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HOMOGENEOUS KOSZUL MANIFOLDS IN Cn

RICHARD PENNEY

0. Introduction

Let X be a complex manifold. We shall say that X is homogeneous
under the real analytic Lie group G if X is a homogeneous G-space for
which the mapping v\ G x X —• X is real analytic in the G variable
and holomorphic in the X variable. Suppose that there is a G-invariant
volume form ω on X. In local coordinates, we may express ω as

Homogeneity implies that K is strictly positive. In [6], Koszul introduced
the following Hermitian form which we refer to as the Koszul form:

The form H is invariant under any biholomorphic mapping which pre-
serves the volume form. We shall say that X is a Koszul manifold if H is
nondegenerate. This gives X the structure of a pseudo-Kahler manifold
for which the measure preserving biholomorphisms are isometries.

In [6], Koszul proposed the problem of the classifying all Koszul man-
ifolds. Considerable progress has been made on this problem in the cases
when the Koszul structure is in fact Kahler (see [3] and the references con-
tained therein) and in the symmetric case. In the general pseudo-Kahler
case, it seems that very little progress has been made. In this work, we
begin the study of this problem. We restrict to the case that G contains
an exponential solvable group which acts transitively on X. We refer to
such manifolds as "type E." (Note that all Hermitian symmetric spaces are
type E. Also, all rationally homogeneous, contractible domains are type E.)

Our first main result includes the statement that all type E manifolds
have realizations as homogeneous domains in Cn . The result, however,
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is much more explicit. In [11] we introduced a class of domains referred
to as Siegel N-P domains. In this notation, TV is a connected, simply
connected, nilpotent Lie group and P is a complex subgroup of the com-
plexification Nc of N. We let Ap be the group of automorphisms of N
which fix P, when extended holomorphically to Nc. Choose a maximal
R-split torus T c Ap. The pair N-P is a Siegel pair if T has an open
orbit in N \ NJP. (This is independent of the torus T.) In this case, the
semidirect product T x5 N has a finite number of open orbits in Nc/P.
The latter space is biholomorphic to Cn and each of the open orbits is a
homogeneous domain which is referred to as a Siegel N-P domain. Note
that N-P domains are transitive under a completely solvable group. In
particular, they are type E. Our first main result is Theorem 1 below. The
proof uses results of Hano [5]. (We are deeply indebted to S. Dorfmeister
for bringing these results to our attention.) We remind the reader that
a semialgebraic group is, by definition, the identity component (in the
Euclidean topology) of the set of real points of a real algebraic group.

Theorem 1. X may be realized as a Siegel N-P domain in Cn . The
identity component Gω of the holomorphic isometry group of X is a semi-
algebraic group with trivial center for which the mapping Gω x X —• X is
rational in both variables and is holomorphic in the X variable.

One corollary of this result will be of special importance to us. Let
• S c G b e a connected, solvable subgroup of a real Lie group G. The group
S is said to be triangular in G if there is R-basis of 2? under which the
image of S under the adjoint representation is given by upper triangular
matrices. It is a fundamental result of Mostow that all maximal connected
triangular in G subgroups are conjugate under an inner automorphism.

The following is a consequence of Theorem 1. We remind the reader
that a Lie group G is said to be ad-algebraic if its image under the adjoint
map is semialgebraic.

Theorem 2. Suppose that G is ad-algebraic and that X is type E.
Then there is a triangular subgroup S of G which acts transitively on X.

Using Theorem 2, we define a "rank" for a general type E manifold X.
We then restrict to type E, rank one case. Such manifolds are called type
I. In our work [11], we introduced a special class of domains, referred to
as nil-balls. (We shall define this class, as well as the "dilated" nil-balls in
§2 below.) These domains, it turns out, are just the type I manifolds. We
prove

Theorem 3. A manifold is type I if and only if it is biholomorphic to a
homogeneous nil-ball.
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Theorem 3 contains a great deal of information. In particular, we may
immediately draw the conclusions below.

Corollary 4. Every type I manifold has a realization as a domain Ω in
Cn such that:

(1) there is a solvable, algebraic group G with a codimension-one nil-
radical N which acts homogeneously and polynomially on Ω,

(2) the boundary dΩ is a smooth, algebraic, real codimension-one sub-
manifold of Cn , transitive under N,

(3) the Levi form is nondegenerate at each point of dΩ,
(4) the complement of Ω is homogeneous under G.
We refer to this realization as the nil-ball realization. An example of

such a realization would be the realization of the unit ball in Cn as a
Siegel domain. The condition described in Theorem 1 above is referred
to as "birational homogeneity." If we only assume rationality in the Ω
variable (as in (1) below), then the action is referred to as "rationally
homogenous." It is one of the main results of [11] that the existence of
a rationally homogeneous action implies the existence of a birationally
homogeneous action.

We conjecture that a contractable, homogeneous domain with a analytic,
Levi nondegenerate boundary must be a type I domain. We have not been
able to prove this in general. However, let Ω be a contractable domain in
Cn which is homogeneous under G. We shall say that Ω is type B if it
satisfies the following conditions:

(1) The G action is rationally homogeneous.
(2) As a submanifold of Cn , Ω has a real analytic, codimensional-one,

Levi nondegenerate boundary.
(3) The G action extends analytically to dΩ and dΩ. is homogeneous

under this action.
(4) There is a point ωQ e dΩ which is an attractive fixed point for

some goeG. Thus g£z -> ω 0 for all z e Ω.

Then we have the following partial converse to Theorem 3.
Theorem 5. Every type B domain is type I. More precisely, Ω has a

realization as a type B domain if and only if it is biholomorphic to a dilated
nil-ball

We should comment on the term "dilated" appearing in this theorem
since it will play a significant role in many of our results. As mentioned
above, Siegel N-P domains are determined by a nilpotent Lie group N
and a subgroup P c Nc. In the case of a dilated nil-ball, one has much
additional structure, including a "dilation." This is a one-parameter sub-
group δ(t) of semisimple Lie algebra automorphisms of the Lie algebra
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jy. Dilations, by definition, have the property that each eigenvalue λ (t)
of δ(t) is of the form tn{ι) for some positive integer n(i). By replacing t
by f, one can always choose the n(i) to be a relatively prime set. In this
case, the largest n(i) is referred to as the dilation degree of the dilation.
In the case of dilated nil-balls, we also refer to it as the "dilation degree
of the domain" although it really is a function of the presentation of the
domain as a homogeneous space.

One of the first conclusions we draw from Theorem 3 is the following:
Corollary 6. Let Ω be a type I domain. Then the Koszul structure of Ω

is Kάhler if and only if £l is pseudo-convex. In this case Ω is biholomorphic
to the unit ball in Cn .

Corollary 6 allows us to assume that Ω is not pseudo-convex. We refer
to the class of such type I domains as type In . Similarly, we define type
Bn . From the homogeneity of the boundary, it follows that in the nil-ball
realization, no point of the boundary of a domain of type In is pseudo-
convex. Hence, every holomorphic function on an In domain extends
past the boundary. Since the complement of Ω is homogeneous under
Go , it follows that the hull of holomorphy is in fact Cn . Thus we obtain
the following corollary:

Corollary 7. In the nil-ball realization, every holomorphic function on
a type In domain extends to all of Cn .

We shall let /(Ω) denote the group of Koszul isometries of Ω, and
GΩ the identity component of the group of holomorphic isometries. It
is known that both J(Ω) and Gω are Lie groups which act analytically
on Ω (see [8, p. 255, Theorem 32]). In [14], Webster proved that if a
domain has a smooth, Levi nondegenerate, algebraic boundary, then every
automorphism is algebraic. A globally defined, single valued algebraic
mapping must be polynomial. Thus, we obtain:

Corollary 8. IfΩ is type In , then, in the nil-ball realization, Gω acts
polynomially.

One of the more important consequences of Corollary 4 is that due to
the nondegeneracy of the Levi form, we have the theory of the Chern-
Moser normal form at our disposal [2]. We work in the nil-ball realization
and choose a base point x0 in the boundary (see §4 below). In [2], Chern
and Moser showed that on a neighborhood of x0 , there is a biholomorphic
mapping transforming dΩ into a set of the form in τ = r(z, τ), where
(z, τ) represents the general point of C"~ι x C. The function r is real
valued and real analytic and JC0 is transformed into (0 ,0) . Furthermore,
the power series expansion of r about (0, 0) is of a very special form.
For example, the first nonzero term is in degree 2 and is, in fact, the Levi
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form. The normal form is unique up to transformations of Ω by a certain
group of linear fractional transformations.

One of the more striking properties of the type In domains is the fol-
lowing theorem which may be considered as a generalization of the Cartan
result that a biholomorphism of a bounded domain which has a fixed point
is linear. One should also compare this with the results of Ezhov [4], Web-
ster [14], and Kruzhilin and Laboda [9].

Theorem 9. Let Ωχ and Ω2 be type In domains in the nil-ball real-
ization. Let A be a biholomorphic from Ω{ to Ω2 which preserves the
origin. Let A1 be the corresponding local biholomorphism of the Chern-
Moser normal forms. Then A1 is linear.

In principle, this solves the equivalence problem for type I domains.
To determine whether two such domains are locally equivalent, it is only
necessary to check whether the normal forms are linearly equivalent. Of
course, the difficulty lies in computing the normal forms. Surprisingly, for
type B domains, the computation of the normal form is actually rather
simple.

Given the Siegel pair of a type Bn domain, we describe an explicit
normal form for the domain, which we call the canonical form. In the
canonical form, the function r turns out to be a polynomial, independent
of τ , of degree at most equal to the dilation degree of the domain. The
transformation which transforms the domain from its realization as a nil-
ball into canonical form is a polynomial operator with polynomial inverse.
Both this operator and r are explicitly computable by means of an explicit
algorithm. The canonical form is global in the sense that the mapping of
<9Ω onto this normal form establishes a biholomorphism of Ω onto a
domain im τ > r(z).

One interesting consequence of these results is the following corollary,
which follows from the fact that the normal form has no degree three
terms. We remind the reader that a hyperquadratic domain is a domain in
C"" 1 x C defined by an equation of the form im τ > H(z, z), where H
is a nondegenerate Hermitian form on C"" 1 . Since hyperquadratics have
dilation degree 2, this result says that dilation degree 3 is uninteresting.

Corollary 10. Every type Bn domain with dilation degree d = 3 is
biholomorphic to a hyperquadratic domain.

Dilation degree 4 is also explicitly describable. Let Q be the fourth
degree form on Cn defined by

(2) Q{z)

where a and β , of course, represent multi-indices of length n . We shall
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assume that ca β is Hermitian symmetric in a, β so that Q is real

valued. Let 0 < s < k be two integers. Let Hs be the Hermitian form on

Ck defined by

Hs(z ,w) = Σ i i
1 s+l

Let Ω c C x C % C f c x C " be defined by the inequality

(3) im τ > re(z, w) + Hs{q, q) + Q(z),

where (τ, z, q, w) represents the general point of C x C" x C x C " ,
and ( , •) is the usual Hermitian scalar product on Cn . Then we have the
following:

Corollary 11. Every domain of the form given by (3) is homogeneous,
of type B, with dilation degree 4. Conversely, every type B degree-4 domain
has a realization in this form.

Type Bn domains (by definition) have the property that the group acts
transitively on the boundary. Thus, any biholomorphism is a product of
a group element with an automorphism preserving the base points. When
combined with Theorem 9, this has the following corollary. This corollary
amounts to a complete solution of the problem of determining when two
type B domains are equivalent.

Corollary 12. Let the canonical forms of <9Ωz be defined in Cn~ x C
by im τ = r ;(z) for i - 1, 2. Then Ω{ and Ω2 are biholomorphic if and
only if there is a complex linear endomorphism of Cn~ x C which maps
the function im τ — rχ(z) onto im τ — r2(z).

Of course, these results also apply when Ω{ = Ω 2 . In this case, they
amount to an explicit computation of the automorphism group of the do-
main. Using Corollary 12 and Theorem 15 below, we give an example
of a type Bn domain in C4 for which the full automorphism group is
solvable. This is interesting because in [6], Koszul had conjectured that a
Koszul domain was always symmetric. This conjecture was shown to be
false by Pjatecki-Sapiro (see [12]—not all Siegel domains are symmetric).
However, our example is particularly simple and dramatic.

Having considered the equivalence problem, the next natural collection
of questions concern how abundant type I domains are. Ideally, what
would be desired is a way of producing all possible polynomials r such
that the domain τ > r(z) is the normal form of a type I domain. One
would then ask to be able to produce from r a group that acts transtitively
on the domain.
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For general type I domains, we are still very far from this ideal. How-
ever, for a specialized class of domains, the "holomorphically abelian"
domains, we have made considerable progress on these questions. This
subclass is defined by the conditions that TV acts simply transitively on
dΩ, and that the space of tangential Cauchy-Riemann operators is spanned
over C°°(c?Ω) be a commuting family of iV-invariant differential opera-
tors. In terms of the Siegel pair N-P, this is equivalent to saying that P is
abelian and that P n N = {e} . This class, while admittedly rather special,
turns out to still be broad enough to contain vast classes of domains (see
Theorem 15 below.)

It turns out that it is possible to construct the general holomorphically
abelian domain in terms of certain abelian, associative, nilpotent algebras
over C. To describe this construction, let si be such an algebra. Assume
also that we are given a Hermitian symmetric, nondegenerate, bilinear
form H on si . We define a (usually nonassociative) binary operation
"o" on si by the equation

(4) H(XY, Z) = H(X, ZoY).

We shall say that si is a duality algebra if

(5) H(XoY,ZoW) = H{XoZ, YoW)

for all X, Y, Z , and W in si . This is equivalent with

(6) Zo{XoY) = Yo(XoZ).

Finally, we say that a one-parameter group of complex linear, semisimple
automorphisms δ(t) of si is a homogeneity if δ(t) has only real eigen-
values and H is homogeneous of degree one under δ(t). We say that si
is homogeneous if it has a homogeneity. If the eigenvalues of δ(t) are
all of the form tc, where c > 0, then the homogeneity is said to be of
dilation type. In this case we say that si is dilated. It is easily seen that
in this case si does indeed have a dilation (a one-parameter group δ(t)
as above where all of the eigenvalues are tn for some positive integer n).

Given a duality algebra si , we define [X, Y] = XoY-YoX. It turns
out that despite the nonassociativity of "o", this bracket satisfies the Jacobi
identity. Thus, si becomes a real Lie algebra. Furthermore, we define
φ = im H. Then φ is a Lie algebra cocycle of si . We let Jf = si x R.
We define a Lie structure on Jf by the stipulation

Let £P c si be the -/ eigenspace of / , where / is the complex mul-
tiplication in si . We identify & with the subalgebra & x {0} in Jf.
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Let N, Nc, and P c Nc be the connected, simply connected Lie groups
corresponding to Jf, JVC, and ̂  respectively. Then, the main result of
§5 is the following:

Theorem 13. Given a homogeneous duality algebra {$f , H, δ), the
corresponding Siegel pair N-P is the Siegel pair of a holomorphically
abelian domain. Conversely, every holomorphically abelian domain Ω is
associated to a Siegel pair N-P defined from a homogeneous, duality al-
gebra as above. The correspondence between isomorphism classes of Siegel
pairs and isomorphism classes duality algebras is bijective.

The Chern-Moser normal form of the domain Ω corresponding to a
dilated sf is somewhat simpler than in the general type Bn domain case.
We prove the following:

Theorem 14. Assume that sf is dilated and let Ω be the corresponding
domain. A Chern-Moser canonical form of dΩ is describable as the set of
points (q, w) £ stf x C such that im w = r(q), where

r{q) = H{q, q) - H{q o q, q o q) = 3H{qq ,qq) + -- ,

the dots representing a finite sum of terms of degree five or greater in q .
The dilation degree of s/ is the number of distinct eigenvalues of δ .

If the dilation degree of the domain is 4 or less, then there are no terms
with degree greater than 4 so this formula is exact. Comparing this form
with (3), it is easily seen that holomorphically abelian domains have the
property that Q is degree 2 in both z on z . Thus, ca β = 0 if either a
or β is not of length 2.

This description has a partial converse. If Q is as described, we may
write

where a = (ax, a2) and β = {bx, b2) range over the set of multi-indices
with a and bi between 1 and n. We shall assume that the coefficient
da β is symmetric in ax, a2 and in bχ, b2 and is Hermitian symmetric
in a, β. We shall say that the Hermitian signature of Q is the pair
{u,υ)9 where u and v are, respectively, the number of positive and the
number of negative eigenvalues of the n2xn2 matrix [ca β]. We say that
the anti-Hermitian signature of Q is the corresponding pair for the matrix
[da β ] , w h e r e

d(aι,a2),(bι,b2)
 =zC(aι,bι),(a2,b2)'

We say that s dominates the pair (u, v) if u < s and υ < n - s. Then
we have the following:
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Theorem 15. Let Q be as in (7) above. Then the domain given by
(3) is holomorphically abelian if s dominates either the Hermitian or the
anti-Hermitian signature of Q.

The organization of this work is as follows. In §1, we define the term
rank and establish conditions for rationality. In §2, we prove Theorem 3.
In §3, we study biholomorphisms between homogeneous nil-balls. §4 is
devoted to the computation of the Chern-Moser normal forms, while in
§5, we study the holomorphically-abelian domains.

1. Rank and rationality

In this section, unless otherwise stated, we shall always assume that
X is type E and that the G action is effective. We shall also adopt the
convention that Lie groups will be denoted by upper case italic letters and
the corresponding Lie algebra will be denoted by the corresponding upper
case script letter.

Our first goal is to prove Theorem 1. We begin by recalling some of
the theory developed in [6]. Let X be a manifold which is homogeneous
under G and which carries a G-invariant volume form. Let bQ be a fixed
point in X and let L be the isotropy subgroup of b0 . Koszul constructed
a functional λ e &* and a complex subalgebra & e <§c such that

(1) *f + ̂  = 5ζ,
(2) for all
(3)
(4)
(5)

We shall refer to such triples (^, S, λ) as Koszul data for G/L, even
when λ is not the explicit functional constructed by Koszul. The Koszul
data is nondegenerate if the converse to (2) also holds. This condition is
equivalent to the nondegeneracy of the form Bλ(X, Y) = λ([X, Y]) on
*§jSf (the Koszul form). Note that in this case, the center of & is in
J ? . The effectiveness of the action then implies that the center is trivial.
Thus any subgroup of Û7 which acts transitively on X will have a discrete
center.

The geometric interpretation of the Koszul data is that ^cl^c is the
complex tangent space of X = G/L at b0. The space &l&c definites
the space of vectors of type (0, 1). The space J ζ is precisely the radical
of the form Bχ. This form projects to a form on & jS? which is the
pseudo-Kahlerian form if X is a Koszul manifold.
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We shall require a formula for a specific λ. Up to a normalization
factor, λ will be the functional constructed in formula (4.5) of [6]. We
refer to this λ as the Koszul function. We begin by observing that there is
a linear operator / : 9 -> 9 such that for all Y £ &, Y-iJY £&. This
operator is uniquely defined Modulo S?c. Assume that such an operator
has been chosen. For 7 G ^ , w e define Tγ = Ad JY - JAd Y. As
Koszul remarks, Tγ leaves 3* invariant. Formula (4.5) of [6] implies
that we may define λ by

(8) λ(Y) = -(n+l)-lΎr^Tγ.

The functional λ is independent of the choice of / [6, p. 570]).
Given a triple (^, £, X) as above, it is possible to define a complex,

pseudo-Kahlerian manifold which will be of importance to us. Let Gc

be a connected complex Lie group with Lie algebra Z/c. Let Qo be the
connected subgroup of Gc corresponding to £. We define Q to be the
set of x e Gc which normalize Qo and satisfy ad*x(λ)|£f = λ\£. It
is easily seem that Qo is the component of the identity of Q. We let
Lχ — QnG. Then Lγ is the set of elements in the isotropy subgroup of
λ which normalize £.

Now, assume that λ is the Koszul functional. Then just normalizing £
is sufficient to belong to Lχ (see §2.2 of [5]). Thus, in this case, our Lχ

is the same as Hano's Kχ. We define Xχ = G/Lχ = GQ/Q c GJQ. This
manifold is the open subset of a projective variety considered by Hano.
Hano proves (following Koszul) that both Xχ and X are (7-equivariant
covering spaces of the coadjoint orbit in ^ * defines by λ. Now, since X
is type E, we may take G to be exponential solvable. It is known (see [1])
that all coadjoint orbits of an exponential solvable Lie group are simply
connected and diffeomorphic with Rn . Thus, X = Xχ is diffeomorphic
with R" . In particular, X is contractible. It follows that even if G is not
exponential, L is connected and L = Lχ.

It now follows from Hano's theorem that X is biholomorphic with an
open subset of a closed complex variety in P r for some r and that Gω is
the identity component of a real algebraic group which acts birationally on
X. In fact, this algebraic group is the Zariski closure of the image of Gω

under the adjoint representation. In particular, the adjoint representation
is an isomorphism, proving that Gω is centerless.

Since X is also contractible, the arguments of [11] (from Lemma (2.4)
on p. 404 to the top paragraph on p. 406) apply to X, proving that X
is realizable as a Siegel domain of type N-P. Explicitly, let Gc be the
complex algebraic closure of G . The arguments from [11] prove that
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there is a completely solvable real algebraic subgroup S c Gω which acts
transitively on X. Furthermore, if Nc is the complex algebraic closure
of the nilradical of S, then Sc c NcQ. Transitivity proves that G c SQ.
Hano showed that GQ is open in Gc. It follows that NcQ is also open
in Gc. Consider the following sequence of containments of open sets:

X = S/SΠ Q = SQ/Q c NcQ/Q c GJQ.

The last containment is Hano's embedding of X as an open subset of a
projective variety. The second to last containment is (essentially) the re-
alization of X as a Siegel N-P domain since NcQ/Q = NJNC Π β = C"
(from nilpotence). The fact that Gω acts rationally in the Siegel realiza-
tion follows from the fact that the last containment is also an algebraic
embedding. This finishes the proof of Theorem 1. q.e.d.

Let p denote the adjoint representation of Gω on <§ω. From Theo-
rem 1, Gω is isomorphic with p(Gω), and p(Gω) is a "semialgebraic"
group (the Euclidean identity component of a real algebraic group.) Before
proving Theorem 2, we prove the following:

Lemma 16. Let G be a subgroup of Gω which acts transitively on X.
Suppose that G is ad-algebraic. Then p{G) is a semialgebraic subgroup
ofp(GJ.

Proof. Let Ga be the identity component of the algebraic closure of
p(G). Then Ga leaves & c &ω invariant. Furthermore, from the ad-
algebraic condition, Gaψ = p{G)\& . It follows that Ga = Zp(G), where
Z is the kernel in Ga of restriction to ^ . Note that Z centralizes p(G)
since it centralizes 9. But then Z must centralize Ga . It follows from
the Koszul condition that Z is discrete and, hence, finite. It follows that
p(G) is the component of the identity in Ga , proving our lemma, q.e.d.

Armed with this result, we may now prove Theorem 2. According to the
above lemma, we may consider G as an algebraic group. We may write
G = M xsGu, where M is reductive and Gu is the unipotent radical. We
may then write M - ANK, where K is maximal compact in G, A is an
R-split torus, and N is nilpotent. Note that H^(G) = H^K), where H^
is the homology complex. On the other hand, G/L = X is just R" . Thus
HΦ(G) = H^(L). It follows that the dimension of the maximal compact
subgroup of L is the same as that of K. Since all maximal compact
subgroups of G are conjugate, it follows that ANGu acts transitively on
X. This proves Theorem 2. q.e.d.

Next we define rank. Again, we assume that G is ad-algebraic and that
X is type E. Then there is a maximal triangular subgroup S of G which
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acts transitively. We have the equality G = SL. Every maximal trian-
gular subgroup is an L-conjugate of S. Thus, every maximal triangular
subgroup acts transitively. We define the rank of the G action on G/L to
be the dimension of S/SULS , where Ls = LnS and Su is the unipotent
radical of 5 . This is clearly independent of the choice of S. It is also
easily seen to be independent of the choice of base point in G/L. Due to
the next proposition, this is also independent of the choice of G. Thus,
we may call this number the "rank" of X.

Proposition 17. Suppose that G is ad-algebraic and that X is type E.
Then the rank of the Gω action on X is the same as that of the G action.

Proof Lemma 16 tells us that G is a semialgebraic subgroup of Gω .
By definition, the rank of the G action is the same as the rank of a maximal
triangular subgroup of G. Thus, we may assume that G is triangular.
More precisely, the proof of Lemma 16 shows that we may take G to be
the semidirect product of an algebraic torus with a unipotent group. Hence
we may assume that G is triangular in Gω . It follows that G c S, where
S is a maximal triangular subgroup of Gω . We may also choose a maximal
R-split torus TG of G contained in a maximal R-split torus Ts of S.
Let L be the isotropy subgroup of b0 in S and let TL be a maximal
R-split torus in L. From the conjugacy of tori, there is a conjugate of
TL contained in Ts . Conjugating L is equivalent with changing the base
point in X which does not change the rank. Thus, we may assume that
TL c Ts. It is easily seen that the Gω rank of X is dim TS/TL and
the G rank is dim TG/{TG n TL). Since GL = S, it also follows that
Ts = TGTL. This proves the proposition, q.e.d.

Rank-0 manifolds are easily described. By definition a rank zero mani-
fold is a homogeneous space of a nilpotent Lie group N.

Proposition 18. Let W be a complex, simply connected manifold which
is homogeneous under a real nilpotent Lie group N. Assume that W has
an invariant volume form. Then the Koszul functional λ is identically zero.

Proof Let bQ e W be a fixed base point and let (Jf, &, λ) be the
corresponding Koszul data. Let Z o be a nonzero, central element of JV.
Clearly, λ(Z0) = 0. If ZQ € Q, then we form the quotient of yV by the
ideal generated by Zo . The corresponding group still acts transitively on
W and the Koszul functional is the projection of λ to the quotient. By
induction, we may assume that this projection is 0, proving the lemma in
this case.

Thus, we may assume that Z o is not in S. Let Yo = JZ0. Note that
W = Yo + iZ0 belongs to @. It follows that ad YQ normalizes €. This
is equivalent to saying that for all Y, Tγ(YQ) is zero mod S? .
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Now, let β' = β + CZ0 . let Jt1 = β1 n JIT. This space is spanned by
2?, Z o , and Γo. The group N acts transitively on FF' = N/Mf. This
space is a complex manifold with complex structure defined by &'. By
induction, its Koszul functional may be assumed trivial. However, from
(8) and the previous paragraph, this functional is a nonzero multiple of
λ, proving the proposition.

2. Theorem 3

We shall continue the conventions established in the first paragraph of

§1.
Let us now recall the definition of nil-ball. Let / b e a nilpotent Lie

group with Lie algebra Jif . Let λ e J^*. A complex subalgebra &1 c JVC

is a totally complex polarization for λ if it satisfies the following proper-
ties:

(a) Z G ̂ _ i f and only if [Z , &>'\ c kerλ.

(b) &>' + &'=Jfc.
Given a totally complex polarization, there is a canonical way of asso-

ciating a domain with it. Explicitly, we let & = &1 Π ker λ. By forming
a quotient, we may assume that the kernel of λ contains no nontrivial
ideals. We refer to this condition as "effectivity." In this case, the center
Z of Jf is one dimensional and λ is nontrivial on Z. Let ZQ be a
basis for the center, normalized by the condition that λ(Z0) = 1. Then,
clearly,

Let X = Nc/P. From the nilpotency of Nc, this space is biholomorphic
to Cn for some n. The above equality implies that the image of TV in
X under the quotient map is a real codimension-one submanifold which
divides X into two connected components

(see Lemma 29 below).
We refer to Ω+ = Ω as the domain associated to the polarization. (Note

that Ω~ is the domain associated to ( ^ , -λ).) Such domains are what
we refer to as the nil-balls. The boundary of each of these domains is
smooth and equals N/K, where 3ί = 3° Π ^ . Note also that, in general,
the iV orbits in Ω are of real codimension-one so that such domains
are not necessarily homogeneous. However, suppose that t —• δ(t) is a
one-parameter group of semisimple, R-split automorphisms of JV. We
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shall say that the pair (λ, &>') is homogeneous if δ(t) preserves &' and
δ(t)*(λ) = tλ for all t. It is easily seen that under these assumptions, each
of the nil-basis is homogeneous under the group G = Rxs N, where R
acts on N by means of δ. If all of the eigenvalues of δ(t) are of the
form f for c > 0, then we say that the nil-ball is dilated.

We should remark that the definition of "dilated" has a different (more
common) formulation. Let / -» δ(t) be a one-parameter group of semisim-
ple, R-split automorphisms of JV . Then δ is a dilation if its eigenvalues
are all of the form tn^ , where the n(i) are positive integers. The dilation
is said to preserve (λ, &') if &' is invariant under δ and δ(t)*(λ) = t λ
for some integer d. (Note that in this case, td must be the largest eigen-
value of δ(t).) It is a theorem that the nil-ball is dilated in the sense
defined above if and only if there exists a dilation preserving the pair
(λ, &>'). The equivalence follows easily from the observation that the set
of all automorphisms of JV which are scalar on the eigenspaces of the
homogeneity is an algebraic torus and each eigenspace defines an algebraic
character of this group. We shall leave the details of the proof as an ex-
ercise for the reader. (We are indebted to Roger Howe for pointing this
equivalence out to us.) For a given dilation δ, the integers d is called the
dilation degree. (It depends upon the choice of dilation.)

In order to prove Theorem 3, we must first prove that homogeneous
nil-balls are rank-one Koszul domains. We note that Z o is an eigenvector
of δ(t) with eigenvalue t. We shall describe what will turn out to be the
Koszul data for Ω relative to the base point b0 = (exp iZ0)P. Let ?*
be the Lie algebra of G and let A e & be the infinitesimal generator of
δ. Then [A, ZQ] = ZQ. Let β be the functional on & which equals λ
on JV and is zero at A. Let S be the subalgebra spanned by & and
A-iZ0.

The following proposition is one half of Theorem 3.
Proposition 19. The domain Ω+ is a rank-one Koszul domain with

Koszul data (3?9&,β). The functional β is the Koszul functional of"(8)
above.

Proof Clearly, the G action is rank one. It is also easily seen that &
is the subalgebra referred to in the Koszul data. Furthermore, the form
Bβ defined from β is clearly nondegenerate. The only issue is to prove
that β is the Koszul functional λ'. We shall make use of (8).

From the definition of β, we may assume that J A - ZQ. Furthermore,
there is an Ad A invariant direct sum decomposition



HOMOGENEOUS KOSZUL MANIFOLDS IN Cn 605

We may choose / so that ^ + is in the +/ eigenspace of / , and Jzζ is
in the kernel of J.

Lemma 20. Tr^ ,^ Ad A = n .

Proof. Note first that Bλ defines a nondegenerate bilinear form on
jVKSe + Z). Furthermore, δ(t)*Bλ = tBλ . It follows that (Ad A)*Bλ =
Bλ. Hence,

) A d A* = 3

Our lemma follows from this and the observations that Z o is an eigenvec-

tor of Ad A of eigenvalue 1 and n = dimΩ+ = ( d i m ^ / ^ + l)/2.

It follows that λ'(Z0) = 1. It is also easily seen that λ'(A) =

(n + I ) " 1 Tr JAd A. We claim that this is zero. To see this, we write

where ^ is the span of 4̂ and Z o . This decomposition is invariant
under both / and Ad A. The trace of J Ad A on ^ 0 is 0. On the
second direct summand, Ad A and / commute. This, J Ad A has only
purely imaginary eigenvalues on this space, proving our claim, q.e.d.

To finish the proof of the proposition, we need only prove the following:

(9) ( ^ +3*) n i c k e r λ'.

Suppose that I e ^ + ̂ . Then both X and JX belongs to Jf. It
follows that Tχ(A) belongs to J^ and Tχ(Z0) = 0. Thus, for such X,

where ^f = ̂  + RZ 0 .

Now, let P' = P(expCZ0). Then N acts homogeneously on X' =

Λ^/P'. The functional defined by the right side of the above is the Koszul

functional for X1 which is zero from Proposition 18. q.e.d.
Now we turn to the converse statement in Theorem 3. Suppose that

X is a type I manifold with Koszul data (S?, &, λ). From Theorem 1,
we may assume that G is algebraic, completely solvable with codimension
one nil-radical. We will also assume, as usual, that G acts effectively. The
subalgebra (g is also algebraic. We shall let T = exp RA be a maximal
torus of G so that G = TN, where iV is the nilradical of G.

Let Q be the connected subgroup of Gc corresponding to &. Since
coadjoint orbits of G are simply connected, QΓ)G is the isotropy subgroup
of X. Thus we may identify X with GQ/Q in Gc/Q. This, however,
is not the most convenient realization of X. Since $ + J^c = <§c, the
maximal torus of (§ is also maximal in *§c. Thus there is an x0 e Nc

such that Q = XQ1QX0 contains T. Let P = QnNc so that Q = TcP.
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We may realize X in Y = GJQ = NJP. (Note that Y is biholomorphic
to Cn .) We shall denote the image of X in Y by Ω. It is important
to note that if we take xP € Ω as the base point, then the subalgebra
corresponding to S becomes ad x{β). We denote this algebra by Sχ .

Let Z e JV generate a complex, one-dimensional ideal JF in < ε̂. Such
elements exist because of the complete solvability of &. For x € Nc, let
&>x = ad x(&>).

Lemma 21. iZ i JV + ̂  /or any x e Nc such that xP e Ω.
Proof. Assume that the lemma is false. Then iZ eJV + £Pχ for some

x such that xP eΩ. Conjugating by the general element of G and using
homogeneity, it follows that the containment holds for all x such that
xP belongs to Ω. Since the action is effective, J is not in &χ for
any x. Let Y1 = NJIP, where / = expJ^, and let Ω' be the image
of Ω in Y1 under the quotient mapping. There is a holomorphic, direct
sum decomposition Y = Y1 x C such that the / action on Y becomes
translation in C. (Note that / is central in Nc.) We claim that, in this
decomposition, Ω is Ω ' x C . Once this is shown, it will follow that the
function K of formula (1) is constant in the C variable, contradicting
the Koszul condition.

To establish our claim, it suffices to show that Ω is invariant under the /
action on Y. However, let / e I and xP € Ω. Using the centrality of /,
we may write / = np with n in N and p in Pχ . Then ixP = nxP e Ω,
proving the lemma.

Lemma 22. We may choose^ Z so that Ω = 7V(exp iR+Z)P/P.

Proof. For xP e Ω, Sχ+$x = &c. Hence, &>

x+ϊ^c is at most complex
codimension two in S?c and codimension one in ^ . It follows that Λf +
&x is real codimension one in Jfc. Then iZ spans a complement over
R. Our lemma follows from Proposition (A.6) of [11]. q.e.d.

Let xQ = expiZ. We normalize A so that [A, Z] = Z. Due to
the above lemma, we may choose x0P as the base point for Ω in Y.
This has the effect that (S = ad JCQ"1^ . This space is spanned by & and
W = ad xo(A) = A-iZ . From the proof of (9) above, & c kerλ.

Next, we set &' = <^ + CZ . Clearly, 30' has the same dimension as β
and [^ ;, ^ ' ] c kerA. It follows that &' is a complex polarization for
λ. It is clear that Ω is the nil-ball defined from (/V, &>', λ/Jf). This
finishes the proof of Theorem 3. q.e.d.

Now we consider Corollary 6. We continue the notation established
above. Let us first assume that Ω is Kahler in its Koszul structure. This
is equivalent to saying that the following form Hλ is positive semidefinite
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on β:

Hλ(Z,W) =

Then Hλ is also positive on &. It follows that &1 is a positive polar-
ization for β — λ\yy. The structure of totally complex positive polariza-
tions for nilpotent Lie groups is well understood (see [1]). It is known
that & Π Ί? = 31 is an ideal in JVC which contains [JKC, JQ. This
space is actually an ideal in 9 since it is obviously (Ad ^-invariant. Let
3? = 31 Π ker β . Then (since Ad* A(λ) = λ) 5? is also an ideal in 9.
Thus, from the effectiveness of the action, 3£ = 0. We conclude that JV
is a two-step nilpotent Lie group with one-dimensional center and positive
polarization. It is easily seen that the corresponding nil-ball is just the
classical unbounded realization of the unit ball. This proves one part of
our corollary.

The converse is similar. From the arguments on p. 406-407 of [11],
the form Hλ on & is essentially the Levi form for the given nil-ball.
Thus, if Ω is pseudo-convex, then Hλ is positive and &' is a positive
polarization for λ. We then reason as before. This finishes the proof of
Corollary 6. q.e.d.

Now we turn to the proof of Theorem 5. We remark that it is a conse-
quence of the contractability of Ω that there is a solvable subgroup of G
which acts transitively on Ω (see Proposition (2.6) of [11]). In the process
of the proof we will need to change the group G several times. Each time,
we shall need to verify that G has an appropriate element g0 .

Lemma 23. We may assume that G is a real algebraic, completely
solvable group and that v is rational as a mapping of G x Ω into Cn .

Proof. From Theorem (0.1) of [11], we may assume that G is a real
algebraic group and that the map v is rational in both variables. The point
is to prove the complete solvability. Let g0 be the element hypothesized
in the definition of type B. Let g0 = an be the Jordan decomposition of
g 0 , where n is nilpotent, a is semisimple, and g0 and a commute. We
may write a = a{a2, where ad a2 has pure imaginary eigenvalues on <§c

and ad aχ has only real eigenvalues, and where aχ and a2 commute with
each other and with n . The element a2 generates a precompact subgroup.
It follows that the element aχn satisfies the same assumptions as # 0 .

There is a maximal triangular subgroup S of G containing aχn . From
the proof of Theorem (0.1) of [11], it follows that S acts transitively on
Ω. This finishes the proof of the lemma, q.e.d.

For the remainder of this section, G will be assumed to be as stated
above. Furthermore, we will assume that a maximal, R-split torus A of
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G has been chosen so that A contains the semisimple part a0 of g0.
Then, in the "AN" decomposition of G, go = aonQ, where aQ9 n0, and
g0 all commute. Let Gc be the complex algebraic group which has G as
its real points. Let Nc be the unipotent radical of Gc. From Proposition
(2.6) of [11], there is a complex subgroup Q of Gc which contains a
maximal torus of Gc such that K = Q Π G is the isotropy subgroup of
some point in Ω. The equality below yields a realization of Ω in NJR,
where R = QnNc. Note that from nilpotence, NJR « Cn :

Ω = G/(Q n G) = GQ/Q c GJQ = 7Vcβ/β = NJR.

Let 0: Ω —• G c /β be the above described biholomorphism. Theorem
(0.2) of [11] says that φ extends to a rational, G-equivalent, biholomor-
phism of a complex Zariski open subset of Cn onto a Zariski open subset
of Nc/R. The domain of φ must contain boundary points of Ω. From
the homogeneity of the boundary, it follows that φ is holomorphic on Ω.
We shall also let φ denote the extension of φ to Ω.

Next we shall show that Jlf carries a dilation. First, however, we shall
need to change the realization of Ω in order to bring our notation into
conformality with that of [11]. Since Q contains a maximal torus of Gc,
some conjugate Qf of Q contains the real torus A. Let P = Qf ΠNC. As
described in [11, p. 405], we may realize Ω in NJP = Cn . We let Ω'
denote the corresponding subset of Nc/P. To describe the G action on
Ω', let x e G, x = na with n e N and a £ A . Then, for all mP e Ω r,

(10) na(mP) = n{m)aP,

where ma = ama~ι (see [11, loc.cit]).
We shall need to evoke the structure theory developed in [11]. Let

{Xχ, , Xlm_x) be a Jordan-Holder basis Jf indexed by odd integers.
We assume that the X are joint eigenvectors of A. For even m, let

Xm+ι = iXm . Let E: R2 m -> Nc be the mapping

(11)

Let jr. be the span of X., , X2m so that each Jlf. is a real ideal of

Jfc. If Sf is any real linear subspace of yΓ , we set 3*. — Sf + JV.. The

jump set J(&) is the set of indices j such that 3. Φ 3._χ.

Now, suppose that 3 = & . Let ^ ( ^ ) c R2 m be the set of points x
whose ith coordinate is zero for all / £ J(^) - It follows from Propo-
sition (A.2) of [11, p. 409] that T = E(&{&>)) is a transversal to P in
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Nc. Furthermore, E~ι = (jct, — ,x 2 m ) defines global coordinates on

Nc and the restriction of E~ι to T defines global coordinates for NJP.

We denote these coordinates by (yχ, , ys), where d = 2n . (Recall

that Ω c Cn .)
In these coordinates, Nc acts in a rather specific fashion. Let JH{&*) =

U\ 9 h' ' " > Λ) ^ e ^ e s e Q u e n c e of jump indices in increasing order. Let
n = (nχ, , n2m) and y = (yx, ,yd) be, respectively, coordinates of
points in Nc and Λ^/P. According to [9], for r = 1, , d, there are
polynomials <2r such that the Nc action on NJP is given by

On the other hand, the A action is "diagonal" since each of the X are
eigenvectors of A . Thus, for each a e A, there are numbers aχ, , α^
such that

/ = (*iJΊ ,

Now let g0 = αo«o be as described following the proof of Lemma 23.
We also let wQ be the corresponding attractive fixed point in <9Ω. For
brevity of notation, we set g = g0, n = nQ, and <2 = <z0 .

Proposition 24. 77ze numbers a( corresponding to a are all in the in-
terval (0, 1). Furthermore, φ{w0) = P, the identity coset in NJP.

Proof. Let y e Nc/P represent an element of Ω', y = (y{, , yd)
Then, in terms of coordinates

(gky)r = (nkaky)r = (Φ)aky)r

= n(k)jr + a)yr + Qr(n{k)x, , n(k)j_χ, a\yχ, , a)_χyr_χ).

Now the limit of gky as k —> oo must exist and be independent of y
for all y eΩf. Since Ω7 is open, for each r between 1 and d, there are
x and y in Ω' with x. Φ y. if and only if j = r. Subtracting (gky)r

from (gkx)r, we see that ak

r —> 0 as /c -> oo . It follows that each of the

eigenvalues ar is less than 1. Next, we use the commutativity of a and

n to write gky = ak(nky). In coordinates, the expression nky is growing

at most polynomially in k while the ak part forces an exponential decay.

Clearly, the limit is zero, proving our proposition, q.e.d.

We note that from the proposition, for all y in Nc/P, a^y converges to
the identity coset. We may therefore replace g0 by a0 and hence assume
that g0 is semisimple.

Next, we wish to show that the nilradical may be taken to be codimen-
sion one. For this, we shall use the smoothness of Ω at w0 as well as
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some more structure theory. Note that from Proposition 24, Ω' is smooth
at the identity coset.

Now, in [11, Lemma (A.4)], we showed that

e = J{jr + ad x(&))

is independent of x for xP eίΐ. Since the given Jordan-Holder basis of
yKc contains a Jordan-Holder basis of Jf, it is easily seen that e c J{&).
We reorder our basis so that the elements of e come last. We define a
coordinate mapping is': R w —• Nc by means of ( l l) r t except now the
product is taken with respect to the new order. A simple inductive proof
shows that this still defines global coordinates for Nc. Furthermore, we
obtain coordinates for NJP in precisely the same manner as before. For
the sake of the next lemma, let us note that we may multiply any subset
of the X. by - 1 without affecting our ability to us them to produce
coordinates. We refer to this as redirecting the basis.

Lemma 25. Let Ωo be the intersection of Ω' with the set To of points
y such that y. = 0 for all i < d - k, where k is the length of e. Then,
after possibly redirecting the basis defining E', Ωo may be described as
the subset of Nc/P consisting of all points y e TQ such that y. > 0 for
all d-k <i<d.

Proof This all follows from Propositions (A.6) and (A.2) of [11].
Corollary 26. In the above lemma, k = 1.
Proof Assume that k > 1. Let Tχ denote the set of points in Nc/P

with y. = 0 for all / not equal to d and d - 1. Then the intersection Ωj
with Tχ is the first quadrant in (yd_l9yd) space. By assumption, Ω has
an analytic defining function r on a neighborhood of the identity coset in
NJP. Thus, the set Ωj in Tχ is describable locally in the form r > 0
for some analytic function r on Tχ. However, it is a simple power series
argument that no analytic defining function can describe a quadrant at its
vertex, q.e.d.

It now follows from Proposition (A.6) of [11] that Ω' is the image of
iVexpR+.Y in Nc/P where / is the last (and only) element of e. It fol-
lows that the one-parameter subgroup t -> δ{t) through a , together with
TV, acts transitively on Ω. Thus, we may assume that TV is codimension
one in G, as claimed.

Actually, we can say more. The eigenvalues of δ(t) are of the form
tJ for some real j . According to Proposition 24, we may assume that
there is a real complement to & in JVC spanned by eigenvectors corre-
sponding to positive j . Let JV+ be the span of the eigenspaces of δ(t)
in JV corresponding to positive j and let JV~ be the span of the other
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eigenspaces. Clearly, </f * are subalgebras of Λf whose direct sum is Jf.
Furthermore, Proposition 24 shows that JV~ c & . Clearly N = N+N~ .

Lemma 27. The group AN+ acts transitively on Ω'.
Proof. Consider the projection mapping π: Nc/P —• N^/P+, where

P+ = P Π N* . Then π is an 7V+-equivariant biholomorphism. The pair
+

 9 &+) is a Siegel Λ ^ pair in the sense of [11]. Both {Jf, &>) and
, ^ + ) define precisely two domains. Furthermore, the image under

π of each of the (Jf9&>) domains contains a {JV*,^) domain. It
follows that π defines a biholomorphism of the domains, proving the
lemma, q.e.d.

Thus, we may assume that JV~ = 0. Since the automorphism group of
JV is algebraic, we may assume that the j are rational and hence that the
polarization is dilated.

Now, let X = X.., where i is the last (and only) element of e. The
next lemma allows us to apply some results of [11].

Lemma 28. For all x e Nc, dim(JV n xPx~ι) = dimN - (2n - \).
Proof. The formula is equivalent to the statement that the TV orbit of

xP has dimension In - 1. Let us first consider the case I G Ω ' . Then,
according to (A.6) of [11],

xP = xn{exptX)P

for some unique t in R+ and some xn e N. From the uniqueness of
t, an element mexpsX (m e N) will fix xP only if s = 0. Hence,
the G isotropy subgroup of xP is contained in N. Our formula follows
for such points because their G orbit has real dimension 2n and TV is
codimension one in G.

Next, suppose that x = e . Since the identity coset is a boundary point
of Ω', its G-orbit has dimension In - 1. On the other hand, according
to (10), this point is fixed by A . This proves the lemma in this case.

Finally, to consider the general case, let dQ be the minimal dimension
of TV (Ί xPx~ι . The set ^ of all points x at which the dimension is d0

is a Zariski open subset of Nc. Since Ω ; is open in NJP, it follows that
d0 = 2n - 1. Hence ^ is a neighborhood of e. The general result now
follows from the observation that we may conjugate any element of Nc

into any neighborhood of e using elements of A . q.e.d.

The significance of Lemma 28 is that it proves that Ω7 is "regular" in
the sense defined on p. 392 of [11]. This allows us to apply Theorem (0.3)
of [11]. Actually, what we require is one of the ancillary results leading
up to this result. Let Q c Gc be AcP. We set n = exp X and define
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B = n~ιQn . Then the subalgebra & of [11, p. 406] is precisely the β of
the present context. The discussion beginning on p. 406 of [11] shows that
there is a β e &* which is trivial on £P+£P such that S is a polarization
for β . (It is at this point that we use the nondegeneracy of the Levi form.)

The algebra & is not a polarization for β . In fact, since the G action
is effective, there is at least one element Z which is central in Jlf and
which is not in &. We may choose Z to span a one-dimensional ideal
in 9 . Let &' = & + CZ . Then, &1 has the same dimension as S and
[&>', &>'] c kerβ . It follows that £? is a polarization for £ . Then it is
also a polarization for λ = β\JV.

We next ^laim that &\ is totally complex. For this, note that & +
& = {β + &) n y^ . The space *? + £ί is codimension one in ^ [11,
Lemma (2/7)]. Hence, it suffices to show that Z £ & + ̂ . However, if
Z e3P+3? , then λ(Z) = 0. But then [^, Z] c ker£ . This implies that
Z G £f Π Nc = 9* , contradicting the choice of Z .

Knowing that & is the intersection of a totally complex polarization
with ker A, it is now a simple matter to prove that Ω' is the associated
nil-ball. It is also clear that {J¥ , &, λ) is dilated by the A action. This
finishes the proof of the "only i f portion of Theorem 3. The converse
statement is a direct consequence of Theorem 3.

3. Biholomorphisms

In this section, we study biholomorphisms between homogeneous nil-
balls. As in the previous section, all groups will be simply connected, so
that we shall continue the convention that upper case Roman manuscript
letters denote Lie groups while the corresponding script letter denotes the
corresponding Lie algebra. The groups in question will also be nilpo-
tent. We shall realize the Lie group as the Lie algebra equipped with
the Campbell-Hausdorff product so that the exponential map becomes the
identity. Thus, for example, TV and Jf represent the same space, al-
though the former is thought of as a group and the latter as a Lie algebra.

We will assume that the notation is as in the definition of "homogeneous
nil-ball" given at the beginning of §2. This gives us a Lie algebra JV
and a pair (A, &'), where λ is a linear functional and &1 is a complex
polarization for λ and a one-parameter group of automorphisms δ which
leaves 3°'. We assume that the action is effective, so that the kernel of λ
contains no nontrivial ideals. We shall denote the corresponding domain
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by Ω j . We shall need to make the realization described in §2 more explicit.
First, however, we note that following well-known lemma.

Lemma 29. Let N be a nilpotent Lie group and let M be a connected
subgroup. Then there is a vector complement £Γ to Jt in JV such that
the map φ: ZΓ x Jί —• N given by (s, t) -> st is a bijectίve polynomial
mapping with polynomial inverse. If there is a subalgebra JPχ such that
Jί^+Jί^jV, then we may choose !T c Jtx.

Proof. The first part follows from Proposition (A.3) of [11] with K =
e. Note that in this case %? = N.

The second part will follow from the first, once it is shown that MχM =
N. This again follows from [11, Proposition (A.3)], now with K =
Mx. q.e.d.

Our realization is based upon the observation that & +& = Λ£ . Thus,

where Kc — P'nP = PnP. Let β be a 5-invariant complex complement
to 3tc in Ί? so that *f + Zc is a complement to 3tc ΪSL &>'. Then,
as complex manifolds, NJP ~ £f x ^ . Since the image of iV in this
quotient determines the boundary of Ω, we wish to describe the image of
N in β x Zc. To this end, let Zr be a basis of Z and let Z c = iZr. We
choose Z r so that λ(Zr) = 1. The function r described in the following
theorem is the defining function for Ωj .

Theorem 30. For each q e& there is an element p e & and a unique
r G R such that the element g = qp(rZc) belongs to N. These elements
may be chosen to dependpolynomially on q. In & x C, the domain Ωj
is described by im w > r(q).

Proof Let us first discuss the uniqueness of r. Suppose that qp(rZc)
and qp\sZc) both belong to N. Then p'ιp((s-r)Zc) belongs to P'nN.
If s Φ r, this implies that Zc belongs to & +Jf. This is impossible since
λ(Zc) = /, while λ is real valued on JV + 90 .

For the existence, note that ^^JV + 30'. It follows that

QcNP' = NP(CZr) = NP(iRZr).

The existence of r follows from this, as does the polynomial dependence
of r. (One applies Lemma 29, after choosing appropriate vector comple-
ments.) The fact that Ω{ is described as claimed is clear, q.e.d.

We shall require the Levi form for Ωj at (0 ,0) . This is the second-
order term in the Taylor expansion of the function r(q) at 0.

Corollary 31. The Levi form is Z -> {λ([Z, Z]).
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Proof. Let pχ(q) be the order one part of the polynomial p of Theo-
rem 30. From the Campbell-Hausdorff formula, q + p{{q) is the first-
order part of qp{q). This must be real modulo Z. It follows that
pχ(q) = g + q + k(q), where k{q) e Ήc with J = . / n ^ . It fol-
lows from the Campbell-Hausdorff formula that the second-order term in
the Z r component of qp(q) is then

This is a pure imaginary number. The result follows from this.
Next we consider biholomorphic mappings between non-pseudo-convex

nil-balls. Let .(&', μ) be another effective polarization for the nilpotent
Lie algebra Jt. Let Ω2 be the corresponding domain, realized in MJR.

Let A be a biholomorphism of Ωt onto Ω 2 . As noted in the intro-
duction, A extends to a biholomorphism of Nc/P onto MJR which
restricts to an analytic diffeomorphism of the boundaries. Thus, A de-
fines an analytic mapping Ar of NP/P = N/K into MR/R = M/L,
where K = N n P and L = N n R. We shall assume that A maps the
identity coset into the identity coset. Let B be the differential of Ar at the
identity coset. This is an injective linear mapping of JY'/JP onto Jt/&.

The following seemingly innocuous proposition is actually both nontriv-
ial and crucial. Our proof is strongly motivated by ideas in the work of
Webster [14]. We note that if 9 is a Lie algebra, then Z{&) denotes the
center of 9.

Proposition 32. B maps the image of 2ί(JV) inJV/J^ onto the image
of3T(Jt) in jr/&. _

Proof We note that K = KcΠN, where Kc = P Π P . We shall refer
to the space NJKC as the complexification of the boundary. This space
carries a canonical conjugation operator obtained as a projection from the
conjugation on Nc. The boundary N/K imbeds as the set of fixed points
of the conjugation operation on the complexification. The real analytic
map Ar extends holomorphically to a mapping Ac of a neighborhood
of N/K = NKc/Kc into MJLC. As was noted above, A extends to a
biholomorphism of Nc/P onto MJR. Consider the following diagram,
where Ac is considered as a partially defined operator on Nc/Kc and
where π is the obvious projection map:
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This diagram commutes on the real points of Nc/Kc. It follows from the
uniqueness of holomorphic extension that this diagram commutes on a
neighborhood of N/K in NJKC.

The first conclusion we draw is that, on its domain, Ac maps left-P
cosets into left- i? cosets. Since Ac commutes with conjugation, it also
follows that the same is true relative to P and R. In particular, by
restriction, we obtain the following diagram, where the vertical arrows
are biholomorphisms, and, hence, Ac in fact extends holomorphically to
P/Kc:

P/Kc - ^ R/Lcc

PP/P -^—> RR/R
Note that for all k in Kc, ad k{&) = 3P . Thus, in general, ad

depends only on xKc. This allows us to discuss adx(^) for x e Nc/Kc.
Similarly, xP is defined for x e Nc/Kc. Analogous comments hold rela-
tive to MJLc and R.

Let Bc be the differential of Ac at the identity coset. Then Bc is the
extension of B to ^CI3^C by complex linearity.

Lemma 33. Let q = qKc, where q € P. Then

(12) £c(ad q(& +^)/3rc) = ad Ac(q){β +&)/&c.

Proof. Consider the variety X = qPT. Then X contains e = qeq~x.
There is a neighborhood Ψ^ of e in P and Wo of q~ι in 7 such that
the image of q^J^ in Nc/Kc belongs to the domain of Ac. We may
also assume that the image of qΎ^ belongs to the domain of Ac. Now,
Ac maps left- P cosets into left- R cosets. Thus, if p e P and both x
and xp belong to the domain of Ac, then Ac(xpKc) C Ac(xKc)R. The
same is true relative to the space P and R. It follows that

Ac(q^0W0Kc) C Ac(qKc)RR/Lc.

Since Ac maps eKc to eLc, we conclude that Bc maps the tangent space
at the identity coset of X/Kc into that of the right above. This proves
that the left side of (12) is contained in the right. The equality follows
by consideration of dimension, since each space has codimension one in

Now, since B is surjective, there is a vector F in / such that
B(V + ̂ ) spans (&(jr)+&c)/&c. Proposition 32 is equivalent to the
statement that V e 3?{JVC) +<%r

c This follows from the following lemma.
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In fact, if V £ 3?{JVC) + 3£c, the lemma implies that there is a # in
? such that K + J ζ belongs to a d ^ ( ^ + ^ ) / ^ . Thus, 5 C (F + ^ )
belongs to the space on the right of (12). This space, however, intersects
3?(Jic)l<S?c trivially, contradicting the choice of V.

Lemma 34. Let F e / . Then if V is not in 3?c + -2* (•/*£), there is a
q eP such that V e ad q(&> + W).

Proof. The given implies that V is not an element of 3° . The Pukan-
szky condition for the complex polarization & says that in Jlfc

(This follows easily from the fact that the space on the left is a Zariski
closed, codimension-zero subset of the space on the right; see [1].) In
particular, there is a q e7 such that ad* q(λ)(V) = 0. But this implies
the lemma since & + SP is the kernel of λ. q.e.d.

Let ZN be a basis element of S{JV) mod 3£ . Similarly, let ZM be a
basis element of 3f(Jt) (mod )L. Then we have the following strength-
ening of the above proposition:

Corollary 35. Ar: (exp RZN)K -• (exp RZ M )L.
Proof The central Lie algebra elements ZN and Z M define invariant

vector fields on N/K and M/L respectively. Let γN{t) = (exp tZN)K
in iV/ΛT and let γM(t) = Ar(γN(t)). We claim that there is a continuous,
nonzero, function c: R -> R such that, for all ί,

= c(t)ZM(γM(t)).

Granted this, it follows from the uniqueness of integral curves that there
is a function φ: R —• R such that yM{t) = (expφ(t)ZM)L. Thus, the
corollary will follow.

Now, for x in either N or M, we will let L(x) denote left translation
by x on either N/K or M/L, depending upon the context. For ί e R ,
let

Bt = L(σM(t)~X)ArL(exptZN),

where σM(t) € M is such that σM(t)M = 7 M ( 0 . Then /?, extends to
a biholomorphism of Ω which has the origin as a fixed point. From
Proposition 32, there is a nonzero constant c(t) such that

dBt(ZN) = c(t)ZM mod .2*.

Our claim follows from the above formula after multiplying both sides by
dL(σM(ή). q.e.d.

Let us summarize what we know concerning A . We adopt the realiza-
tion of Theorem 30, except that we identify the spaces S with Cn for
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both Ωj and Ω2 . The existence of a biholomorphism between the do-
mains implies that the identification may be made in such a way that Ωχ

and Ω2 have the same Levi form on Cn . Following [2], we denote this
form by (Z , Z).

Given (z, w) in CnxC, let A(z, w) = (Aχ(z, w), A2(z, w)) in Cnx
C. Then the above corollary implies that A2(0, w) = aw , where a is a
complex constant. (Note that w -> A2(0, w) defines a biholomorphism of
C onto C.) The curve γ(t) = (0, t) in dΩχ is mapped into t->(09at).
This curve must belong to dΩ2 . It follows that α is a positive real number.

Proposition 32 says that at (0 ,0) ,

Let Ω; be a Chern-Moser form of Ω f . Let φ(: Ω. —• Ω̂  be local
biholomorphisms which satisfy the Chern-Moser normalization conditions
[2, p. 231]. Let A1 = (A[, A'2) be the corresponding biholomorphism of
the Ω̂  . Then, at (0 ,0) ,

(These conditions follow from the similar conditions for A along with the
normalization conditions.) It is also true that

9 U o
dzadzβ 2

at ( 0 , 0 ) . This condition follows from the fact that A' preserves the
normal forms (see the comments below formula (2.4), p. 229 of [2]).

The differential T — dA' may be written in block form as

a 0
Γ = 1 . o

where Tχ is n x n and preserves the Levi form up to the factor a . (Note
that T must preserve the holomorphic part of tangent space to the bound-
ary.) We may write A' = TA", where dA" = I. An easy computation
(cf. [2, p. 233]) shows that T~ι(Ω'2) is a domain in normal form and
A" is a mapping of Ω'χ into this domain. Furthermore, An satisfies the
Chern-Moser normalization conditions [1, p. 231]. Thus, the uniqueness
in Theorem (2.2) in [2] implies that A" = I. This finishes the proof of
Theorem 9. q.e.d.

We still need to prove Corollary 12 to finish this section, which states
that any biholomorphism of the canonical forms which preserves the base
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point, preserves the defining function up to scalars. However, any such
automorphism is a matrix transformation of the form of T above. If the
boundary of Ω2 is defined by im w-r2(z) > 0, then aw-r2oT(z) > 0 is
a defining function for Ωj . However, it follows from the implicit function
theorem that defining functions of the form im w-r(z) > 0 are unique at
smooth points of the boundary. Hence r2o T = arχ, proving the corollary.

4. Normal forms

Our first goal in this section is to describe an explicit defining function

for a given dilated nil-ball. We shall adopt the realization of Theorem 30.

We shall let 3fk denote the tk eigenspace of the dilation δ(t) in JVC.

We set 2^ equal to the span of 3fk for k > j . The *V. are ideals in

Jfc which satisfy [JVC, ̂ ] c 2^ + 1 . We shall also let d be the dilation

degree of Ω. If X e. J^c, we define d(X) = k, where k is the last index

such that I e ^ . The following lemma is a simple consequence of the

effectiveness of the action.

Lemma 36. The space *V. is trivial if j > d. Furthermore, Ψ"d= 2?c,

where Zc is the center of JVC. This space is one dimensional.

Let jyx be the kernel of λ in JV. Then JVX is, as a vector space,

canonically isomorphic with Λ' jZ. This endows yf1 with a Lie algebra

structure. Furthermore, JV = JVι x Z. In this presentation, the Lie

algebra structure on JV is given in terms of a certain two-cycle φ on yP\.

Explicitly, let φ be the bilinear form on yVι χyΓι defined by restricting

(X,Y)-+ λ([X, Y]) to JVX . Then, the bracket o n / x R is defined by

where [X, Y] is the quotient bracket on
Note that

Furthermore, δ{t)*φ = tdφ. It follows that 3fj and 3k are ^-orthogonal

if i + jφd.

We may write JVX as the direct sum of the spaces @ and & . We shall
let π and π be the corresponding projection operators which define
this decomposition. These operators commute with δ. We also define
operators p and v by

v(X) = πq(X) + πg(X), p{X) = πp(X) - πq(X).
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Then v and p are projections valued in JVι and 9° respectively. Fur-

thermore, v + p is the identity mapping on JV^ .

Let A be a polynomial mapping of ^ into itself. We shall say that

A is scaled if A commutes with δ(t) for all t. We say that A is homo-

geneous of degree k if A{tX) = tkA{X) for all t > 0 and all X . For

such A, we may write A(X) = Af(X{, , Λ^), where A1 is a unique,

symmetric, /c-linear mapping of JVχ into Λ[. Then Λ is scaled if and

only if Af commutes with the product action of δ(t) on JVχ . In this

case, we say that Af is scaled.

Lemma 37. Suppose that A is scaled and is homogeneous of degree k.
Then A is constant on cosets of c^r

d_k+ι. In particular, if k > d, then A
is the zero map. Furthermore

(13) d(A\Xl9 . ,**))> £

for all Xt^jrx.

Proof The first statement follows from the second. The second follows
trivially from the observation that an element X has d(X) > d if and
only if \imt^0 t~dδ(t)X exists.

Now, let q e S be given. We shall define inductively an element p e
& such that in the Λ̂ 1 product, qp e Nι. It will be clear from the
construction that p is a scaled, polynomial function of q. We begin by
setting pχ = ~q — -p{q). Then pχ is homogeneous of degree one as a
function of q . From the Campbell-Hausdorff formula it follows that

where R3 is a sum of terms homogeneous of degree three or more. Since
q + q is real, we say that this expression is real up to second degree. Let
h2 = -ρ{[q, px]/2) and let p2=px+h2. Then

qp2 = q+P{+h2 + [q, p{]/2 + [q, A2]/2 + R3,

where R3 is a sum of terms homogeneous of degree three or more (prob-
ably different from the previous R3). By construction, h2 + [q, p{]/2 is
real. On the other hand, [q, h2] defines a third degree polynomial func-
tion. Thus, qp2 is real to third degree.

Now, suppose that operators hn i = 2, , n, have been defined so
that each ht is rth degree, scaled, and qpn is real up to the (n + l)st
degree, where

(14) Pn=P{+h2(q) + - + hn(q).
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Let cn+ι(q) be the (n + l)st degree term in qpn(q), i.e., q -> qpn(q) -
c

n+\(θ) is of degree Λ + 2 . Let

(15) hn+i{q) = -p{cn+χ{q)).

^ e t Pn+\ =Pn + hn+ι. Then qpn+ι is real up to order n + 2. Let /? denote
pΛ , where n is any integer greater than the dilation degree. Clearly, the
value of p is independent of the specific n . This constructs an element
p in &' such that qp is real modulo Zc. To construct r, one forms the
product qp in Λ£, where ^ is identified with ^ x C . Then r is the
negative of the imaginary component of the C coordinate of this product.
Explicitly,

(16) r ( q ) = - i ϊ

Next, we turn to the transformation to normal form. Let r = Σk rk >
where rk is homogeneous of degree k. We choose a basis Z z , / =
1, , n , of & over C consisting of eigenvectors of δ(t). We define a
basis for S over R by setting Qt = Z for 1 < / < n, and Qi+n = J{Zt)
for i = n + 1, , 2AZ , where / is multiplication by / on β. We use
this basis to identify & with R2w . Following Chern-Moser [2, p. 232] and
using the notation of tensor calculus, we write

rΛx) = y^ a χaχ χak.
k ' ' ^ aι"'akι

We shall say that the indices / and j are separated if d(Qi) + d{Qj) > d .
Lemma 38. Suppose that k > 2. Then, in the above summation, the

term corresponding to a{, , ak will be zero if any two indices from the
sequence a{, , ak are separated.

Proof Any «th degree, homogeneous, polynomial function on a vec-
tor space Ψ* may be expressed as a symmetric rc-form evaluated on the
diagonal in "V11. Our lemma is equivalent to the statement that the form
corresponding to rk is zero whenever any pair of its arguments equal
(β, , Qj) 9 where / and j are separated.

However, from (16), the tensor corresponding to rk is expressible as a
linear combination of symmetrizations of terms of the form

φ(Xl9A(X2,. . ,Xk)),

where A is a scaled operator of degree k -1. Our result follows from (13)
and the observation that if d{X) + d{Y)> d, then φ(X, Y) = 0. q.e.d.

We may write

i+j=k



HOMOGENEOUS KOSZUL MANIFOLDS IN Cn 621

where r.j(aq, βq) = aβjr.j(q9 q) for all complex a and β. Since rk

is real rtJ = r.^. In [2, p. 232], certain polynomials, called traces, are
defined from the r. .. We claim that in our case, these traces are auto-
matically zero. Granted this, in the notation of [2, formula (2.11)], the
only further condition required to bring Ω into normal form is Nk ι = 0
for min(/c, /) < 1. We shall give an inductive definition of a transfor-
mation of Ω which achieves this condition while retaining the trace zero
condition. First, however, we prove our claim.

Lemma 39. Suppose that i > 1, j > 1, and i + j > 2. Then \τ(ri .) =
0.

Proof. From the proof of (16), r2(q) = - i m φ(q, ?)/2. Thus, the
Levi form for Ω is

H{z, w)= l-φ(z,w).

Let g.j = H(Zi, Z.). Then g(j = 0 if d(Z.) + d(Z.) φ d. The same is

true for the inverse gι yJ. Our claim now follows from the observation that,
from formula (2.10) of [2], the coefficient of each term used in computing
the traces has at least two separated indices, q.e.d.

Now we shall describe the transformation into normal form. Note that
rk_χ j is linear in ~q . Thus there is a function fk_χ such that

Then fk_{ is a holomorphic, polynomial mapping of S into itself which
is homogeneous of degree k - 1 over C. It also follows that fk_χ is
scaled. This is due to the fact that both r and H are homogeneous of
weight d with respect to δ .

Now, let

Let r^ j be the sum over k of the terms rk χ. Then

(17) rooA(q,q) = H(f(q),q).

Lemma 40. There is a unique scaled polynomial mapping
without terms homogeneous of degree zero or one, such that

where I is the identity mapping on &.
Proof The above equality is equivalent with
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Equating the degree k homogeneous parts of the left-and right-hand sides
of this equality for k = 1, , n shows that h may be computed induc-
tively, q.e.d.

Let g = I + h and let fog. Let Ω be defined as the set of points in
β x C such that im w > f(q).

Theorem 41. The domain Ω is the Chern-Moser normal form of the
domain associated with the pair (Jf ,<&*).

Proof One of the defining conditions for the normal form is that there
exist no terms in the defining function of the form of rk χ or fχ k for
k > 0. The other defining conditions are trace conditions. These latter
conditions follow essentially from Lemma 38 since composition with g
will not introduce any nonseparated indices in the trace computations.
(Note that from (13), h:Tk -> <Vk_χ for all k.) Thus, we need only
consider the former conditions.

The term f^ χ is (up to a choice of sign) that part of r^ χo g + rχ ^og
which is complex linear in q . Explicitly, from (17), this is the linear part
of

H(I-h,I + h) + H(I + h,I-h) = 2(H(I, /) - H(h, A)),

which is just the Levi form, as desired, q.e.d.
The above computations have an immediate and interesting conse-

quence. Note that the normal form, by definition, contains no terms of
degree three. On the other hand, if the dilation degree of the domain is
3 or less, than the normal form will also contain no terms of degree 4 or
greater. Our conclusion is:

Corollary 42. If the dilation degree of Ω is 3 or less, then Ω is biholo-
morphic to either the domain im w > H(z, z) or im w > -H(z, z). In
particular, the isomorphism class of dΩ is determined by the signature of
the Levi form.

In degree 4, we can also be quite explicit. We write J^ = 2Jχ +9t2 + ®3 >
where the 3tχ are as before. Then space (S decomposes accordingly to
the sum of complex subspaces ff.. From homogeneity, @t and β. are
if-orthogonal if i + j φ 4. For q e β, we write q = qχ + q2 + q3 in
this decomposition. From the above considerations, the degree 4 terms
in r are a sum of terms of the form φ{u(q), v{q)), where u and υ are
scaled functions whose degrees sum to 4. From the proof of Lemma 37,
this function depends only upon qχ. Furthermore, it is clear that there
are no terms of higher degree than 4. Thus, considering the orthogonality
of the β{, we see that

r(q) = re(2H(qχ, qj + H(q2 , q2) + Q(qx)),
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where Q is some fourth degree polynomial. This is clearly of the form
claimed in Corollary 11. The proof of Corollary 11 will be complete once
we have proved the following:

Lemma 43. The domain defined by (3) is homogeneous of type B.
Proof. Let a e Cn . Consider the real, degree 3 polynomial Ra(z) =

Q(z + a) - Q(z). We may write

where R^ is holomorphic and Ra

χ is linear in z and holomorphic in z .
There is a holomorphic polynomial function fa mapping Cn into itself
such that

Ra

{(z,Ίϊ)=fa(z) τ.

Define a transformation Ta mapping C x C n x C f c x C " by Ta(τ9z9p,w)

= (τ', z , p , w1), where z = z + a, p = p, wf = w - fa(z), and

τ' = τ + I'(UQ(Z) - α/α(z) + aw). It is clear that

im τ - re w~z - Q(z) — im τ - re it z - (?( z ).

We similarly define a transformation 5α by z1 = z, p = p, it;' =

w -f β, and τ = τ -h /^z. For each Z? G Ck , we define t/ft by p = p + b

and τ ; = τ + i(2H(p, έ) + i/(6, 6)). (The other variables are unchanged.)

These transformations all leave the domain defined by (3) invariant.
There is also a "dilation" of this domain defined by

δ(t){τ, z, p,w) = (t4τ, tz, t2p, t3w).

Translation of τ in the imaginary direction also leaves the domain
invariant. Clearly, the group generated by the above transformations acts
transitively on Ω, making Ω into a type B domain.

5. Holomorphically abelian domains

Let (jy, &', λ, δ) define an effective, dilated nil-ball as in the previous

section. In this section, we make the additional assumption that & =

^ ' n k e r λ is abelian. It follows that Wf\3° = 0, since this space is an ideal

in the kernel of λ. We say that the given data defines a holomorphically

abelian domain. We set JVX = ΛΊZ^). Note that Jf1 is a Lie algebra.

The projection of J^c onto ^ is injective on 3° . We identity & with

its image i n ^ 1 . Then & defines a complex structure on JV1 . Explicitly,

there is a real linear mapping / o n / 1 with J2 = -I such that 3° is
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the -/ eigenspace of J. The following lemma follows easily from the
assumption that £P is abelian.

Lemma 44. For all X and Y in yKι, [JX, JY] = [X, Y].
Consider the bilinear form φ0 on JV defined by

φo(X,Y)=λ([X,Y]).

It is easily seen that the kernel of φ0 is exactly 3?{/V) Let φ be the non-

degenerate form obtained from projecting φQ to Jfx. This form satisfies

the important cocycle identity

It is also easily seen that φ is /-invariant. We define a Hermitian form
H by

We define a binary operation "*" on JVλ by:

Lemma 45. For all X and Y in JVX, [X, Y] = X * Y - Y * X.
Furthermore,

for all Z in J"1.
Proof. One easily verifies that

φ{X*Y-Y*X,Z) = φ([X, Y],Z)

for all Z e J^1, proving the first claim. As to the second, let L(X)

and R{X) denote, respectively, left and right multiplication by X with

respect to *. Then L(X) - R(X) = Ad (X), as was just shown. On

the other hand, by definition, L(X) = -(Ad X)φ, where the superscript

denotes adjoint with respect to φ. Therefore, R(X) = L(X) + L(X)Φ,

proving that R(X) = R(X)Φ, as claimed, q.e.d.

Next we define two additional products on . Z 1 . Let

(18) XY = (X * Y - JX * JY)/2,

(19) io7 = (i*r

It is easily verified from the definition that * is complex linear in the first
argument. It follows that the first of the above products is complex linear
in each variable, while the second is complex linear in X and antilinear in
Y. Note that X*Y = XoY+XY. Thus, the two products above determine
the Lie structure on .Z" 1 . Actually, either one of these products, together
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with the form H, is sufficient to determine the Lie Structure. This, and
much more, is contained in the following theorem which is one half of
Theorem 13.

Theorem 46. The operation (X9Y) -> XY makes JVX into a duality
algebra relative to the form H. The projection of δ to JVX makes JVX

into a dilated duality algebra. The Siegel pair defined from this duality
algebra is isomorphic with {JV , &).

Proof The fact that XY-YX = 0 is clear from (18) and Lemma 44.
It follows that [X, Y] = X o Y - Y o X for all X and Y. It also follows
from Lemma 45 that

Using complex linearity and antilinearity, it is easily seen that this formula
holds with H in place of φ.

We need to prove (6) for "o ." This will follow from the Jacobi identity:

(20) [X, [Y, Z]] = [[X, Y], Z] + [Y, [X, Z]].

We expand this using "o ." This left side expands as

Xo(YoZ-ZoY)-(YoZ-ZoY)oX.

Among the four trinomials appearing in this expansion, only X o(Y oZ)
is linear in both X and Z and antilinear in Y. Expanding the right
side, we find exactly one with the same linearity properties: Z o (Y o X).
These two terms must be equal, proving (6). We also note that the left
side of (20) contains no terms linear in X and antilinear in both Y and
Z . Comparison with the right side results in the identity (X o Y) o Z =
(XoZ)oY. Dualizing results in the identity, (WZ)Y = (WY)Z , which
implies associativity.

The remainder of the theorem is easily shown, q.e.d.
To finish the proof of Theorem 13, we need only consider the converse

statement. Thus, suppose that ( J / , H, δ) defines a dilated duality al-
gebra. The main point is to show that the bracket operation [X, Y] =
X o Y - Y o X satisfies the Jacobi identity. This, however, is straight-
forward from (6) and the following identity, which is a consequence of
(4):

(Z o X) o Y = Z o (XY) = (ZoY)oX.

The rest of the converse is simple and is left to the reader as an exercise.
Now we turn to the proof of Theorem 14. Our first step in the proof

will be to implement the algorithm of §4 for computing the function r of
Theorem 30.
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Let / denote the complex multiplication on si . We shall consider
s/ as an algebra over R. Then sίc will denote the complexification of
si . We extend the various binary operations on si to s/c by complex
bilinearity. Recalling that & is the +/ eigenspace of / , it is easily
seen that IP is a subalgebra of stc. Furthermore we have the following
containments which follow from the Hermitian linearity of "o" on si :

In particular, if q e@, then

p 2 = q - p(q o q - q o q)/2 = q + qoq.

To compute p3, we note that from (15), p3 = p2 - p(c3(q)), where
c3(q) is the third degree term of the Campbell-Hausdorff product of qp2 .
This term is

Since p is (in this case) zero on real terms, only the first term contributes
to p3. Thus,

P3 = q + qo((qoq)oq + qo(qo q ) ) / 2 .

According to Theorem 13, r(q) is the negative of the imaginary part
of the Z component of the Campbell-Hausdorff product of qp3 in J^c.
Explicitly, this component is given by (16):

We make use of several observations to simplify this. First, we note that
it is only the imaginary part of the above expression that enters into the
definition of r. Second, we have the identities of Lemma 45 and formulas
(4), and (5) at our disposal. Finally, any term in this expression of degree
five or greater in q will be trivial. After some patient computing, we
obtain:

r(q) = -\ im{φ{q + q2 + q3/3, q) - \ φ { q oq,qoq)) + ... ,

where the powers represent products in the associative algebra structure of
s/ and the dots represents terms of degree 5 or greater.

Next, we transform our domain into canonical form. According to
the proof of Theorem 41, the defining function of the normal form is the
function / = rog, where g = I + h and / o ( / + A) = I-h . Furthermore,
from the above arguments
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where the omitted terms are of degree 4 or greater. From the proof of
Theorem 41, we need only know the first three terms of / to compute the
corresponding terms of g. Explicitly, following the algorithm of Theorem
41, we see that

Composing with r, simplifying, and ignoring real terms we obtain:

Λ Q ) = ^(4Φ(q, Q) + Φ(q2, q2) - 3Φ(q °q,q°q))'

This still is not the normal form claimed in Theorem 14. The final
simplification is to compose with the map x —• x - iJx, which maps si
onto β. This yields the normal form of Theorem 14. This finishes the
proof of this theorem, q.e.d.

Finally, we turn to the proof of Theorem 15. Thus, we assume that the
dilation degree of s/ is 3 (so that JV is 4 step.) In this case we write

(21) j/=(i

where the s/t are the tn^ eigenspaces of δ , listed according to increasing
n(i). Let d be the degree of homogeneity of H. Clearly, s/t will be
orthogonal to sf. if n(ι) + n(j) Φ d. Thus, we see that n(\) = n(3) =
d = 2n(2). We consider the linear endomorphism δ{t)' of sf defined by
requiring that the ^ be the tι eigenspaces of δ(t)'. Then (s/ , δ', H)
is a dilated duality algebra which defines the same domain as our original
triple. Hence we may assume that δ1 = δ and hence that d = 4, and

The form H identifies ^ with the conjugate dual space of srfχ. Thus,
if we choose a particular linear isomorphism of s/χ with Cn , then we may
identify sf3 with Cn in such a way that for z in sfχ and w in ^ ,

where ( , •) is the standard Hermitian scalar product. Since s/2 is H-
orthogonal to the other sft, it follows that after these identifications, H
is uniquely determined by its restriction to s&2. Let s be the signature
of this restriction. We may identify sf2 with Cn in such a way that this
restriction becomes the form Hs of (3).

Now let q e sf . Let q = z + p + w be the decomposition defined by
(21). Then, from Theorem 14,

r(q) = re(z, w) + Hs{p, p) - Q(z),

where

(22) Q(s) = Hs(z2 , z2) + 3Hs(z o z, z o z).
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This is clearly of the form claimed in Theorem 15. To prove the con-
verse statement, let ί? = Cn <g>Cn . Let C = [ca β] be the matrix discussed
above the statement of Theorem 15. Then C is the matrix of a Hermitian
form Hc on ^ whose signature is the Hermitian signature of C . This
form expresses Q as

Q(z) = 3Hc(z®z, z®z).

Now, assume that s dominates {p, q) as in Theorem 15. This implies

that there is a linear transformation B from Ψ into Ck such that, for

all z and w in W,

The symmetry properties of C imply that we may choose B such that
B(z ®w) = B(w ® z) for all z i n C " .

We use B to define a product on si = Cn x C^ x Cn as follows:

This makes si into an abelian, associative algebra over C. We equip si
with the Hermitian product H defined by

H((z 9p,w)9(z9p9 w')) = ( (z , w') + (w , z'))/2 + //,(/?, p).

We define a dilation <J(ί) by declaring that δ(t)(z, p, w) = (tz, t2p, t3w).
It is now a straightforward verification that {sf, H9 δ) is a duality and
that the domain it defines is given by (3). In this case, srfχosrfχ = {0} of
(3) has no terms involving q o ~q .

To finish the proof of Theorem 15, we must consider the case when s
dominates the anti-Hermitian index of Q. In this case, it will turn out
that the algebra structure on si is such that s/{

2 = {0} but siχ o s/χ is
not zero. The proof is more or less the same as in the previous case, with
a few modifications. In this case, we produce a linear transformation B
of g7 into Ck such that

Q{z) = Hs{B{z®z),B{z®Ί)).

We define a bilinear mapping of CkxCn into Cn (which will be denoted
by juxtaposition) by requiring that

Hs(B(z®w), υ) = (z, vw)

for all z and w in Cn and all υ in C* . We then define si , δ, and H
as before, except that the algebra structure of si is now defined by

(z, p, w)(z', // , iί/) = (0, 0, zp + z p).
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One easily verifies that we again obtain a duality algebra which defines the
domain of (3). This finishes the proof of Theorem 15.

Example. A domain with a solvable automorphism group. It follows
from Theorem 15 that the following domain is a holomorphically abelian
domain in C 4 :

im τ > im zW + \q\ -\z\ .

We shall compute the full automorphism group of this domain. Done
in full detail, the computation becomes somewhat long and tedious. To
avoid this, we shall merely summarize the results of the computations.
From Corollary 12, it follows that the group of base preserving automor-
phisms is generated by the dilation, together with the linear mappings on
(τ, z, p, κ;)-space defined by the matrices

A =

Let T be the group generated by the A above and δ(t). The full auto-
morphism group is NT, where N is the nilpotent group defined by the
corresponding duality algebra sί . Explicitly, sί is C3 with the product
defined by

(z, p, w)(z , p , w) = (0, zz , 0).

The Hermitian form is

H{(z, p,w),(zf, p , w')) = (z'w - zw')/2i + p~β'.

This yields the duality product

(z, p, w) o (zf, p , w) = (0, 0, 2ipa).

The transformation into normal form is given by q -» q + q2/2, where
q e sί (see Lemma 40). After (1) computing the TV action on Ω and
(2) mapping into normal form, we see that in normal form, the typical
element a £Jί acts on the domain by

a(τ,q) = (τ + τ0,q + a-aoa/2 + a;/2 - (q - q:/2) o a + qa)),

where τ 0 depends only on a and q . Using this formula and the formula
for A given above, it is easy to compute products, commutators, etc. It is
easily seen that the automorphism group is indeed solvable. (This certainly
is indicated by the form by A .)

We close this section with another class of holomorphically abelian do-
mains which demonstrates further the considerable variety possible for
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such domains. Let si be any commutative, associative, nilpotent algebra
over R (e.g., the free-nilpotent, abelian algebra of nilpotent degree n on
A: generators). Let λesf* be any nonzero linear functional. Let Bλ be
the belinear form on si defined by

Bλ(X, Y) = λ(XY).

Let J" be the radical of this form. Let 3B - sf l*f . Then Bλ projects
to a nondegenerate form ΰ on J with the property that

for all X, Y, and Z . let &c be the complexification of 3S . We may
extend B uniquely to a Hermitian form H on <3?c. The pair {βc, H)
is a duality algebra. The "0" operation is obtained by extending the as-
sociative product on && to a Hermitian-bilinear binary operator on £$c.
Several examples of such domains are worked out in [10]. They can have
arbitrarily large nilpotent degree.
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