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ON THE ALGEBRAIC STRUCTURE
OF TWISTOR SPACES

Y. SUN POON

Introduction

The twistor space associated to a compact self-dual 4-manifold is a
compact complex 3-fold whose complex structure is determined by the
self-dual conformal structure of the 4-manifold. The most characteristic
property of a twistor space is that it is foliated by a four-real-parameter
family of rational curves with normal bundle isomorphic to that of a line
in the complex projective 3-space; indeed, the leaf-space of this foliation
is precisely the associated self-dual 4-manifold [2]. The simplest example
of a compact nonflat self-dual 4-manifold is the Euclidean 4-sphere; the
corresponding twistor space is the complex projective 3-space. A second
well-known example is the full-flag space of C3 as the twistor space asso-
ciated to the complex projective plane P 2 equipped with the Fubini-Study
metric. As shown by Hitchin [10], the preceding two twistor spaces are
the only Kahlerian twistor spaces, and one might be tempted to believe
that methods of algebraic geometry would therefore be of no avail in the
study of self-dual manifolds. However, there exist other twistor spaces
that are bimeromorphic to algebraic varieties, i.e., Moishezon spaces. The
first such examples of this type were described in [18], and correspond to
self-dual metrics on the connected-sum of two complex projective planes
P # P . There is in fact a 1-parameter moduli space of such metrics,
and each of the corresponding twistor spaces is a small resolution of the
intersection of two quadrics in P 5 with four ordinary double points.

At this point, one might ask whether one can find other Moishezon
twistor spaces. It turns out ([19], [4]) that the 4-manifold associated with
such a twistor space must be homeomorphic to an iterated connected-sum
τP 2 := P 2 # # P 2 of τ copies of the complex projective plane and the
self-dual conformal class contains a metric of positive scalar curvature.
A most encouraging sign was therefore given by the result of Donald-
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son and Friedman [7], proving the existence of self-dual metrics on τP 2 .
LeBrun [13] then gave an explicit construction of some self-dual metrics
on τ P 2 , showing at the same time by explicit construction that the asso-
ciated twistor spaces are Moishezon. In fact, they are bimeromorphic to a
fiber bundle on a quadric surface.

In LeBrun's construction, he explicitly produces asymptotically Eu-
clidean scalar-flat Kahler metrics on the blow-up of C2 at collinear points.
An orientation reversing one-point compactification of the blow-up of C2

yields a self-dual metric of positive scalar curvature on a connected-sum
τP 2 , where τ is the number of blowing-up, while the holomorphic com-
pactification of the blow-up of C2 by adding a copy of P 1 at infinity
defines an effective divisor D in the compact twistor space Z associated
to τ P 2 . Such a divisor is an example of what we shall call an elemen-
tary divisor [15, Definition 2]. We shall herein study the following natural
question: how typical or how special are these "LeBrun twistor spaces"!
In particular, what are the possible values of the algebraic dimension for
a twistor space of τP 2 equipped with a self-dual metric of positive scalar
curvature? For simplicity, we shall restrict our attention to the case when
the twistor space contains effective elementary divisor. In a second article
[14], LeBrun proved by deformation theory that such twistor spaces exist
in abundance, and give rise to asymptotically Euclidean scalar-flat Kahler
metrics on τ-fold blow-ups of C . The main thrust of our results will
be that algebraic dimension depends on whether the blown-up points in
question are in relatively special or in relatively general position. (For
previous results concerning the algebraic dimension of twistor spaces, see
[17], [21], and [22].)

An important feature of an effective elementary divisor is that, when
Z) is the conjugate divisor with respect to the real structure on the twistor
spaces [2],

where K is the canonical class on the twistor spaces. This will prove to
be of crucial importance for us, because the meromorphic function field
is the field of fractions that are homogeneous of degree zero in the graded
ring φnH°(Z, JT~n'2) ([15, Proposition 2.3], [19]).

Given this observation and the fact that the Chern number c\(Z) of
the twistor space is equal to 16(4 - τ) , one should not be surprised that
we have to study the algebraic structure of the twistor spaces according to
the cases when τ < 3, τ = 4 and τ > 5. As previously noted, both the
cases of τ = 0 and τ = 1 are very well known as the first case corresponds
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to the conformal geometry of a Euclidean 4-sphere and the second case
corresponds to the conformal geometry of the Fubini-Study metric on the
complex projective plane. The case of τ = 2 is also completely understood
[18]. In this case, the twistor space is a small resolution of the intersection
of quadrics in P 5 . As we shall see in §2, the generic twistor space can
also be completely understood when τ = 3. Material in this section is
mainly an improvement of §3 of the author's unpublished early work [20].
§3 then gives a characterization of LeBrun's twistor spaces. The results
in §§2 and 3 can be combined to give an algebraic description of any
twistor space of 3P2 equipped with a self-dual metric of positive scalar
curvature. In §§4, 5 and 6, we develop a method to calculate the algebraic
dimension of any twistor space of τP 2 , τ > 5 , and admitting an effective
elementary divisor. §7 is devoted to study the twistor spaces of 4P2 . § 1 is a
preliminary investigation on the structures of the fundamental divisors and
elementary divisors. The key technical tricks in this paper are contained
in Lemmata (1.9) and (1.10). One of the most important observations is
that any effective elementary divisor in the twistor space of τP 2 contains
a real twistor line L such that the associated map of the complete linear
system of L, as a divisor on the surface D, is a blowing-down map from
D onto a complex projective plane. In the following summary of results,
we shall present the relation between the configuration of this blow-up of
P 2 and the algebraic dimension, a(Z), of the twistor space Z .

The main results of this paper are summarized as follows:
Theorem 2.1. The twistor space associated to a generic self-dual confor-

mal class containing metric of positive scalar curvature on 3P2 is a small
resolution of the double covering of P 3 branched over a quartic with thirteen
ordinary double points. Exactly one of these points is real. In homogeneous
coordinates {z0, z{, z2, z3} on P , the equation of the quartic is

B{z) = zozχz2z3-Q2(z),

where Q is a real positive definite quadric.
Theorem 3.1. Suppose that the twistor space of a self dual manifold of

positive scalar curvature contains an effective elementary divisor D. If the
dimension of the complete linear system of the elementary divisor D is at
least one, then the metric is contained in LeBrun 's self-dual conformal class.
Equivalently, the twistor space is a LeBrun twistor space. In particular, the
twistor space is Moishezon.

Theorem 7.11. When the elementary divisor D is P 2 blown-up at four
points so that three of them are collinear, then a[Z) = 3.
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Theorem 7.2. When the elementary divisor D is P 2 blown-up at four
points in general position, a(Z) < 2.

Theorem 4.2. If the elementary divisor D is P 2 blown-up at τ points
such that all but the last point is collinear, when τ > 5, a(Z) = 1.

Theorem 5.6. If the elementary divisor D is P 2 blown-up at τ points,
τ > 5, such that all points are co-conic noncollinear, then a(Z) < 1.

Theorem 6.3. If the elementary divisor D is a blow-up of P at τ
points, τ > 6, such that no three of them are collinear and no six of them
are co-conic, then a(Z) = 0.

With the calculations herein, straightforward applications of known re-
sults ([4], [14]) immediately lead to the following conclusion: FujϊkVs class
%? of complex manifolds, i.e., manifolds bimeromorphic to compact Kdhler
manifolds, is unstable under small deformations of complex structure. We
defer more detailed discussion of the argument to a forthcoming article
[15], as the main results of the present article may be considered to be of
independent interest. Interested readers can also find other applications
of the results presented here in [16].

Throughout this paper, we shall use a capital letter to denote a divisor,
the corresponding boldface letter to denote the associated line bundle and
the script letter to denote the sheaf of germs of sections of the associated
line bundle. For example, when K is the canonical class of the space Z ,
K is the canonical bundle and both ^f(K) and 3? denote the sheaf of
germs of sections of the canonical bundle. When S is a subvariety of the
space Z , the notation K>s denotes the restriction of the canonical bundle
of the space Z onto S. It should not be confused with the canonical
bundle of the subvariety, which is denoted by Ks .

As usual, the kth cohomology on Z with coefficients in a sheaf S? is

denoted by Hk(Z, £?). The complex dimension of this vector space is

denoted by hk(Z,£f).

1. Preliminaries

If X is a simply connected compact self-dual manifold with positive
scalar curvature, a Bochner-type argument shows that the intersection form
is positive definite. After Donaldson and Friedman, one can see that the
space X is homeomorphic to either a connected-sum of complex pro-
jective planes or a 4-sphere. In particular, the topological type of X
is completely determined by its signature τ . Associated to the self-dual
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conformal class on X is the twistor space Z . It is a compact complex
manifold of complex dimension 3. As a smooth manifold, Z is the sphere
bundle of the anti-self-dual 2-forms on the manifold X. The complex
structure on the twistor space is determined by the conformal geometry
on X. The projection from Z onto X is called the twistor fibration.
The fibers of the twistor fibration are Riemann spheres holomorphically
embedded in the twistor space. These holomorphic curves in the twistor
space are the twistor lines. The Chern numbers of the twistor space are
given in terms of the signature of X, τ , as follows [10]:

c\ = 16(4 - τ), cχc2 = 24, c3 = 2(2 + τ).

The anticanonical bundle K"1 on the twistor space has a natural square
root, namely a holomorphic line bundle K~ ' whose square is isomorphic
to the anticanonical bundle.

Definition 1.1. The fundamental line bundle on a twistor space is the
holomorphic line bundle K~5. The corresponding linear system is called
the fundamental system.

By construction, the fundamental line bundle is restricted to be the
degree 2 line bundle on any fiber of the twistor fibration [2]. This basic
topological observation will be very useful in our subsequent investigation.

On the twistor space, there is another very important structure, namely
an antiholomorphic involution. We shall consider reality in terms of this
real structure. For example, the fundamental bundle is real, so is the
fundamental system. The fibers of the twistor fibration are also real. They
are the real twistor lines.

In order to describe the twistor space, we shall use the associated map
of the fundamental system as in [10], [18]. The next two lemmata are
already proved in [10] and [18] implicitly.

Lemma 1.2 [10, Proposition (4.3)]. Suppose that \V\ is a real linear
subsystem of the fundamental system such that d i m | F | > 3. Then the
system \V\ has no fixed components and a generic element in \V\ is non-
singular irreducible.

Proof If the system \V\ were to have fixed component, then by [18,
Lemma 2.1], the intersection number of the fixed component with a real
twistor line is positive. As the system is real, this intersection number is at
least two. On the other hand, the intersection number of the fundamental
divisor with a real twistor line is equal to 2. Therefore, the existence of
fixed component of \V\ implies that any movable part of \V\ has non-
positive intersection with a real twistor line. This is a contradiction to [18,
Lemma 2.1].
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As the base locus of the system \V\ has dimension at most 1, one can
follow the argument of [10, Proposition 4.3(iii)] to conclude that a generic
real twistor line does not intersect the base locus of the linear system
and subsequently conclude that the associated map of \V\ is a regular
map in a neighborhood of a real twistor line. Checking the degree of the
fundamental line bundle on the twistor line, we deduce that the image
of a generic real line is a normal curve of degree not greater than 2. If
the dimension of the system \V\ is at least 3 as assumed, then the image
of the twistor space via the associated map of the system \V\ cannot be
one-dimensional for otherwise, the image would have been contained in a
plane that contains the image of a real twistor line.

As the image of the twistor space is at least 2-dimensional and the system
\V\ has no fixed component, the first Bertini's theorem [1] implies that a
generic element in \V\ is irreducible.

To prove the nonsingularity, we recall that if 5 is a real section of the
fundamental line bundle whose divisor S is irreducible, then S is singular
at a point p if and only if the section s and its derivative vanish along
the real twistor line L containing p [10, Proposition 4.3(iii)].

If all elements in the vector space V have this twistor line L as sin-
gularity, V is a vector subspace of H°(Z, <J2 <g>^~^) where <J is the
ideal sheaf of the twistor line L in the twistor space. However, the space
H ( Z , c/' ® J^~ 2 ) is at most 3-dimensional [10]. Therefore, when the
linear dimension of V is as large as 4, there is at least one member of the
system that is nonsingular along L. Now, one can argue as Hitchin did by
applying the second Bertini's theorem [1] to conclude that a generic real
element in the system \V\ is nonsingular.

Lemma 1.3 [18, Lemma 2.5]. Suppose that S is a real nonsingular
irreducible element of the fundamental system on the twistor space of τP .
Then S is the blow-up of a rational ruled surface Iτ-times. The generic
fiber of the ruling as a divisor on the surface S is linearly equivalent to a
real twistor line contained in S.

Lemma 1.4. If the fundamental system has dimension at least 4, the
base locus has dimension at most zero.

Proof After Lemma (1.2), we only need to prove that the base locus
of the fundamental system cannot contain any curves.

Now suppose contrary to the lemma that the base locus of the funda-
mental system contains a curve C. Let L be any real twistor line through
C . By the reality of the base locus of the fundamental system, L passes
through at least two points in the base locus, namely a point in the in-
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tersection LnC and the conjugate point. Let \V\ be the subsystem of
the fundamental system passing through a point on L that is not in the
intersection with C and C . This system has dimension at least three.
However, this system can also be considered as the subsystem containing
L because -\KL = 2, and every element in \V\ passes through at least
three points on L. In particular, the system \V\ is real. Now a generic
real element S can be described by the last two lemmata.

By the adjunction formula, the restriction of the fundamental line bun-
dle on the surface S is holomorphically isomorphic to the anticanonical
bundle of the surface, we have the following exact sequence on the twistor
space:

By the Ward correspondence [9], the Hodge number h°'ι(Z) of the twistor
space is equal to the first betti number of the 4-manifold X. As a
connected-sum of complex projective planes is simply connected, the above
exact sequence of sheaves induces an exact sequence of Oth cohomology:

(1.5) 0 -> H°{Z , (9) -> H°{Z , JΓ"*) -> H°(S,Jr~l) -> 0.

In particular, the base locus of the fundamental system of the twistor
space is precisely the base locus of the anticanonical system of the surface
S. By assumption, the fixed component of the anticanonical system of S,
I - Ks\, contains at least the curve C and its conjugate. It follows that
any element A in the anticanonical system is a sum of two parts, namely
the fixed part F and a movable part E. Since (1.5) is exact and the
dimension of the fundamental system is at least 4, the effective divisor E
on the surface is moving in a family of at least 3 dimensions. As there is
a real twistor line L contained in S such that it is linearly equivalent to
a generic fiber of the blow-up of a ruled surface, the intersection number
on S, EL, is strictly positive. By the reality of S, E and L, EL > 2.
Since -KSL = -\K^SL = 2, then FL = 0. Yet, by the definition of
the subsystem | F | , the curve C intersects the real twistor line L on
the surface S. Therefore, L is a component of C. This is impossible
because L is in the pencil of a generic fiber of the blow-up of a rational
ruled surface and it cannot be a base locus of the anticanonical system of
the surface, q.e.d.

Other than the fundamental line bundle, there are other natural holo-
morphic objects associated to the twistor space of a connected-sum of
complex projective planes as follows: with respect to the intersection
form of the 4-manifold X, there is an orthonormal basis of H2(X, Z) :
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{a. : j = 1, 2, , τ} . Such basis is not unique as one can always replace
a. by - α . . For any choice of ordered orthonormal basis, when a. is an
odd integer, the mod-2 reduction of Σ a-a. is the second Stiefel-Whitney
class of the manifold X, w2(X). On the other hand, w2(X) is equal to
the second Stief el-Whitney class of the fundamental line bundle, which is
the mod-4 reduction of the first Chern class c{ of the twistor space [10].
Therefore, the cohomology class

is integral.

Note that hι(Z,<f) = 0 because X is simply connected and that

h2{Z, 0) = hι(Z, 3£) = 0 due to the positivity of the scalar curvature
[9]. Corresponding to the integral cohomology class \cγ + \ Σ σjaj > with

a. odd, there is & unique holomorphic line bundle, Όσ σ . We shall use

D or Do to represent Ό{ {, D or D o to represent D_1. g._1, D ; to

represent Ό{ _{mmml, where - 1 is at the jth slot and D̂ . to represent

D_i...i..._i, where 1 is at the 7 th slot. D̂ denotes the conjugation of D

with respect to the real structure on the twistor space.
Definition 1.6. For any choice of orthonormal basis of the second in-

tegral cohomology on the 4-manifold X, the bundles D^ and Όj, j =
0, 1, , τ , are called elementary bundles. If an elementary bundle has
a meromorphic section, the divisor of the meromorphic section is called
an elementary divisor.

In the rest of this paper, we shall rely heavily on the following isomor-
phism of line bundles:

(1.7) D . D . ^ K " ^ ,

and the corresponding linear equivalence of divisors. The validity of this
isomorphism is due to the fact that on our twistor spaces, holomorphic
line bundles are uniquely determined by their first Chern classes.

In order to compute the intersection numbers between elementary divi-
sors, we observe that

(1.8) Cιa
2j = -4, c2

{aj = 0, c2aj = 0.

These formulas will also be needed when we compute the Euler character-
istics of line bundles related to the elementary bundles.

In terms of cohomology of the twistor space, the Chern classes of the
fundamental bundle and the elementary bundles span the entire second co-
homology space of the twistor space. We shall demonstrate that they are
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also the essential data to describe the structure of a twistor space. Since the
understanding of the algebraic structure of the elementary divisors, when-
ever it is effective, is the heart of this paper, we shall prove the following
lemma although its contents can be traced to [18]:

Lemma 1.9. If the line bundle D σ σ has an effective divisor D, when

a. 's are odd, then

(1) ( 7 = 1 ; i.e. D is an elementary divisor \

(2) D is a nonsingular irreducible surface-,

(3) the surface D intersects its conjugate along a unique real twistor

line with multiplicity 1.

Proof As
LD= /k K, /

according to [18, Lemma 2.1], D is irreducible.
Applying the technique of [10, Proposition 2.3], one can prove that if

a holomorphic section of an elementary bundle vanishes to order 2 at a
point, it vanishes to all order along the real twistor line through the singular
point. By analyticity, this section vanishes identically on the twistor space.
In particular, D is nonsingular as claimed in (2).

As LD = 1, if D does not contain any real twistor line, the twistor
fibration is restricted to be a diffeomorphism from the compact complex
surface D onto the 4-manifold X. Moreover, with respect to the natural
orientation induced by the complex structure on the surface D, the diffeo-
morphism is orientation reversing. Let c[ and c2 be the Chern classes of
the surface D. When ζ and τ are the Euler number and signature of the
manifold X, the existence of this orientation reversing diffeomorphism
between D and X implies that

It follows that
\{cn; + c'2) = ξ-τ.

As the manifold X is homeomorphic to a connected-sum of complex
projective planes, ξ-τ = 2 and hence ^ ( q 2 + c2) = \ . However, by the
Atiyah-Singer index theorem, the Euler characteristic of the holomorphic
tangent bundle of the surface D is equal to ^ ( c f + c2). In particular, it
should have been an integer. This contradiction shows that the surface D
must contain at least one real twistor line.

Let L be a real twistor line contained in D. As it is real, it is contained
in D Π ΰ . Note that as D and 2) always intersect at conjugate pair of
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points, their intersection is a finite union of real twistor lines. To see that
this intersection is a single twistor line with multiplicity 1, we apply the
adjunction formula on the twistor space and then find that

As L is a nonsingular irreducible rational curve, the adjunction formula
on the su
we have
on the surface D shows that L2 = 1. On the other hand, applying (1.8),

Therefore, if D,D = Σ nι^i > where the Lt 's are real twistor lines, then as
real twistor lines are mutually disjoint and have self-intersection number
1 on the surface D, the last equation shows that Σ n] = 1 Therefore, D
intersects T) along a unique real twistor line with multiplicity 1. Hence
(3) is proved.

Finally, since the self-intersection number of the unique real twistor
line on the surface D is equal to 1, the twistor fibration shows that D is
diffeomorphic to the connected-sum P2#Xf, where X' is the manifold X
with opposite orientation. As X is homeomorphic to τP 2 , K2

D = c2(D) =
9 - τ .

On the other hand, KD = (K + D){D = -\cx + \ Σ Vjaj,

Therefore, Σσ] — τ a n d hence σ2 = 1. Then (1) is proved, q.e.d.
Lemma 1.10. Suppose that D is an effective elementary divisor. Let L

be the unique real twistor line on D. Then the following hold:

(1) The associated map ψL of the complete linear system \L\ on D

exhibits D as a blow-up of P 2 τ-times such that L is linearly equivalent

to the proper transform of the hyperplane class H on P 2 .
(2) After appropriate reordering of the basis {QLJ : j = 1, , τ} and

sign changing, we can assume that D is an effective divisor of the bundle
D o . Let H be the hyperplane class and Ei be the exceptional divisor of



ON THE ALGEBRAIC STRUCTURE OF TWISTOR SPACES 461

the blow-up map ψL. Then

Proof. Part (1) is an elementary observation in algebraic geometry.

It can be proved as follows: Note that Λ 0 1 (Z) = 0 due to the Ward

correspondence and the simple connectivity of X and that Λ2(Z, 3f~x) =

hι(Z , 313) = 0 due to the Serre duality and Hitchin's vanishing theorem

[9]. Then the exact sequence

implies that hι(D, <fD) = 0. As the self-intersection number of L on
the surface D is equal to 1 as proved in the last lemma, the following
sequence is exact:

It induces the following exact sequence:

(1.11) 0 -> H°(D,0D) -> H°(D, ^ ( L ) ) -> H°(L,<fL(l)) - 0

because hx (D, &D) = 0. It follows that the base locus of \L\ on D is con-
tained in the base locus of the complete linear system of degree 1 divisor
on L and hence is empty. Therefore, the associated map ψL is holomor-
phic. The exact sequence (1.11) also implies that the restriction of ψL

onto any irreducible element in \L\ is an embedding to a line. Counting
the degree of the image, we see that the associated map has to be surjective.
Then the same degree would show that the map is genetically one-to-one.
Therefore, ψL blows down D to P 2 as claimed. By construction, the real
twistor line is linear equivalent to the proper transform of a generic line
on P 2 . Part (1) is proved.

To prove part (2), recall that 25 intersects D along the real twistor line
L with multiplicity 1 and the real twistor line is linearly equivalent to the
hyperplane class; then on the surface D, D,D = H. By the adjunction
formula and (1.7),

-KD = (-K - D)]D = (2D + 2D- D){D = (D + 2D)lD = D{D + 2H.

While -KD = 3H-^Eiy D{D = # - £ £ • . . It also follows that -\K\D =
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As 1 = DjL = DmH, DΆD = H-Σ.nfr. Since 1-Σ«f = ΦJ[D)2 =

0, Dj{D = H - Ejo, for some j 0 . Moreover, for i φ j , DilD

Dj\D = l

Up to permutation, Z> ,o = H - E.. As

DJ\D + Dj\D = D\D + D\D = 2H~Σ Ei'

then Dj]D^H-Σ¥jEr

In general, Dσ ...σ [DH = 1 then D σ \D = H ~ΣniEi for some nι.

As

2. The generic twistor spaces over 3P2

On any twistor space associated to a self-dual metric of positive scalar
curvature on the connected-sum of three copies of complex projective
plane, 3P 2 , one can apply the Riemann-Roch formula to show that the
Euler characteristic of any elementary line bundle is equal to 1. Since the
tensor product of the canonical bundle of the twistor space with the dual
of any elementary line bundle has degree - 5 on any real twistor line, by
the Serre duality, /z3(Z, D) = λ°(Z, KD) = 0 for any elementary line
bundle D . Similarly, the Serre duality and Hitchin's vanishing theorem
[9] implies that h2(Z, D) = 0. Therefore,

A ° ( Z , D ) - A 1 ( Z , D ) = 1.

In particular, all elementary line bundles have an effective divisor. Ac-
cording to Lemma (1.10), the elementary divisors are the blow-ups of P 2

three times.
Note that if D is an elementary line bundle with hι (Z, D) > 1, the cor-

responding linear system has dimension at least one and its restriction onto
any effective elementary divisor D has effective divisor. In other words,
the restriction D<D is effective. By Lemma (1.10), D is a blow-up of P 2

at three collinear points. As far as the blowing-up of P 2 is concerned,
a generic blow-up of P 2 is to blow up three distinct noncollinear points.
On the other hand, it is proved in [14] and [15] that given a smooth 1-
parameter family Mt of surfaces obtained from P 2 by blowing up distinct
points, there is a smooth family of twistor spaces Zt containing effective
divisors Dt such that Dt = Mt. Therefore, we consider any twistor spaces
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associated to 3P2 such that all elementary divisors are blow-ups of P 2 at
three generic noncollinear points. This section is devoted to giving an al-
gebraic description of such generic twistor spaces. Equivalently, we shall
assume that hι(Z,3r) = 0.

Theorem 2.1. The twistor space associated to a generic self-dual confor-
mal class containing a metric of positive scalar curvature on 3P2 is a small
resolution of the double covering of P 3 branched over a quartίc with thirteen
ordinary double points. Exactly one of these points is real. In homogeneous
coordinates {z0, zχ, z2, z3} on P 3 , the equation of the quartic is

B(z) = zozιz2z3-Q2(z),

where Q is a real positive definite quadric.
The main point of the proof is to realize that, in the generic case, the

associated map of the fundamental system is a double covering map and
that the elementary divisors will help to determine the singularities. To
prove the first claim, we apply the Riemann-Roch formula and Hitchin's
vanishing theorem [9] to find that

In fact, h (Z , J ^ " 1 ) is equal to zero. If it were not equal to zero, the
dimension of the fundamental system would be at least 4. In particular,
according to Lemma (1.2) and (1.3), a generic real element S of the fun-
damental system is a nonsingular irreducible rational surface. According
to Lemma (1.4), the dimension of the base locus of the fundamental sys-
tem is at most zero. Since the restriction of the fundamental line bundle
onto the surface S is precisely the anticanonical bundle K^ of the sur-
face S, if C is any irreducible curve on the surface S, the intersection
number on S, -KSC, is nonnegative. Therefore, S is a degenerate del
Pezzo surface in the sense of Demazure [6]. In particular, hι(S, 3£~x)
is equal to zero. On the other hand, hι(Z, @) and Λ2(Z , d?) are both
equal to zero; the following exact sequence on the twistor space:

would imply a contradiction that hι(Z, Jf~Ί) = 0. Therefore, the fun-

damental system has dimension 3 and hence the associated map is a map

into P 3 .

Proposition 2.2. The base locus of the fundamental system of a generic

twistor space is an empty set.
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Proof. Let D be any effective elementary divisor. According to Lemma
(1.9), D is a nonsingular irreducible surface. Due to the isomorphism
(1.7), we have the following exact sequence:

(2.3) 0 -> ~S -> 3£~^ -> J ^ " * -> 0.

When hι(Z ,3f) is equal to zero as we assume, hι(Z, 25) = 0 by the
reality. Then this exact sequence induces an exact sequence of Oth coho-
mology groups. In particular, the fundamental system has no base point
if its restriction on D is base point free.

Due to the isomorphism (1.7) and Lemma (1.9), one has the following
exact sequence on D:

(2.4) o^arp^jΓ-t^jr-t^o.

On the other hand, the exact sequence on the twistor space

implies that

ho{D99]D) = hι{D99]D) = O.

Then the induced long exact sequence of (2.4) implies that the restriction
map induces a natural isomorphism:

As the restriction of the fundamental bundle onto any real twistor line is
isomorphic to the degree 2 bundle on a rational curve, it is base point free
and hence the restriction of the fundamental system on D is also base
point free, q.e.d.

Since the fundamental system is free, the associated map Φ is a holo-
morphic map from the twistor space into P .

Lemma 2.5. The associated map Φ of the fundamental system is a
double covering of P 3 branched along a quartic.

Proof Let E be the intersection of two generic real elements in the
fundamental system. It can be treated as an effective divisor of the anti-
canonical system of one of the two elements, say S. Since the fundamental
system is base point free, so is the anticanonical system of the surface S.
Therefore, E as a generic element in \—Ks\ is a nonsingular elliptic curve.
The exact sequence on S

induces an exact sequence of Oth cohomology because S is a rational
surface. Therefore, the restriction of Φ onto E is the associated map
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of the complete linear system of | - KS,E\, which is | - \K,E\. Since the

degree of -\ K on E is equal to

the map Φ exhibits E as a double covering from an elliptic curve onto a
line in P 3 . Therefore, Φ is a double covering map.

Since the ramification locus is the zeros of the determinant of the Ja-
cobian, it is an effective divisor of the bundle Hom(Φ*H~4, K). As
Φ*H = K~5, the ramification locus is a divisor of K"1 and the branched
locus in P 3 is a quartic. This kind of variety was referred to as a double
solid [5]. q.e.d.

Recall that each elementary bundle on the twistor space of 3P2 has an
effective divisor. To find the equation and singularity of the quartic, we
examine the elementary bundles D .

Proposition 2.6. Each effective elementary divisor D. is a blow-up of

P 2 at three points in general position.
Proof. It suffices to prove this proposition for D. According to Lemma

(1.10), if Eχ, E2 and 2?3 represent the exceptional divisors of blowing-up,
D|D is linearly equivalent to H - Eχ- E2- E3. As D^D is not effective,
the three points of blowing-up are not collinear.

To complete the proof, we have to show that no two points are infinitely
near. As -\K>D(E3 - Eχ - E2) = - 1 and the fundamental system has no
base points, no two points can be infinitely near the third point. Suppose
that the third point of the blowing-up is infinitely near the second point of
the blowing-up; then E2 — E3 is effective and the complete linear system of
H-E3 has E2-E3 in its fixed component. In fact, we have either D^D de-
composed into (H-E2) + (E2-E3) orinto (H-Eι) + (Eι-E2) + {E2-E3).
In both cases, these divisors on D can be considered as the intersection
of D and D3. In this intersection, there are two irreducible nonsingular
rational curves intersecting transversely at one point, say p. As divisors
in the twistor space, D and D3 are both irreducible nonsingular. The
above intersection configuration is possible only if D and D3 have at
least second order of contact at the point p .

On the other hand, the associated map sends both D and Z>3 to a plane
in P 3 because the fundamental system is restricted onto D, and also onto
Z>3, to be the complete system of conies through the three noncollinear
points of blowing-up. If D and Z)3 were to have at least second order of
contact at one point, their images through the associated map would have
been an identical plane. It would imply, in turn, that D = D3. Checking
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their intersection numbers, one can see that this is a contradiction, q.e.d.
After the last proposition, it is clear that D n D. and D n Dj are irre-

ducible rational curves. In particular, the associated map sends DπDj, j =
1, 2, 3, to three distinct lines on the plane Po := Φ(D). Therefore, the
planes P. := Φ(-D ) = Φ(D.) are all distinct. We choose a homogeneous

coordinate z on P 3 such that, for j = 0, 1, 2, 3,

and we shall consider the union of these four planes as a tetrahedron,
denoted by T. On each face of this tetrahedron, there is a distinguished
conic, namely the image of the real twistor line L. on the divisor D.. We

shall use the same symbol L. to denote these conies in P 3 .
On each such conic, there are three pairs of distinguished points, namely

the intersection of this conic and the three edges of the tetrahedron on the
given face. Each pair of these points on an edge is the intersection of the
conies on the pair of faces sharing the given edge. The tetrahedron has six
edges and hence six such pairs of points.

On the face Po, there are the images of D n Dj. As -\KDDj = 0,
the image of D n D. is a point. These are three of the six distinguished
points on the conic Lo. The remaining three distinguished points are
the images of the conjugate curves. All the other distinguished points
on the edges of the tetrahedron can be described in a similar fashion.
The essential observation is that they are the images of some irreducible
nonsingular rational curves. As the associated map is a double covering
map, it is possible only if Φ is a small resolution of the double covering
of P 3 branched over a quartic, B , with at least these six pairs of points
as singularities.

We claim that the quartic B is given by

(2.7) B = {z € P3 : B{z) = z0zχz2z3 - tQ2(z) = 0},

where t is a nonzero real number and Q(z) is a quadratic homogeneous
polynomial such that the corresponding quadric is a real quadric surface
containing the four conies L 's.

First of all, let us show that there is a quadric Q containing the four
conies: Let

LQΠL{= {χχ, x2}, LQΠL2 = {x3, x4} , LQΠL3 = {x5, x j ,

Lχ Π L2 = {x7, xs}, L{ΠL3 = {x9, xlQ} , L2ΠL3 = {xn, x{2}.

Within the 4-parameter family of quadrics containing Lo , there is at least
a 1-parameter family Qn I e C, containing xΊ, xs and JC9 . The plane of
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these three points interesects Qt along a conic. This conic also contains
xχ and x2 because these two points are also on the plane of xΊ, xs and
x9. Yet five points in general position on a plane uniquely determine a
conic. Therefore, this conic has to be the Lχ. Within this 1-parameter
family of quadrics containing Lo and Lχ, there is at least one containing
the point xχ χ. But the plane of xχ χ, x 3 , x4 intersects this quadric along a
conic containing xχx, x3, x4 and xΊ, x%. Hence this quadric contains L2

as well. Now, this quadric contains x{2, x5, x6, x9 and xXQ . Therefore,
it also contains L 3 . Knowing that there is at least one quadric containing
L o , Lχ, L2 and L 3 , we can choose a real one because the L. 's are real.

Let Tt := {z e P 3 : B(z) + ίβ 2 (z) = 0}. This is a 1-parameter family
of quartics. The intersection of this quartic and a P. contains at least the

double conic L. because both B and Q vanish on L with multiplicity
2. However, for a general t, Tχ contains some points other than those
on L . It is possible only if Tt contains the plane P . Therefore, the
equation of B is given as in (2.7). Now the t has to be real because both
Q and B are real.

Though the ramification locus Y of the covering map Φ is a real space
in the twistor space without real points, the branch locus B in P 3 contains
real points. To prove this claim, let L be a real twistor line whose image
passes through a vertex of the tetrahedron. As the vertex is a real point,
it must be the image of a conjugate pair of points. In particular, the map
Φ cannot be an embedding on L. In fact, it has to be a double covering
of the line Φ{L) branched over a conjugate pair of points. Therefore,
the real line Φ(L) intersects the quartic at least at two distinct points.
Yet, from the equation (2.7) of B, a direct algebraic computation shows
that a real line in P 3 through a vertex of the tetrahedron can intersect B
at a conjugate pair of points with multiplicity 2 only when it is an edge
of the tetrahedron. Therefore, Φ(L) has to intersect B at least at three
points. However, Φ(L) cannot intersect B at four distinct points, i.e.
two conjugate pairs of points, for otherwise, the real twistor line L would
have intersected the ramification locus, which is a divisor of K" 1 , at six
points. Therefore, the real line Φ(L) intersects B at three points. Then
one of them must be real.

Proposition 2.8. There is one and only one real point on B.
Proof. Since the inverse images of any real points have to contain at

least one conjugate pair of points, a real point on the branch locus B
cannot be smooth. Fix any real point, say u, on B . This point is not on
the tetrahedron T because the intersection of T and B is a real conic
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with no real point. Let z, z be a conjugate pair of points in Z such that
their images are u.

Let | - ^ | M be the system of fundamental divisors containing z and z .

In P 3 , this is the real system of hyperplanes with u as its base locus. Note
that due to Lemma (1.9) the only reducible elements of the fundamental
system are D + Dj9 j = 0, 1, 2, or 3. As u is not on the tetrahedron,
every element in | - \K\U is irreducible. After an argument of Hitchin
[10], an irreducible real element in such a system can have a singularity
only if it has an entire real twistor line as singularity. Yet Bertini's second
theorem asserts that a generic element in | - \K\U can be singular only
along the inverse image of u. However, Φ~ (u) cannot contain any real
twistor line because the image of any real twistor line has to intersect all
faces of the tetrahedron, while the point u is not on the tetrahedron.
Therefore, a generic element S in | - \K\u is an irreducible nonsingular
surface.

As the base locus of the anticanonical system of S is the base locus
of the fundamental system of the twistor space, it is an empty set. In
particular, —KSC > 0 for any curve C on the surface S. Therefore,
S is the blowing-up of P 2 at seven points in almost general position.
Moreover, the seven points cannot be in general position, for otherwise
the anticanonical map on S, i.e. the restriction of Φ on S, would have
been a double covering of P 2 branched over a nonsingular quartic. Since
the point u is singular on B, a generic S must contain (-2)-curves.
Moreover, u is the image of a (-2)-curve, say C,on S so that Φ(S)Γ\B
contains u as an ordinary double point.

Note that if a real twistor passes through the (-2)-curve C on the
surface S, its image is a real line in P 3 passing through u. Then this line
intersects the real plane Po at one real point. Since the associated map
restricted onto the elementary divisor DQ is a blowing-down map, the
image of different real twistor lines through C intersects Po at different
real points. Therefore, real twistor lines through C are parametrized by
the real part of Po, i.e. a copy of R P 2 . Meanwhile, the curve C is
diffeomorphic to S2 as it is a smooth rational curve. Through every point
of C, there is a unique real twistor line. Therefore, C must be real and
any real twistor line through C passes through C at a conjugate pair of
points. Moreover, the real point u on B is the base locus of the system
of all twistor lines whose image via Φ is a line. In particular, the point u
is the unique real point on B as claimed, q.e.d.

Suppose that p and p are a conjugate pair of singular points different
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from the twelve known nonreal singularities, and let I be the line joining
p and p . Since ί is a real line and B contains only one real point, this
line intersects B nowhere other at p and p. In particular, it is disjoint
from the thirteenth singular point u on B .

As I is disjoint from u, it is not the image of a real twistor line. It fol-
lows that a generic element of the pencil, | - \K\t, of elements containing
Φ~ (£) is irreducible nonsingular. The argument to prove this observation
is similar to the one that we applied on | - \K\U in the proof of the last
proposition. Let S be a generic real element. It is a blow-up of P 2 seven
times to a degenerate del Pezzo surface. The fundamental system on the
twistor space restricted onto S has to be the anticanonical system of S.
The associated map exhibits it as a double covering of P 2 branched along
a singular quartic with a conjugate pair of singular points. Therefore, S
would contain a conjugate pair of (-2)-curves. As S intersects Ώ. along
(-l)-curves, we can work out the configuration of (-l)-curves along with
the real structure on S and then show that it is impossible to have only
one conjugate pair of (-2)-curves. This technical computation on S will
be demonstrated in the appendix. The conclusion is that the branch locus
B has exactly thirteen singular points. One of them is real. As with the
six conjugate pairs of singular points on B, u is also an ordinary double
point. This is due to the fact that every real element in | - \K\U is a
nonsingular irreducible element containing C . Therefore, each real plane
containing u intersects the quartic B along an irreducible curve with u
as an ordinary double point.

As u is a real point not on the tetrahedron, we can find a real coordinate
such that u is the unit point, i.e. u = [1, 1, 1, 1]. As B contains u,

tQ2(u) = L

Therefore, t is a positive number. Letting the equation of Q absorb the
number t, we can assume that the equation of the quartic B is

(2.9) B(z) = z0z{z2z3 -Q\z).

As Q contains the real conies L. without real points, Q is definite. If
necessary, replacing Q by -Q, we can assume that Q is positive definite.

So far, we have finished the proof of the characterization Theorem (2.1)
without discussing the existence. It is conceivable that one may apply the
twistor programme as in [18] to construct a twistor space over 3P2 . An
incomplete attempt was given in [20]. For a complete construction of
generic twistor spaces over 3P 2 , readers are referred to [7]. In the next
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paragraph, we shall merely demonstrate that an algebraic variety described
in Theorem (2.1) does exist.

The quadric Q in (2.9) is not generic. In general, the quartic given by
(2.9) has only twelve ordinary double points. They are the intersection
points of four double conies on the quartic B given by the intersection of
the quadric Q and the tetrahedron T. This type of quartic was studied
by Kummer ([3], [11], [12]). When B is required to contain the point u
as an ordinary double point, the coefficients of the quadric Q are subject
to four independent linear conditions. As there are ten linear parameters
in the choice of quadrics in P , there is a 6-parameter family of quartics
with the required singularity. In this 6-dimensional space, there is an open
set parametrizing all those quartics with u as the sole real point. In fact,
as long as the coefficients of the quadric Q are chosen so that the ellipsoid

Q = {xeR4:Q(x) = l}

and the quartic

Γ = { X G R 4 : X0X{X2X3 = 1}

intersect only at ( 1 , 1 , 1 , 1 ) and ( - 1 , - 1 , - 1 , - 1 ) and intersect tan-
gentially at these points, then u is the sole real point on the quartic. Such
an ellipsoid exists because we can choose the longest axis of the ellipsoid
to be the line joining ( 1 , 1 , 1 , 1 ) and (-1 , - 1 , - 1 , - 1 ) .

3. A classification of LeBrun twistor spaces

In the last section, we described the twistor spaces of 3P2 on which
every elementary divisor is rigid in the sense that its complete linear system
has a single element. In this section, we shall study the twistor spaces of
τ P 2 , τ > 3, such that there is a pencil of effective elementary divisors.
The following theorem completes the classification of twistor spaces of
3P2 . At the same time, it describes a very special family of twistor spaces
on τP 2 for any τ larger than 3.

Theorem 3.1. Let Z be a twistor space associated to a self-dual metric
of positive scalar curvature on τ P 2 , τ > 3. Suppose that there is an ele-
mentary line bundle such that its complete linear system of effective divisors
is at least l-dimensional. Then the metric is contained in LeBrun's self-
dual conformal class. Equivalently, the twistor space is the LeBrun twistor
space. In particular, the twistor space is Moishezon.

The basic observation in the proof of this theorem is that when there is
a pencil of effective elementary divisors, due to the isomorphism (1.7), the
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fundamental system is at least 3-dimensional. We shall use the associated
map of the fundamental system to produce an algebraic description of the
twistor space. It can be done because the twistor space is almost foliated
by the pencil of effective elementary divisors and we can describe the
associated map of the fundamental system on each elementary divisor.

When there is an elementary line bundle whose complete linear system
of effective divisors is at least 1-dimensional, we choose an orthonormal
basis of the second integral cohomology of the 4-manifold X such that
dim |D| > dim \D.\ for all j . Then dim \D\ > 1.

As h ' (Z) = 0, the exact sequence on the twistor space:

0 ^ #-> gr-+#D(P)-+0

induces an exact sequence of Oth cohomology:

(3.2) 0 -> H\Z , (9) -> H°(Z , 3) - H°(D, ^ ( D ) ) -> 0,

where D is any element in the system \D\. According to Lemma (1.10),
the system \D,D\ on the surface D is the system of lines through all blow-
up points. This system is nonempty only when it has a single element.
Therefore, when dim \D\ > 1, then on the twistor space dim \D\ = 1 and
on the surface D, we have dim \D^D\ = 0.

Let C be the intersection of any two distinct elements, say D and D',
in the pencil \D\. It can be considered as the sole effective divisor in the
system \D,D\. Referring to the description of the surface D as given in

Lemma (1.10), we can conclude that the surface D is a blow-up of P 2

τ-times on a line so that the curve C is the proper transform of the line
through all points of blowing-up.

Proposition 3.3. Suppose that dim|Z>| > 1 then

(1) dim|Dj = 1,
(2) d i m \ D j \ = 0 f o r a l l j = 1 , ••• , τ .

Proof. We have seen that (1) is basically due to the exactness of (3.2).
To prove (2), we recall that the Serre duality and the positivity of the

scalar curvature imply [9] that

h2(Z, SfjSf'1) = hι(Z, 3&~X3!) = 0.

Also, in general, we have [10]

h\z, 2j2

By the Riemann-Roch formula, one can check that

h\z, 2j2~x) = h\z, Sfj2f~ι) = 0.
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Therefore, the induced long exact sequence of

0 -> 3f.3Γx - 3fj -> ̂ Ί

implies that there is a natural isomorphism:

H0(Z,3fj)^H0

On the other hand, by Lemma (1.10),

Recall that the curve C is precisely H - Σ E. then D. is effective and
the system \D.\ has precisely one element, q.e.d.

Proposition 3.4. A generic element in the pencil \D\ is the blow-up of
P2 at τ distinct points on a line.

Proof. It is enough to show that E. - E. is not effective on D. If
Et - Ej were effective, then on D

is effective. But C + E. is D^D. Therefore, Dt and D. intersect along
C as well as along E. on any element in the pencil \D\.

On the other hand, as Dt and D. are two fixed hypersurfaces of the
compact twistor space, their intersection is a union of finitely many curves.
Therefore, some of the E. 's obtained by the intersection of D. Π D. with
different elements in the pencil \D\ are identical. Therefore, the pencil \D\
contains a base curve different from the curve C . This is a contradiction
to our previous observation that the system \D,D\ on the surface D has
only one irreducible element, namely the curve C. q.e.d.

As H°(Z,3f) and H°(Z ,&) are 2-dimensional, let {d, d'} and
{d, d } be their bases respectively. Due to the isomorphism (1.7), the
dimension of the fundamental system is at least three. This system has
base locus because when C is the base locus of the pencil \D\, its inter-
section number with the fundamental class is equal to

2 i i

= - ( 4 - τ ) - - τ = 2 - τ < - 1 , when τ > 3.

Then Lemma (1.4) shows that the dimension of the fundamental system
is at most three. Therefore, the range of the associated map is P 3 , and
the map can be written as

[dd,ddf ,dfd,dfdf].
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The range is in a nonsingular real quadric, denoted by Q, in P 3 . More-
over, as the system \D\ has C as its only base locus, the fundamental
system has no base points other than C and C. Therefore, the associ-
ated map blows up along precisely C and C.

To describe the twistor space as an object associated to the quadric, we
blow up C and C. The normal bundle / of C in the twistor space is
given by the extension

0 -> ̂ C -> ̂  -> ̂ D\C -> ° >

where Λ^P is the normal bundle of C in D . But JV® is precisely the

restriction of the normal bundle of D in the twistor space onto C, i.e.,

Λ ^ c . Therefore the exceptional divisor of the blowing-up consists of two

quadrics Qc and Q^.

Let b be the proper transform of D , D the proper transform of Z),
and F the proper transform of the fundamental system. Then

The associated map of \F\, Φ , is a holomorphic map from Z onto Q.
The following proposition is the key to describe the structure of Z :

Proposition 3.5. Q C Q ^ <8>; D ; := QCQ^X Θ Ό{ <8> <8> D τ is isomorphic

to thepullback bundle: Φ*@{\, τ - 1 ) , where @(\, τ-1) is the line bundle

on Q with bidegree (1, τ - 1).

Proof. It is enough to show that the line bundle QCQ^X ®j D, is trivial

on every fiber of the map Φ and then to compute the bidegree.

We are going to describe the restriction of the map Φ to the proper

transform of any element D in the pencil \D\. Let L be the unique real

twistor line on D. Then the intersection number LC on the surface D

is equal to 1 and hence the curves L and C intersect transversely at one

point, say z . By the reality of L, it intersects the conjugate curve C at

one point Ί on the surface D. Note that C cannot be contained in the

surface D for otherwise any real twistor line through C would have been

contained in D. Moreover, as C is the base locus of the pencil |Z>|, the

intersection number DC on the twistor space is equal to DD , which is

equal to 1. Therefore, the curve C intersects any D transversely at one

point. When the curves C and C are blown up, the proper transform D

of the surface D is the blow-up of ΰ at z . Let the exceptional divisor

of blowing-up on D be £ . Note also that as every divisor D. on

the surface D is equal to C + E., it has the curve C as a component.

In particular, each D^D passes through the point z with multiplicity 1.
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Therefore, all the divisors Z) .,D pass through the point z with multiplicity

1. Then on the surface D,

while on D, the fundamental system is (D + Z)),^, i.e. C + H. Then on

/ j A = (C + # ) - C - E = 7/ - E.

Note that | i/ - E\ is the proper transform of a complete system of lines
through the point z on P 2 . Its associated map is to exhibit D as the
blow-up of a rational ruled surface with H - E as a generic fiber and E
as the ruling. In particular Φ sends D onto a line in Q such that E is
mapped onto this line. It is now obvious that any fiber of the map Φ is a
fiber of the restriction of Φ onto a D.

We shall prove that the bundle given is trivial on each fiber on D. On
D, the divisor class of the given line bundle is

j j

An irreducible fiber of the associated map is H - E, which is a smooth
rational curve. As

C(H-E) = 1, E(H-E) = 1, Ej(H-E) = 0'9

the restriction onto any irreducible fiber is trivial.
Note that components of reducible fibers are E. 5 / / - £ . - £ o n a generic

D. If D is not generic, there may also be E. — E.. All of them are smooth
rational curves. But

CΈ = 1 , EE. = 0;

0, (H-E.-E)E=1, (H - Eχ- E)^Ek = 1
k

= 0, (E -E^E = 0, (Ei-Ej^E, = 0;

the restriction onto any fiber is trivial.
To compute the bidegree, note that Φ is a biholomorphism from the

pair E and E onto the pair of generators of lines on the quadric Q.
Moreover,
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Proposition 3.6. There is a degree-one holomorphic map from Z \ β c U

Q-£ into the variety Z o := {(x, y) e <9{\, τ - 1) e (9{τ - 1, 1) : xy =

Pι-"Pτ} where Pj is a section of (9{\ , 1) over the quadric whose pull-

back onto Z has divisor D + Ί)..

Proof Note that all the bundles Q c , Q^r, D ; , D ; have a unique effec-

tive divisor on Z . Therefore, up to a constant, the bundle Q^ Q^1 <8> D

and its conjugate have a distinguished meromorphic section, say x, y . By

Proposition (3.5), xy is a holomorphic section of Φ*^f(τ, τ) whose divi-

sor is ΣjΦj+Dj) By construction, if x, y are meromorphic sections of

@{\, τ - 1) and &(τ - 1 , 1 ) respectively so that Φ*x = x and Φ*y = y,

then

xy = Pχ Pτ,

where P. is a section of a holomorphic line bundle on the quadric whose

pullback has divisor Dj + Z).. To compute the bidegree, we simply note
that

and

DjE = tjE = Ί)j{£)E = {H- E. - E)E = 1.

To finish the proof of the proposition, recall that the restriction of
Q C Q^ 1 <g>. D onto any fiber of Φ is trivial as the bundle was proved
to be a pullback bundle. Therefore, the section x restricted onto such
fiber is a meromorphic function on a copy of a smooth rational curve
with one simple zero and one simple pole. With the pole removed one
has a degree 1 holomorphic function. The meromorphic section y has
the same property. Therefore, (jc(z), y(z)) defines the holomorphic map
mentioned in the proposition, q.e.d.

The map described in Proposition (3.6) can be holomorphically ex-
tended if the target is compactified to P(<?(1, τ - 1) Θ &{τ - 1, 1) Θ (9)
and we extend the map (x(z), y(z)) to be [x{z), y(z), 1]. It shows that
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the twistor space is precisely the one constructed by LeBrun [13]. This is
the claim of Theorem (3.1). The proof of this claim is now completed.

4. A class of algebraic dimension 1 twistor spaces

Since the description of the algebraic structure of twistor spaces on τP
with τ < 3 is complete. From now on, we shall only consider the case
when τ > 4. After Theorem (3.1), we turn our attention to the situa-
tion when there are effective elementary divisors such that the complete
linear system of any such divisor has at most one element. Again, after
appropriate choice of basis in the second integral cohomology on the 4-
manifold X, we assume that dim \D\ = 0 and that for any j = 1, , τ ,
the system \D.\ is either empty or is zero-dimensional.

Under the above assumptions, the exact sequence (3.2) implies that
D,D is not an effective divisor on the surface D. Then Lemma (1.10)

implies that the map ψL is not a blow-up of P 2 at any collection of
collinear points. In this section, we shall study the algebraic dimension of
the twistor space on which the effective elementary divisor D is a blow-up
of P at a collection of points such that all but one of them are collinear.

Lemma 4.1. Suppose that D is an effective divisor of the elementary
line bundle D. If the map ψL exhibits D as a blow-up of P 2 τ-many
times, τ > 4, such that all but the last point of blowing-up is collinear, then:

(1) the fundamental system on the twistor space has precisely two distinct
reducible elements, namely D + D and Dτ + Dτ

(2) h°(Z,Jf~ι/2)>2;
(3) a generic real element of the fundamental system is nonsingular

irreducible.
Proof After Lemma (1.9), the only possible reducible elements are the

sums of effective elementary divisors and their conjugates. By Lemma
(1.10), none of the Dj,D except D,D is effective.

On the twistor space, due to Hitchin's vanishing theorem [9],

except possibly when / = 1. Then the Riemann-Roch formula shows that
hι(Z , 2fj2f~x) = 0. Therefore, the exact sequence

0 -+ S 2J~X -> 3f. -> 3fm -> 0

induces an isomorphism
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Hence, none of the D. except Dχ is an effective divisor on the twistor
space. From the intersection numbers, one can see that D+D and Dχ+Dχ

are two distinct elements in the fundamental system. Therefore, (1) is
proved. (2) is an obvious consequence of (1).

As the fundamental system has only two reducible elements and there
is no fixed component, a generic element of the fundamental system is
irreducible. Let S be an irreducible element of the fundamental system.
By Bertini's second theorem [1], 5 can be singular only at the base locus
of the system. In particular, it can be singular only at the curves C :=
D n Dτ, A := D n Dτ and their conjugate curves C and A . By Lemma
(1.10), one can deduce that the curves C and A and their conjugate curves
are not real twistor lines. Yet [9, Proposition 4.3(iii)] shows that if S is
also real, it can be singular only along some real twistor lines. Therefore,
S is nonsingular as claimed in (3). q.e.d.

Theorem 4.2. Suppose that the twistor space of τ P 2 , τ > 5, contains
an effective elementary divisor D. If the map ψL exhibits D as a blow-up
of P 2 τ-times such that all but the last point of blowing-up are collinear,
then the algebraic dimension of the twistor space Z is equal to one; i.e.
a(Z) = 1.

Proof With the given configuration of blowing-up on the surface D,
Proposition (4.1) shows that h°(Z , JΓ~~1/2) > 2. Therefore, a(Z) > 1.

According to [15, Lemma 2], it suffices to show that h°(Z, J^~ *) grows
as a polynomial in n at most to degree 1.

Let S be a generic real element of the fundamental system. It is a
nonsingular irreducible surface in the twistor space as claimed in the last
lemma. When we use the map ψL of (1.10) to describe the surface D ,
the intersection of S and D can be considered as an element of the linear
system \2H — Σ-E.\ on D. As all but the τth point are collinear, the
intersection is the sum of two curves, namely C and A where C is the
proper transform of the line through all but the last point of blowing-up
and A is the proper transform of a line through the last point of blowing-
up.

Let s be a real section of 3ί~2 , n > 1, so that its restriction onto
S is not identically zero. Let k and / be the order of vanishing of
the restriction of s on S along C and A respectively. By reality, s,s

vanishes along C and A to the same orders. Then

(4.3) / := -nKs - k(C + C) - I (A + A)

is an effective divisor if it is not linearly equivalent to zero.
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As

-κsc =-{Kc =-\κlDc

and similarly, -KSA = 1. Then by reality,

(4.4) -KSC = -KSC = 3 - τ, -KSA = -KSA = 1.

Since the curves C, C, A and yl are all nonsingular rational curves, their
self-intersection numbers on the surface S can be computed when we
apply the adjunction formula and (4.4). On S, we have

(4.5) C2 = C2 = 1 - τ , A 2 = A 2 = -l.

Moreover, on the surface S, -Ks = D,s + D<s = C + A + C + A . As

f = 16(4-τ),

(4.6) 2(4 - τ) = ( - i y 2 = (C + A + C + A)2.

Notice that C is a curve on the surface D while Z) contains a unique
real twistor line L such that CL = 1 the curve C is disjoint from
its conjugate. Similarly, A is disjoint from its conjugate. As we also
know, from the configuration on the surface D, that C and A intersect
transversely at one point, it follows from (4.5) and (4.6) that AC+AC = 2.
By reality, we have AC = AC = 1. With all these intersection numbers
available, we can use (4.3) to compute:

JC = n(-KsC) - kC2 - I (AC + AC)

(4.7) = ΛZ(3 - τ) - >t(l - τ) - 2/

and

JA = n(-KsA) - k(CA + CA) - IA2

(4.8) =n_2k + l

By the definition of k and /, JC and JA are nonnegative. It follows
that

(4.9) 2(/i - / ) > ( / ! - k)(τ - 1), 2(/i - £ ) > ( / ! - /).
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When τ > 6, (4.9) is possible only when n = k = I and hence / = 0.
When τ = 5 , (4.9) is possible when

JC = JC = O, JA = JA = 0

and hence / has no zeros along C, C, A and A . Therefore, the order
of zeros of s is constant along C, C, A, and ^ . However, C and 4̂
intersect at one point, and thus the orders of zeros of s along C and
A are equal. In particular, k = I. Then (4.9) is possible only when
k = l = n.

Therefore, we can conclude that the image of the restriction map

induced by the exact sequence

n — \ a

is 1-dimensional. Thus,

h°(Z, Jf~ ?) < h°(Z, j r

Hence, a(Z) < 1.

5. Blowing-up of P at co-conic noncollinear points

In this section, we study the blowing-up of at least five points in a

position more general than the configurations discussed in Theorem (3.1)

and Theorem (4.2). In fact, with the result of Theorem (4.2), the following

observation is an example of the semi-continuity principle [8]:

Theorem 5.1. Suppose that the twistor space of τ P 2 , τ > 5, contains

an effective elementary divisor D. If the map ψL exhibits D as a blow-up

of P 2 τ-times such that either all the points of blowing-up are on a non-

singular conic or all the points of blowing-up are on two lines such that each

line passes through at least two points of blowing-up, then a(Z) < 1.

The proof of this theorem relies on two technical lemmata:

Lemma 5.2. Let D be a blow-up of P 2 at points on an irreducible conic

or a sum of two lines as described in the hypothesis of Theorem (5.1). Then

A°(D, .*[-*) = 1.
Lemma 5.3. With the hypothesis of Theorem (5.1), the following exact

sequence on the twistor space

(5.4) o - j r - ( 2 f i ) - ^ " ~ V Λ ®n~{2>"D - o
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induces a natural isomorphism

Proof of Theorem 5.1. Considering the exact sequence

(5.5) 0 ^ 3r"~ιΊ#n-+JT'I - ^ β ! -*0,

we have

h°(Z, JΓ~ !) = h°(Z, 2n~x~2n) + dim image of r.

By reality,

h°(Z ,X~ί) = h°(Z, 2nΊ8n~X) + dim image of r.

Using Lemma (5.2), we obtain

From Lemma (5.3) it follows that

h\z, < h\z,

As a consequence of [15, Lemma 2], α(Z) < 1.
Proof of Lemma 5.2. In this proof, we have to consider two different

possibilities, namely when the conic is irreducible and when the conic is
the sum of two lines such that each line passes through at least two of the
blown-up points. We shall treat the case when the conic is irreducible first.

Due to Lemma (1.10), -fK ]D = n{2H-Στ

iz=:l £.). Therefore, when D

is the blow-up at τ points, τ > 5, on an irreducible conic, the divisor

class 2H - Σ]=ι Et is represented by an irreducible rational curve with

negative self-intersection. Therefore h (D, ^ D

 2) = 1.
When the points of blowing up are on two lines so that each line contains

at least two points, let C and A be the proper transform of the two lines
so that the number of points on C is not smaller than the number of
points on A . In particular,

2 i , A = H-

where j > 3, 2j > τ. Let k and / be the order of vanishing of a section

of J%D

 2 along C and A respectively. Then

J = n(C + A)-kC-lA = (n- k)C + (n -
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is an effective divisor not containing C and A if it is not identically zero.
As

JC = (n - k)(l - j) + (n-l), JA = (n-k) + (n-l)(l-(τ- j)),

( * - / ) > U - 1)(Λ - k), (n-k)> ((τ - j) -l)(n- I).

Then (n-k) > ((τ-j)-l)(j-l)(n-k). As > 3, when (τ-j) > 2, it is

possible only when n = k = I and hence / is identically zero. Therefore

*°(Z>,Λ[-') = 1.

Proof of Lemma 5.3. To prove this claim, let t be a section of Όn~ Όn

then the conjugate section 1 is a section of D " " 1 ! ) " . Therefore, ft is
a section of D" D ^ D ' ^ D " , i.e. a section of K~ (^~ ). According to
Lemma (5.2), if the restriction of ft on D, r(tl), is not identically zero,
the divisor is (In - 1)(C + A). In this case, the divisor of p(t) on D
is /cC + L4 for some positive integers k and /. But there are no such
integers so that

Therefore, r(tt) is identically zero.
Either t or 1 vanishes identically on D. If 7 vanishes identically on D,

let its order of zeros along ΰ b e m. When d is a section of the bundle
of D so that its divisor is D, then there is a section ΰ of Όn~ι~mΌn

such that 1 = ΰdm . Then t = ud and w is a section of D* mΌn .
The previous argument on ί7 is now applied to uu to conclude that uΰ
vanishes identically on D. By the definition of m, ΰ cannot vanish
identically on D. Therefore, u has to vanish identically on D and hence
t always vanishes identically on D. It means that the restriction map p
is the zero map. q.e.d.

Combining Theorem (4.2) and Theorem (5.1), we can arrive at
Theorem 5.6. Suppose that the twistor space of τ P 2 , τ > 5, contains an

effective elementary divisor D. If the map ψL exhibits D as a blow-up of
P 2 τ-times such that all the points of blowing-up are co-conic noncollinear,
then a(Z) < 1.

6. Blowing-up of P2 at points in general positions

To finish our discussion of the algebraic dimension of twistor space of
τ P 2 , τ > 5, admitting an effective elementary divisor, we shall examine
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the situation when the effective elementary divisor is a blow-up of P 2 at
generic points. When τ = 5, the generic configuration is already studied in
Theorem (5.1) because through five generic points, there is a nonsingular
conic. Therefore except in Lemma (6.1), we shall always assume that τ > 6
throughout this section.

Lemma 6.1. Suppose that the map ψL on D is a blow-up of P at
τ-many points, τ > 4, such that no four of them are collinear. Then

H°(Z, Jf-%) £ H°(Z , Jf'^D)

for all n>0.
Proof By the exact sequence

0 -> Jf~ ! -> Jf~ f 3 -> {3Γ*3\D -> 0,

it suffices to show that h°(D, {3f~^)lD) = 0. Recall Lemma (1.10) that

(-%K + D)lD = n(2H-Eι Eτ) + {H-Eχ Eτ).

Its intersection with H-E{-E2 and H-E3-E4 is negative. Therefore,
if it were effective, then for all positive integer n ,

(n - l)(2H -E{-E2-E3- E4) - n(E5 + + Eτ) + (H - E{ Eτ)

would have been effective. Inductively, we can conclude that
-n(E5 + + Eτ) + (H - Eχ - - Eτ) is effective. This is a contra-
diction to the hypothesis when n = 0. This is absurd when n is positive.

Lemma 6.2. When the map ψL on the surface D is a blow-up of P 2

at least at six points such that no three of them are collinear and no six of
them are co-conic, then h°(D,^~^) = 0.

Proof Since —jK,D = 2H - ^ . E., the statement of this lemma is a
classical result in algebraic geometry, which can be proved, for instance,
by the method of the proof of the last lemma, q.e.d.

After these two lemmata, we are ready to prove the following theorem.
Theorem 6.3. When the map ψL on the surface D is a blow-up of P 2

at least at six points such that no three of them are collinear and no six of
them are co-conic then the algebraic dimenion of the twistor space is equal
to zero.

Proof The induced long exact sequence of

(6.4) 0 -> 3?-n-^~2 - JΓ~ ? -> J * £ ! - 0

implies that

h°(Z, JΓ~f) < h°(Z , J f - * ^ ) + h°(D, jr[~').
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By reality, this inequality is equivalent to

h°{Z, JΓ~!) < Λ°(Z , JΓ'^S) + h°(D, J^-*).

Then Lemma (6.2) implies that

h°(Z, JT~f) < h°(Z, JΓ^S).

According to Lemma (6.1), this inequality is equivalent to

*°(Z ,JΓ~ f)< Λ°(Z,

Therefore,

As the fundamental line bundle does have nontrivial holomoφhic section,
namely, the one whose zero divisor is the sum of the effective elementary
divisor D and its conjugate with multiplicity n ,

By [15, Lemma 2], α(Z) = 0.

7. Algebraic dimension of twistor spaces of 4P

As we remarked in the introduction, the algebraic structure of twistor
spaces associated to 4P2 requires a seperate treatment. Throughout this
section, we assume that τ = 4. As we always do, we also assume that the
elementary line bundle D has an effective divisor D such that dim \D\ >
d i m | D | . With respect to the blow-up map ψL of Lemma (1.10), the
blow-up points can be collinear as we had discussed in §3. We shall study
the remaining two configurations of blowing-up, namely when three of the
four points are collinear and when the four points are in general position.

Note that when the self-dual conformal class on 4P2 contains a metric
of positive scalar curvature, the Hitchin's vanishing theorems [9] and the
Riemann-Roch formula imply that

(7.1) h°{Z , JΓ*) -hι{Z, JΓ"*) = 2.

In particular, α(Z) > 1.
Theorem 7.2. Suppose that the elementary line bundle D on a twistor

space of 4P2 has effective divisor D. If the map ψL on D is a blow-up of

P 2 at four points in general position, then a[Z) < 2.

Proof The proof of this tb^eorem is similar to the proof of Theorem
(6.3). In fact, we can apply exact sequence (6.4) as well as Lemma (6.1).
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The only difference is that in the proof of (6.3), one has Lemma (6.2),

which states that h°(D, 3?>~*) = 0, while the present configuration of

blowing-up yields h°(D, 3ί^) = n + 1.

The conclusion is that A°(Z,o^~*) grows as a polynomial in n at most
quadratically. Then the proof of the theorem is finished by [15, Lemma
2]. q.e.d.

To deal with the case when three of the four points of blowing-up are
collinear, we recall Lemma (4.1) that a generic real element of the funda-
mental system is nonsingular irreducible. We shall examine the algebraic
structure of such a fundamental divisor and then study the canonical sys-
tem of the twistor space.

By Lemma (1.10), the restriction of any effective fundamental divisor
onto the surface D is an element of the system of conies through the four
points of blowing-up. As we have seen in the proof of Theorem (4.3),
when three of the four points are collinear, such a divisor on the surface
D is the sum of two irreducible nonsingular curves C and A where C is
the proper transform of the line through the three collinear points and A
is the proper transform of the line through the remaining point of blowing-
up. On the conjugate surface D, one finds the conjugate curves C and
A. The calculation from (4.4) to (4.6) shows that

(7.3) -\KC = -\KC = - 1 , -\KA = -\KA = +1

and the conjugate pair C and C are mutually disjoint. Also, the conjugate
pair A and A are mutually disjoint. Yet both A and A intersect both C
and C transversely at one point. When S is a generic real fundamental
divisor, S is nonsingular irreducible by Lemma (4.1). With the above
notations, we shall prove the following lemma:

Lemma 7.4. When S is a generic real fundamental divisor, then S is
a blow-up of P 2 nine times. Let H be the hyperplane class on P 2 and Ei

the ith exceptional divisor of blowing-up. Then

(7.5) Λ
C 3H -

Moreover, the first seven points of blowing-up are not infinitely near each
other.

Remark 7.6. The result of Lemma (7.4) means that C is the proper
transform of an irreducible cubic with a node. The surface S is obtained
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by blowing-up P 2 at seven distinct points on the cubic including the node
and then, on each of the two tangent lines to the cubic at the node, blowing-
up one point infinitely near the node.

Proof of Lemma 7.4. By Lemma (1.3), the surface S is the blowing-up
of a rational ruled surface eight times. Therefore, if S can be obtained
by blowing-up P 2 , it is a blowing-up of P 2 nine times.

Note that if E is an irreducible curve in the twistor space such that
-\KE < 0, then E is in the base locus of the fundamental system. In
particular, E or its conjugate is contained in the intersection of D and
a generic fundamental divisor S. With the description (1.10), we can
conclude that E is either the curve C or C

If E is an irreducible curve in the twistor space such that -\KE = 0,
then either E is in the base locus of the fundamental system or a generic
fundamental divisor is disjoint from E. With the given configuration of
blowing-up on the surface D, the fundamental system has no such curve
as base locus because E is neither C nor linearly equivalent to A on the
surface D. Since by the adjunction formula, — Ks = —\K*S , we conclude
from this and the last paragraph that on a generic real fundamental divisor
S,

(7.7) -KSF > 1

for any irreducible curve F on the surface S except when the curve is
either C or C

By (7.3), A and A are (-l)-curves. As they are mutually disjoint,
both of them can be blown down to a point. After they are blown down,
C and C are a pair of (-l)-curves intersecting transversely at two dis-
tinct points. Since C and C are the only irreducible curves on S such
that (7.7) fails to hold, after A and A are blown down, one obtains a
del Pezzo surface. Since (~KS)

2 = 0, this Del Pezzo is a blow-up of P 2

at seven distinct points. Up to a choice of notation, we can assume that
C is blown down to a point. If we set

A = Es , A = E9,

then

C = Eη — Es — E9.

Since the anticanonical divisor on S is linearly equivalent to (D + D)\S,
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which is C + ~C + A + ~A,

C = -Ks -~C-A-A

i-2E7-Es-E9. q.e.d.
i=\

Due to (7.3), C and C are in the base locus of the anticanonical system

of the surface S. As

—Kg — C — C = 2?g •+- Eg,

the only effective anticanonical divisor on S is C + C + A + A. Therefore

h°(S, .XΓ1) = 1. As the exact sequence

induces an exact sequence of Oth cohomology, we can conclude that

With this equality, the Riemann-Roch theorem and Hitchin's vanishing

theorem together imply that A*(Z, X~Ί) — 0 when τ = 4. Therefore,

we have the following exact sequence:

(7.8) 0 -> « ° ( Z , ̂ - i ) -^ H°(Z , .X" 1) -> H°(S,Jr~2) -> 0.

Due to (7.3), C and C are in the base locus of | - 2KS\. On S, define

/ := - 2 ^ -(C + C) then from (7.5), we have

(7.9) / £

After Lemma (7.4), the complete linear system of / is the system of cubics
through the seven distinct points on the blow-down of the curve C. As
C is blown down to be an irreducible cubic and these seven points are
not co-conic, it follows that the dimension of the complete system | / | is
equal to 2, and hence dim | - 2KS\ = dim | / | = 2. With the exact sequence
(7.8), we have h°(Z ,Jf~x) = 5. Moreover, as | / | has no base points,
we have the following lemma:

Lemma 7.10. The anticanonical system is four-dimensional and its base
locus are the curves C and C with multiplicity one.
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Theorem 7.11. Suppose that Z is a twistor space associated to a self-

dual metric of positive scalar curvature on 4P2 . If Z contains an effective

elementary divisor such that the map ψL exhibits D as a blow-up of P 2

at four points such that three of them are collinear, then a(Z) = 3.

Proof Let Ψ be the associated map of the anticanonical bundle on

the twistor space. Its range, due to Lemma (7.10), is in P 4 . As the

anticanonical system has C and its conjugate as its base locus, Ψ is a

meromorphic map with poles of order one along these two curves. Let

Q and Q be the exceptional divisors of the blow-up of C and C on

the twistor space and Ψ be the associated map of (KQQ)"1 then Ψ is

a holomorphic map from the proper transform of Z , Z , into P 4 . We

shall prove the theorem by showing that the image of Z via the map Ψ

is a three-dimensional variety in P .

When Ψ is restricted onto the proper transform of a fundamental di-

visor S described in Lemma (7.4), it is precisely the associated map of

the complete linear system | / | on S defined in (7.9). Therefore, Ψ,^ is

the composition of blowing down 2sg and E9 and the associated map,

say Ψ, of the anticanonical system of a blow-up of P 2 at seven generic

points. The map Ψ exhibits this rational surface as a double covering of

P 2 branched along a quartic as we have seen in §3. In particular, Ψ(S) is

a nonsingular variety biholomorphic to a copy of P 2 in P 4 . This shows

that the dimension of Ψ(Z) is at least two.

We claim that this copy of P 2 is a linear subspace of P 4 . In fact, S

is a fundamental divisor. Hence S is an element in \- \K - Q- Q\.

Then 25 + Q + Q is an element of the anticanonical system of Z . In

particular, Ψ(5) is contained in a hyperplane of P 4 . As a copy of P 2 in

a hyperplane of P 4 , Ψ(5) must be a linear subspace.

On the other hand, the proper transform of a generic element of the

anticanonical system on the twistor space is mapped into a subvariety of

a hyperplane section of P 4 . If dimΨ(Z) were equal to two, then this

variety would have been contained in the copy of P 2 that we found in the

last paragraph. This is impossible because it would imply that the dimen-

sion of the anticanonical system was equal to three. Therefore, we can

conclude that dimΨ(Z) = 3 as claimed. Therefore, a(Z) = 3. q.e.d.

Appendix

In this section, we carry on the proof in §2 to show that there is no

conjugate pair of singular points on B other than the six pairs on the

edges of the tetrahedron.
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Assuming on the contrary that such a pair of points exists, the line
I passing through them will not intersect B anywhere but p and p.
In particular, a generic hyperplane P containing I will not contain the
thirteen points of singularity and the line PΓiPj intersects L. transversely
at two points. It follows that a generic real S in | - \K\t intersects all
elementary divisors along irreducible curves. With (1.8), we work out the
intersection matrix of these curves on S with respect to the following
order: {Z>0, D{, D2,D3,D0,Dχ, D2,D3}. It is

(A.1)

-1
0
0
0
2
1
1
1

0
- 1
1
1
1
2
0
0

0
1

- 1
1
1
0
2
0

DJ

0
1
1

- 1
1
0
0
2

2
1
1
1

- 1
0
0
0

1
2
0
0
0

- 1
1
1

for all

1
0
2
0
0
1

- 1
1

j

1 ^
0
0
2
0
1
1

-l)

Moreover,

Each Dj or D. is a (-l)-curve.
On the other hand, S contains a real twistor line L for topological

reasons [18]. By Lemma (1.3), the associated map of L exhibits S as the
blow-up of a Hirzebruch surface, Σk , six times. We may assume that the
blow-up points are away from the infinity section E^ . As the fundamental
system on the twistor space is base point free, there are no (-Λ )-curves
with k > 3. Therefore, k = 1 or k = 2.

To express the fundamental divisor in the usual structure on a rational
ruled surface, let Eo be the divisor class of the zero section, F the class
of a fiber, E. the exceptional divisor of the j th blow-up.

Assume that k = 2. Then E^ is a (-2)-curve. The associated map is
going to contract it to a singular point p . In particular,

= 0.

As

= 0.



ON THE ALGEBRAIC STRUCTURE OF TWISTOR SPACES 489

From table (A.I), we deduce that

D0 = E0 ~ El ~ E2 ~ E3 > ^ 0 = E0 ~ E4 ~ E5 - E6 >

Dχ = E0-E2-E3-E4, D{= EQ- E{- E5- E6,

^2 — E0 ~ E\ ~ E3 ~ E5 '

D3 = E0 ~ E\ - E2 - E6 '

To see the real structure on the second cohomology group on S with
respect to the exceptional divisors of blowing-up, let us work on E{. As
E.L = 0, EλL = 0, then

(A.2)
= EQ-E2-E4-E6,

=E0~E3~E4~E5

As Eχ is irreducible, so is E{. Since E\ = Eχ = - 1 and D Eχ = D Eχ,

from the given expression of the D. and D in (A.2), we found that

ΊX +n2 + n3 = n,

As ^ . E j = - 1 , E{ is not real. The only possible solution to the above sys-
tem of equations other than (nχ, ••• , n6) = ( 1 , 0 , 0 , 0 , 0 , 0 ) is
( 0 , 0 , 0 , 1 , 0 , 0 ) , i.e. Έχ = E4 . Similarly, one can deduce that Έ2 = E5

and Έ3 = E6 .
To study E^ , we first observe that E^ is not real because E^L = 1.

Then there is Έ^ with ΈoQL=\. Therefore,

As EooEi = 0, ΈooEi = 0 for i = 0, 1, , 6. Then

Yet

Then n = -2. This is impossible because i?^ is supposed to be an
irreducible nonsingular curve.

The remaining possibility is when k = 1. As DQL = 1, in this case,
we may choose Do to be the infinity section . Then we deduce from (A. 1)
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D0 = E0-F, D^Ez + lF

D,=E0-E5-E6, D}=E0 + F-Eι-E2-EJ-EΛ,

D2 = E0-E3-E4, D2 = E0 + F-Eι-E2-E5-E6,

(A.3)

Given this data, the method used in the case of k — 2 can be applied to
show that

~F — F — F ~F — F — F
l-i j — i •t-'2' 1-'2 — 1 '

Έ3 = F-E4, Έ4 = F-E3,

Έ5 = F-E6, Έ6 = F-Ey

Now assume that C is a nonreal (-2)-curve contracting to the point p.
Let it be

Then n = CL. If n > 1, then Φ(L) passes through p and p. This
would imply that the line ί is the image of real twistor line. In particular,
I passes through B at a point other than p and p, namely, u. This is
impossible. Therefore n = 0.

As C is a (-2)-curve disjoint from all the Ό. and Dj , with the given
expression in (A.3), we found that

m = 0,

nχ +n2 = 0,

«3 + «4 = 0,

«5 + «6 = 0,

The only three possibilities are

i i | h*2 ? -t>3 ~~ -C.4 ? ^ 5 ^ ^

Say C = E{-E2\ then C = £ 3 - E4 (or £ 5 - E6 ). Thus

C Έ{ = C{F - E2) = (£ 3 - £ 4 ) ( F - E2) = 0,

while

C-Ex = CE{ = (Eχ -E2)Eχ = - 1 .

This contradiction concludes that such system | - \K\ί cannot exist.
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