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QUASI-SPHERICAL METRICS AND
PRESCRIBED SCALAR CURVATURE

ROBERT BARTNIK

Abstract

We describe a construction for metrics of prescribed scalar curvature on

SZxR , based on a quasi-spherical coordinate condition. The construction
uses two arbitrary functions and requires the solution of a semilinear

parabolic equation on s?2 , with the arbitrary functions and the scalar
curvature appearing as source terms. We obtain existence results for this
equation under various geometrically natural boundary conditions, and
thereby construct some 3-metrics of interest in general relativity.

1. Introduction

Riemannian 3-manifolds with prescribed scalar curvature arise naturally
in general relativity as spacelike hypersurfaces in the underlying spacetime.
If g = (g j) ,i,j=1,---,3,is the induced (Riemannian) metric on the
spacelike hypersurface M , then the scalar curvature R(g) is determined
by the extrinsic curvature (second fundamental form) K, ; and the space-
time energy-momentum tensor 7 5> via the Gauss-Codazzi and Einstein
equations:

(1.1) 167T ey, €y) = R(g) — IK|” + (tr, K),

where ¢, is the (future) timelike unit normal of the hypersurface M,
||K||2 = gikgleink,, tr, K = ginij, and the Einstein equations are
Gap := Ric, 8 —%Rga 5= 8T, 5 The main situation of physical interest
is where R(g) > 0—for example, if M is totally geodesic (K, ;= 0) and
the spacetime is vacuum (7 p = 0), then R(g) = 0, and more generally
if M is a maximal hypersurface (tr, K = 0) and the spacetime satisfies
the weak energy condition [18], then T(e,, e,) > 0 and thus R(g) >
0. Provided M is suitably constrained (for example, by the maximal
hypersurface condition), the metric structure of (M, g) reflects that of
the ambient spacetime, and therefore it is important to understand this
structure.
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In the present paper we describe a new construction for 3-metrics of
prescribed scalar curvature, based on the assumption of a foliation by con-
stant Gauss curvature 2-spheres. We term such a foliation quasi-spherical
(QS). Assuming further that the radius function r of the foliation is a
smooth coordinate, the metric can be written in the form

(1.2) g=uzdr2+(ﬂldr+rd19)2+(,32dr+rsinl9d¢)2,

where u and f,, A = 1,2, are unspecified metric components. The
significance of this coordinate condition stems from the surprising fact that
the equation for the scalar curvature R(g) can be rewritten as a semilinear
parabolic equation (see (3.3)) for u, using the standard Laplacian on S”
and with logr playing the role of “time.” The functions R(g) and S,
A =1, 2, then appear in source terms for the parabolic equation.

The major part of this paper is devoted to establishing properties of the
parabolic scalar curvature equation, beginning by determining explicit size
conditions on the source functions which ensure the solution u is strictly
positive and regular. The size conditions turn out to be mild (see Theorem
3.7), thereby giving a large family of metrics (1.2) with prescribed scalar
curvature. Here, and throughout this paper, by “prescribed” we mean
R(g)(r, 0, ) = R,/ (r, 9, p), where R, € C°°(R3) is given and (r, 9, @)
are identified with the standard polar coordinates on R’. Although the
motivating problems concern nonnegative scalar curvature functions, the
construction works equally well (if not better) with negative prescribed
scalar curvature.

We consider three types of initial condition for u, corresponding to the
geometric conditions for regularity across r = 0 (Theorem 4.3), minimal
surface boundary at r = r, > 0 (Theorem 4.6), and prescribed (positive)
mean curvature (Theorem 3.7, Corollary 3.6). We also describe natural
decay conditions for R,, and B, which ensure the metric is asymptoti-
cally flat, in the sense required for the positive mass theorem ([26], [31])
(Theorem 4.2). The existence results for complete asymptotically flat so-
lutions are collected in Theorem 4.5, and stated in terms of rectangular
rather than spherical polar coordinates on R®.

By choosing appropriate R,, and B, particular solutions with inter-
esting properties can be constructed. For example, requiring g, =0=R,,
for r<1 (and B » R,, otherwise free, subject only to the size constraints
of Theorem 3.7), we obtain a family of metrics on R’, each containing a
region isometric with a flat ball (Corollary 4.4). If in addition we choose
R,, = 0 forall r, then this metric gives totally geodesic initial data for the
vacuum Einstein equations, and the resulting maximally extended space-
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time [8] is in general not flat, but contains a region which is isometric to
a region in flat Minkowski space.

A similar idea but with black hole (minimal surface) boundary condi-
tions, leads to a family of metrics with interior region isometric to parts of
the classical Schwarzschild metric. Recall that the Schwarzschild 3-metric
is

ar’
1-2M]/r
for r > 2M, where M is a positive constant, and r = 2M is a to-
tally geodesic s? boundary (representing the intersection of the past and
future event horizons in the Schwarzschild spacetime [18]). Choosing
B, =0=R, for 2M < r < 2M + 1 (say), and imposing the singu-
lar initial condition u~'(r = 2M) = 0 leads to metrics isometric to dséchw
for 2M <r<2M +1.

An interesting conjecture of Penrose ([24], [19], [16]) proposes that
dséchw has the least total (ADM) mass ([1], [3]) from among all 3-metrics
of nonnegative scalar curvature and having minimal surface boundary of
a fixed area. This may be considered a generalization of the positive mass
theorem, which proves that R® is similarly distinguished from among com-
plete 3-metrics of nonnegative scalar curvature. Support for the Penrose
conjecture is provided by the class of QS metrics having divergence-free
shear,

(1.3) divg=V,8,=0,

sy = +r(d9” +sin’ 8do’)

where V  is the covariant derivative on S?. The divergence-free condi-
tion reduces the freedom in B, to one function of three variables, as can

be seen from the Helmholtz-Hodge decomposition on s? s
(1.4) B, =V, fi+¢e,5Vpfs

for some functions f, f,. Now divf = 0 is equivalent to f, = const,
hence B, is determined just by f,.
Defining

(1.5) M(r) = SLn?( r(1 -—u %) do,
S"

we show under appropriate decay conditions on 8, and R,, (Theorem
4.2) that the total mass is given by m, = lim _ __ M(r), and an easy
calculation using (3.3) and the divergence-free condition (1.3) shows

d _ 1 -2 2 1 2 1 2
(16) S M()= 8—7[?2 [u (qul + 3180um) ) 3Ry ] .
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Note that M(r) agrees with the Hawking mass [10] when div # =0, but
not in general. Imposing the initial condition u_'(ro) = 0 and assuming
R, > 0 we have m,, > %"0 , which is exactly the Penrose inequality.
This shows the Penrose conjecture holds for the class of QS metrics with
divergence-free shear and having interior boundary totally geodesic and
isometric to rgS2 . More formally, we have

Corollary 1.1.  Suppose B, and R,, satisfy the conditions of Theorems

3.7, 4.2, and 4.6 on A[ro; o) = S? x [ry; 00), and, in addition, suppose
(1.7) R, >0, divg =0,

and let u be the solution of (3.3) with initial condition u_l(ro) =0. Then
the metric (1.2) has totally geodesic boundary at r = r, and total (ADM)
mass
Mapm 2 37p-
An important motivational application concerns the extension problem,
which was suggested by the definition of quasi-local mass in [4]. This

problem asks:

given a bounded Riemannian 3-manifold (€, 8)> describe
the class of complete 3-manifolds (M, g) satisfying the
conditions of the positive mass theorem (in particular,
asymptotically flat with nonnegative scalar curvature) and
containing (€2, g,) isometrically.

If we consider this as a problem of matching M\Q with Q across
X = 9(M\Q), then the condition that the scalar curvature be defined
distributionally and bounded across X leads to the geometric boundary
conditions

(1.8) &lrs = &olroq> H}:,ngBﬂ,go’

where Hj , is the mean curvature of X in (M, g), and the unit normals
of 8Q and X are chosen oriented consistently, with the normalization
giving a sphere of radius r in R’ mean curvature +2/r. The condition
that the full curvature tensor be bounded is more restrictive, implying the
boundary condition for the full second fundamental form,

(1.9) Iy, =T .

We will not consider this boundary condition in the present paper. Since
the mean curvature condition translates into a Dirichlet condition for u
(2.17), we see that if (8Q, g,) = (%, redo’) and H,, g > 0, the QS
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technique provides a large class of metrics extending (9Q, g,). We note
that it is not possible to construct such extensions using the traditional
conformal method [8], since (1.8) generates incompatible boundary con-
ditions for the conformal factor.

The Penrose conjecture argument above applies equally well to the ex-
tension problem, for the particular case where (0Q, g,) = (s?, rg da?)
and HaQ, %= const > 0. We thereby show that the Schwarzschild exten-
sion has the least total mass from among all quasi-spherical divergence-free
shear extensions of nonnegative scalar curvature, which satisfy the mean
curvature boundary conditions (1.8). This is in accordance with the static
metric conjecture of [4], which conjectures in general that the minimum
mass extension is achieved by a metric satisfying the spacetime static met-
ric equations.

In the final section, we analyze the behavior of the QS metricas r — oo,
for the special case B,, R,, = 0 for r > r,, and describe carefully the
decay to the Schwarzschild metric (Theorem 5.1). As well as illustrating the
spherical harmonic decomposition technique, this result should be useful
in the numerical construction of initial data metrics.

The shear vector B, gives two functions of three variables to describe
a 3-metric with prescribed scalar curvature, and on heuristic grounds one
might expect that this parametrization covers an open set of such metrics
(in the space of all smooth metrics, for example). In future work we will
show that this expectation is justified, by showing that the set of metrics
admitting a QS foliation contains an open set in the space of smooth
metrics, and that the local QS gauge freedom is determined by six functions
of one variable only [6].

The primary motivation for this investigation was the extension prob-
lem in the class of positive-mass metrics, which in turn arose from the
definition of quasi-local mass [4]. The idea of using a foliation by metric
2-spheres was suggested by work of P. Szekeres [29], who described a class
of dust spacetimes, generalizing the (spherically symmetric) Tolman-Bondi
spacetimes. The Szekeres spacetime metrics admit a foliation by metric
2-spheres (and the term quasi-spherical is due to him), but the metric form
in [29] uses coordinates which do not emphasize the quasi-spherical struc-
ture, and the shear vector is restricted to a 5-dimensional family of vector
fields on S°.

The idea of using a (topological) 2-sphere foliation to describe the dy-
namics of the Einstein equations is well known, occurring first in the
classical work of Bondi and Sachs ([7], [25]), and more recently in the
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detailed and pioneering analysis of the global small data existence ques-
tion for the Einstein equations by Christodoulou and Klainerman [9]. In
these works the foliation is determined by the affine distance function
along null geodesics generating a foliation by null 3-surfaces.

Geometrically-based foliations of 3-dimensional Riemannian manifolds
(space-like hypersurfaces) have been used in various attempts to prove the
positive-mass theorem. Geroch ([15], [19]) showed that a global 2-sphere
foliation satisfying the (parabolic) heat flow by inverse mean curvature
leads to a proof of the positive-mass theorem, and also to the Penrose
conjecture. However, existence results for this flow have only recently
been shown in flat R> ([14], [30]), and it seems difficult to generalize these
to nonflat metrics. Kijowski [20] showed that a foliation defined by level
sets of a solution of a p-harmonic equation also leads to the positive-mass
theorem, and existence results were obtained by Chrusciel [11]. Again, it
is unlikely the level sets will form a smooth foliation in general metrics.

The above applications of foliations are all descriptive—starting with
a space-time (or space-like hypersurface), a foliation is imposed, in or-
der to better describe the metric. The approach taken in this paper is
instead constructive, and is most commonly considered using the confor-
mal method [8]. However, there are some problems for which the QS
technique is more suitable than the conformal method. For example, as
has already been indicated, the conformal method is not compatible with
the geometric boundary conditions, and thus cannot be used to construct
extension metrics. In numerical relativity, the elliptic equations for the
conformal factor are expensive to solve [23], and it is interesting to note
that a coordinate-based parabolic construction has been suggested, in or-
der to sidestep this difficulty ([2], [28]). Although there does not appear to
be a natural geometric description of the foliation used in [2], the related
“polar” time gauge is also closely related to the quasi-spherical foliation
condition [5].

I would like to thank the Centre for Mathematical Analysis for its stead-
fast support of the work described here, and also to acknowledge numerous
helpful discussions with Piotr Chrusciel.

2. Curvature calculations

Let (M, g) be a Riemannian 3-manifold, with foliation function r €
C*(M). This means dr # 0 and the level sets

(2.1) S ={peM:r(p)=r}
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form a C™ foliation of M. We say r determines a quasi-spherical foli-
ation if r is positive and

(2.2) (S, gls) = (5*, r*da?),

where do? = 012 + 022 =Y aj is the standard metric on the unit 2-sphere
S? . We construct quasi-spherical coordinates

(2.3) r,®):M—IxS*, IcR',

as follows. Choose any C™ curve r — c(r) transverse to the leaves S,
and any unit vector field r — v(r) along c(r) such that v(r) is tangent
to S, , and use c¢(r) and v(r) to determine an isometry (up to scaling)

S, 2 §*—for example, use c(r) to fix the South Pole (¥ = 7 in polar
coordinates) and v(r) to determine the Greenwich Meridian (¢ = 0 in
polar coordinates). This defines a projection

(2.4) n:M—S%,

and angular coordinates n*(9), 9 € S 2 ,on M such that
2 x 2

(2.5) glrs, =r'n (do )|Ts,-

Following the standard abuse of notation we write ¥ for n*(8), the an-
gular coordinates on M, and o, for n (o ,) > the angular 1-forms on M .

Lemma 2.1. There are functions u(r,®) and B,(r,9), A =1,2,
such that the metric g in the QS coordinates (r,9) on M determined by
the QS projection n: M — S? is

2
(2.6) g=udr’ +3 (B dr+ra,).

A=1
The functions u and B, are described invariantly by
(2.7) u’=g(@r,Vr), B =-rila,(Vr),

where ¥ is the covariant derivative of g, and Vr is the gradient vector.

Proof. Since (dr, g ,) are linearly independent in T* M , from (2.5) we
have g = r*da? +dr-(something) , and the form (2.6) arises by expanding
something = 2rp 0, + (u2 + B%)dr, where B = ﬂf + /322 (note u* > 0
since g is Riemannian). The formulae (2.7) follow from

(2.8) Vr=u?@,-r'Bw,,
where v, € TS,, A=1, 2, is the frame dual to {5,}. q.ed.
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The coframe
(2.9) 0,=B,dr+ra,, A=1,2, 0, =udr,
satisfies g = 0] + 0% + 0§ , and has dual frame
(2.10) e,=r v, A=1,2, e =u'@ -r'Bw,),

where {v,} is a frame tangent to S, and dual to {o,}, hence e, are
tangent to S, .

Since the calculations to follow are most naturally expressed in terms
of the geometry of the standard s2 , we adopt the conventions that tensor
indices A4, B, --- refer to the vectors {v,}, while indices A, B, - refer
to the g-orthonormal vectors e, = r 4> SO, for example

2

- -2
Krs=K(e s, eg)=r "Kp=r "K(v,, Vp).

To avoid ambiguity about the metric used to raise indices, and thereby
emphasize that the indices 4, B, --- refer to the S%-orthonormal frame
v,, v,, all indices will be written lowered. Geometrically, the calculation
of the curvature of g will be expressed in terms of the product metric
do’ +dr* and derivatives ro, and V on S? x R™. For some purposes
it is also useful to present calculations in terms of rectangular coordinates
on R® , as described in §4. .

We denote the connection of the metric g by V and the connection
matrix by w;; = gle;, eej), i,j=1,---,3. The connection of the

metric do’ on the level set S, is denoted V, with connection matrix

TaB> ,
1,5 =0,(Vvg) =da"(v,, Vup).

The structure equations of da* (pulled back by n from S2) are

(2.11) do, = —1,,0p, T =AdT 5+ T cTcp>

where

(2.12)  Fyp=~3T4pcp0c0p = r_Z‘ZBCD(_%gceD + “_lﬂueces) )
and I, pcp = 0 ,p0pc — 0 ,4-05p is the curvature tensor of s2. Denoting

the index covariant derivative of do> by V= ‘147 the Ricci identity
becomes (8 = B,v,)

Basc = Bacs = daz([VUC ’ Vv,,]ﬂ » Vy)

(2.13)
= BCADBD = ACBB - (5ABﬂC'
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The symmetrization ,B( AlB) and antisymmetrization ﬂ[ A|B] of B 4p are
defined by
— 1 —
ﬂ(Aw) - i(ﬂAw + ﬂB]A) > B[AIB] = %(ﬂAlB - BB|A) >
and we note the following consequence of the Ricci identity:
(2.14) ﬂ(AlB)C — By = Bipicia t TscanPp-
It is now readily verified that

doA = _TABBB - r_lu_l(eA - BA|303)93a
doy=—r"'u""u 0,0,

where we use the formula

(2.15) dﬂAzﬁAlBoB—ﬂBrAB+8,(BA)dr.

The connection 1-form w; ; has components

-1 ~1
Wrs=Typ+tr U ﬂ[AIB]03’
(2.16) 1o

wpy =1 U (05— Byp)bp—%405),
where

2 -1 -1

T =d0 (Vy, VVp) =T pcOc = Typc -t (0,—u B,65).
From (2.16) the second fundamental form II,, and mean curvature H
of the surface §, are given by
= -1 -1

(2.17) IIAB=—g(VeAeB,e3)=r u ((5AB—B(A|B)),
(2.18) H=r"'u"'2-divp),

where the normalization sets H = +2/r for a sphere of radius r in R.
The curvature 2-forms Q- and Q. are now found to be

(2.19)
Qop= r_zu_zluﬂ[Aw]c + (04 = Biajc)) s — (9pc — Bigc)) 141005
- r_zu—z(‘sAC = Biaic)) @pp — Biaip))0cbp + T 4p
Q3= r_zu—zluﬂ(Am)c + (045 = By %1050
+ 1T G5 = Buyp) (rO,u — Betc) — Uity g + 10, By
= BcBasyc + Bas) + BuaciBisic) — BciaBcisl0sY93 s
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. 1 .
from which the curvature tensor R, R

R

-2 -2 -2
(2.20) ~ABCD ™ r " Tascptr U 104c = Byc))9sp = Bisip)

—(04p— ﬂ(AID))(éBC - 'B(BIC))] ’

2 2
Risas =1 "t [(Buysic + TapcoPplt

(2.21)
+ (6AC - ﬂ(AIC))uIB - (6BC - B(mc))u,A] >
(2.22)
-2 - -1
Rosgs= T UG- Byp)u (rdu—Bouc) —uu ,p

+710,B 418y — BcBiaipyc + Biasy + BraiciBisic) — BeiaBeis)-
Observe these calculations are valid more generally for an n-dimensional
manifold M" with foliation leaves (S, 8rs) = ="', r*de?) for
(ZJ"'l , daz) any closed (n — 1)-manifold with metric da’ and curva-
ture 7, . Metrics of this general form might be called quasi-homothetic,
since the radial vector J, generalizes the usual homothety of R’. With
only minor modifications, the following expressions for the Ricci tensor
Ric,.j = gkIR il and scalar curvature R, = g’ Ric, ; also generalize.
Using the form (2.12) of .7, ,, we have
(2.23)

. -2 -2 -1 2
RIC;‘\E =r "u [(0,5 - :B(Am))“ (ro,u — ﬂculc) +0,5(u —1)
—utly 4 +10,B 48— BcBiasyc + Bras
+ g = Bypy) AV B + ByciBisic) + Buaio)Bisicil

(224)  Ricp, =r>u”’[(1 — div B)uy, + Byz s — UByss + Bl
(2.25)
Ricyy = ru "[(2 — div f)u” ' (rd,u — Bouyc) — ubu
+ 19, (div ) — B (div B),c +div B — B yp '],

where divg = B,,, IB(A|B)|2 = (l)’m)2 + 2(ﬁ(”2))2 + (ﬂ2|2)2 , and the Ricci
scalar R(g) = R,, is given by

(2.26)

Ry =2r"u" (2~ div B)u” ' (rd,u — o) — ubu + 1’ — 1

+19,(div ) — B (div B) ¢ +2div f — 1(div B)° — 116 451

1 . . _ 1
Our index convention for R,-jk, sets Qij = —ERUHB,((), .
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We now make the basic observation that, by viewing u# as an unknown
function and R,, and B, as prescribed fields, this gives a parabolic partial
differential equation for ¥ on R" x S? . In the following sections we will

study the solvability of this parabolic equation and the properties of the
resulting QS metrics.

3. Existence for prescribed scalar curvature

The parabolic form of the scalar curvature equation (2.26) indicates that
metrics with prescribed scalar curvature could be constructed by specifying
the scalar curvature function R, (r, 9), shear vector g,(r, #), and initial
condition u(r = r;) = u,, and then solving (3.3) for u. In this section
we describe conditions on B, and R,, under which global existence for
the initial value problem for u# can be shown (Theorem 3.4). This implies
solvability of the geometric boundary problem (1.8) for prescribed strictly
positive mean curvature and boundary isometric to réS2 (Corollary 3.6).

Size conditions on B, and R,, and the initial condition u, € C 2"”(Sz)
which ensure blowup for solutions of (3.3) in finite “time” are given in
Corollary 3.5, and show that the conditions of Theorem 3.4 are of optimal
form. Somewhat stronger conditions ensure the existence of a global solu-
tion, which is constructed as the limit of solutions of initial value problems
at r =1y, 7,1 0 (Theorem 3.7). The arguments of this section are based
on standard results from the theory of nonlinear parabolic equations, as
described in [21] for example, together with a priori estimates for sup u
and sup u! , which are needed to control the parabolicity of (3.3). The
behavior of the resulting solutions, asymptotically and at singular bound-
aries, is described in the next section.

As mentioned above, we consider (2.26) as a partial differential equation
on RY xS? equipped with the product metric. Defining the auxiliary fields

(3.1) y=(1-tdivp)™', divB=p,,=V"5,,
(3.2) B =41div " + 1|8 p|" — rd,(div B) + B,(div B) . — } div B,
we rewrite (2.26) as

3

(3.3) 2rdu— 2B u , = yulAu+ (1 +yB)u —y(1 - %RMrz)u )

Now introducing w = 42 and m = %r(l - u_z) , we have two useful
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- 2
(34)  row-Bw,=—yu Au—(1+yBw+y(1-iR,r"),
(3.5) ro,m - B,ym = 3ryu Au—yBm+ 3ry[B + (y '+ 3Ry

The existence theorems are stated in terms of Holder spaces, weighted
to reflect the scaling properties of the parabolic equation. For any interval
(open, half-open, or closed) I C R" let 4 ;=1Ix 52. For any nonnegative
integer k and 0 < a < 1, define

I/ Nlo,; = sup{|f(r, D)|: (r, B) € 4},

a2 |f(rys 8)) = f(ry, O) | f(ry,8)) = f(ry, B,)]
=S a
U)(")’I P {r2 |r, — r2|“‘/2 |9, — B,]

for all (r;,9,)€Ad,,i=1,2, such that

1
§rl<r2<2r1,r19ér2,191;é192},

”f"(a)J = ”f”oJ + (f)(a),[’ ”f”(k),] = Z ”Vl(ra,)jf”(),],

lil+2j<k
”f“(k+a),1 = ”f”(k)J + Z (V’(rar)Jf)(a),l-
|i|+2j=k

Here V and |9, — 9,| denote the covariant derivative and geodesic dis-
tance, respectively, on S2 . For compact intervals I C R", the parabolic
Holder space C U”‘”(A ;) is the Banach space of continuous functions on
A, with finite | - ||, , norm, and for / noncompact, c**)(4,) is
defined as the space of continuous functions which are norm-bounded on
compact subsets of I. As usual, Ck’”’(SZ) is the Holder space on 52
with norm || - || Koa* Spaces of tensors satisfying Holder conditions with
respect to the standard metrics (and covariant derivatives) on 4, and s?
respectively, will be denoted similarly.

The normalizing factors in the definition of the Holder norms ||-|| (kta), 1
are chosen to provide simple behavior under dilation. For 4 > 0 and
fec™(4,),let £, be the function

(3.6) L(r, 8) = f(ar, 9),
definedon A~'T={reR*: AreI}. Then

||f/1”(k+a),r'1 = “f“(k+a),l'
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For any fe‘CO(AI) we define f*, f.: I - R by
(3.7 f.(r)=inf{f(r,9):0 ¢ Sz}, i (r)y=sup{f(r,8): 8¢ SZ}.

The local existence of solutions to (3.3) follows from the linear Schauder
theory and a standard implicit function theorem argument.

Proposition 3.1. Let I =[ry;r], 0<ry<r <oo,andlet B, and
R, begivenin A, suchthat B,,7,B,R, € C(")(A,), and

(3.8) O 0<y<y(r,®) V(r,9) €4,

Jor some constant y, > 0. Then for any initial condition

(3.9) u(ry, 8) = 9(®), V€S,

where ¢ € C***(S?) satisfies

(3.10) 0<d, <o ’®)<é,', ves,

for some constant 6, > 0, the initial value problem (3.3), (3.9) has a

solution u € C(2+")(Ar .r+1) Jor some T > 0, where T depends on

Yo 89> Tos 1Bl 15 17y, 1+ 1By 1 1Byl ;- and Nl -

The basic uniform interior Holder estimates which we need are sum-
marized in

Proposition 3.2. Let I =[1;b] and I' =[a; b] with 1 <a< b, and
suppose u € C(2+“)(A,) is a solution of (3.3) in A,, with source functions
B, and R,, suchthat B,,7,B,R, € C(“)(AI), V,r€ CO(A,), and
(3.11) 0<y, <¥(r, 9 <y;' V(r,®) €4,
for some constant y, > 0. Further suppose there is a constant , > 0 such
that
(3.12) 0<dy<u(r,8) <68, V(r, o) €4,

Then, with m = Sr(1 - u_z) as above, there is a constant C, depending on

a,b, Vo> 0y "ﬂA”(a),]’ ")’"(a)’p ”VA)’”o,]r ”B“(a),[’ and ”RM“(O,),]’
such that
(3.13)

"m"(z.,.a),[’ < C(”ﬂA”(a),] +ly - 1"(0,),] + ”B”(a)J + "RM”(C.),[ + "m”o,l)-

If B,7,B, R, € C(k+°’)(A,), k € Z*, then there is a constant C,
depending on a, b, 3y, Vo, 1Bllksay.1r WWlksay, 1o 1Blesay,r» and
1R psll 4, 1 » SuCh that

(3.14) 172 24y, 17 < C-
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Proof. Let I" = [Y(1 +a),b], so I' c I" c I. Writing (3.3) in
divergence form, and using

yu2Au = div(yu2Vu) - ”23’|A”|A - 2yu|Vu|2,
we can apply [21, Theorem V.1.1] to obtain the Holder estimate
(3.15) ||u||(a,)’,,, <C

for some 0 < o' < 1, o' = a'(y,, J,), and constant C, depending on
a,b,y,,d,, 1Ballo. ;> IBllg, ;> and |IRylly ;. Without loss of general-

ity we may assume o' < a. The usual Schauder interior estimates [21,
Theorem IV.10.1] now give

Nellgaary 1 < Co(Cro 1Balliay.r 17y 15 1By 1> WRglley 1)

in particular, u, Uy € C("‘)(A ;) Wwith uniform bounds. Noting the linear
form of the lower order terms in (3.5) and that

-1 2
ru - Au=uAm+3uu m,,,

from the Schauder estimates again we obtain (3.13), and (3.14) follows by
the usual bootstrap argument. q.e.d.

The use of the variable m rather than u, and the resulting linear form
of the estimate (3.13), will be important in the proof of decay estimates.
It is clear that in order to extend the interval of existence of the solution
of Proposition 3.1, we need to control »# and u~'. Suitable bounds will
be derived from the next result.

Proposition 3.3. Suppose u € C(ZM)(A[,0 ;'11)’ 0 <ry<r,, is apositive
solution of (3.3). Then for ry <r <r, we have
(3.16)

ru_z(r, 9) < ro(u*(ro))_2 exp (— /r(yB)*(t)fit—t>

+/r0’ (y (1 - %RMSZ)) (s) exp / (yB)*(t)?) ds,

(3.17)
dt

-
ru (r 19)>r0(u (rg)) exp( /(yB ) T)
+/rr (}' (l - %RMS )) (s)exp( / (yB)* t)—)

0
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If we further assume B, and R, are defined on Ag+ such that the func-
tions

(3.18)

o' (r) = %for <y (1 - -;—RMSZ))* (s) exp (— /sr(yB)*(t)?) ds,

(3.19)

o,(r)= %/Or (y (1 - %RMS2)>* (s)exp (—— /sr(yB)*(t)#> ds

are defined and finite for all r € R", then the estimates (3.16) and (3.17)
may be rewritten as
(3.20)

u(r, 9) <81 + 2((w,(ry)) 2 = 8" (rp)) exp (— / '(wx(r)f’,—’) ,

0

(3.21)
W7 (r, 9) 2 6,(r) + 2((u" (1)) - 8, (1)) exp (- [ '<yB)*(t)$) ,

0
Proof. Applying the parabolic maximum principle to the equation (3.4)
for w=u"" gives (at the maximum of u(r, 9))
* 2
rw,(r) 2 ~(1+ (yB) )w, + ((1 = 3Ry, 1)),

Setting v(r) = rexp( fr:)(yB)*(t) dt/tyw,, this can be rewritten as

vz (v (1-3Ru)) ew ( /ro'(ym*(t)?) ,

and hence, since v(r,) = row,(r,),

w,(r) > exp (— /ro'(yB)*m?)

: (row*(’o)"' [ (+(: ~3Ru’)) G)ew ( /r:(yB)‘(t)?) ds) ,

0

which is (3.17). Rearranging shows (3.17) is equivalent to (3.21) for r, <
r <r,,and (3.16) and (3.20) follow by similar arguments. q.e.d.

We now prove the existence of semiglobal solutions of the initial value
problem and thereby the existence of a global solution (i.e., defined on
all Ag+).
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Theorem 3.4. Suppose r, > 0, and B, € C (“)(A[ro;oo)), R, €
C(“)(A[,O ;oo)) are such that the functions y and B, which are defined from
B4 by (3.1) and (3.2), satisfy y € C*(4,, . ), Be C(4, ) and
(3.22) 0<7,(r) <y (r)<oo Vry<r<oo.

Further assume the nonnegative constant K , defined by

K = sup ——1—/r<y<1—lR sz)) (s)
ry<r<oo ro 2 M *

To

(3.23)
s «, . dt
e ( [0B0F ) ds,
To
satisfies
(3.24) K < .
Then for every ¢ € C***(S*) such that
(3.25) 0<p®) <1/VK V€S,
there is a unique positive solution u € C(2+“)(A[,0;oo)) of (3.3) with initial
condition
(3.26) u(ry, ) = 9.

Proof. First observe that u € C%**(4 ) satisfies (3.3) if and only

[ry;00
if ie C**I(4,. ), alr, 8) = u(ryr, 9), satisfies’
(327)  2rd,ii— 2B =y’ Au+ (1 + 7B)i— 5(1 - iR, ")’

where
Byr,®) =B, (rors ),  Ry(r, 9 =riR,(ryr, ),
and $ and B , defined from E , by (3.1) and (3.2), also satisfy
p(r,0) =p(ryr,®),  B(r, ) =B(r,r, 9).

Denoting the estimating functions of Proposition 3.3 for (3.27) by 8*(r)
and o,(r), we see that

8" (r)=08"(ryr), 8,(r)=0,(ryr) V1<r<oo,

2This scaling transformation is nothing more than a log r translation of the partial dif-
ferential equation on R x s2.
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and it is similarly verified that

£ [ (1= 100) o [ )

Hence the upper bound of (3.25) implies

628 0<&0+ (@) -s e (- [(0B0F)

for all r > 1. By Propositions 3.1 and 3.2, thereis 7 > 0 and @ €
C®*( 4y, 1,y satisfying (3.27) with initial conditions

(3.29) a1, ) = o.

Furthermore, by Proposition 3.3 and (3.28) there are functions 0 < J,(r) <
d,(r) < oo, 1<r,independent of T, such that

o,(r)<u(r,8)<d,(r) VI<r<I1+T.

The precise forms of J,(r) and J,(r) follow from (3.20) and (3.21) and
do not concern us. Let U = {t ¢ R": 3@t ¢ C(2+a)(A[1.1+t]) satisfying
(3.3), (3.29)}. The local existence Proposition 3.1 guaralftees U is open
in R" and from the interior estimate (3.13) of Proposition 3.2, we have
an a priori estimate for [[#(1+7¢, )|, , (observe that 7 = [1;1+1] is
compact, hence there are y, and J, satisfying (3.11) and (3.12) on 4,).
By Proposition 3.1 the solution can be extended to 4, ,,,,r, for some
constant 7 independent of #, which shows that U is closed. Hence
il extends to a semiglobal solution # € C*** (4, ) which is clearly
unique, and the function u(r, 8) = #@(r/r,, 9) is the required solution of
(3.3), (3.26). q.e.d.

Note that if RMr2 < 2, then K = 0 and the upper bound of (3.25)
is trivally satisfied for all (positive) ¢ € C 2"'(Sz). More generally, if
R,, has compact support, then K < oo and initial conditions ¢ can be
found, for which there is a semiglobal solution. This contrasts with the
fact that if R,, is sufficiently large and positive, then ¢ *(r) < 0 for some
r and therefore there can be no global solutions u satisfying ¥ — 1 as
r | 0. Geometrically, this says there are compactly supported functions
R, eC °°(R3) such that there is no complete QS metric having prescribed
scalar curvature R, . Likewise, blowup is also possible for the initial value
problem, showing that the condition (3.25) is nearly optimal.

Corollary 3.5. Let ry, B,, R,,, and K be as given in Theorem 3.4,

and suppose 0 < K < oo. If ¢ € CZ’O‘(SZ) satisfies
(3.30) 0(®)>1/VK VoeS’,
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then there is T > 0 and u € C**® (A[,O.’r0 +7) satisfying the initial value
problem (3.3), (3.26), such that
(3.31) lim sup{u"(r)} = .

r—ry+T

Proof. Arguing as before, the condition (3.30) ensures there is r, > r,
such that

0> ry(p,) " exp (— [ 080 d[)

0

+/r’n (‘y <1 - %RMS2))*(S)exp (— /er(yB)*(z) %) d

0

The lower bound (3.16) shows there can be no solution of (3.3), (3.26)
on A[ro;r.] , hence there is a maximal T € (0;r, —r,) and a solution
uecC (2+°’)(A[,O;ro +7))- Maximality and Proposition 3.2 show that the
lower bound (3.12) must fail, showing (3.31). q.e.d.

Another immediate corollary of Theorem 3.4 is the existence of exten-
sion metrics having boundary S,0 with prescribed (positive) mean curva-
ture.

Corollary 3.6. Let ry, 8,, R,,, and K be as given in Theorem 3.4.

Suppose h € C***(S?) satisfies
(3.32) y(ry, O)R(®) > 2VK/r, VO €S,

Then there is a QS metric with scalar curvature R,, and shear vector B,
having boundary S,0 %’ rg'S2 with mean curvature h.

Proof. Let ¢(8) = 2/(ryy(ry, ¥)h(8)); then (3.32) is equivalent to
9" < 1/VK . Theorem 3.4 now constructs a solution u € C (2+")(A[r0;oo))
to the initial value problem (3.3), (3.26), and the resulting QS metric has
boundary S with mean curvature A(3) by (2.17). q.e.d.

The semlglobal existence Theorem 3.4 can be used to construct global
solutions, without specified initial conditions.

Theorem 3.7. Let B, and R,, be given on Ag. = RY x S? such that
B,y CAg), v€CM(4g), Be C?(4g), and R,, € C¥(4g.),
where y and B are the derived functions defined by (3.1) and (3.2).
Suppose y, B, and R,, satisfy the global bounds

(3.33) 0<y,(r)<y"(r) < oo,
(3.34) 0<6,(r)<8"(r) < oo
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for all r > 0, where 6,(r) and &°(r) are defined by (3.18) and (3.19).
Then there is a solution u € C%* (Ag+) of (3.3), such that for all (r, ) €
R" x §°

(3.35) 1/4/8%(r) < u(r, 8) < 1/,/6,(r).
Proof. Let ¢, € Cc**(S*), 0 < & < 1, be any family of functions
satisfying
(3.36) 5,(e) < 9, (8) < 8°(e),
and let 4 be the solution of (3.3) on 4, ., with initial condition g,

(the existence of u® follows from Theorem 3.4). From Proposition 3.3
we have

(3.37) 5.(r)<(r,9) <), e<r<oo,

forall 0 <& < 1. Now suppose 7, >0 and u € C(2+°’)(A,) , I=1[ry; 4ryl,
is a solution of (3.3) satisfying
(3.38) s.(ry<u(r,9)<d°(r) vrel,

and define #(r, 9) = u(r/r,, 9) . By applying Proposition 3.2 to # on the
interval [1;4] and then rescaling back, from (3.13) we obtain an estimate
of the form

(3.39) [Ullgyay.r SC» T =1[2r5; 4r],
where C is a constant which does not depend on u . (For later application,
observe that (3.13) rescales to give more precisely

(3.40)

2
1 sy € (DB a1+ 1Bl 17 = Wy s+ IR

+ sup(1 =9, (r)) + inf(1 - 5*(’))} ;

where C depends on sup,{y"(r), 7, (1}, sup,{8"(r), 6, (N}, 1B )l 0./
”7”(1+a),1 » “B”(u),[ , and ”RM"ZH(O,)J )

Applying (3.39) to u® shows, by Ascoli-Arzela, there is a sequence ¢ IR
0 such that the sequence {u(ef)} converges uniformly in C(2+°)(A,) for

any compact interval I ¢ R* to the required solution u € C (Z“L"')(RJr ><S2) .
g.e.d.
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Note that the global solution constructed here need not be unique, due
to the freedom in choosing the initial data ¢, € Cz’a(Sz) , € >0, for

the approximating solutions u® . Uniqueness in general requires greater
control on the behavior of yB and u as r | 0 (see, for example, Theorem
4.3).

4. Asymptotic metric behavior

The asymptotic behavior (as r — 0, co) of the global solution con-
structed above is not controlled, since the source functions g, and R,,
are restricted only by the (mild) conditions (3.33) and (3.34). There are
four geometrically natural asymptotic boundary conditions:

(i) regular at the center (u =1+ 0(r2) as r|0),
(i) minimal surface (“black hole”) interior boundary (u_1 — 0 as
riry>0),
(ii1) asymptotically Euclidean (4 =1+ O(r_l) as r — 00),
(iv) asymptotically hyperbolic (u = rh O(r'z) as r — 00).

In this section we describe conditions on g, and R,, which ensure
existence of solutions satisfying the boundary conditions (i), (ii), (iii).
The basic tool is a dilation-invariance property of (3.3) which allows us
to deduce decay estimates from local estimates. This is sufficient to prove
the curvature is bounded across r = 0 (Theorem 4.3), and asymptotic
flatness (Theorem 4.2), under suitable decay conditions on f, and R, .
These asymptotic conditions could be weakened to allow u = 1+ O(r™%),
a > 0—this is left as an exercise for the interested reader. A restatement
of these results, in rectangular rather than spherical polar coordinates, is
given by Theorem 4.5.

The black hole boundary result (Theorem 4.6) uses a curious desingular-
ization (4.47), which transforms the equation into a similar equation with
boundary conditions posed at r = 0. The discussion following Theorem
4.5 shows that compact minimal surfaces form a natural obstruction to the
existence of QS coordinates in general metrics. Although global existence
in the asymptotically hyperbolic case (iv) follows from Theorem 3.7 and
it is easy to see ru — 1 as r — oo, the estimate (3.40) needed to control
curvature is of little value, since the ellipticity of (3.3) degenerates with
u . This case will be considered elsewhere.

Lemma 4.1. Suppose y € Ll([l ; 00)). Then there is a constant C
depending on y such that
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c 1/ r dt C
(4.1) 1—737/1 exp(—/sy(t)—t—>ds§1+7

forall r>1.
Proof. Since [°|y|dt < oo, there is ry > 1 such that [ |y|dt < 1.
Using ’
le" — 1] <2|n| for|n| <1,

/lrexp (—/sry(t)?) ds—r
/lroexp (—/Sry(t) %) ds+r,
o[ (ool [ o)1)
<ce2[ [T Zas

<ce2 [ pol(1-2)asc,
L

we see that

<

which implies (4.1). q.e.d.

Associated with the quasi-spherical coordinates (r, ¥) on R" x S? are
natural rectangular coordinates (xi) = (x,y, Z), using the usual spheri-
cal polar/rectangular coordinate transformations. (The transformation is
determined only up to a rigid rotation, but this does not matter.) The
rectangular coordinates define an embedding (xi): R" xS? > R?, and we
compare g with the pullback of the flat metric |dx|)* of R’ under this
map. Since |dx|> =dr’ +r* Y] aj , we have

g —ldx|’ = (8 — (Sij)dxidxj
=@+ g - 1)dr’ +2rB 0 dr,

where ﬂ2 =Y ﬂj is the length squared in the S? metric of the 1-form
B,0,. Defining B,, i=1, 2, 3, by the relations

(4.2) Bx'=0, B,o,=B,do,,

where 0, = x'/r, do, = r'leijdxj = r_l(éij - 0i0j)dxj, and p* =
Zﬁj = Eﬂiz since do” = Zaj =3 d()? , we see that
(4.3) g, =08, + ' + 5 ~1)0,0,+B,0,+ B0,
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Let us adopt as a definition of asymptotic flatness the conditions
(4'4) lg;]_611|+rlalgjklsc/r9 l,]ak=1s2’3’

for r > r, and constants r, and C. Although this is not the weakest
possible definition [3], by assuming further the condition R,, € LI(M ),
we can ensure that the ADM mass is well defined. From (4.3) and (4.2)
it is clear that (4.4) will be satisfied if there are constants C and r, such
that for all r > 7,

(4.5) [Bl +1r0. B4+ |V 4Bl < CJr,
(4.6) |’ — 1)+ |rd,u| + |V ju| < C/r.
The conditions on #, can be imposed a priori, and the estimates for u

are shown in the following result.

Theorem 4.2. Let ue C*™ (4 ) be a solution of (3.3) satisfying

[ry,00)
(4.7) 1/3/0%(r)) <u(r;, 8) < 1/4/d,(r,)

and suppose there is a constant C > O such that for all r > 2r, and
I =[3r;2r],

2
(4.8) \Bal24ay, . 170, Bal14ay, 1, + 1Ry ey, 1, S C/T-
Further assume
(4.9) / (178, div B (r) + | div 8| (r)) dr < oo,
To
(4.10) / IR, I" (1) dr < .

To
Then the asymptotic flatness condition (4.4) is satisfied, and the curvature
tensor is Holder continuous and decays as
(4.11) |Riem| < C/r’,

where |Riem | = (g" g/ g"* g RijkIR"j'k'I')l/z' The total (ADM) mass

1

(111, [3) of (M, g) is well defined and given by

limj{ m(r, 9)do.
o0 S2

r—

1
(4.12) MupM = 27
Proof. From (4.8) and (4.9)

(4.13) /oo BI"(r)dr < oo,

n
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50 (4.10) and Lemma 4.1 give
(4.14) 1-C/r<é,(r)<d™ () <14+CJr

forall r > r,. Now m scales as m,(r) = m(Ar)/4, so the scaling argument
of Theorem 3.7 and the bound (3.13) yield

17l 240y, 52 < Climllg, ; + Cr{llBllay, 1, + 1Blly, 1,
2
+ly = 1”(0,),1’ + "RMr ”(a)’lr} s

where I; = [r; 2r], and C is bounded independently of u# and r by
(4.14) and the decay assumptions (4.9). Now (4.14) controls ||m]|, , and

the decay (4.8) controls the second term of (4.15), giving the uniform
bound

(4.16) Il o < C

(4.15)

for all r > r, . Expressing this in terms of u and derivatives implies
-2 2
(417) |1-u "(a),]: + ”ra,u"(a),[,' + "Vu"(a),lr’ +1IV u"(a),]" <C/r.

The estimates for »~> and Vu show g is asymptotically Euclidean in
the sense of definition (4.4), and the estimate for vu , together with the
expressions (2.23)-(2.25) for Ric, shows that Ric € Co’“(A[,l;oo)) and

|Ric(r, 9)| < C/r3. Since M is 3-dimensional, this controls the full
curvature tensor.
It follows from [3, §4] that the ADM mass

1 .
(4.18) Maom = To= }i (8,8, — 0,8;) dS’

is uniquely defined, since 8 g L*(R*\B(0,r,)) and R, € L' (R’\B(0,r,)).
Regarding the sphere at infinity S_ as the limit of the foliation spheres
S, and noting that

2
ds;=0,dS=r 6;do,
where do is the volume form on S° , we find that
2 2 52
(0,8, —9,8,)0; = ;(u +B°-1)+9,8,.
A short calculation using the relations (4.2) shows

(4.19) ro,;=divg=8,,,
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whereupon § 9,8, =0. Since /iz <C/ r*, the mass integral reduces to

1 . 2 2 2
m}l{&ﬁr 7(u —l)r do

and (4.12) follows by noting from (4.16) that =1+ 2m/r + O(r_z).
The limit in (4.12) can be shown to exist directly from (3.5), which gives

d 1 —1 1 .
z;?(m—ifyu Au—;}((dlvﬂ+y3)m

(4.20) .
+3 }[(2;;3 +div B+ 7R, ).

Here and henceforth we use § to denote the integral over S? with the stan-
dard measure do. Since u”'Vu = u2Vm/r, m and Vm are bounded,
and divg, B = O(r_l) , the first two terms are integrable on (r,; o0),
while the integrability of the final term is ensured by the slightly stronger,
but evidently necessary, decay conditions (4.9) and (4.10). q.e.d.

By means of very similar arguments we establish regularity across the
center r = 0, using the rectangular coodinates (xi): R" xS? 5> R o
define the differentiable structure on R x S? U {centre} .

Theorem 4.3. Let ry >0, assume B, and R, satisfy

-2
(4.21) 17 " Ball ey, 0:r) + 1RaeN (@), 0570 < €

andlet ue C (2+°‘)(A(0;r0)) be a solution constructed by Theorem 3.7. Then
u is unique in the class of solutions satisfying
lu-1<C re

for some ¢ > 0, C and all 0 < r < r,, and the coefficients 8;j of the
resulting quasi-spherical metric g in natural rectangular coordinates (xi)
satisfy g;; € c' (B, ro))ﬂCZ’“(B(O, r)\{0}), where B(0, r;) C R’ is the
ball of radius r, and center 0, and we define g, (0)=9;. Furthermore,
there is a constant C such that for all 0 <r <r,,

(4.22) |g,; — 8,1 + 110,81 < Cr°,
(4.23) |Ric| < C.

Proof. The decay bounds (4.21) imply there is 0 < r; < r, such that
(4.24) B(r, 9| <Cr*,  Ip(r,0)—1]<}

for 0<r<r, <r,, and from Lemma 4.1 we have

(4.25) 16%(r) = 1] +10,(r) — 1] < CF".
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The method of Theorem 3.7 constructs a solution # bounded by 6" and
d, , and (3.40) gives

3
(4.26) |m|(2+a),[r;2r] <Cr

for r < %rl , which implies the required bounds on g; ; and 6igjk . The
curvature bound follows from (2.23), as before.

To show uniqueness, suppose %, and u, are two solutions of (3.3) and
set v =m, —m,, where m, = 1r(1 - ui_z) , i=1,2. From (3.5)
(4.27) rov— B,V u= %ry(ul_lAu1 - uz_lAuz) —yBv,
and multiplying by v and integrating over S° gives (setting §=Ja)

d 2 . 2 ulu?
rw v =—f(leﬂ+yB)'U +rf}';—22
-2 2 2

2 -1 2 2
. {(r—ml —-m,)(=|Vv|" —vy "V yV v +r Tuu|Vo|v7)
—1 -1
+V  (m, +m,) (ul Vu +u, V,u,
+r“2ufu§vVAv - y_lVAy) vz} .

The various terms are estimated using
e an easy consequence of (4.21) to control divg, y, Vy, yB:

|div 8| + |Vy| +|yB| < Cr;

2

e the asymptotic assumption %, u, — 1 as r — 0 to control uf , Uy

terms;
e the Schwarz inequality

vy_lVAyVAv < |V'U|2 + %y_2|Vy|2v2;

o the identity ¥~ 'Vu = ¥’Vm/r and |Vv| < |Vm,|+|Vm,| to control
terms in Vu and Vv, giving finally

(4.28) ra‘ir ]{UZ < Cj[{r + (Ilel2 + |Vm2]2)(r_2 + |v|r_3)}v2.
Now if u, and u, satisfy

lu, — 1| +|u, — 1| < Cr°
for some ¢ >0 and all 0 <r <r,, then

1
Im,| +|m,| < Cr™**
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and the rescaling estimate (3.40) gives

|Vm, |+ |Vm,| < Cr'*.

Using |v| < |m |+ |m,| < Cr'** we find therefore

if’vz < Cr_HR?{vz.
dr

Solving this differential inequality yields
?{ v? <exp(Ce™ ' (r* - tze))f v’
s s,

r

forall 0 <t<r<r,. Since v — 0 as r | 0, the right-hand side goes to
Oas t] 0, hence v =0, showing uniqueness. q.e.d.

The regularity of g, ; can be improved slightly by using the standard
harmonic coordinate argument and the boundedness of the Ricci tensor
(cf. [3, Proposition 3.3]), but it does not seem possible to assert higher
regularity (in particular, continuous curvature) using only the rather soft
scaling method given here. However, one situation where regularity at the
centre is elementary occurs when B, and R, vanish identically for small
r:

Corollary 4.4. Suppose B, and R,, satisfy the global existence condi-
tions of Theorem 3.7 on R* x S°, the decay conditions (4.21) on A(O;rol ,
and

(4.29) spt(B,) USPt(R,,) C 4, .

for some 0 < r, <r,. Then the metric (R3 , &) constructed by Theorem
3.7 is metrically flat on the region B(0, r,).

Proof. Clearly 6*(r) =d"(r)=1 for 0<r< r, » and hence the global
solution satisfies m(r,9) =0 for 0 <r<r,.

Remark. By specializing to R,, = 0 and requiring that g, satisfy
the decay conditions (4.9) and (4.10), this corollary provides examples of
asymptotically flat, time-symmetric initial data sets for the vacuum Ein-
stein equations on R?, containing regions of vanishing spacetime curva-
ture.

It may be helpful at this point to collect and restate a version of these
results for data given in terms of rectangular coordinates on R.

Theorem 4.5. Suppose B,,R, € C°°(R3 ) are given such that 3 B, (x)xi

=0 forall xeR®, and
(4.30) ry_9,8(x) <2,
(4.31) R, (x)r* <2,
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where r = |x| and 9, = 9 /8x'. Further assume B; and R,, satisfy the
Jollowing asymptotic conditions (for some constants 0 < ro<rp <oo):
(i) for r, <r < o,

(4.32) IR, | +710R,,| < C,/r*,

(4.33) 18] + @Bl + 18”8 + 19’ Bl < C,/r,

(4.34) 18,8, +110,(8,8,) < Cy/r";
(ii) for 0 <r<r,,

(4.35) 1Bl + 1|08l < C,r’,

where 0, = r—lxic‘)i and
0“8 = 3° 19, -0, B,(0)N"
e
Then there is u € C °°(R3\{0}) satisfying (3.3) and
ux)=1+0(") asrlo0,
such that the resulting quasi-spherical metric (4.3) satisfies g, ; €

C°°(R3\{O}) ncC 1""(R3). Furthermore, the curvature tensor of g is de-
fined and bounded almost everywhere,

|Ric(x)] < C Vx € R\{0},
and g has asymptotic decay
(4.36) |g,'j"6ij|+r|6igjk| <CJr,
(4.37) |Ric| < C/r’,

with finite ADM mass (4.12).

Remark. Condition (4.31) is stronger than necessary, and could be
replaced by the weaker but less intuitive condition (3.34).

Proof. Formula (4.2) serves to cast f; into angular form, and from
(4.19) it follows that div g = rd,f;, so (4.30) ensures y < oo, and thus
(3.33) holds. To show (3.34) calculate

2 2
(4.38) Bz’ =1 (10,:8,1" — 418,8,") + 4ro,8°,

whence |B| < Cr*, while (4.31) gives J,(r) > 0 and (3.34) follows. The-
orem 3.7 then yields a global solution u( ), x #0, of (3.3) satisfying

0<6,(n<u’(x)<d(r) <
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The asymptotic conditions now ensure that Theorems 4.2 and 4.3 apply
to give regularity about r = 0, and asymptotic flatness. q.e.d.

Since the direction of increasing r is the direction of propagation of the
parabolic equation (3.3), it is clear the assumption dr # 0 is an essential
ingredient of the quasi-spherical construction. The prototypical example
of the breakdown of this assumption is the Schwarzschild metric

dr

2,2
—_I—ZM/r+r do

ds;chw =
on S? x [2M ; 00), where M is a positive constant. The manifold ob-
tained by doubling across the totally geodesic 2-sphere r = 2M is smooth,
complete, and scalar-flat, and r is globally defined and smooth. However,
r fails to be a coordinate across r = 2M , and the breakdown dr — 0
corresponds to # — oo. This suggests the boundary condition

(4.39) u”'(ry, 8) =0

(or equivalently, m(r,, §) = %"o) , which by (2.17) implies that the bound-
ary Sr0 is a minimal 2-sphere. For time-symmetric initial data sets in
general relativity, the minimal surface boundary condition corresponds to
an apparent horizon (“black hole,” roughly speaking) at r = r,,, and the
following result constructs such solutions.

Note that, provided the QS geometry is bounded (in the sense that the
shear vector B, is smooth and bounded across r = r,), this boundary
condition also implies that the second fundamental form of the boundary
sphere vanishes identically. Although it may be possible to produce QS
solutions with nontotally geodesic minimal surface boundary, by allowing
certain components of #, to blow up appropriately, it appears that in
such cases the Ricci curvature will not be bounded at the horizon.

The restriction dr # 0 indicates the quasi-spherical technique is natu-
rally limited to constructing metrics in the “exterior” of all minimal sur-
faces. For example, if K ¢ M is a compact subset of a 3-manifold M
such that M\K admits a QS foliation (with §, smooth and div f < 2),
then by the maximum principle, any closed compact minimal surface in
M necessarily lies inside K .

Theorem 4.6. Let r, >0, and let B, and R,, be given such that

(4.40) Ry € C4y ),
(4.41) BreCT 4y )
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Further suppose that R,, and div g satisfy, for ro<r<oo,

(4.42) R, <2,
(4.43) div g < 2.

Then there is u™" € C(2+°‘)(A(,0;°°)) such that the quasi-spherical metric
g on A[,O; o0) has curvature uniformly bounded on A[ro; 2n,) with totally
geodesic boundary Sro’

I, =0.

0

Let 0 < n <1 be such that
(4.44) L—n < (1= 4Ry ), <(1-m)"

Then there is ry > r, such that for ry<r<rp,
r— ro
r
(4.46) o1y -

(4.45) 1-m<un<=20-n

lzn(r—ro)§2m5r0+17(r—r0).

Proof. For clarity in the following computations we suppress explicit
mention of the ¥-dependence. Defining, for r > 0,

r
r+r0

(4.47) o(r) = u(r+r,),

the evolution equation can be rewritten as
(4.48) 218,01 — 2B 1 = P’ A+ (1 + 7B)i — 5(1 - 4R, )it
where the fields E o P B , and R » are defined by

~ . r

Bu(r)= ﬁ;;ﬂ,,(r'i‘ro),

pr)=v(r+ry),

~ r
B(r) = ;?B(r"' r0)>
0

ﬁM(r)r2 =Ry (r+ry)(r+ r0)2.

(4.49)

Observe that the ii-equation (4.48) is of the same form as the u-equation
(3.3), except that the fields  and B are defined by the relations (4.49)
rather than in terms of E . by the analogues of (3.1) and (3.2). Unlike
the scaling transformation (3.27), the geometric meaning of the transfor-
mation (4.47) is unclear. However, the global existence Theorem 3.7 uses



60 ROBERT BARTNIK

only the fields y and B and does not require their defining relations, and
therefore applies equally well to (4.48).

It follows from the definition of the C**® norm that (for example)

17l 24a), [a:51 < 120 24y, tatr, : b47,)
for any 0 < a < b, and we find therefore
-1 3
rB e P4y ),

~ 2+a
VS C( " )(A[O;oo))’

r'Be (4,
= 2
Ry (nrt e (4, -
2

(4.50)

Since $ > 0 and ﬁM(r)r < 2, Theorem 3.7 gives a solution # €
C™* (4. ) to (4.48), bounded by

0<é,(r)<i’(r) <8"(r),

where §,(r) and " (r) are defined by (3.18), using 7, B, and R,, . Now
clearly |J7§(r)| <Cr,so 5*(r) and 47(r) can be estimated on (0; ¢), for
some small & > 0, using (4.44):

(4.51) (1-m<8n<&mn<a-mn,
which translates back to the stated bounds on %> and m , and also shows

(for 0<r<e)

(4.52) % < 2m(r) < nr,

where (r) = $r(1 — a2(r)) = m(r + ry) — 3ro. The rescaling estimate

(3.40) applied to 71 shows that the covariant derivatives of m decay,
IVm(r)| + |V m(r)| < C(r—r,),
from which it follows as before that the curvature of g is bounded on

Ay oy

5. Asymptotic decay
The aim of this section is to describe the asymptotic iecay of solutions
to (3.3) in the special case of vanishing source functions (8,, R,,). The
main result shows that the metric approaches the Schwarzschild metric:
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Theorem 5.1. Suppose ry >0 and m € C*(A satisfies

[’0;00))
(5.1 om= %u-lAu,

where u = (1 — 2m/r)'l/2 € C°°(A[r0;°°)). Then there is a constant m,
and ¢ € C*(S?) satisfying (A+2)p =0 such that

_ 4 -3
(5.2) m=mg,+ = 2my + O (r "logr),

where f € O, (g(r)) means forall i,j>0, i+j<k,andr>r,, there
are constants C; j with

(5.3) (r9,)'V' f1 < C; ;8(r),

and O,(&) = N2, O(8) -

The proof of Theorem 5.1 will follow from a series of estimates. We
assume throughout this section that (8,, R,,) =0 forall r > r,. It will
be convenient to define

(5.4) p(r,8) =r-2m(r, %),
(5.5) M(r) = % fi m(r, 9)do

and recalling the notation from §2,
m"(r) = sup{m(r, 9): O € S2},

(5.6) ] 5
m,(r) = inf{m(r, 9): 0 € S7},

we set u, = m,(r,) and u* = m*(r)). A prime (') will sometimes be
used for d/dr, and we use the L”(Sz) norms [|f(r)]l,, 1 < p < oo.
Generic constants depending (not depending) on the solution m(r, 9) will
be denoted by uppercase C (lowercase c).

Lemma 5.2. The following bounds hold:

(5.7) m,(r)>0, m"(r)<0;
(5.8) B, <m(r,9) < p’;
) 1 [ |Vm]?
= — > N
(5.9) M) = 5 f; do 2 0;
and there is a constant C,, depending only on u_, 1", and r,, such that

(5.10) fs(m —MYdo < %

r
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Proof. Thereis 8* € S* such that m(r, 9%) = m*(r), Vm(r,®") =0
and Am(r, ®") < 0, hence 9,m(r,¥") < 0 and m"(r) < 0; similarly
m’ < 0. Since u”'Vu = Vm/p, we have
' 1 1
M(’)—s—nﬁ,“ Bu=o 74 vml*/p,

giving (5.9), and

d
dr

lel

(m M)’ f(mu Au—2MM') )

1 2 lm+M—4m/r
= r%|Vm| (1+r (1—2m/r)2 )

The last term is estimated using (5.8),

_m+M—4m2/r 4u*2/r0—2y* B
(1-2m/r)> ~— (1=2u/ry)

and the Poincaré inequality gives

fom-7 <4 f19ml’,

since §(m — M) =0. Hence

t () < }(2—%)74(m—M>2,
2

which may be integrated to yield (5.10) with C, = ameCo(ut — )t
q.e.d.

There are two invariances of (5.1) which can be used to normalize m .
The scaling invariance

(5.11) m(r, 8) =Am(r/i, 9), A>0,r>Ar,
has been described in §3, while the “translational” invariance
(5.12) rh(r,6)=m(r+,1,19)—%l, A>0,r>r -4,

appeared in the proof of Theorem 4.6. In both cases it is readily checked
that m satisfies the source-free equation (5.1).

Lemma 5.3. Suppose r, = max{r,, 30u" — 28u,}. Then there is a
constant C, depending only on ry, u*, u,, and ||[Vm(r,)||., such that for
all r>r,,

(5.13) \Vm(r)|* < C,/r.
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Proof. Let us assume initially that § < u, < u* < 1; this normaliza-
tion will later be removed. We use a maximum principle argument with
the test function

f(r, 9)=|Vml|’ = 2amr,
where a > 0 is a constant to be chosen. From (5.1) and the Ricci identity
we find

2, 2
(5.14) pd.m=3Am +3|Vm|"/p”,

p6,(19m[*) = ZAVm[* ~ (V*m[" +|9mP)
(5.15) 2 2 12 4
+ ;(3m|Am|Bm'AB + |Vm|"Am) + ;7|Vm| ,

and thus f satisfies ‘
1 2 2, 2am 3a|Vm|*
90,1 = 307 (9 m[* +|ym) + 2202 _ 3l
r rp
(5.16) ) 12
2 4
+ ;(3m|Am|Bm|AB + |Vm|"Am) + ?|Vm| .

Suppose a is chosen sufficiently large that f(r,, ) <0 for some r, >r,,
and consider the first point x* = (r, 9), r > r,, where f(r,9)=0. At
x* we have

(5.17) f=0s|Vm|* =2am/r,
(5.18) Vf=04:m|Am|AB=am|B/r,
(5.19) Af<0,

(5.20) 0,f>0,

and thus

2 2
po,f < — (VPmp +|Vm[) + 22me _ 3alVm]

(5.21) ) r ’1";
2 4
+ ;(SmlAmlelAB +|Vm|"Am) + FIVm| .

We will use (5.17)-(5.19) to obtain a contradiction to (5.20), for a suf-
ficiently large. From (5.17), Vm(x") # 0 and we choose the frame
v,, v, at x* such that Vm = m,v, (i.e., mp, = 0). Now (5.18) shows
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my, =afr, m, , =0, and thus

2am d° 2 2amp 6a’m
parfs - (—l;—+r—2+m|22) +—r2—-—7

2 (6a’m 2am (a 48a°m* .
+; 2 +—r—(7+m|22) +_r‘2pT,

using the Schwarz inequality to eliminate My, and gathering like terms

give

(5.22) af<-“—2 |- 10 5™ _zi”_’(r_ﬂ)
: Po] = =33 p 7 /2 r)

The normalization § <m <1 implies 1/(r—2)<m/p <1/(2r-2), so
choosing r > 16 ensures the coefficients of both terms are positive, hence
8,f(x*) < 0, contradicting (5.20). Thus setting r, = max{r,, 16} and
a=||vm(r)|?, vyields

2r
(5.23) Vml*(r) < ZLIVm(r)I2, vr2r,

for the normalized solution.
Denoting the normalized solution by 72(7) and the original solution by
m(r), we have
P 1
(5.24) (F) = 7(m(r) - p),

where r = A7 + u. Since we may assume without loss of generality that
u,#u, choosing p=2u,—p" and A=2(u" —pu,) ensures the normal-
ization ;_,- < m < 1. The estimate (5.23) translates to

(5.25) [Vm|*(r) < 2(r_1__)

IIVm(r.)II
and the condition 7 > 16 will be satisfied if
r>r, = max{r,, 30u" — 28u,}.

Lemma 5.4. There is a constant C,, depending only on pn,, pu",r,,
and ||Vm(r1)||§° , such that for all r > r,,

(5.26) 7{ [Vm|® < 522
S, r
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Proof. Rewriting (5.15) as
3\vml’ = — (V’m|* +|Vm[*)/p + LA(IVm|/ p)
+ (2m g gm, 5+ [Vm[*Am)/ p” + 8]Vm|*/p?
= —(V’m|* +|Vm")/p + LA(Vm[/ p)
+V ,(Vm’my,/p°)/p’ + 4Vm|*,

and integrating gives
d 2 22 2
2 1ml = = $(0PmP + 1vmPy/p+ 4 f 19ml*/ "

Using the Ricci identity and then expanding m in spherical harmonics, it
is easily verified that

F4ml* + (9mp) = f@am? > 2 f jom’,

hence applying Lemma 5.3 we see

£ oo <= 1= 2 oo

where u and p* are as defined above and r—2m <r—2pu,since u< pu, .
Integrating this inequality yields the required bound. q.e.d.

The decay bounds of Lemmas 5.2 and 5.3 are the key to applying a
general technique for showing decay of all derivatives for solutions to a
parabolic equation ([17], [13]). (The exposition here follows the model of
[13], and the author is indebted to Piotr Chrusciel for discussions on this
topic.)

Lemma5.5. Foreach k € Z", there is a constant C, = C5(k), depend-
ing alsoon C,, pn,, u*, and ||[Vm(r))|,, such that

k2 _ Cyk)
(5.27) fgrw mP’ < =2

forall r>2r, .
Proof. Let v, V,, Uy be the symmetry generating vector fields on s? ,
normalized by the commutation relations [v,, v,] = v, and cyclic permu-

tations. Regarding the v;,, i =1, --- , 3, as differential operators on s? ,
we have

(5.28) Y () =A=-D,
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where D = (—A)"l/ 2 is defined spectrally. The following facts are easily
verified:

(5.29) | [v,, A] = 0,
(5.30) f v,(f)=0 forall feC'(S?,

(A" 1) if j=2n,
(5.31) > o’ = AL
where I = (i, -, ij) is a multi-index, i, --- , ij =1,2,3,and v, =
Vi Ui, Y

It will suffice to instead estimate
E (r):= f( |ka|42,
since there is a constant ¢ = ¢(k) such that forall fe C °°(S2) ,
(5.32) - fi e fintar

This is standard and can be shown directly: by repeated integration by
parts and the Ricci identity, we have (for k even; k odd is treated simi-

larly) :
FIVI7 = f 1820+ fip T

for some homogeneous differential operator P,_, of order k—1. Applying
(5.31) and induction gives (5.32).

We use the shorthand notation Z; v, f to denote a generic linear com-
bination of terms v, f, |I| = j, with coefficients depending on k and
perhaps on other parameters, but independent of f. Furthermore, let
J, = J,(r) denote the generic term of the form

J, N}[vll(m)...vls(m)p'_s,
where s, I, -+, I satisfy s >3, || <k for 1< j <s,and Zj.=l|1j| <
2k +2,andset J =3 ./ .

Let I, |I| = k > 2, be any multi-index; then from the basic equation
(5.1) and the commutation relations we have

533 g of toml” = foom)- w0 amip) + 30,9 mP ).
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Commuting derivatives,

fomp,amip) = § %v,(m)A(v,m)

(5.34) k k+2
fv,(m Z —; (m)AvI,(m) +Z
where I;. =, fj , o+, @) (here zj denotes an omitted term). The

first term on the right of (5.34) is handled by integration by parts,

§ompe, (1) - Zf Lo vymP? f v, (myv,(ju,ml?)

. 2 2
= —f ;[Dv,m| +}{Flv,m| (pAm + 4|Vm|")

‘ 1 2
= —j[;wvlml +J5+ J,.
From the commutation relations we have

v,(m) = v vpm + Z vpm,
|1 |=k—1
and the second term of (5.34) is estimated by repeated integration by parts,

]f #v,(m)vi(m)A’v,,(m)

1 x
=?{—2 (vivl,(m)+ Z vl,,(m)) vjvjv,,(m)vi(m)
p 1 |=k—1
1 2
__1 f oy )Py m) + 4+ 4,
=JL+J,
showing that (5.34) becomes

fv,(m)vl (ATm) = —f’le,mlz/p2 +J.

The second term of (5.33) is handled similarly, giving finally that
(5.35) % f D mf < - ]{ D mf + .

Hélders inequality with Y~ 1/ p; =1 implies
c

(536) Js < Wllvll

ml, - llv, ml, .
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where |I;] < k, > |1 jl =2k +2, and s > 3. The directional derivatives
v, can be expanded in terms of covariant derivatives, hence for any f €
C™(S?) by interpolating we obtain

o fll, < eV’ A, +1A1,), 7=l
The Gagliardo-Nirenberg inequality states

. X B
IV’ 11, < ellv* A0,

with a=(j+2/9-2/p)/(k—1+2/q), 1<j<k, 1<p,q<oo. From

(5.32) with f = v,(m) it follows that

k+1
llvy mll, < (D mlly IIVmII %+ Ivemll, ),

with a; = (I, - 1+2/q; +2/p;)/(k — 1 + 2/qj). Choosing p; =5 =g;
and expanding out the product in (5.36) give

5;-2
Jy < 2" Z 2k ”2 “vm 577,
for some d < J; < 2,where Jd= 2—Eaj =(s+4/s—4)/(k—1+2/5)>0
for s > 3. Now use of the Young’s inequality leads to
1 k
J, € ————== (D" m|* + F (e, |Vml|))
(r=2p")
for some smooth function F, satisfying
F(e, x) < c(e)x’ for0<x<I1.
The L* and L™ bounds for Vm show that
F(e, [Vm],) < Cr @+

for some constant C depending on ¢, ry, r,, i, , u*, and IVm(ry)ll
Now choosing & appropriately we finally obtain

d k2 k+1 21 € -9/2
5.37 —fD <—%D ———1+C
(537) = ¢ 1D"ml* <— ¢ 1D"""m| (p (r_mz) (e)r

Assuming for convenience the normalization 1 < x4, < u" < 1, for all

k >1 we have
d 1 _
(5.38) ZE(N < —2E; (N +Cyr 2,

Following [17] and [13], we define

k
E() = Y R,(NE,(r)
j=1
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where we choose

1 r\’!
R =g (‘°g'r;)

for r, <r, <r. Then

d k / 1 k -9/2
BN < ; (Rj - ;RJ._I) E + ler R,C,

for r > r,. Noting that E(r)) = § |Vm|2(r2) , by integrating from r, to
2r, we obtain

EQr) <Cur;> + f \vm|*,
S
n
and in particular applying Lemma 5.4 with r = 2r, > 2r,,
k2 C
$ D*mf =B ()< %,
s, r

which concludes the proof. q.e.d.
The proof of Theorem 5.1 now follows readily. From (5.27) and the
Sobolev inequality it follows that

(5.39) \Vm| < C,/r

forall k > 1, r>2r, (where C;, dependsonlyon &, ry,r, i,, u*, and
[[Vm(ry)ll,,) , hence there is m, € R such that

(5.40) |m—my| < C/r forr>2r,.
The decay estimates (5.40) imply that 1 := m — m, satisfies
(5.41) 2(r—2my)o,m=Am+ f,

where f = Ooo(r_3). The eigenfunctions (spherical harmonics) ¢, i
I=0,1,--- ,j=~-1,-1l+1,---,1, form a complete orthonormal basis
for L2(S2) , with eigenvalues

A¢’1,j =-I(l+ 1)¢1,j,

and the Fourier coefficients

Fl’j(r)=f{gf¢l’j
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therefore satisfy |F, 1<cC /r3. Since f is smooth, writing ¢, ; =
(—I)N l_N(l + 1)_NAN¢,’ ; and repeated integration by parts show there
is a constant K, forany N € Z", such that for all r > 2r,,

IF, (01 < Kyl
Defining also
M[,j(r) =%g m¢1,]‘,
we see from (5.41) that for / > 1,
d
2(r — 2m0)z;Ml,j =-l(l+1)M, ;+F .

Since m(2r)) € C°°(S2) , there are constants C, such that |M; j(2rl)| <
CNI—ZN VN, [ >1, and hence

ky ; -3
— 5]
l’f___r—2m0+0(r )

for some constants k, Ir and in general,

IM, | < Crlogr,

M, || < CyKpyl ™™ vi>3, N> 1.

Thus 32,53 M, 9, ;= Ooo(r'3) , and letting ¢ =3k, ;¢, ; we have
-3
+O_(r "logr),

m = g+ —4
r—2m,

where ¢ is the required first eigenfunction of A.
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