form

(3.39) IMI(2+α),/'<C> // = [2r 0 ;4r 0 ],

where C is a constant which does not depend on u. (For later application,
observe that (3.13) rescales to give more precisely

(3.40)

N Λ W / ' < c {ιiiu ( β ) i / + H*lW/ + \\y - nla),M + \\*Mr%hi

p ( , ( ) ) ( (

where C depends on sup 7 {/» , γ~\r)} , s\ipj{δ*{r) ,δ;\r)}, \\βA\\{ahI,

d) ()

Applying (3.39) to u{ε) shows, by Ascoli-Arzela, there is a sequence ε. |

0 such that the sequence {u"Ej)} converges uniformly in C ( 2 + α ) (^ 7 ) for

any compact interval / c R+ to the required solution u € C ( 2 + α )(R+ xS2).

q.e.d.
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Note that the global solution constructed here need not be unique, due

to the freedom in choosing the initial data φε e C2'a(S2), e > 0, for

the approximating solutions w(ε). Uniqueness in general requires greater

control on the behavior of γB and u as r j 0 (see, for example, Theorem

4.3).

4. Asymptotic metric behavior

The asymptotic behavior (as r —• 0, oo) of the global solution con-

structed above is not controlled, since the source functions βA and RM

are restricted only by the (mild) conditions (3.33) and (3.34). There are

four geometrically natural asymptotic boundary conditions:

(i) regular at the center (u = 1 + O(r2) as r [ 0),

(ii) minimal surface ("black hole") interior boundary (u~ι —• 0 as

r I r0 > 0),

(iii) asymptotically Euclidean (u = 1 + O(r~ι) as r —• oo),

(iv) asymptotically hyperbolic (u = r~ι + O(r~2) as r —• oo).

In this section we describe conditions on βA and RM which ensure
existence of solutions satisfying the boundary conditions (i), (ii), (iii).
The basic tool is a dilation-invariance property of (3.3) which allows us
to deduce decay estimates from local estimates. This is sufficient to prove
the curvature is bounded across r = 0 (Theorem 4.3), and asymptotic
flatness (Theorem 4.2), under suitable decay conditions on βA and RM .
These asymptotic conditions could be weakened to allow u = 1 + O(r~a),
a > 0—this is left as an exercise for the interested reader. A restatement
of these results, in rectangular rather than spherical polar coordinates, is
given by Theorem 4.5.

The black hole boundary result (Theorem 4.6) uses a curious desingular-
ization (4.47), which transforms the equation into a similar equation with
boundary conditions posed at r = 0. The discussion following Theorem
4.5 shows that compact minimal surfaces form a natural obstruction to the
existence of QS coordinates in general metrics. Although global existence
in the asymptotically hyperbolic case (iv) follows from Theorem 3.7 and
it is easy to see ru —• 1 as r —• oo, the estimate (3.40) needed to control
curvature is of little value, since the ellipticity of (3.3) degenerates with
u. This case will be considered elsewhere.

Lemma 4.1. Suppose y e Lι([l\ oo)). Then there is a constant C

depending on y such that
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(4.,)

for all r>\.

Proof. Since f™ \y\ dt<oo, there is rQ > 1 such that fr°° \y\ dt < 1.

Using

| ^ - 1 | < 2 M for |f|| < 1,

we see that

<C + 2

which implies (4.1). q.e.d.

Associated with the quasi-spherical coordinates (r, ϋ) on R+ x 5 2 are

natural rectangular coordinates (xι) = (x, y, z), using the usual spheri-

cal polar/rectangular coordinate transformations. (The transformation is

determined only up to a rigid rotation, but this does not matter.) The

rectangular coordinates define an embedding (xι): R+ x S2 —• R 3 , and we

compare g with the pullback of the flat metric \dx\2 of R3 under this
2 2 2 A » w e h a v emap. Since \dx\2 = dr2 + r2

= (w2 + β2 - \)dr2 + 2rβAσAdr,

where β2 = Σβ\ is the length squared in the S 2 metric of the 1-form
y?̂ σ^ . Defining β.9 i = 1, 2, 3, by the relations

(4.2) / ^ ' = 0, βΛσA = βidθi,

where (9. = jc'/r, dθi = rιθijdxj = r~\δij - θfl^dx1, and j82 =

Σ ^ = Σ /?? since da2 = Σ ^j = Σ rfβ? , we see that

(4.3) gtj = δtj + (t/2 + / - Wfij + ^ β y + βjθr
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Let us adopt as a definition of asymptotic flatness the conditions

(4.4) \gij-δij\ + r \ d i g j k \ < C / r , i , j , k = 1 , 2 , 3 ,

for r > r0 and constants rQ and C. Although this is not the weakest
possible definition [3], by assuming further the condition RM € Lι(M),
we can ensure that the ADM mass is well defined. From (4.3) and (4.2)
it is clear that (4.4) will be satisfied if there are constants C and rQ such
that for all r > r0,

(4.5) \βA\ + \rdrβA\+\VAβB\<C/r,

(4.6) \u - 1| + \rdru\ + IV^KI < C/r.

The conditions on βΛ can be imposed a priori, and the estimates for u
are shown in the following result.

Theorem 4.2. Let u e C ( 2 + α )(,4 [ r ^ be a solution of (3.3) satisfying

(4.7)

suppose there is a constant C > 0 swc/z ίAαί ^br all r > 2rχ and

[ ir ;2r] f

l(2+α),/Γ + I^ΛId+α),/, + \RMr\a),Ir < C/r.

Further assume

(4.9) Γ(\rdrdivβ\*{r) + \divβ\\r))dr<oo,
J

r2 dr < oo.(4.10) Γ\RM\\r)

ΓΛen ίλe asymptotic flatness condition (4.4) w satisfied, and the curvature
tensor is Holder continuous and decays as

(4.11) |Riem|< C/r3,

where |Riem| = {g" gjj>gkk>g11'RijkιRi'fk rΫ12. The total {ADM) mass
([1] 9 [3]) of (M, g) is well defined and given by

( 4 1 2 )

Proo/ From (4.8) and (4.9)

(4.13) Γ\B\*{r)dr<oo,
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so (4.10) and Lemma 4.1 give

(4.14) 1 - C/r < δ^{r) < δ*{r) < 1 + C/r

for all r > r{. Now m scales as mλ(r) = m(λr)/λ, so the scaling argument
of Theorem 3.7 and the bound (3.13) yield

IM| ( 2 + α ) > / ; < C\\m\\0Jr + Cr{ | |^ | | ( β ) i Λ + ||Λ||(β)>/r

} +\\y-n{a),Ir + \\RMr%a)Jh

where l'r = [r 2r], and C is bounded independently of u and r by
(4.14) and the decay assumptions (4.9). Now (4.14) controls ||m||0 7 and
the decay (4.8) controls the second term of (4.15), giving the uniform
bound

for all r > rχ. Expressing this in terms of u and derivatives implies

(4.17) ||1 - M~2||(α)>/; + l|rarM||(α)/; + ||VM||(α)/; + ||V2

M||(α)>/; < C/r.

The estimates for u~2 and Vw show g is asymptotically Euclidean in
the sense of definition (4.4), and the estimate for V2w, together with the
expressions (2.23)-(2.25) for Ric, shows that Ric e C°'a(A[r moo)) and

|Ric(r,#)| < C/r3. Since M is 3-dimensional, this controls the full
curvature tensor.

It follows from [3, §4] that the ADM mass

(4.18) "*ADM = T ^ / {digij-djgii)dSj

is uniquely defined, since dg € L2(R3\B(0, r,)) and RM e L1 (R3\B(0, rx)).
Regarding the sphere at infinity S^ as the limit of the foliation spheres
Sr and noting that

dSj = θjdS = r2θjdσ,

where dσ is the volume form on S2, we find that

A short calculation using the relations (4.2) shows

(4.19) rdiβi
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whereupon / <?z/?z = 0. Since β2 < C/r2, the mass integral reduces to

—— h m Φ -(u - l)r dσ
lθ7Γ r^oo Js r

and (4.12) follows by noting from (4.16) that u = 1 + 2m/r + O(r~2).
The limit in (4.12) can be shown to exist directly from (3.5), which gives

— * m — x f yuΓ ΔM Φ (div jff + y5)w
(4.20) J J r J

Here and henceforth we use / to denote the integral over S2 with the stan-
dard measure da. Since u~ιVu = u2Vm/r, m and Vm are bounded,
and div/?, B = O(r~ι), the first two terms are integrable on (r{ oc),
while the integrability of the final term is ensured by the slightly stronger,
but evidently necessary, decay conditions (4.9) and (4.10). q.e.d.

By means of very similar arguments we establish regularity across the
center r = 0, using the rectangular coodinates (xι): R+ x S2 -> R3 to
define the differentiable structure on R+ x S2 U {centre} .

Theorem 4.3. Let rQ > 0, assume βA and RM satisfy

(4.21) \\r-2βA\\{i+a)Λo.,rΰ] + \\RM\\(a)Λϋ.,r(l]<C,

and let « e C ( 2 + α ) ( l 0 . r ) ) be a solution constructed by Theorem 3.7. Then

u is unique in the class of solutions satisfying

\u-\\ <Crε

for some ε > 0, C and all 0 < r < rQ, and the coefficients gtj of the

resulting quasi-spherical metric g in natural rectangular coordinates (xι)

satisfy g.. € Cl(B(0, ro))nC2 'α(B(O, ro)\{O}), where B(0, rQ) C R3 is the

ball of radius rQ and center 0, and we define g^iO) = δ^. Furthermore,

there is a constant C such that for all 0 < r < rQ,

(4-22) | g . ._,5. . | + r | a . g . j < c r \

(4.23) I Ric I < C.

Proof. The decay bounds (4.21) imply there is 0 < rx < r0 such that

(4.24) \B(r,ϋ)\<Cr2, \γ(r, ϋ) - 1| < i

for 0 < r < rχ < rQ , and from Lemma 4.1 we have

(4.25) \δ (r)-l\ + \δ.(r)-l\<Cr2.
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The method of Theorem 3.7 constructs a solution u bounded by δ* and
δ^, and (3.40) gives

for r < \rχ, which implies the required bounds on g.j and digjk . The
curvature bound follows from (2.23), as before.

To show uniqueness, suppose u{ and u2 are two solutions of (3.3) and

set υ = m{- m 2 , where m = \r(\ - u~2), / = 1, 2. From (3.5)

(4.27) rdrv - βAVAv = \rγ(u~ιAuχ - u~lAu2) - yBv ,

and multiplying by υ and integrating over S2 gives (setting § = jsi)

- Ur - m{-m2)(-\Vv\ -vγ~lVAγVAυ + r~ u{u2\Vv\ v )

The various terms are estimated using
• an easy consequence of (4.21) to control div/?, γ, Vy, γB :

• the asymptotic assumption Wj, w2 —> 1 as r -> 0 to control u\, u\
terms;

• the Schwarz inequality

vγ~ιVAγVAv < \Vv\2 + \y~2\Vy\2v2

• the identity w-1Vw = u2Vm/r and | W | < |Vm1 | + |Vm2 | to control
terms in Vu and Vυ , giving finally

r" 2 + |^k" 3 )}^ 2 .(4.28) r^-ίv2 <C ί{r + (|VmJ2 + |Vm2|
2)(

Now if ux and w2 satisfy

for some ε > 0 and all 0 < r < r0, then

\mΛ + |m 2 | < Cr +ε
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and the rescaling estimate (3.40) gives

iVmJ + I V m ^ O 1 ^ .

Using |v| < \mχ\ + \m2\ < Crι+ε we find therefore

d ί 2 . „ -l+2ε / 2

-5- φ υ < Cr φ v .

Solving this differential inequality yields
ί v2 < exp(Cε~V£ - t2*)) I v2

Jsr Jst

for all 0 < t < r < r0 . Since v —> 0 as r [ 0, the right-hand side goes to
0 as t [ 0, hence v = 0, showing uniqueness, q.e.d.

The regularity of gtj can be improved slightly by using the standard
harmonic coordinate argument and the boundedness of the Ricci tensor
(cf. [3, Proposition 3.3]), but it does not seem possible to assert higher
regularity (in particular, continuous curvature) using only the rather soft
scaling method given here. However, one situation where regularity at the
centre is elementary occurs when βA and RM vanish identically for small
r:

Corollary 4.4. Suppose βA and RM satisfy the global existence condi-

tions of Theorem 3.7 on R + x S 2 , the decay conditions (4.21) on A^0.r]f

and

(4.29) sp t (^) U spt(ΛM) c A[rι. ^

for some 0 < rχ < rQ. Then the metric (R3, g) constructed by Theorem
3.7 is metrically flat on the region B(0, r{).

Proof Clearly δ*(r) = δ*(r) = 1 for 0 < r < r{, and hence the global
solution satisfies m(r, ϋ) = 0 for 0 < r < rχ .

Remark. By specializing to RM = 0 and requiring that βΛ satisfy
the decay conditions (4.9) and (4.10), this corollary provides examples of
asymptotically flat, time-symmetric initial data sets for the vacuum Ein-
stein equations on R 3 , containing regions of vanishing spacetime curva-
ture.

It may be helpful at this point to collect and restate a version of these
results for data given in terms of rectangular coordinates on R 3 .

Theorem 4.5. Suppose βt, RM e C°°(R3) are given such that

= 0 for all x e R3, and

(4.30) r^^.(x)<2,

(4.31) RM(x)r2<2,
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where r = \x\ and dt = d/dxι. Further assume βt and RM satisfy the
following asymptotic conditions (for some constants 0 < r0 < r{ < oo):

(i) for rχ < r < oo,

(4.32) \RM\ + ΛdRM\<CJr*>

(4.33) \β\ + r\dβ\ + r2\d2β\ + r3\d3β\ < C2/r9

(4.34) 3

(ii) for 0 < r < r 0 ,

(4.35) |)8

dr = r^γχιdi and

\dkβ\2=

Ί . "

Then there is u e C°°(R3\{0}) satisfying (3.3) and

u ( x ) = 1 H - O ( r 2 ) asr j O ,

such that the resulting quasi-spherical metric (4.3) satisfies g(j e

C°°(R3\{0}) Π C 1 ) α ( R 3 ) . Furthermore, the curvature tensor of g is de-
fined and bounded almost everywhere,

|Ric(jc)|<C VXGR 3 \{0} ,

and g has asymptotic decay

(4.36) \gij-δij\ + r\digjk\<C/r,

(4.37) |R ic |<C/r 3 ,

with finite ADM mass (4.12).
Remark. Condition (4.31) is stronger than necessary, and could be

replaced by the weaker but less intuitive condition (3.34).
Proof Formula (4.2) serves to cast β. into angular form, and from

(4.19) it follows that div/? = rdiβi, so (4.30) ensures γ < oo, and thus
(3.33) holds. To show (3.34) calculate

(4.38) \β[AW\2 = r'i^β/

whence \B\ < Cr2, while (4.31) gives δ^(r) > 0 and (3.34) follows. The-
orem 3.7 then yields a global solution u(x), x Φ 0, of (3.3) satisfying

0<δ^r)<u~2(x)<δ*(r)<oc.
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The asymptotic conditions now ensure that Theorems 4.2 and 4.3 apply
to give regularity about r = 0, and asymptotic flatness, q.e.d.

Since the direction of increasing r is the direction of propagation of the
parabolic equation (3.3), it is clear the assumption dr φQ is an essential
ingredient of the quasi-spherical construction. The prototypical example
of the breakdown of this assumption is the Schwarzschild metric

, 2 dr2 , 2 , 2

d + d

on S2 x [2M oc), where M is a positive constant. The manifold ob-
tained by doubling across the totally geodesic 2-sphere r = 2M is smooth,
complete, and scalar-flat, and r is globally defined and smooth. However,
r fails to be a coordinate across r = 2M, and the breakdown dr —• 0
corresponds to u —• oo. This suggests the boundary condition

(4.39) u~l(r0,ϋ) = 0

(or equivalently, m(r0, ϋ) = %r0), which by (2.17) implies that the bound-
ary Sr is a minimal 2-sphere. For time-symmetric initial data sets in
general relativity, the minimal surface boundary condition corresponds to
an apparent horizon ("black hole," roughly speaking) at r = r0, and the
following result constructs such solutions.

Note that, provided the QS geometry is bounded (in the sense that the
shear vector βA is smooth and bounded across r = rQ), this boundary
condition also implies that the second fundamental form of the boundary
sphere vanishes identically. Although it may be possible to produce QS
solutions with nontotally geodesic minimal surface boundary, by allowing
certain components of βA to blow up appropriately, it appears that in
such cases the Ricci curvature will not be bounded at the horizon.

The restriction dr ΦQ indicates the quasi-spherical technique is natu-
rally limited to constructing metrics in the "exterior" of all minimal sur-
faces. For example, if K c M is a compact subset of a 3-manifold M
such that M\K admits a QS foliation (with βA smooth and div β < 2),
then by the maximum principle, any closed compact minimal surface in
M necessarily lies inside K.

Theorem 4.6. Let ro> 0, and let βA and RM be given such that

(4-40) ^eC^K^,),

(4-41) / ^ C ( 3 + * H o ; o o ) ) .
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Further suppose that RM and div β satisfy, for r0<r<oo,

(4.42) * M r 2 < 2 ,

(4.43) d iv£<2.

Then there is u~ι e C ( 2 + α ) (^ ( r mQo)) such that the quasi-spherical metric

g on A[r . ̂  has curvature uniformly bounded on A[r . 2r, with totally

geodesic boundary Sr ,

I I . = 0 .

Let 0 < η < 1 be such that

(4.44) 1 - η < [7(1 - \RMr\=rQ < (1 - η)'1.

Then there is r'Q > rQ such that for rQ<r <rQ,

(4.45) ^ f t ( l - η) < u-\r) < ^ ( 1 - η)~l

(4.46) ^ rQ - j ^ ( r - rQ) <2m<ro + η(r - r0).

Proof For clarity in the following computations we suppress explicit
mention of the ^-dependence. Defining, for r > 0,

(4.47) fi(Γ)=

V r

the evolution equation can be rewritten as

(4.48) 2rdrύ - 2βAύ{A = γύ2Aύ + (1 +

where the fields βA, γ, B, and i? M are defined by

(4.48) 2rdrύ - 2βAύ{A = γύ2Aύ + (1 + γB)ύ - y(l - \RMr2)u ,

(4.49)

r -r

Observe that the ώ-equation (4.48) is of the same form as the w-equation
(3.3), except that the fields γ and B are defined by the relations (4.49)
rather than in terms of βA by the analogues of (3.1) and (3.2). Unlike
the scaling transformation (3.27), the geometric meaning of the transfor-
mation (4.47) is unclear. However, the global existence Theorem 3.7 uses
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only the fields γ and B and does not require their defining relations, and
therefore applies equally well to (4.48).

It follows from the definition of the C ( / c + α ) norm that (for example)

Il5)ll(2+α),[α;̂ ] - I"

for any 0 < a < b, and we find therefore

(4.50)

Since γ > 0 and RM{r)r2 < 2, Theorem 3.7 gives a solution ύ e

C ( 2 + α ) μ ( 0 ; o o ) ) to (4.48), bounded by

where δ^r) and <5>*(r) are defined by (3.18), using γ, .β,and RM. Now

clearly \γB{r)\ < Cr, so ^ ( r ) and ί*(r) can be estimated on (0; e), for

some small ε > 0, using (4.44):

(4.51) (l-η)<δΛr)<δ*(r)<(l-ηyl,

which translates back to the stated bounds on u~2 and m, and also shows
(for 0 < r < ε)

(4.52) ^ L

where m(r) = \r{\ - ύ~2(r)) = m(r + r0) - ^r 0 . The rescaling estimate
(3.40) applied to m shows that the covariant derivatives of m decay,

\Vm(r)\ + \V2m(r)\<C(r-r0),

from which it follows as before that the curvature of g is bounded on

5. Asymptotic decay

The aim of this section is to describe the asymptotic άecay of solutions
to (3.3) in the special case of vanishing source functions (βA , RM). The
main result shows that the metric approaches the Schwarzschild metric:
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Theorem 5.1. Suppose r0 > 0 and m e C°°(A[r mQo)) satisfies

(5.1) drm = ±u~lAu,

where u = (1 - 2m/r)~ι/2 e C°°(A[r ; o o ) ) . Then there is a constant m0

and 2

(5.2)

and φ e C°°(S2) satisfying (Δ + 2)φ = 0 such that

r

where f € Ok(g(r)) means for all i, j > 0, i + j < k, and r > rQ, there
are c

(5.3)

k

are constants Ci with

The proof of Theorem 5.1 will follow from a series of estimates. We
assume throughout this section that (βA , RM) = 0 for all r > r0. It will
be convenient to define

(5.4) p(r, ϋ) = r-2m(r,ϋ)9

(5.5) M{r) = — ώ m{r,ϋ)dσ,
r

and recalling the notation from §2,

( 5 6 ) m*(r) = sup{m(r,ϋ):ϋeS2},

mm(r) = inf{m(r, ϋ): ϋ e S2},

we set μ^ = m*(r0) and μ = m*(r0). A prime (') will sometimes be
used for d/dr, and we use the LP(S2) norms | | / ( r ) | | p , 1 < p < oo.
Generic constants depending (not depending) on the solution m(r, ϋ) will
be denoted by uppercase C (lowercase c).

Lemma 5.2. The following bounds hold:

(5.8) μ+ <m(r, ϋ) < μ*

w α constant Cχ, depending only on μ^, μ*, and r0, such that

(5.10) * (m-M)2dσ<-±.
Js. r
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Proof. There is ϋ* e S2 such that m(r, ϋ*) = m*{r), Vm(r, #*) = 0,

and Am(r, ϋ*) < 0, hence <9rm(r, #*) < 0 and m*'(r) < 0; similarly
1[ < 0. Since w"1 Vw = Vm/p, we have

= —j) u~lAu = —j) |Vm|2//>2,

giving (5.9), and

i- I [m- M)2 = <[(mu'lAu - 2MM1) = -ί ^$-{ρ + M - m)
dr Js J J nι

2 Λ 1 m + M-4m2/r^

(l-2m/r)2

The last term is estimated using (5.8),

m + M- 4m2jr < 4μ*2/rQ - 2μ^ = <

(l-2m/r)2 " (l-2μjro) " ' '

and the Poincare inequality gives

j(m-M)2 < \ /|Vm|2,

since /(m - M) = 0. Hence

which may be integrated to yield (5.10) with Cλ = 4πec^°(μ* - μj2.
q.e.d.

There are two invariances of (5.1) which can be used to normalize m .
The scaling invariance

(5.11) m(r,ϋ) = λm(r/λ,ϋ), λ>0,r>λrQ,

has been described in §3, while the "translational" invariance

(5.12) m(r, ϋ) = m(r + λ, ϋ)-$λ, λ>0,r> rQ-λ,

appeared in the proof of Theorem 4.6. In both cases it is readily checked
that m satisfies the source-free equation (5.1).

Lemma 5.3. Suppose rχ = max{r0, 30//* - 28/z^}. Then there is a
constant C2 depending only on rχ, μ*, μ^, and llVm^JII^ such that for
all r>rγ,

(5.13) \Vm(r)\2<C2/r.
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Proof. Let us assume initially that j < μ, < μ* < 1 this normaliza-
tion will later be removed. We use a maximum principle argument with
the test function

f{r,ϋ) = \Vm\2-2am/r,

where a > 0 is a constant to be chosen. From (5.1) and the Ricci identity

we find

(5.14) pdrm = 2 2

pdr{\Vm\2) = χΔ|Vm| 2 - (|V2m|2 + |Vm|2)

( 5 1 5 ) 2 2 12 4

+ - ( 3 m μ m | s m M f l + |V/n|Δm) + — |Vm| ,
P p

and thus / satisfies

pdrf = Uf - ( | v V + |Vm|2) + ̂ ψ- - 3-^^
(5.16) 2 r r p

2 ,* ,„ ,2. x . 12
( ) / ί | 5 μ 5 |Vm| Δm) -h — |Vm| .

Suppose a is chosen sufficiently large that f(r{, •) < 0 for some rγ > r0,

and consider the first point x* = (r9ϋ), r > rχ, where f(r, ϋ) = 0 . At

x* we have

(5.17)

(5.18)

(5.19)

(5.20)

/ = 0 <Φ

V/ = 0 ^

Δ/<0,

9r/>0,

> |Vw|2 =

*• m\Am\AB

2am 1r,

= amlB/r,

and thus

(5.21)
2

We will use (5.17)-(5.19) to obtain a contradiction to (5.20), for a suf-
ficiently large. From (5.17), Vm(x*) Φ 0 and we choose the frame
v{, ?;2 at x* such that Vm = m,ιvι (i.e., m ) 2 = 0) . Now (5.18) shows
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m\u=alr> w,12 = 0, and thus

lam aL 2 \ lamp

( 2 \ 2 2

6a m lam /a \\ 48a m
using the Schwarz inequality to eliminate ra,22 and gathering like terms

give

,r ^ x ^ r a (* +^m r*m• 1 lam / p\

(5.22) pd f< — = • 1 - 10 52—=- r - (r - - ) .
r2 \ P p2 J r2 \ r*

The normalization \ < m < 1 implies l/(r - 2) < m/p < l/(2r - 2), so

choosing r > 16 ensures the coefficients of both terms are positive, hence

d Γ / ( Ό < 0, contradicting (5.20). Thus setting rχ = max{r0, 16} and

a = \\Vm(rχ)\\lo yields

(5.23) | V m | 2 ( r ) < —WVmir^f^ Vr>r{9

for the normalized solution.
Denoting the normalized solution by m(r) and the original solution by

m(r), we have

(5.24) m(r) = τ(* i ( r )-/ ι ) ,

where r = Ar + μ. Since we may assume without loss of generality that
μ+ ^ μ* 9 choosing μ = 2μatt — μ* and A = 2(μ* — μ j ensures the normal-
ization \ < m < 1. The estimate (5.23) translates to

(5.25) |Vm|V) < ^

and the condition f > 16 will be satisfied if

r > rχ := max{r 0, 30μ* - 2 8 μ J .

Lemma 5.4. There is a constant C2, depending only on μ^, μ*, rχ,

and HV/wίΓj)!!^, such that for all r>rχ,

(5.26) / |Vm|2 < % .
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Proof. Rewriting (5.15) as

|Vm|2Δm)//>2 + 8|Vm|4//>3

and integrating gives

L ί |Vm|2 = - /(|V2m|2 + \Vm\2)/p + 4<f |Vm|4//.
a r JSr J J

Using the Ricci identity and then expanding m in spherical harmonics, it
is easily verified that

<f(\V2m\2 + IVm|2) = /(Δm) 2 >2<f |Vm|2,

hence applying Lemma 5.3 we see

d_
dr

where μ and μ* are as defined above and r-2m < r-2μ, since μ < μ+.
Integrating this inequality yields the required bound, q.e.d.

The decay bounds of Lemmas 5.2 and 5.3 are the key to applying a
general technique for showing decay of all derivatives for solutions to a
parabolic equation ([17], [13]). (The exposition here follows the model of
[13], and the author is indebted to Piotr Chrusciel for discussions on this
topic.)

Lemma 5.5. For each k € Z + , there is a constant C3 = C3(fc), depend-
ing also on C2, μ^, μ , and | |Vm(r1)| |2, such that

(5.27) f | V V < ϊ
Jsr rL

for all r>2rχ.

Proof. Let υ{, v2, v3 be the symmetry generating vector fields on S2 ,
normalized by the commutation relations [υχ, v2] = υ3 and cyclic permu-
tations. Regarding the vn i = 1, , 3, as differential operators on S2 ,
we have

(5.28) 2 2
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where D = ( - Δ ) ~ ^ 2 is defined spectrally. The following facts are easily

verified:

(5.29) j

<fυ({f) = O forall/e

J

(5.30) <fυ({f) = O forall/eC'(S2),

(5.31) Y hυ.f)
2 =

ι
where / = (i{, , i.) is a multi-index, iλ, , ^ = 1 , 2 , 3 , and Ϊ;7 =

v. v. •" v. .

It will suffice to instead estimate

Ek{r):=j\Dkm\2,

since there is a constant c = c(A:) such that for all / e C°°(S2),

(5.32) §\Vkf\2<cj\Dkf\\

This is standard and can be shown directly: by repeated integration by

parts and the Ricci identity, we have (for k even; k odd is treated simi-

larly)

for some homogeneous differential operator Pk_x of order k-\. Applying

(5.31) and induction gives (5.32).

We use the shorthand notation ]Γ* Vjf to denote a generic linear com-

bination of terms Vjf, \I\ = j , with coefficients depending on k and

perhaps on other parameters, but independent of / . Furthermore, let

Js = Js(r) denote the generic term of the form

where s, Iχ, , Is satisfy s > 3 , |/.| < k for 1 < j < s, and Σs

=ι |/. | <

2k + 2 , and set / = Σ,> 3 Js

Let / , |/| = k > 2, be any multi-index; then from the basic equation

(5.1) and the commutation relations we have

(5.33) L £ |V / m | 2 = j Vi{m). (Vl(Am/p) + 3v7(|Vm|2//>))
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Commuting derivatives,

/

( 1
v j(m)vj(Am /p) = Φ —vI(m)A(vIm)

(5.34) k 2 k+2

Js>
j=\ P J J s=3

where /'. = (i{, ,*,,•• , ik) (here i. denotes an omitted term). The
first term on the right of (5.34) is handled by integration by parts,

Γ /Δraλ _ JU r l \2 I l ( ) (\ \2\

Γ 1 2 /* 1 . 2 . 4 | _ .2v

~ J P ι J p3 ι

= - φ — \Dvrm\ + Λ + /4.
J P

From the commutation relations we have

Vj(m) = Vj Vj>m + 2_̂  Vjnm,

\ΐ'\=k-\

and the second term of (5.34) is estimated by repeated integration by parts,

φ —υI(m)υi(m)AvIι(m)

= φ — I υ^jiim) + Σ, vi"(m) I VjVjVjtim^^m)
3 P V ι/Ί=*-i y

= " ϊ / " 2 ^ ( l ^ ϊ ; / ' ( m ) | 2 K ( m ) + J3 + J4

showing that (5.34) becomes

j> VjίnήVj ( — \=-j \DVjin\2lp2 + /.

The second term of (5.33) is handled similarly, giving finally that

(5.35) ir- I \Dkm\2 <-ί \Dk+ιm\2 + /.

Holders inequality with Σ\ l/Pj = 1 implies

( 5 36) Λ < z-Γ7Zϊ\\vLm\L * * K mL ,
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where \Ij\<k, £ | / . | = 2k + 2, and $ > 3. The directional derivatives

Vj can be expanded in terms of covariant derivatives, hence for any / e

C°°(S2) by interpolating we obtain

The Gagliardo-Nirenberg inequality states

w i t h a = (j + 2/q - 2/p)/(k - 1 + 2/q), I < j < k , 1 < p , q < o c . F r o m
(5.32) with / = υ.(m) it follows that

11^11, < c(\\DMm\#\\Vm\\lja> + \\Vm\\p),

with αy = (|/.| - 1 + 2/q. + 2/pj)/(k - 1 + 2/^ ). Choosing Pj = s = qj

and expanding out the product in (5.36) give
s

τ ^ C V ^ ii τ\k+l ,,2—d ,, ,,5+^.-2
/s — y-i / v 11^ W l ι2 l|vft?||5 5

for some 5 < δj < 2, where J = 2 - £ > y = (s + 4/s-4)/(k- 1-f 2/^) > 0
for 5 > 3 . Now use of the Young's inequality leads to

for some smooth function Fs satisfying

Fs{ε, x) < c{ε)χs for 0 < x < 1.

The L2 and L°° bounds for Vm show that

for some constant C depending on e9 rQ9 rχ, μ^, μ*, and ||Vm(ro)||
Now choosing ε appropriately we finally obtain

(5.37) 4- I \Dkm\2 < - / \Dk+lm\2 I =•) + C ( ε ) Γ 9 / 2 .

Assuming for convenience the normalization j < μ* < μ* < 1, for all
k > 1 we have

f^ 1 8 " ! — F ί'rΊ < — -F (r) -\- C r~9^2

Following [17] and [13], we define
k

7=1
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where we choose

for Γj <r2<r. T h e n

for r > r2. Noting that E(r2) = § |Vm|2(r2), by integrating from r2 to
2r2 we obtain

E{2r2) < Ckr~3 + / |Vm|2,

and in particular applying Lemma 5.4 with r = 2r2 > 2rχ,

which concludes the proof, q.e.d.
The proof of Theorem 5.1 now follows readily. From (5.27) and the

Sobolev inequality it follows that

(5.39) \Vkm\ < CJr

for all k > 1, r > 2rχ (where Ck depends only on e, r0, rχ, μ^, μ*, and

llVm(ro)Hoo)' h e n c e t h e r e i s mo e R s u c h t h a t

(5.40) \m - mo\ < C/r for r > 2r{.

The decay estimates (5.40) imply that m := m - mQ satisfies

(5.41) 2(r - 2mo)drm =Δm + / ,

where / = ^ ( r " 3 ) . The eigenfunctions (spherical harmonics) φι j ,
/ = 0, 1, , j = - / , - / + 1, , /, form a complete orthonormal basis
for L2(S2), with eigenvalues

and the Fourier coefficients

F u{r) = I fφu
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therefore satisfy \Ft ] < C/r3. Since / is smooth, writing φι . =

(-l)NΓN(l + \)~NΔNφι j and repeated integration by parts show there

is a constant KN for any N e Z + , such that for all r > 2rχ,

Defining also

we see from (5.41) that for / > 1,

Since m(2rχ) e C°°(S2), there are constants CN such that |Af/^.(2r1)| <

CNΓ2N \/N, I > 1, and hence

kΛ :

for some constants kχ ., and in general,

logr,

r ~ 3

2Nr 3

Thus Σι>3Mιj<Pιj = °oo(r~3)' a n d l e t t i n g ? = ΣKJΨIJ
 w e h a v e

where ί? is the required first eigenfunction of Δ.
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