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THE RESOLVENT OF THE LAPLACIAN ON
LOCALLY SYMMETRIC SPACES

R. MIATELLO & N. R. WALLACH

Introduction

Let X be an /ί-dimensional Riemannian symmetric space of strictly
negative curvature. Such a space is described as follows. The identity
component G of the group of isometries of X is a simple Lie group
of rank 1 over the reals. The stability group K of any point 0 e X is
a maximal compact subgroup of G and X = G/K with a Riemannian
structure corresponding to a multiple of the Killing form of G. Let Δ
denote the Laplace-Beltrami operator of X. If T > 0 and x e X,
let Bτ(x) be the metric ball in X of radius T and center x. Let ζ
be the volume of the metric unit sphere in X. Then there is a number
h = h(X) > 0 such that

Yo\{Bτ{x)) ~ ζehT/h, T -> +oo.

Here " ~ " means that the limit of the ratio is 1. In the usual jargon of Lie
theory, h = 2p. We use this as the definition since it gives a geometric
interpretation of this important number and indicates that it has meaning
for a more general class of spaces. It is convenient to write the eigenvalues
of Δ in the form v2 - h2/4. In this paper we construct a meromorphic
family Ru(x, y) of smooth functions on X x X - diag(X) such that

(1) Ru(x, y) is holomorphic in v for Rev > 0.

(2)If Rei/>0,then Rv(x, y) - δ(u)e'^h/2)d(x'y), d(x,y) ^oo.

(3) Rv{x,y) - ζd(x,yyn+2\\og(d(x,y))f^ as d{x,y)^0. I n
particular, this implies that for fixed x e X, Rv{x, •) is locally integrable
on X.

(4) If fe C™(X), Rev > 0, then

ί Ru(x, y)(Δ - v2
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Property (4) will be proved for a larger class of functions in §2 (this is
crucial to the applications). Property (3) implies that the left-hand side
of the above formula makes sense. That such a family exists for Re v >
A/2 with slightly weaker estimates can be deduced by general methods of
potential theory.

δ{v) can be expressed in terms of the Harish-Chandra c-function (see
§1). Condition (2) implies that if Rei/ > A/2, then Rp(x, •) is integrable.
This combined with the growth of the volumes of the metric balls implies
that if Γ is a discrete group of isometries of X such that T\X has finite
volume, then for each x and Rev > A/2,

is given by an absolutely convergent series for almost all y and defines an
integrable function on Γ\X. We prove (in §4) that P has a meromorphic
continuation to all of C and that the poles for Re v > 0, v Φ 0, are
simple and are located at the v such that v1 - A2/4 is an eigenvalue of Δ
on L 2(Γ\X). The residues at these values are computed in terms of the
corresponding eigenfunctions (Theorem 4.5). We also give a "functional
equation," which in the special case when Γ\X is compact, says that
p^ = p ^ (Proposition 4.3, Theorem 4.5).

The implementation of the continuation involves the construction of a
larger class of functions that are progressively less singular on the diagonal.
Set R{ v = Rv and, for Rei/ > A/2, set

R

P+ι,v(x> y) = / *„(*> z)RpJz,y)dV(z).
J x

We show that if p > n/4, then Rp v{x, •) is in l) and locally in L2

(the precise results can be found in §3). We sum these functions over Γ
as above to obtain

yer

and get a holomorphic family of functions for Re v > A/2 . We show that
if / is a function on Γ\X such that Amf e L2~ε(Γ\X) for 0 < m < N
(sufficiently large) and some ε > 0 (possibly depending on / ) , then

/ PΓ v(x, y)(A - v1 + A2/4)7(y) dViy) = f(x)
τ\x

for Re v > A . This, combined with the fact that if r > n/4 and Re v > A ,
then PΓ v(x, .) is square integrable on Γ\X, allows us to calculate the
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spectral decomposition of P r u(x, •) using Langlands' decomposition of

L {Γ\X). Since we have good estimates on these function, we are able
to give results on the pointwise convergence of the spectral decomposition
of functions with sufficiently many derivatives in L2+ε(T\X) for some
ε > 0 and the existence of an "Eisenstein transform" (see Theorems 4.2
and 4.7). Results of this nature have been proved in the case of a Fuch-
sian group acting on the upper half-plane in order to derive meromorphic
continuations of various forms of "zeta functions."

As an application of these results we give, in §5, an asymptotic formula
for the number of elements of Γx in a ball of X centered at y for x, y e
X, generalizing a result of Margulis [10, Theorem 2] (which applies to the
case when Γ\X is compact and of constant negative curvature). Although
our results only apply to the case of a locally symmetric space X of rank
1, the general formalism of §5 is meaningful in a larger context which
we now describe. Let X be a simply connected Riemannian manifold of
strictly negative curvature which has a compact Riemannian quotient. Let
Bτ(x) be the metric ball of radius T and center x in I . Then [10] (cf.
PI)

T-++00 1

with h > 0 depending only on X. h has been interpreted (in [9]) as
the entropy of the geodesic flow on the sphere bundle of X. If Γ is a
discrete group of isometries of X acting freely, properly discontinuously,
and such that Γ\X has finite volume then we consider the series

for x, y e X. Then the series converges uniformly and absolutely for
x, y fixed and Res > h/2 + ε, ε > 0. In §5 we give a conjecture about
these functions which we prove for X a symmetric space. In particular,
we prove that L(x, y, s) has a meromorphic continuation in s to C
and we relate the poles to the spectrum of the Laplacian. The proofs
make essential use of the earlier results on the functions P r v and certain
truncations which we used in the analysis of them. L(x, y, s) has a
simple pole at s = 0. We use our formula for the residue at 0 and a
Tauberian theorem to derive the following asymptotic formula:

(•) Σ 1 ~ &kTI V o l ( Γ \ * ) > T - +oo.
y€Γ

B(x,γy)<T
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In [10, Theorem 1.2] a similar result is given for general Γ\X which are

compact with negative curvature (the right-hand side being of the form

C(Γx,Γy)ehτ).
Results similar to Theorems 4.2 and 4.7 have been proved by Good

[4] for the case when X is the upper half-plane. Note that in this case
n — 2, so the smoothing which was necessitated by (3) above for large n
is unnecessary.

Theorems 1.1 and 1.2 (which give the basic properties of the Rv) are
well known or at least easily derivable from the literature ([6], [3]). We
have included proofs of these results using methods which might be ex-
tended to a more general class of spaces. It would be very interesting
if there were analogous results to those in §§1 and 2 for the part of the
"asymptotic expansion" of the zonal spherical function that decays at oo .
Calculations which we have done for complex groups indicate that the
generalization will probably be very subtle.

The authors would like to dedicate (*) above to their long-time friend
Manfredo Do Carmo in commemoration of his sixtieth birthday.

1. Zonal spherical functions

We begin this section by introducing notation which will be used
throughout this paper. Let G be a connected, semisimple Lie group
with maximal compact subgroup K. Let G = NAK be an Iwasawa de-
composition of G. We will assume dim A = 1. As is customary, we
will denote a Lie group by an upper case letter and its Lie algebra by
the corresponding lower case german letter. Let H denote the (unique)
element of α such that the smallest eigenvalue of ad//(n is 1. Then
n = Πj θ n2 with ad//|n = j l . Set p = dimuj and q = dimn 2 . Then

dim G/K = n=p + q+ί. We choose B to be the multiple of the Killing

form of Q defined by B{H, H) = 1, If v e a*c (the complexified dual of

α) and if a e A , a = exp(tH), then we will use the notation av = ewi<H).

We denote by λ the functional on α defined by λ(H) = 1 (i.e., λ is the

simple root) and by p the functional defined by p(h) = ^tr(ad/z,) for

hea (i.e., p = (p + 2q)/2-λ).

Set A+ = {exp(tH)\t > 0} . Then G = K(C\(A+))K. If a = exp(ί//),
then we set

γ(a) = {eι - - e~2t)q)q =

On A we choose the measure da = dt, a = exp tH. On K we use Haar
measure normalized so that the total mass is 1. We normalize the invariant



THE RESOLVENT OF THE LAPLACIAN 667

measure on G so that (if, say, / e CC°°(G))

ί f(g)dg= f γ(a)f(k{ak2)dk{dadk2.
JG JKXA+XK

If U is an open subset of G with KUK = U, then we will use the
notation C°°(K\U/K) for the space of all C°° functions on U such that
f ( k χ u k 2 ) = f ( u ) f o r u e U , k x , k 2 e K .

Let C denote the Casimir operator on G corresponding to B. It is
standard that if / e C°°{K\U/K), then

d2 d
(1) Cf(exptH) = — τ/(exp tH) + (pcothί + 2qcoth2ί)-W(expί#).

If g € G then we write g = n(g)a(g)k(g) with «(g) e N, <z(g) e ^ ,
and /c(g) G K. Let 0 denote the Cartan involution of G corresponding
to ί . Set M = {k e K\Ad{k)H = H}. On I we use Haar measure
normalized to have total mass 1. We set Tsί = Θ(N). We normalize the
invariant measure on N so that

a(n)2pf(k{n)m)dndm= ί f(k)dk.
NxM JK

That is,

(2) [a(Ή)2pdn = 1.
JN

The Harish-Chandra ofunction is defined by the formula

(3)
JN

Since 0 < a(n)μ < 1 for μ(H) > 0, (2) implies that the integral defining
(3) converges absolutely and uniformly in v for Rei/(//) > p(H). In
fact, it is well known that the above integral is absolutely convergent for
Re v(H) > 0 and that c(v) has a meromorphic continuation to α£. (cf.
[13,8.10.16]).

If v e a*c, then we set

(4) 9i/(g

Thus φv e C^iKXG/K) and

(5) Cφu =

As is well known

(6) Ψv = Ψ-v a n d f =

if feC°°(K\G/K) and Cf={v{H)2 - p(H)2)f.
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If we replace G by G - K, then the above uniqueness is no longer
true and there is another family of eigenfunctions for C. The follow-
ing theorem summarizes the properties of these functions. Although most
of the assertions about these functions can be deduced from the litera-
ture, we have opted to give complete proofs of the following two theorems
since our interpretation of the expansion of the zonal spherical functions
is somewhat different from that of the standard literature ([6], [3]).

Theorem 1.1. If v e ac, Rev(H) > 0, then there exists Qv e
C°°(K\{G - K)/K) such that the following hold:

(a) The map v, g •-> Qu(g) is continuous on {u\Reι/(H) > 0} x
(G-K).

(b) v \-+ Qv{g) is holomorphic for Rev(H) > 0 and has a meromorphic
continuation to a*c. Furthermore, φv — c{-v)Qv + c(v)Q_u on G -
K. This last equation should be interpreted as an equality of meromorphic
functions.

(c) There exists a constant C{ such that

for t>\ and Re v > 0.
(d) There exists a function d[y) such that

Qu(exptH) - d{v)t~p~q+γ\\ogtf^^ = d(v)Γn+2\logtfn>2 as t -> θ \

d(v) is meromorphic in v and can be calculated using (*) in the proof of
Lemma 1.3.

(e) If f e C°°(K\(G - K)/K) and if Cf = {v{H)2 - p(H)2)f with
Re*/ > 0, then f = aQu + bφu .

Proof Suppose that / e C°°(K\(G - K)/K) and

Cf={v{H)2-p{H)2)f

Then

d2 d
—^/(exp tH) + (p coth t + 2q coth It) -j-/(exp tH)
dt clt

= (u(H)2-p(H)2)f(cxptH)

by (1). In the classical theory of regular singularities (cf. [12, 5.4, 5.5])
this differential equation has the following equality as its indicial equation
at t = 0:

s(s- l) + (p + q)s = 0.
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The roots are s = 0 and s= l-p-q. This implies (cf. [12, 5.5]) that
if P + Q > 1, then the following limit exists:

(i) lim^'1 f(exptH).
ί—0 +

If p + q = 19 then

a s ί - > 0 + .

Once (a) and (b) have been proved, (i) combined with the above will imply
(d).

We now construct Qv . We first note that (1) above can be written in
the form

Cf^xptH)

(*) ή1

= γ(exptH)~ι/2—γ(exptH)l/2f(exptH) - ψ(t)f (cup tH)
dt

with ψ{t) = (p coth t + 2q coth 2t)2/4 -p sinh t /2-2q sinh 2ί 2 . We set

nit) = Ψ(
equation
η(t) = ψ(t) - (p + 2q)2/4. If Im z > 0, then we consider the differential

-φ\t) + η(t)φ(t) = z2φ{t)

on (0, oo).

Set H+ = {z e C|Imz > c}. Set κ(z) = (e2 / z - l)/2iz for z € i /+.
Put 7/+ = //0

+ . We note that

1 for z € H+,

e~2c for z G / /* and c < 0.

We will now use the method of Appendix 8 in [13] (which is a variant
of a technique in [2]) to construct a solution with the desired asymptotic
properties. Some of the results in the proof of this theorem will be used
in the proof of Theorem 1.2.

If / is a continuous function on [a, oo), then set | |/ | |Λ = sup,>fl \f(ή\.
Let 38a be the space of all continuous functions / on [a, oo) such that
| |/| | f l < oo . Then 38a is a Banach space under the norm || ||fl . If z e H* ,
/ e 38a , and t > a, then we set

L - ,

If we rewrite η(t) in the form

sinhί2 sinh2ί2
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then it is easily seen that

(iv) \η(t)\<Cχe'2t i f ί > l .

This implies that if Im z > 0 and t > a > 1, then

Thus, in particular, La z is a uniformly bounded family of operators on

^ a , with \\Laz\\ < Cλ{\ + 2a)e~2a/4. If z e H+ , c > -1/2, and a >1,

then one has

\La zf(t)\ < Cx Γ se-sds \\f\\a =
Jt

One checks (as in [13, A.8.2.9]) that if a > 1 then z*-> La^z is a continu-

ous map of H^λf2 into the bounded operators L{3Sa, 3S^ on 3§a , which

is holomorphic on {z e C| Im z > -1/2} .
Fix α0 > 1 such that C\(l + tfo)e~α° < 1/2. Fix 3S = 38% . Set || || =

|| | |^ and Lz = L . If Imz > -1/2, then we put hz = (/ - L J " 1 1

(1 is the constant function ^identically equal to 1). Set gz(t) = eιzthz(t)
for t>aQ. Then one checks that if Im z > -1/2, then

Lέ.(v) [~:h + rl)gz = z2gz forί>α0.

Also

(vi)

<cV ( I m z + 2 ) ' ( l+0 ifImz>0

for t > a0, and

(vii) \gz(ή-eizt\ < e~tlmz f°°ses\η(s)\ds < C V" ( I m 2 + 1 ) / ( l + t)
Jt

if Imz >-1/2.

Since the only singularities of the differential equation in (iv) are at 0 and
oo we see that gz extends to a solution on (0, oo) for Imz > -1/2.

Let v e a*c be such that Reι>(H) > -1/2. If kχ, k2 e K and if

t e R, t > 0, then we set Q^exptHkJ = γ(exptHyι/2giv{H)(t).

Then Qv e C°°{K\{G - K)/K) and CQV = (u(H)2 - p{H)2)Qu . Notice
that (^ satisfies (a), (b) (except for the meromorphic continuation and
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the formula for φv), of the theorem. Hence the remarks at the beginning
of this proof imply that Qv satisfies (d). It is standard that (cf. [6])

(viii) ^m^γiexptHΫ^e'^^φ^exptH) = φ) for Rei/(J7) > 0.

(vi) and (vii) imply that if |Rei/(/f)| < 1/2 and v φ 0, then Qv and
Q_v are linearly independent. Hence there exist holomorphic functions
a(y) and b{y) on the punctured strip | Rev(H)\ < 1/2, v Φ 0, such that

Since φv — φ_v it follows that b(y) = a(-v). Also (vi), (vii), and (viii)
imply that b(v) = c{v) on the punctured strip. We have thus shown that

(ix) φu = c(-u)Qu+c(v)Q_u on G-K for \Reu(H)\ < 1/2, v φ 0.

We can thus implement the meromorphic continuation of Qv by ob-
serving that (ix) can be written in the form

This completes the proof of (b). Since (e) is now clear, the theorem follows.
Theorem 1.2. There exists a family of rational functions ak{y)y k —

1, 2, , on ac that are holomorphic for Re v(H) > 0 with the following
properties:

(a) The set S? = {v\v a pole of some ak} is contained in α* and has
no finite point of accumulation.

(b)//i/ i <9>, then

SΛ ( J.ΎΎ\ -t{v+P){H) I Λ v ^ , x -2kt

Q^exptH) = e 1 + 2a(u)e

with the convergence uniform for t > c and c sufficiently large.
(c) Let c < 0 be given. Then there exist a nonzero polynomial fc on

a*c and an integer d(c)>0 such that for each ε > 0

for t>\ and Rev(H) > c. There exists c0 < 0 such that we may take

fjy) Ξ l .
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Proof. In light of formula (iii) in the proof of the previous theorem it

is easily seen that

with convergence absolute and uniform on sets of the form t > a > 0.

We now consider the operators Lz in the proof of the previous theorem.

We write η(t) = Ί2ι<j<Nbje~2jt + ηN{t) = μN(t) + ηN(t). Then one sees

easily that

(ii) \ηN(t)\ < CN

for t > 1.
This allows us to write Lz as Lz N + Mz N with

-[ - t)μN{s)f{s)ds
Jt

and

=
Jt

u(z{s - t))(s - t)ηN(s)f(s)ds.

If we argue as in the preceding proof, we find that Mz N is holomorphic
in 2 for Im z > N - 1 and

\MzNf(s)\<CN(l+s)e-2Ns\\f\\ί

for s > t > 1. On the other hand, if f{t) = e~2kt with fc = 0, 1, 2, ,
then

i N ~2(j+k)t

4 { j + k ) { i z j k )

Since hz = (I - Lz)~ι 1 = 1 -f Lz\ + L2

z\ + , we can use the above
formulas to analyze the individual terms. The result now follows without
any real difficulty, q.e.d.

The next result is the key to the rest of the results in this paper.
Lemma 1.3. l im^ 0 + γ(exptH)$-tQu(exptH) = -2v{H)c{y).
Proof. The observations at the beginning of the proof of Theorem 1.2

imply that the limit on the left-hand side of the above formula exists for
each v for which Qv is defined and this limit is a meromorphic function
of v . We calculate this limit using an indirect method which will also be
used in the next section. We note that on G - K we have
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That is,

We use formula (•) in the proof of Theorem 1.1 to rewrite this as

[id1 \ 1/2 1 1/2
0 = < —=• - η(t) (γ(exptH) QίexptH)) > γ(exptH) φ (exptH)

\W J J
-γ(exptH)l/2Qv(exptH)l(j^-η(t)\

γ{txptHγl2φv{exptH)
\uι )

-y(exptH)l/2Q(exptH)(^

Thus

- γ(cxptH)l/2Qu(exptH)

- γ{txptH)Qv{zxptH) (J^φ

is constant as a function of t. We calculate this value (as a function of
v) for RQV(H) > 0 by computing the limit in t at +oo. We have that
if Rtv(H) > 0, then as t -* +oo

£-t(γ(cxptHγ/2Qμ(exptH)) ~ -v(H)e~"m,

γ{exptH)λl2Qv{exptH) ~ e~v{H)t,

±-t{y{txptHγl2φv{zxptH)) ~ v{H)c{v)ev(H)t,

γ(exptH)iβφl/(exptH) ~ c{v)e"(H)t.

So the constant is given by -2v(H)c{y).
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We note that Theorem 1.1 (d) implies that

lim γ(exptH)Q(exptH) -j-φitxptH) = 0.
t-+0+ \at }

So

(*) lim y(txptH)-rQ (txptH) = -2v(H)c(y)
t-+ o + at

for Rev(H) > 0. The result now follows by meromorphic continuation.

2. Analysis of the functions Qv

In this section we will study the functional analytic properties of the
functions Qv which were constructed ill the previous section. Recall that
we used the notation n = p + q + 1 = dim G/K.

If 1 < s < oo, and / is a measurable function on G, then (as is usual)
we say that / € Ls

loc if

ί \f(g)\sdg< co
Ju

for each open subset U of G with compact closure.

Lemma 2.1. Let v e a*c. If Qv is defined, then Qv e L\QC. If

Rev(H) > p{H), then Qυ e LX{G).
Proof Let U be open in G with compact closure. Then there exist a

and b, 0<a<b < oo, such that U c K exp([a, b]H)K. Thus,

/ \Qv{g)\dg< ί γ(exptH)\Qu(exptH)\dt.
JU Ja

If 0 < t < b, then

γ(exptH)<Cbt
n-\

and Theorem 1.1 (d) implies that

.IQ^expίT/JI^C^^Γ^Ilog^- 2

with Cvb<oo where Qv is defined. Hence if 0 < t < b , then

y{txptH)\Qy{txptH)\<CbCu

This yields the first assertion.
We note that

γ(cxptH)<2n-le2p{H)t
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for t > 0. Thus, Theorem 1.1 (c) implies that if Rev(H) > 0, then there
exists C' < oo (depending on v) such that

Γ

forί > 1.

If we set U = K exp([0, \]H)K, then

ί \Qv{g)\dg= ί \Qv(g)\dg+ f
JG JU J\

This combined with the first assertion implies the second, q.e.d.
We define the inner product ( , ) on g by (X, Y) = -B(X, ΘY). If

g e G, then we set

if n2 = 0,

i f n 2 ^ 0 .

We note that if g e G and if kx, k2 e K, then \\g\\ = H^"1!! = H^igM .
x, k2

If μ > 0, then we set C°^(G) equal to the space of all functions / e
C°°(G) such that

p (f) = sup\\g\\-μ\Xf(g)\<cx>
' μ g€G

for all X e U(g). We endow C™(G) with the topology induced by the
seminorms pχ .

Lemma 2.2.' // / e C™(G/K) and Reu(H) > p{H) + μ, then

f
JG

- v{H)2 + p(H)2)f(y) dy = -2v{H)c{v)f{x).

In particular, if we set <*,(/) = /(I) , then (C - v{H)2 + ρ{H)2)Qv =
-2v{H)c(y)δχ in the sense of distributions on C™(G/K).

Proof If / e C ~ ( G ) , then

\f(χy)\ <pXιμ(f)\\χy\\μ < WxfPx

Thus,

\Qμ{χ~ιy)f(y)\dy= f \Qv{y)f{χy)\dy
JG

<\\A\μpx,μ(f)l' \Qu(y)\\\y\\μ

J G

= \\x\\μPiJf)[ y(fl
J A+
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Since y(exp^/i)||expii/|| Iβ^ίexpί/ί)! < Cμ υe
x yκ } tor t > 1,

and ^(exp^llexprT/ll^lβ^ίexp^)! < C^ί(l - logί)*"-2 for 0 < ί < 1,
we conclude that, if Rtu(H) > p(H) + μ, then

ί - i a μ

JG

In light of the above calculations and inequalities it is enough to show that

Qv{y)(C - u(H)2 + p{H)2)f{y)dy = -2i/(/ί)φ)/(l)
r

for / e C™(G/K) and Rei/(/7) > ρ{H) + μ. We will assume that v
satisfies the inequality of the lemma throughout the rest of the proof. The
formal aspects of the argument that follows are justified by the inequalities
at the beginning of this proof.

For / € C™(G/K) we set

= f f{ky)dk.
JK

Then the left-hand side of (•) is equal to

/ y{a)Qv{a){C -v{H)2 + p{H)2)f{a)da
JA+

Γ - {CQv{t))f{exvtH))}dt

dt,

where γ(t) = γ(exptH), Qv[t) = Qu(exptH). Here we have used (•)
from the proof of Theorem 1.1. We conclude that (•) is equal to

- hm

Theorem l.l(d) implies that lim,_(0+ γ(t)Qv(t) = 0. Thus the above ex-
pression is equal to

which equals -2i/(J/)c(i/)/(l) by Lemma 1.3. The proof is now complete,
q.e.d.
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We note that if n = 2 or 3 , then Qv € Lj20C. Unfortunately (for our
purposes), if n > 3 , then Qv is not an element of L2

OC. The rest of this
section is devoted to the proof that certain convolution powers of Qv with
itself are in L2

OC (or better).
Lemma 2.3.

ψM)Qviy) if\\χ\\<\\y\\,

for all v for which Qv is defined.
Proof We prove the result for Rei/(/f) > 0. The general assertion

would then follow by analytic continuation. In this range the only singu-
larities of QΛx) are in K. We set

J K

Obviously, βv{x, y) is defined if xKy n K is empty. If xKy n K is

nonempty, then xK = Ky~ι. So ||x|| = ||y||. Thus,

βv is defined and real analytic on the set
( 1 )

Let Cχ (resp. C ) denote the Casimir operator in the first (resp. sec-
ond) variable in G x G. It is clear that

Cxβv(x9y) = (v(H)2 - p(H)2)βu(x, y),

Cyβv{x,y) = (HH)2 - p(H)2)βu(x,y)

if ||JC|| φ | |y||. We also observe that

(3) β u ( k ι x k 2 , k 3 y k 4 ) = β u ( x , y ) for x , y e G 9 k . e K , 1 < i < 4 .

The lemma will follow from

If U is a connected AΓ-bi-invariant neighborhood of K in G

(4) and if / e C°°(K\U/K) satisfies C / = (ι/(//)2 - />(//)V on t/,

Indeed, set u(t) — f(exptH). Then u satisfies the differential equation
(1) in §1, where defined. We note that U = cxp(JH), where / is an
interval of the form [0, b). Our assumption is that u extends to a C°°
function on (-b, b) if we set u(-i) = u(t). But then u extends to a
C ° ° f u n c t i o n o n R . W e s e t g{kx e x p t H k 2 ) = u { t ) , k { , k 2 e K, t e R .
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Then g e C°°(K\G/K) and Cg = (u(H)2 - p(H)2)gy since g | t7 = / .
Condition (4) now follows from (6) in § 1. q.e.d.

Let xeG-K. Set Uχ = {ye G\ \\y\\ < \\x\\]. Then

Cyβu(x, y) = {u(H)2 - p{H)2)βv{x, y)

for y e Uχ . Since (7̂  is an open connected #-bi-invariant neighborhood
of K, (4) implies that

But the formula for βv yields that ^ ( x , 1) = Qv{x). Hence, βv(x, y)
= G v (^)^(y) f o r ll̂ ll > IMI Similarly, if y e G - * , then βv(x, y) =
9v(x)Qviy) for xeUy.

Note. If Λ: € A:(exp tH)K, then

if q = 0 ,

" X " ~ \ (d + 2/?cosh2ί + 2qcosh4t)ι/4 ifq>0,

with of = dim(m -I- α) .
We can therefore rephrase the above lemma in the following way.
Lemma 2.3

Q((exptH)k(expsH))dk=<

If Rev(H) > p(H) and r = 1, 2, ••• , then we define Qr v recur-
sively as follows:

Lemma 2.1 implies that Qr υ e Lι(G) for all r > 1 and Rei/(/f) > p{H).

Lemma 2.4. Let Reι/(H) > p{H). There exist constants cr(u), c'r{v),

and c"{v) such that

|β r ι /(expί//)| < cr(u)tr-ιγ(cxptH)~1/2e-Reι/{H)t fort>\,

{ t ^ 1 ' ) Vr Φn,2,0<\Qr M V ) \ { t
\c>)(l+log|ί|) ifr = n/2,0<\t\<\.

In particular, if r> n/2 then Qr v is bounded in a neighborhood of K.
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Proof. If r = 1, then this lemma is just a restatement of (c) and
(d) of Theorem 1.1. To prove the result for r > 1 we first calculate
Qr+lv(exptH):

= f Qrι/(x)Ql/(χ-lexptH)dx
JG

= I y{a)Qr ΛkMi)QΛ(kιak2)~l ™X>tH)dkχ dadk2

JKxA+xK

= / 7{a)Qr v{ά)Qυ{cΓxktxptH)dadk.
JA+XK

There exists k0 € K such that koak^1 = a~ι for a e A. Thus Lemma
2.3' implies that

βΓ + 1 > l /(expίi/)= Γγ(s)Qru(expsH) f (2v{
«/0 J K

= Γ ϊ(s)Qr u(expsH)QutexpsH) ds ^ (
Jt

y(s)Qr u(expsH)φu(exp.sH)ds Qu(exptH).
o

We will use this formula to prove the inequalities in the lemma by induc-
tion on r. We have already proved them for r — 1. So assume them for
r. We note that (viii) in the proof of Theorem 1.1 implies that

(1) |^(expίJΪ)| < c"(v)γ(t)-ι/2eReHH)t for t > 1,

if Rev{H)>0.
We first prove the inductive step for t > 1. We rewrite the identity

above as

Qr+ι u(exptH)= / y{s)Qrv{expsH)Qv{expsH)ds*φv{exptH)
Jt

(2) + fγ(s)Qr v{txpsH)φv(expsH)ds Qu(cxptH)
J\

+ ί ?(s)Qr v{expsH)φv{expsH)ds Qv{exptH).
Jo

If we use the inductive hypothesis and (1) to estimate each term on the
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right-hand side of (2) we have

|β,+lfl,(exp//0l

<cr{v)cx(v)c (i/) / s e κ ds γ{t) e

(3) '
+ CΓ(I/)C1(I/)C (i/) / 5 έ/ί

w i t h

^ ' V ) ( ) / ( ) | β ( / f ) ( / Γ ) | Λ < oo/
Joo

by the inductive hypothesis.
Inequality (3) clearly implies the asserted inequality for t > 1. We

are left with the inequalities for 0 < t < 1. As in the previous step we
start with the expression (2). We are still assuming the result for r > 1
and proving it for r + 1 . Set D(y) = sup 0 < ί < 1 \φv(exptH)\. Then, if
0 < t < 1, equality (2) yields

\Qr+ι v(ejφtH)\<cr(u)Cι(u)D(u) ΓV"1

e-
2Reu{H)sds

J\

+ cx{p)D{y)f s\Qr v{txχ>sH)\ds
Jt

We now look at the three possibilities: r + 1 < n/2, r + 1 = n/2, and
r + 1 > n/2. If r + 1 < n/2, and we apply the inductive hypothesis, then

B{t) <br{u) ί

C(t)<dr(u) f s2r ιds tγ(t) l<dr+ι(v)t2r+ιγ(ή ι

Jo
with br(v) and dr(y) appropriate finite constants. This proves the second
inequality in this case. We now look at r + 1 = n/2. Then in expression
(4) we have

B{t) < br(u) + b'r{v) / ^ < br{v) + b'r(v)\\ogt\,
Jt s

C(t) < dr{v) ['s2r-1 ds • tγitf1 < dr+ι{u) < oo,
./o
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which completes the argument in this case.
If r + 1 > n/2 and r < n/2, then either r = n/2 or r = (n - l)/2 =

(p + #)/2. If r = n/2, then the inductive hypothesis asserts that if 0 <
s < 1,then

If r = (p + β)/2, then

>l b{v)slr~χ-p-q = b{v)s

Thus, in both cases,

for 0 < s < 1. So in this case we see that B and C are bounded for
0 < t < 1, which implies the inequality. If r > n/2, then it is easily seen
that B(t) and C(t) are bounded. The verification of the inductive step is
now complete.

Corollary 2.5. If r > n/4 and Rpv(H) > p(H), then there exists
ε = εr > 0 such that Qr v e LS(G) for 1 < s < 2 + ε. If r > n/2, then
Qrv^L\G) for 1 < 5 < o c .

Proof Assume that Reι/(H) > p(H). The preceding lemma implies
that if U is a AΓ-bi-invariant neighborhood of K, then Qr v e LS(G-U)
for all 1 < s < oo. It also implies that if r > n/2, then Qr v e LS(G) for
all 1 < s < oo . We must therefore show that if r > n/4, then Qr v e Ls

[oc

for 1 < s < 2 + ε for some ε > 0. So assume that r > n/4. Lemma 2.4
yields that if 0 < t < 1, then \Qr u(exptH)\ < C(δ,r, v){\ + t

2r-n-δ)
for all δ > 0. Set U = #exp([0, l]H)K . Then

\Qr Λg)\2+εdg= f y{t)\Qr v(&ij>tH)\2J"dt
u Jo

< C(δ, r, ι/) / 7(/)(l -f t r~n~ ) +εrfί.

Choose 0 < δ < 1 such that 2r - δ > n/2 + J/2. Then

,^,^) / t ( 1 + ί

The last integral is finite if ε < 2δ/n . This completes the proof, q.e.d.
We now generalize the functional analytic interpretation of Qv to Qr v
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Lemma 2.6. If μ>0 and Rev(H) >ρ{H)+-μ, then

Qr>1/(x~ly)(C- u(H)2 + p(H)2)rf(y)dy = (-2u(H)c(u))rf(x)L
for f&C~(G/K).

Proof. It is enough to prove the lemma for x = 1, that is, to show that

(C - v(H)2 + p{H)2)rQr v = {-2v{H)c(v))rδ in the sense of distributions

on C°^(G/K). If r = 1 this is the assertion of Lemma 2.2. Now

= (C - v{H)2 + p{H)2)rQrv * (C - v(H)2 + p{H)2)Qχ υ

So the lemma follows from the obvious induction.

3. The functions PΓ ) I /

Before we introduce the functions of the title of this section, it will
be necessary to give some results on convergence and regularity of certain
series over discrete subgroups of G. These results are no doubt well known
to the experts, however we have included proofs since there is no easily
accessible reference to them which we could find.

The first result is quite general. Let G be a reductive Lie group and let
φ be a continuous function on G such that

(i) φ(x) > 1, xeG.

(ϋ) φ(xy)<φ(x)φ(y), x, y e G.

(iii) / φ{g) dg < oo.
JG

Let Γ be a discrete subgroup of G.
Lemma 3.1. If t>\, then the series

p{x γy) =Ψt(χ,y)
yer

converges uniformly on compacta to a continuous function on Γ\G/K x
Γ\G/K. Furthermore, Ψ,(Jt, •) e L°°{Γ\G/K) for all t > 0 and
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Proof. Since φ{x~ιy) > φ(y)φ(x)~ι and φ(xγ > φ{x)s if t > s, it is
clear that

Thus, to prove the lemma, it is enough to show that Ψ 0 ( l , y) = Ψ(y)
defines a function in L°°(Γ\G). This is proved in the following (standard)
way. Let U be an open neighborhood of 1 in G with compact closure
such that Uγ Π Uτ is empty for each pair γ, τ of distinct elements of Γ.
Let C2 = suvgeUφ(g). If u e U and γ e Γ, then φ(uγg) < C2φ(γg).
Thus

/
Ju

φ{uγg) ldu>C2

lφ(γg) lvol(U).
u

If we sum over γ and use the disjointness assumption, then we find that

C~l vol(U)Ψ(g) < ί φ(ug)~ldu= f φ(u)~ldu.
JG JG

This completes the proof, q.e.d.
We now assume that G is as in the previous sections. Let || || be as

in §2. If g = kχ exp(tH)k2, then | |; | | > Cxe
M . Also γ(t) < C2e

2p{H)t for
/ > 0. Thus,

/ dg < C3 Γ eWH)se-s{2P{H)+t)ds =

G JO

This implies that the above lemma applies to φ(g) = \\g\\2pW+ε for any
ε > 0.

We now begin the study of the series that are the subject of this paper.
Let Γ be a discrete subgroup of G of cofinite volume such that, if it is
not cocompact, then it satisfies Langlands' axioms [8]. If Rev(H) > p(H)
and r > 1, then Q,tU(x~1-) e L{{G) for each x e G. Thus Fubini's

theorem implies that, for each x e G, Σ y ( E Γ | β r v{
χ~~λyy)\ converges for

almost all y eG. We set

* » = (-2u(H)c(u))-r

and

If Reι/(H) > p(H), then P Γ > I / (JΓ, •) € Lι(Γ\G/K) for each xeG.
We now introduce a simple "truncation" procedure to study the analytic

properties of these functions. Let u e C°°(R) be such that u(x) = u(-x),
u{x) = 0 for |JC| < 1, u(x) = 1 for |jc| > 2, and 0 < u(x) < 1 for all



684 R. MIATELLO & N. R. WALLACH

x e R. We set β(kx exp tHk2) = u(ή for t e R. Then £ e C°°(K\G/K).
We set

Lemma3.2. Λ£swmί> that Rev{H) > p{H). Then P Γ ί / G C°°(Γ\G/K)

x C°°(Γ\G/K) and it is holomorphic in v. Γλβre exwΐ constants Cr v ε

such that if ε > 0, then

IIP Γx OH < C l lxll 2 / > ( / / ) + e

^5 α function of v, P r j jc, y) w holomorphic in this range. Finally,

if I < s < oo, ίΛeπ ίΛe map X H P Γ I / ( X , .) is continuous from G to

LS{Γ\G/K).
Proof Lemma 2.4 implies that if Rev(H) > p(H), then

\β(x)Qr,M)\ < CriKeJx

Suppose that Reu(H) > p(H) + 2δ with δ > 0. Then

with DΓ j i / continuous in the half-plane Reu(H) > ρ(H) + 2δ. This

implies that if Rei/(/J) > p(H) 4- 2 ί , then the series defining P r ^ is
dominated by

u-δ-2p(H)

The convergence of the series defining P r v and the L°° estimate in the
lemma now follow from Lemma 3.1 and the observations preceding the
statement of this lemma. This term-by-term domination also gives the last
assertion of the lemma.

We now prove the regularity assertion. Let C be the Casimir operator

of G. If Xχ, - , Xn is a basis of g and if the XJ are defined by the

equation B(Xi, Xj) = δ.j , then C = £ \ XtX
l. Thus,

/ i

We set QQ v = 0 in G - K (to be consistent, Qo v should be defined to
be δικ). Then on G - K we have

(C - v{H)2 + p(H)2)Qru = -2v{H)c{v)Qr_Xv.
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We note that the expressions (Cβ)Qrv, (Xiβ)(XiQr J , and (X* β)

v) a r e C°° w i Λ compact support. We therefore conclude that

with Frv{x, •) a bounded element of C°°(Γ\G/K), Frve C°°(Γ\G/Kx

Γ\G/K), and P o v = 0. Let Cx (resp. C2) denote C acting in the first
(resp. second) factor of a function on G x G. If we interchange the roles
of x and y in the above discussion, then we find

(Cχ + C2 - 2 K # ) 2 - p(H)2))2rVrv e C°°(Γ\G/K x T\G/K).

Elliptic regularity now implies that P r v e C°°(Γ\G/K x Γ\G/K). q.e.d.
If r > 1 (resp. r = 1) and Rev(H) > p(H) (resp. Qv is defined),

then we set

yer

The point here is that Q{ V — Qv is meromorphic in v for v e a*c , but
if r > 1, then (?r ^ has only been defined for Rev(H) > p(H).

Let p denote the canonical projection of G onto Γ\G/K. If p(x) ψ
p(y), then the above sum is finite and the number of terms is dominated
by a power of | |x| | . The following lemma is therefore straightforward.

Lemma 3.3. If r > 1 (resp. r = 1) and Rev(H) > p(H) (resp. Qv is

defined), then Y'rv is C°° on (Γ\G/K)x(Γ\G/K)-dmg(Γ\G/K). Ifr>

1 (resp. r = 1) and p(x) Φ p(y), then v »-• ¥'rv(x, y) is holomorphicfor

Rev(H) > p(H) (resp. holomorphic for Reu(H) > 0 and meromorphic

on a*c).
The following is the first of the main results of this paper.
Theorem 3.4. If Rev(H) > p(H), then P r v is continuous on

(Γ\G/K) x (Γ\G/K) - dmg(Γ\G/K), and if p{x) φ p(y), then v .->
P r u(x,y) is holomorphic. If r > n/4, then there exists ε > 0 such

r u(
2+ε(that Prue L2+ε(Γ\G/K) and, for each δ>0,

IIP (x Λ\\ <

Γ u(x,

if r>n/2, the ?r^(x, -) e L°°(Γ\G/K).

furthermore x H-» P Γ u(x, •) is continuous from G to L2+ε(Γ\G). Finally,
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Proof. Lemmas 3.2 and 3.3 imply all of the assertions except for those
concerning if . In light of Lemma 3.2 it is enough to prove all of these
assertions for P'r v . Since supp(l - β) is compact, there exists Cχ > 0
such that if (1 - *β)(y) φ 0, then ||j/|| < Cχ. Thus

(l) IMI<qιwι if\-β(χ-χy)Φ0.

Suppose that / e LS(G) with 1 < s < oo, and supp/ c DR = {x e G\
\\x\\ < R} with R < oo . We set

If φ € LV(Γ\G) with 1/j + 1/v = 1, then

/ Pf(g)φ(g)dg < ί ^\(γg)φ{g)\dg= ί \f(g)φ(g)\dg
T\G Jr\Gγer JG

Γ \9(g)\υdg)

by Holder's inequality.
Consider the canonical map πR: DR —• Γ\G. Then

< c2

Thus,

/ MF)\vdg<C2vol(DR2)\\φ\\v

v.

2p{H)ι dt

On the other hand,

/ y{a) da < C3 Γ^**e2

\\a\\<R2 JO

Here the b > 0 which comes into the expression comes from the observa-
tion that there exists 1 < C < oo such that C~ V < || exptH\\ < Ce for
ί > 0 .

We conclude that

which implies

(2) \\Pf\\s < C5R
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S e t φ r v = (l-β)QriU . I f r > n/4 a n d R e z / ( / / ) > p ( H ) , t h e n φ r v e

L2+ε(G) for some ε > 0 which is independent of v (see Corollary 2.5).

We apply the above material to fχ(y) = δr(y)φr v{x~xy), and note that

Pf = Pf

ru(x, .)• So (2) above implies that P ^ C * , -) € L2+ε{Γ\G/K).

Afso, from (1) it follows that the " R " for fχ is Cx \\x\\. So (2) shows that

if l/v + 1/(2 + ε) = 1, then

UP' ,χ x|. < c n^ii^w/t;

Let ω be a compact subset of G. There exist constants Cω r v depending
only on r, v and ω such that if x, z e ω , then

with L(x)f(y) = /(x~V) This implies that x ^ P'r u(x, •) is continu-

ous from G to L2(Γ\G/K).

If r > n/2, then Corollary 2.5 combined with (2) yields that P'Γ p{x, )

e L°°(Γ\G). The result now follows, q.e.d.

Let l£(Γ\G/K) denote the space of all f e C°°{Γ\G/K) such that

Xf e L2~ε{Γ\G) for all X e Ufa) and all ε such that 2 > ε > 0. (This

makes sense since Γ\G has finite volume.)
Theorem 3.5. Suppose that r > n/4 and Rev(H) > 2p(H). If f e

L2^(Γ\G/K),then

ί
JΓ\G

Proof. Let P = MAN be a percuspidal parabolic subgroup of G. Let
= ωA*K be a Siegel set for P. Then our hypothesis implies that

for all ε > 0, X e U{Q) , and g e <9> (cf. [14, 5.A.3]). If Γ\G is not
compact, then there exists a finite collection S\ , , S?r of these sets
such that G = Uz Γ ^ . We therefore see that

for all ε > 0, Z € t/(β) and ^ G (?. Thus, / G C™H)+ε(G) (see Lemma
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2.2) for all ε > 0. Put u(g) = (C - v{H)2 + p(H)2)rf. Then

/ ru r [ £ r u(x~ιyy)u(y)dy
Γ\G ' J*\G^ '

f
JG

f
G

The result now follows from Lemma 2.6.

4. The meromorphic continuation of P r v

To carry out this continuation we will calculate the spectral decompo-

sition of the P r for r > n/4 and Reu(H) > 2p(H). We therefore

assume (until further notice) that the parameters satisfy these conditions.

Let Q = MQAQNQ be a percuspidal parabolic subgroup. Let E(Q, μ, g)

denote the right ^-fixed Eisenstein series with respect to P. Here μ € a*c

will be identified with μ{HQ) e C (notice that "the HQ " is uniquely de-

termined by Q and K). If Reμ = 0, then E{Q, μ, •) e L2^ (Γ\G/K)

(cf. [11, A.2.3]). Theorem 3.5 now implies that if Rεv(H) = 0, then

\,μ))=E{Q,μ9x).

Hence,

:, •), E(Q, μ)) = E(Q, /JL, x)/(μ-v

> e .
3.5 yields that
Similarly, if φ e L^(Γ\G/Λ:) and Cφ = (μ2 - p{H)2)φ, then Theorem

2λr

Let {ψj} be an orthonormal set of eigenfunctions of C in L (Γ\G/K)

with Cψj = {v2 - p{H)2)φj such that if φ e L2(Γ\G/K) and φ is an
eigenfunction of C, then φ is in the linear span of {ψj} (it is well known
that such a sequence exists). Let Pχ, , Pm be a complete set of repre-
sentatives for the Γ-conjugacy classes of percuspidal parabolic subgroups
of G. Then Langlands' decomposition of L2 as given in [11; Proposition
A.2.3] now gives
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Theorem 4.1. If Rev(H) > 2p{H) and r > n/4, then as an element

ofL2(T\G/K)

Theorem 4.2. Let r> n/4. If x eG, then

TC + I"/)
The series and the integrals defining Ψr converge uniformly on compacta

of Γ\G and ΨΓ(JC) < CJ|jc| | 4 / > ( l 7 ) + β for each ε > 0.

Proof If z £ C, then clearly

for all w e C. Hence,

2

TΎ7 + / ci I \ 7 dμ
j>m (1

with

In particular, this and Theorem 3.4 imply that

ψΓ(χ) < (l + W(H)\2)\\Prjχ, Oil2 < c e | |

for each ε > 0. Ψ r 0 0(ι/, •) is a continuous function for each r > n/4
and Rev(H) > 2p(H). Hence Ψ r w Γ(*/, •) is continuous for each r and
v as above. In particular, given ε > 0 and x e G there exist m^, Tχ9

and L .̂, a neighborhood of x in G, such that Ψ r m τ (y, y) < ε for
y E ί / r Thus if ω is a compact subset of G, then the obvious covering
argument implies that there exist n and S such that, if x e ω, then
Ψ r m τ{y, j/) < ε for m> n and T > S. This completes the proof.
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\\2p(H)+ε forNote, If r > 2, then one can prove that |ΨΓ(JC)| < Cε\\x\\
all ε > 0 using the above argument and Lemma 3.2.

Proposition 4.3. Let r > n/4. Then P r u(x, •) Aαs α meromorphic

continuation in v, as a distribution, to a*c such that the following hold:

(1) The poles for Rev(H) > 0, v Φ 0, are of order r and are con-

tained in the set of v. such that Vj(H)2 - p(H)2 is an eigenvalue of C on

L2(Γ\G/K).

(2)

2π d r-\

-IV dμΓ1

In dr~λ

dμ r~ι

E(Pj,-μ,x)E(Pj,μ, )

ί=V J

E(Pj,μ,x)E(Pj,-μ, )

{μ{H)-v{H))r •

(3) // Rei/(tf) > 0, then ¥ru{x, •) eL2(Γ\G/K) where defined.
Proof. Theorem 4.1 and Theorem 4.2 imply that P r „ ( * , •) has a

meromorphic continuation (in L2) to Rev(H) > 0 with only possible
poles at the Vj with Vj as in (1) (notice that we have identified vj with
Vj{H)). If Rev(H) > 2p(H), then we set

r ,v ,d {χ, ) =

and

Clearly, P Γ f l / j έ /(^, •) has a meromoφhic continuation to all of a*c with

values in L2(Γ\G/K). The possible poles of P r v d(x, •) for v φ 0 are

at the ±v^ and of order r. Furthermore, P r ^ ̂ (jt, •) = P r _^ d(x, •).

To prove the theorem we must therefore analyze P r υ c(x, •).
Let R > 0 and let ε > 0 be so small that ^ ( ^ , v) is holomoφhic for

I Re i/(//)| < ε and | Imι/(//)| < Λ . We consider the curve g":

iR + ε

ΐ
-iR + ε
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If / € C™(Γ\G/K), then we set

α > ) = % / M = f G

E(Pj>»> S)f(g)dg.

If 0 < Reuo(H) < ε/2 and 11mvo(H)\ < R/2, then

. rR E{PS, iμ, x)

f E(P -μ,x) E(P -μ,x)
= / — γ 1 r— αίμlαμ-zπiRes —z-^ r—

By calculating the above residue in the obvious way we find that

. r - l

a j i μ ) ~ (r - 1)!

Let 8^ be the contour given by:

E(Pr-μ,x)aj(μ)

V=»o

iRl—<

Then for i/Q as above we have
t

t
-iR + ε

2π dr~ι

r-l

E(Pj,-μ,x)aj(μ)

( r - l ) ! dμ

This implements the meromorphic continuation (as a distribution) of
Fr,v,c(χ> 8) to the set |Reι/(//)| < β/2, |Imi/(Jf)| < Λ/2. We therefore
have a meromorphic continuation of P f ^ c (x, g) to a neighborhood of
Rei/(if) > 0 such that the only possible pole of P r v c(x, g) is at 0
(the pole if it exists is of order 2r - 1). The asserted functional equation
(where both sides make sense) is now clear and implements the meromor-
phic continuation to c£ . q.e.d.

We define P 0 > ί / = δχ (δχ(f) = / (I) for / € C™(Γ\G/K)).

Lemma4.4. IfRev(H) > p(H), then (C-v(H)2+p(H)2)Fr+Xu(x, •)

= PΓ v(x, •) (in the sense of distributions) for r > 0.
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Proof. If / e C™(Γ\G/K), then

/ Pr+1 „(*, g)(C - v{H)2 + p(H)2)f(g) dg
JT\G

= δr+χ(v) f Qr+Uv{x~Xg)(C -v{Hf + p(H)2)f(g)dg
J G

= W ί Qr M~l8)f(8)dg = f Pr „(*, S)f{g)dg.
JG ' JT\G

Theorem 4.5. Let {vλ be as in Theorem 4.1. If r > 1, then P r v has
a meromorphic continuation {in v) to a*c, in the sense of distributions. If
Rev(H) > 0, v Φ 0, and if v is a pole of P r v{x, •), then v = v. for
some j and the pole is at most of order r and principal part at v. equal
to that of

If 0 is a pole of¥r v, then it is a pole of order at most 2r.
In light of the preceding two results this theorem is now clear.
The following result will be used in the next section.

Proposition 4.6. P{ v has a meromorphic continuation to α£ as an

element of C°°{T\G x Γ \ G ) . Furthermore, if Rev{H) > 0, then the

principal parts of P{ v andofP{ v (as functions of' v) are equal.

Proof Lemma 3.3 implies that P[ v is meromorphic in v and holo-

morphic for Rev(H) > 0. Thus P{ t/='Pι v -P\ v is meromorphic in v

and has the same principal parts as P{ v for Rev(H) > 0. In the proof

of Lemma 3.2 we have seen that the following equation holds in the sense

of distributions for Rev(H) > p(H):

(*) ( ( q - v(H)2 + p(H)2) + (C2 - v(Hf + P{H)2))PXv = Fv

with Fv e C°°(Γ\G x Γ\G) and meromorphic in v e a*c. Thus (•) is
true for all v for which both sides of the equation are meaningful. Elliptic
regularity now implies the proposition, q.e.d.

We conclude this section with an application of Theorem 4.2 to the
pointwise convergence of the spectral decomposition of an element of
L2(Γ\G/K).

Theorem 4.7. Let r > n/4 and assume that f e C2r(Γ\G/K) is such

that Cjf € L 2 + ε (Γ\G) for 0<j <r and for some ε>0. Then

j=\
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with the series and integrals converging uniformly on compacta of Γ\G/K.

Proof Since Cjf e L2+ε{Γ\G/K) for 0 < j < r, the equation above

holds in the sense of L2(Γ\G) with / replaced by Cjf for j in this range

[11, Proposition A.2.3]. Then the right-hand side of the above equation is

majorized termwise in absolute value by

>jJμ»\\E(Pj,iμ,x)\

j

where λu = v(H)2 - p(H)2 . We apply the Cauchy-Schwarz inequality to
this expression and find that

(*)<C\\(C-λu)f\\2Ψr(x)l/2.

The result now follows if we argue as we did in the proof of Theorem 4.2.

5. A family of Dirichlet series associated with negatively curved manifolds

Let X be a complete simply connected Riemannian manifold which
is the Riemannian covering of a compact Riemannian manifold. Let d
denote the Riemannian distance function on X and let Bτ(x) = {y e
X\d(x ,y)<T}. Then according to [10, Remark 1]

T

with h independent of x. We note that if X = G/K with the Riemannian
structure corresponding to B , and ζ is the volume of the unit sphere in
p, then

/ f(x)dV(x) = ζ f Γγ(t)f(kexptH)dt
Jx JK JO

for integrable / on X. From this it is easy to see that

Yol(Bτ(lK)) ~ ζe2plH)τ/2p{H).

Thus in this case we have E(x) = ζ and h = 2p(H). Manning has
interpreted h as the "topological entropy" of the geodesic flow.

Returning to the general situation, let Γ be a group of isometries of X
acting freely and such that Vol(Γ\X) < oo. If x, y e X, we set



694 R. MIATELLO & N. R. WALLACH

Equation (1) above implies that the above series converges absolutely for
Res > h/2 to a holomorphic function of s in this range. We now show
how the results of this paper can be used to analyze these series if X = G/K
(as in the previous sections). Let Δ denote the Laplace-Beltrami operator
of X. If X = G/K, then Δ/ = Cf for / € C°°(G/K).

Theorem 5.1. Let X = G/K and let Γ c G be a discrete torsion-
free subgroup such that T\G has finite volume. Then Lτ(x, y, s) has a
meromorphic continuation to C such that the poles in the range Res > 0,
s φθ, are simple and at points of the form v - 2j with 7 = 0, 1,2, and
v2 - p(H)2 is an eigenvalue of Δ on L2(Γ\X). LΓ(x, y, s) has a simple
pole at s — p(H) and

τ(X >y>S) = £/ V θ l ( M ) .

Furthermore, if 0 > λχ > λ2 > are the eigenvalues of Δ on L2(Γ\X)

and if λγ = s2 - p(H)2 with sλ > max{ρ(H) - 2 , 0 } , then LΓ(x, y, s)

is holomorphic for Res > sχ, s Φ p{H), and Lτ(x 9y9s) has at worst a

simple pole at s = sχ with residue

ζc(sχp/p(H)y

with (pj an orthonormal basis of the λχ eigenspace for Δ in L (Γ\X).

Proof If x,y e X, x = gK, y = hK, and g~ιh = kχexptHk2,
then d(x, y) = |r | . We write x = xK for x e G. Then Theorem 1.2 can
be rephrased as

/

2kd(x,y)

k>\

with ak(v) rational in v and holomorphic for Rev(H) > 0. Further-
more, if d(x, y) > 1 and c < 0 is given, then there exists a polynomial
fc{v) of degree < rf(c) such that

(*)

< C (1 +

for all ε > 0. We note that there exists c0 < 0 such that fc can be

taken to be the constant polynomial 1 and d(c0) = 0. Let β be as in the
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preceding sections. If Rev(H) > p(H), then

γeΓ

+ δx{v) Σ, β(χ

If ω is a compact subset of G, and x, y e ω, then the second sum is
over a finite set depending only on ω. Thus the second term extends to a
meromorphic function which is holomorphic wherever δχ is. (•) implies
that the third sum is dominated by

ver

for all ε > 0. Therefore that the third term has a meromorphic continua-
tion to Rev(H) > p(H) — 2. This implements the meromorphic continu-
ation of L Γ (JC, y, s) to Rev(H) > p(H) — 2. Since δχ(v) is holomorphic
for RQV{H) > 0, we see that the principal parts of LγCx, y, v(H)) and
δχ(v)~xΨχ u(x, y) are the same for Rev(H) > p(H) - 2. We now con-
tinue the continuation as above. We write (ao(v) = 1)

N

•δχ(u)^2ak(u)LΓ(x,y,u(HH2k)
k=\

γeΓ k=\

\^Λ yy) ^ kK } l '
I A:=l /

The right-hand side of the above equation consists of four terms. The
third term only involves finite sums (see the beginning of this proof) and
thus has a meromorphic extension to ac with poles only at the v where
δχ{y) or ak(y), 0 < k < N9 have poles. Hence this term is holomorphic
for Rev(H) > 0. If we argue as above, the fourth term is meromorphic
for Re*/(//) > p(H) -2N -2 with poles at the v for which δχ(v) has a
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pole or some ak(y), 0 < k < N, has a pole. We can therefore use the first
two terms to see that since LΓ(x, y, s) continues to Res > p(H) - 2, it
continues to Res > p(H) - 4, etc. The assertion about the pole structure
is now clear. We are left with the calculation of the residue of Lγ(x, y, s)
at s = ρ(H).

The arguments above, combined with Theorem 4.5, imply that the prin-
cipal part of LΓ(x, y, s) at s = p(H) is equal to that of

δ{(uylζ[vol(Γ\X)(p(H)2 - v{H)2)]'1

since the space of square integrable eigenfunctions for the eigenvalue 0 is
the space of constant functions. Thus

> 3>, *) = -δx{p{H))-lζ[2p{H)yo\{Y\X)]'\

But, δγ(v) = -(2v(H)c{v)yx and with our normalization c(p) = 1. The
last assertion follows from Theorem 4.5 and the argument which we just
used to analyze the pole at p(H).

Corollary 5.2 (notation as in Theorem 4.1). Let x, y e X. Then

1 - ζe2p{H)T/ Vol(Γ\X), T -> +oo.

d(γx,y)<T

Proof. Fix x, y. We enumerate the elements of Γ as yχ, γ2, . Set
μ. = d(y.χ, y) a n d D(s) = Lτ(x,y,s- p(H)). T h e n

7 = 1

Since the series defining D(s) converges absolutely and uniformly on the
strips Res > 2p(H) + ε, ε > 0, D(s) has a meromorphic continuation
to C. If s{ as in the preceding theorem exists, then set t{ — p(H) + s{,
otherwise set tχ — max{2/?(//) - 2 , 0 } . Thus D(s) is holomorphic for
tχ < Res, s Φ 2/?(7/). The Ikehara-Wiener theorem (cf. [1, p. 524])
therefore applies and implies that

£ 1 ~ (Ress=2p{H) D(s))e2p{H)T, T -> +oc.

βj<T

The result now follows from the previous theorem.
Note. In [10] a general result of the above form for X of strictly neg-

ative curvature and Γ\X compact was announced. In the special case of
constant negative curvature (i.e., G is locally isomorphic with SO(«, 1))
the precise result as above is given for Γ\Λf compact. The finite volume
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version seems to be new. These results of Margulis, combined with ours
above, suggest the following conjecture.

Conjecture 5.3. Let X and Γ be as in the beginning of this section
and assume that X has strictly negative curvature. Then LΓ(x 9y9s) has
a meromorphic continuation to C {perhaps only for Res > h/2-ε for some
ε > 0) and there exists an ε > 0 such that s = h/2 is the unique pole for
Res > h/2-ε. The residue at s = h/2 is Cx{Γx, Yy)/ Vol(Γ\X).

One might be "brash" enough to augment this conjecture with an as-
sertion generalizing that in Theorem 5.1 for the "next" eigenvalue of the
Laplacian. We note that the above conjecture combined with the Ikehara-
Wiener theorem yields a complete generalization of the above cited result
of Margulis. In the context of the actual theorems, i.e., X = G/K as
above, we have a conjecture about the error term.

Conjecture 5.4. Let tχ be as in the proof of Corollary 5.2. Then

1 - ζe2p{H)T/ Vol(Γ\X) = O(eli T) as T - +oo.

yer
d(γχ,y)<τ

We note that the above conjecture would follow from well-known results
on Dirichlet series (cf. [7, Theorem 10.7g]) if we could show the following:

(i) l i r n ^ ^ LΓ(x ,y,s) = 0 for Res > 0 .

(ii) There exist 0 < t2 < tχ and τ 0 > 0 such that

PV Γ eiλτLΓ(x,y,t2
J — oo

converges uniformly for τ > τ 0 .
Notice that (i) and (ii) would follow if we could prove the analogous

results for P{ v .
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