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MINIMAL SUBMANIFOLDS DEFINED
BY FIRST-ORDER SYSTEMS OF PDE

J. M. LANDSBERG

Abstract

We study first-order PDE systems implying the second-order system for
minimal submanifolds of a Euclidean w-space Rn . We approach the
problem geometrically by studying subsets Σ of the Grassmannian which
we call m-subsets, where we define Σ to be an m-subset if all submani-
folds of Rπ , whose Gauss map's image is contained in Σ, are automat-
ically minimal, m-subsets generalize the faces of calibrations studied by
Harvey and Lawson. We also study linear first-order systems implying
Laplace's equation, the infinitesimal version of the m-subset problem.
Results include new examples of classes of minimal submanifolds ad-
mitting 'Weierstrass type' presentations in terms of holomorphic data;
dimension restriction and rigidity theorems for m-subsets that extend
to faces of calibrations; and showing certain codimension-two minimal
submanifolds of Rn are stable using a nonconstant coefficient calibration
argument.

Introduction

PDE. It was first observed by Riemann that one could obtain two
solutions to Laplace's second-order equation

Uxx + Uyy=°

by solving the first-order Cauchy-Riemann system

Since then, others have studied systems of second-order PDE having re-
lated first-order systems which imply the second-order system. By 'system
A implies system B,' we mean solutions of A are automatically solutions
ofB.

A nonlinear example of this phenomena occurs in Yang-Mills theory in
four dimensions. The vector bundles with self-dual connections (a first-
order system of PDE) satisfy the (second-order) Euler-Lagrange equations
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for the Yang-Mills functional. These vector bundles are not only critical
points, but in fact are global minima of the functional.

We examine another case of a second-order PDE system which has first-
order systems implying it.

We study first-order systems whose solutions automatically solve the
second-order minimal submanifold system. Some, but not all, of the
classes of solutions which we get are global minima for the volume func-
tional, in analogy with the situation in Yang-Mills. Along the way, we also
study linear first-order systems implying Laplace's equation, as this is the
linear version of the minimal submanifold system.

Geometry. Our problem may be rephrased geometrically as follows:
Given / : Mn -> Rn+S any (oriented) submanifold, we have the Gauss
map yf : M -> Gnn+S defined by γf(x) = Tf{χ)f(M). Here Gnn+S

denotes the (oriented) Grassmannian of n-planes in Rn+S.
The minimal submanifold system for an ^-dimensional submanifold of

Rn+S may be described geometrically as a restriction on the derivative of
the Gauss map of the submanifold. Namely, / is minimal if the mean
curvature vector of / is zero. The first-order systems we study may be
described geometrically as restrictions on the image of the Gauss map.

The best known examples of first-order systems implying the minimal
submanifold system are the equations for complex submanifolds. Con-
sidering R 2 ( / m ) ~ cn+s, a submanifold M2n is complex if all its tangent
planes are complex planes, i.e., if the image of its Gauss map is contained
in the complex Grassmannian G(Cn , Cn+S) c G2n 2 ( r t + 5 ) .

In fact, complex submanifolds are not only minimal, i.e., critical for the
variation of volume, but are globally minimizing, i.e., actual minima for
the volume functional. The proof that complex submanifolds are globally
minimizing is due to Federer [7], and is based on Wirtinger's inequal-
ity. The proof uses Wirtinger's characterization of complex submanifolds;
namely, they are the submanifolds of C"+ s on whose unit tangent planes
the (appropriately normalized power of the) Kahler form assumes its max-
imum value.

Harvey and Lawson, in [8], noticed that the only properties of the Kahler
form used in Federer's proof are that it is closed and unit-comass. (An
fl-covector φ is said to be unit comass if φ{E) < 1 V£ e Gn n+s, where
we consider E as a unit Ai-vector, and a differential form is unit-comass if
it is pointwise unit-comass.) Harvey and Lawson call closed unit-comass
forms calibrations. To each calibration φ there is a class of area minimiz-
ing submanifolds associated to it, namely those submanifolds on which
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φ restricts to be the volume form. (One says these submanifolds are cal-
ibrated by φ.) Another way to describe the submanifolds calibrated by
φ is to say their Gauss maps' images are contained in the subset of the
Grassmann bundle on which φ assumes the value one. If φ is parallel,
e.g., if our ambient space is R"+5 and φ is a constant coefficient differen-
tial form, then we may define the face of φ to be {E e Gn n+s\φ(E) = 1}
and submanifolds calibrated by φ are just those whose Gauss maps are
contained in the face of φ. Four new calibrations are studied in [8], and
each has a large class of area minimizing submanifolds associated to it.
(Few nonparallel calibrations have been studied; prior to this paper, their
main use had been to prove certain cones in R"+5 are area minimizing,
e.g., [10], [12].)

Definitions. We define Σ c Gn Π + J to be an m-subset if y^(M) c Σ
implies that f(M) is minimal ('m' for minimal submanifold producing).
In this case we will call f(M) a Σ-manifold.

Overview. Part I is a study of the linear problem. Let V and W
be vector spaces of dimensions n and s respectively, and let V be
equipped with an inner product. Let C°°(V, W) denote the smooth
fF-valued functions on V. Consider the Laplacian as a second-order
differential operator Δ : C°°{V, W) -+ C°°(F, W). We would like to
find linear first-order operators Dχ : C°°(F, W) -> C°°(K, 31) such that
k e r ^ ) C ker(Δ), where 31 is some auxiliary vector space. We construct
examples of such operators D{ and prove some general lemmas restrict-
ing their existence. For example, any such D{ must correspond to at least
max(«, s) equations (Lemmas 1.2.3 and 1.2.4). Moreover, when the num-
ber of equations is exactly max(«, s), then, if s > n , Dχ is the Dirac
operator of Cl e v e n(F) on IV, and, if n > s, V is the dimension of a
Cle v e n(JF) module (Lemma 1.2.5). We also show that if n or s = 2, then
the system must correspond to the Cauchy-Riemann equations (assuming
the tableau is involutive) and classify cases when n = 3 and s is small
(Theorems 1.3.1 and 1.3.2).

In Part II, we go from the infinitesimal solutions of Part I to local
solutions. That is, we take some of the known linear first-order systems
implying the Laplace system and look for corresponding first-order systems
implying the minimal submanifold system. We explain how these systems
correspond geometrically to the submanifolds of the Grassmannian which
we call m-subsets. The results are striking:

We show that in (real) dimension and codimension two, there are many
(arbitrary functions worth of) m-subsets having the same linearized first-
order system as the complex Grassmannians. Homogeneous examples of
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these m-subsets in codimension two are given by Theorem II.3.10. The
resulting Σ-manifolds have an interesting description. They may be ob-
tained by a 'twistor'-type construction; one transports holomorphic data
on an auxiliary space to Euclidean space.

In contrast, for all the other standard linear systems, there are essen-
tially unique m-subsets corresponding to the standard faces (Theorems
II.3.1 and II.3.1*). Moreover, we show that all other linear systems solv-
ing the infinitesimal problem that have max(«, s) equations (which are
the fewest equations possible, as shown in Part I) have no correspond-
ing m-subsets (where we are looking for m-subsets in Gn n+s). This puts
further restrictions on the potential dimensions of faces.

Finally in the appendix we construct (local) calibrations for a certain
class of Σ-manifolds. Namely, let Σ be a degenerate SO(3) orbit of an
(m - 2)-plane in Gm_2 m , where SO(3) acts irreducibly on Rm . These
Σ-manifolds are studied in detail in [9].

For each such Σ-manifold, we construct a nonconstant coefficient (local)
calibration tailor-made to calibrate that solution. In particular, this shows
that these Σ-manifolds are stable.

The results of this paper and [9] are based on the author's doctoral
dissertation under the direction of Robert Bryant. It is a pleasure to thank
him for support and inspiration, and in particular for suggesting that faces
of calibrations might be generalized.

PART I: LINEAR STUDY

In this part we address the question:
(*) What linear first-order systems of PDE for s functions of n vari-

ables have the property that their solutions are automatically solutions of
the Laplace system for s functions of n variables!

Example 1. We already have seen that the Laplace system for two
functions of two variables is implied by the Cauchy-Riemann equations.

Example 2. The Laplace system for three functions, say u, υ , w , of
three variables, say x, y, z , is implied by

U + V + W = °> Uy=Vχ> Uz=Wx> Vz = Wy'

This is the linear system corresponding to the special Lagrangian system
in R6 , first studied i
Lagrangian system.)
in R6 , first studied in [8]. (See Part II, §1 for the definition of the special
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We rephrase (*) more precisely: Let V and W be vector spaces.
Throughout this part, V will always be of dimension n , W of dimension
s, and V will come equipped with an inner product. Let C°°{V, W) de-
note the smooth W-valued functions on V. Consider the Laplacian as
a second-order differential operator, Δ : C°°(V, W) -> C°°(V, W). We
would like to find first-order operators Dχ : C°°(F, W) -> C°°(F, ^ ) ,
such that ker(D1) c ker(Δ), where 31 is some auxiliary vector space.

Example 3. Let ^ be a Cl e v e n(F) module, 31 = W, and Dχ =
Σjejdj Λe Dirac operator (see [15]).

In Part II we will see that (*) is the infinitesimal version of the following
question: What subsets of the Grassmannian Gn n+s guarantee minimality

for any ^-dimensional submanifold of Rn+S whose Gauss map's image lies
in it?

In § 1 we define the problem in the language of exterior differential sys-
tems and discuss several examples; in §2 we prove some general results
which place restrictions on the dimensions of such first-order systems; and
finally in §3, the systems, which we will call m-tableaux, are classified in
some special cases.

1. EDS point of view and examples

It will be useful to rephrase our question using language taken from
exterior differential systems, henceforth called EDS. This will enable us to
take advantage of the EDS machinery directly, and, more importantly, the
EDS point of view will enable us to rephrase the problem geometrically, as
the first-order systems expressed as m-tableaux have a natural identification
with candidate tangent spaces to m-subsets as we will see in Part II. (Here
and elsewhere in this paper, the word 'candidate' applied to an object
should be taken to mean the object satisfies some necessary condition.)

We think of the equations as placing relations on derivatives, and look
at the dual object, the space of admissible derivatives.

In the language of EDS, a linear subspace A c Hom(F, W) is called
a tableau. It specifies a linear first-order homogeneous system of PDE for
maps V —> W, whose solutions are those maps whose Jacobian lies in A
at each point. To get a set of equations giving this system, simply take a
basis of A± and identify (A±)ι

j with the partial of the ith function with
respect to the y'th variable.

Example l ' . The Cauchy-Riemann system uγ = vΛ), u = -vγ has
x y y x

tableau
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A-{(I ?)„.»,«}.

Here, solutions are («g;g) such that (d/v) e A(d/y) V X J G R .

How does one relate the notions of systems given by tableaux to systems
given by operators Dχ ? Given a tableau A, we produce an operator Dχ

as follows: Functions / : V —> W in the kernel of Dx should satisfy the
defining relations of A . Take 31 to be the space of defining relations of
A, i.e., 31 = (W <g> V*)/A, and let D{ be the map / •-> [Jac(/)]. Then
/ : V —• W will be in the kernel of Dχ if and only if / is a solution to
the differential system specified by A .

A tableau of order 2, A c W <8> Sym2 F * , specifies a second-order
linear homogeneous system of PDE for maps V —> W namely, those
maps whose second-order partials lie in A at each point.

In particular, the Laplace system for W-valued functions on V is given
by

A = {PeW® SymV*| trace(P) = 0} = W ® Sym^F*,

where trace: W ® Sym2 F* —• WΓ is with respect to the induced metric on
V\

Given a tableau A, the space of admissible second order terms in a
power series solution to the system which A specifies is called the prolon-
gation of A . We denote it by A^\ i.e.,

A{1) = (pe W® SymV* | ^ e Λl V c e F*|

Notice that A^ is a tableau of order two, and thus specifies a second-
order system. We want to find the first-order systems whose prolonged
system includes the Laplace system. Thus in the language of EDS our basic
question becomes: What are the tableaux A such that A^ is tracelessΊ

Definition. We say A c W ®V* is an m-tableau if A^ is traceless.
Example 2' . Ac Hom(F, F) such that tτ(A) = 0 and ιA = A

gives the m-tableau corresponding to the special Lagrangian system. (If
n = dim(F) = 3, we recover Example 2.)

Example 3 ' . The associated m-tableaux to the Dirac operators of Ex-
ample 3 are described explicitly in §2 by (2.1). Proposition 2.7 gives the
identification 3ί = W. Among these are the Cauchy-Riemann m-tableaux
(Example l ' ) , the associative m-tableau, the coassociative m-tableau, and
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the Cayley m-tableau (respectively corresponding to the linearized equa-
tions for associative, coassociative, and Cayley submanifolds; see Part II,

§1).
Example 4. Harmonic forms that are both d and d* closed. Let W =

AkV , 31 = Ak+ι V θ Λ*"1 V, and

Dχ=dθd* : Ω*(K) -> Ω*+1(F) θ Qk~ι(V),

where ΩkV = C°°{V ,AkV). To identify 31 with {W® V*)/A for some
m-tableau A, consider the map

V* ® AkV -^ Ak+lV Θ Ak~lV,

(υ , a) ι-> v Λ α θ v J a,

where V* is the metric dual to v and J denotes interior multiplication.
Now let A be the kernel of this map.

The case fc = 1, F* ® Λ1 K —^Λ 2 KθR gives the special Lagrangian
m-tableau (Example 2'), as the kernel in this case (choosing orthonormal
bases) is A such that {A = A because A must be in the kernel of d
(i.e., υ^ Aa = 0), and tτ(A) = 0 because A must be in the kernel of d*
(i.e., υ Λa = 0). So we may think of the equations for special Lagrangian
submanifolds as a nonlinear version of the equations for d and d* closed
one-forms.

In the case k = 2, the first new case would be n = 4, but in fact this
turns out to produce an m-tableau that is two copies of the coassociative
tableau because Λ2R4 splits orthogonally into self- and anti-self-dual com-
ponents. For n > 4 we get new examples of m-tableaux. To determine
whether there are m-subsets associated to them is a difficult problem. The
prospects are not good for finding m-subsets because, in general, for di-
mension reasons, there are no homogeneous m-subsets associated to these
m-tableaux.

Remark. This example illustrates the contrast between the compact
and noncompact situations. If a manifold is compact then the harmonic
forms are automatically d and d* closed. It may be interesting to study
what first-order systems implying second-order systems become automatic
in some compact setting and vice-versa.

The m-tableaux of the examples above are all involutive in the sense of
EDS. Roughly, a tableau is involutive if there are no 'hidden' equations
that arise by differentiating the given equations; the space of solutions to
the system is as large as one could naively hope it to be. Involutivity is a
generalization of integrability, guaranteeing not just that there is a solution,
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but using the Cartan-Kahler theorem, one can describe the moduli space of
solutions. The involutive m-tableaux provide a natural class of m-tableaux
to study and in what follows we will focus on them.

2. Observations about m-tableaux

The characteristic variety of an m-tableau. A useful condition for a
tableau to be an m-tableau is given by its characteristic variety. In general
the characteristic variety of a differential system is a generalization of the
set of characteristic directions of a linear system of PDE. It is the set of
hyperplanes in a given integral element whose enlargement to an integral
element is not unique. We review from [4]:

Given a tableau A c W ® V*, let Vc denote the complexification of
V, etc. and define

ZA
 := {[£] € P(^C*) I 3w G WC, w φ 0, such that w <8> ξ e AC}.

(In [4] this is referred to as the complex characteristic variety, but since it
is the only one we will be using, we drop the adjective.)

Given ξ e V *, to determine if [<!;] e ΞA we need to know if there

exists a w e Wc such that w ® ξ £ Ac .
Choose a basis bι, , br of (Ac)± (where r is the codimension of

A in W<8>V*). Now w <8>ξ e Ac if and only if ba(w ®{) = 0, 1 < a < r,
i.e., iff w ® { G ker(cr), where

σ:WC x F C * ^ C r ,

(This is just the map Wc x Vc* -+ Wc ® Vc*/Ac in coordinates.) Now
[£] G ΞA if there exists some w e Wc such that (w, ζ) e ker(σ). Let σξ

be the map

σξ: Wc -*Cr

w ι-> b(w

We see that [<!;] e ΞA iff σξ has a kernel, i.e., iff rank(cr«) < s, i.e., iff the
s x s minors of σ* are zero.

This shows that (the deprojectivization of) ΞA is a determinental va-
riety whose defining equations have real coefficients and gives an effective
way of computing it.
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The characteristic variety of the Laplace system for s functions of n
iriables is the null quadric (( ,

induced from the metric on V*) :
variables is the null quadric (( , ) denotes the bilinear form on F c *

Q = {[ξ]eP(Vc*)\(ξ,ξ) = 0}.

This cannot be directly seen by the definition above which is only valid
for (first-order) tableaux, but any reasonable definition gives Q (e.g., see
the general definition of the characteristic variety of an EDS in Chapter 5
of [4]).

For systems without integrability conditions, such as the ones here, the
characteristic variety does not change under prolongation, i.e., Ξ (̂o = Ξ^ .
Thus: A tableau is an m-tableau if and only if its characteristic variety is
contained in the null quadric Q.

General lemmas. When we actually try to solve for m-subsets we will
only be concerned with m-tableaux up to Gl(W) x SO(F) equivalence, so
in what follows we will consider two m-tableaux equivalent if they differ by
an Gl(W)xSO(V) action. (Normally when studying differential systems,
one would consider tableaux equivalent if they differ by a GL( W) x GL( V)
action, but we only consider linear transformations of V preserving the
metric and thus the trace.)

Assume we have chosen an ^4-generic basis for V* (see [4] for the def-
inition of ^-generic), say {x{, , xn} . Let Vk :== span{jcΛ+1, , xn]
and Ak:=An(W®V*).

Lemma 2.1. If A is an m-tableau, then Ak is too, considered both as
a tableau in W <g> V* and as a tableau in W <s> Vk .

Proof

A{

k

ι) = {Pe W®S2V*\dP/dxi eA, d2P/dxidxj = 0, fc + 1 <i,j<n]

which is a linear subspace of A{1) c W <s> S 2 F* and is thus in the kernel
of the linear map trace W <g> S2V* -> W because A^ is; the same holds
restricted to W®Sym2V*.

Corollary 2.2. If A is an involutive m-tableau, then Ak is too.
Proof This is just because if A is involutive then Ak is too (see [4]).
The characters sk, 1 < k < n , of a tableau A are defined inductively

by

sχ -\ + sk = dim A — d i m ^ .

For any tableau A one has

dim A < s{ + 2s2 -\ h nsn
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and A is involutive if equality holds. If sb is the last nonzero character of
an involutive tableau A , then, roughly speaking, solutions of the differen-
tial system depend on sb arbitrary functions of b variables. The following
lemma says that solutions to differential systems given by m-tableaux can
depend on at most n - 1 variables, and we will see that these extreme
cases are rare, essentially all given by equation (2.1) below.

Lemma 2.3 (R. Bryant). An m-tableau must have sn — 0 and thus be
at least of codimension s in W <8> V*.

Proof. Version 1: An_{ must be an m-tableau also but A^_χ = {w <g>
xn ° xnIw ® xn € \ - \ } > s o ^n-\ ~ ® ^ 0 Γ a n ^ m 'tableau. Version 2:

The dual tableau. For the moment, forget that V has a metric on it.
Given a linear subspace Ac W ® V*, we have seen that we may consider
it as a tableau in Hom(F, W), giving a PDE system for maps V -> W.
We may also consider it as a tableau in Hom(W*, K*), giving a PDE
system for maps W* -> K*. When we think of v4 in the second way we
will call it the dual tableau and denote it A*. Notice that

Ξ^. = {[w] e PWC\ 3ξ e Vc*, ξ φ 0, such that w ® ξ e Ac*}.

In particular, we have

A A '

where Ξ* denotes the real points of ΞA .
More general lemmas.

Lemma 2.4. //* ̂ 4 w an m-tableau, then codim(Λ) > max(«, s).
Proof We have already seen the case s > n . If n > s, say c o d i n g )

< n , then A* must have ss Φ 0 => Ξ** Φ 0 => Ξ*Φ 0 => A is not an
m-tableau.

In fact we conjecture the stronger statement: ΞA is contained in a
quadric with no real points iff ΞA* is too. This would imply that: A
is an m-tableau with respect to some metric on V iff A* is an m-tableau
with respect to some metric on W*.

Notice that the necessity of ellipticity (i.e., Ξ* = 0 ) implies that if A
is an m-tableau of maximal dimension, then, when codim(v4) = n, A*
must be involutive, and, when codim(y4) = s , A must be involutive.

Lemma 2.5. Let A be an m-tableau.
(i) (R. Bryant) If s > n and codim(^) = s, then s is the dimension of

a Cln_j module.

(ii) If n > s and codim(^) = n, then n is the dimension of a C\s_x

module. (Clm denotes the Clifford algebra over Rm.)
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The proof will follow from the following general EDS lemma:
Lemma 2.6. Let A be an elliptic tableau of codimension s in Ws ®

Vn*. Then s must be the dimension of a Cln_1 module.
Proof Ellipticity implies sn = 0. There exist a basis πχ, , πn of

V* and endomorphisms Cx, , Cn_χ of W such that A is the kernel
of the linear mapping

σ : W Θ F* -> W,

σ(wy<g>πp = w Λ - C 7 (w7')

with to 1 , , tuΠ e FT. We see that A is elliptic if and only if w , Cχw ,
••• , Cn_χw are linearly independent vectors for all nonzero w e W

or, equivalently, for all W belonging to the unit sphere Ss~ι in W

(with respect to some fixed metric on W). For w e Ss~ι, let C'.w =

CjW - (CjW , w)w be the orthogonal projection of CjW onto the hyper-

plane orthogonal to w . The vectors w , Cχw , , Cn_χw are linearly

independent for w e Ss~ι if and only if C[w, , Cn_χw are linearly

independent. Thus if A is elliptic, the maps w ι-> CjW for lu e Ss~ι

give us Λ - 1 independent vector fields on Ss~ι the value of the 7th

vector field at w e Ss~ι is C'.w .
Now we appeal to a result of Adams [1] which says that there exist m

linearly independent vector fields on Ss~ι only if dm has a representation
of dimension s. q.e.d.

Lemma 2.5 now follows by applying Lemma 2.6 to A and A*. q.e.d.
To explicitly see examples of these extreme m-tableaux, write

(2.1) A = (πχ, ••• , πn_χ, Jχπχ + •• + Jn_{πn_χ) ,

where

and we have chosen bases {e1} of V and {fa} of W such that πa. is

the coefficient of eι <g> / β , and Jq e MSXS{R) (^ End(ίF)) is such that

J2 = - Id and J Jr + JrJ = 0, r ^ ^ . A is an involutive m-tableau and,

with an appropriate metric on W, so is A*. We will call such m-tableaux

Dirac m-tableaux, and their duals Dirac * m-tableaux.

Corollary 2.7. //* ̂ 4 w an involutive m-tableau whose characters are such

that K = s = s .='•- = s ,, where K is the character of A, then R*

must be a ClII_1_p module.
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Proof. This is because A x is a Dirac m-tableau.
Proposition 2.8. The Clifford module structure of a Dirac m-tableau is

canonical
Proof For x, y e V let m(xy) W^Wbe defined by

where AL c W* <g> F and x J (w <g> v) = x{υ)w .
One now just checks that m{xy)-\-m(yx) = 2(x, y)Id in a basis by using

the basis for A of (2.1). The key to the computation is that tJi = —J..
For a more general result and abstract proof, see [6]. q.e.d.

Examples of m-tableaux of this type are Cauchy-Riemann m-tableaux
when dim (V) = 2, and the linearized equations for associative submani-
folds in G3 7 and Cayley submanifolds in G4 8 . In general, they are the
tableaux of the Dirac operators discussed in Example 3' of § 1.

Lemma 2.9. The character K of an involutive m-tableau must be even.
We give two proofs.
Proof 1. By Lemma 2.1 it is sufficient to verify (2.9) under the as-

sumption that sχ = s, s2 = 0. Write

A = (π, C2π, ••• , Cnπ) = (πf), where π =

(again we have chosen bases eι of V and fa of W such that πa is

the coefficient of eι <g> fa), and the Ck e Msχs(R) (μ End(JΓ)) are fixed

endomorphisms determined by A . Write

for the coefficients of an integral element, i.e., an element of A^ . Since

integral elements are in W ® Sym2 V*, '

integral elements are in A <g> V*, we have

integral elements are in W ® Sym2 V*, we have Ptj = PjΊ, and since

Furthermore,

traceμ ( 1 ) ) = (Id + C 2 + + C2

n)Pn.

P(j = Pjt requires that all the Cf commute, i.e., that they share simultane-
ous eigenspaces. If s is odd they must have a real simultaneous eigenspace
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with real eigenvalues, and thus their squares must have a simultaneous
eigenspace with positive eigenvalues. However for trace(^4^) to be zero,
there must be negative eigenvalues in the sum of the squares to cancel the
+1 eigenvalue coming from Id, thus s cannot be odd.

Proof 2 (R. Bryant). Recall from [4] that for involutive systems, the
degree of the characteristic variety is the character of the system. We
will show that for any involutive m-tableau A, the degree of ΞA is even.
Recall from algebraic geometry that the degree of a subvariety of projec-
tive space is the number of points of intersection with a generic plane of
complementary dimension (counted with multiplicity).

Furthermore deg(Λf nY) = deg(X) deg(7) for transverse intersections.

Intersect ΞA with transverse real hyperplanes to reduce to the case of

ϊ 2 2

A 2 3

Now Ξ^ will be d - deg(Ξ^) points. The defining equations for EA

are real, so if [ξχ, ξ2, ξ3] is in ΞA , then so is [<ft, ξ2, ζ3], and since there
are no real points on Q, the points come in pairs.

3. Classification in low dimensions

The problem of classifying m-tableaux (or even involutive m-tableaux)
naively involves solving (") polynomial equations of degree n - 1 in
matrices of dimensions s x s .

Lemma 2.1 simplifies this task substantially by allowing us to work in-
ductively. If one has classified the case dim V = n , dim W — s then the
case dim V = n + 1 will involve n - 1 quadratic equations of s x s matri-
ces. The caveat is that one must solve such a set for each solution in the
(n , s) case.

Since we are restricting to involutive m-tableaux, things are made a little
simpler by the use of Guillemin normal form (a preferred type of basis
for a tableau, see [4, p. 141]), and we may work case by case according to
the characters and the ranks of various matrices.

Although no one case is very difficult, the plethora of cases presents a
problem. Another difficulty encountered is that new m-tableaux may be
built out of old ones, and what we are really interested in is classifying
'irreducible' m-tableaux. For example, although no new m-tableaux occur
when n = 3 and s2 = 2, there are many solutions to the equations ob-
tained by 'stacking' Cauchy-Riemann m-tableaux and special Lagrangian
m-tableaux. Although it is just an annoyance from the point of view of the
linear problem, 'stacking' m-tableaux can occasionally lead to interesting
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solutions of the nonlinear (i.e., m-subset) problem, e.g., the examples in
§5 of Part II.

There are no m-tableaux for n = 1 (e.g., by Lemma 8). Similarly there
are none when 5 = 1 . Although obvious, these cases illustrate a point
about how the general method of studying first-order systems that imply
second-order systems works, namely we are taking independent copies of
Laplace's equation and looking at a class of solutions that are somehow
'tied' together. Since the character of an involutive m-tableau must be
even, we see by Lemma 4 that any involutive m-tableau in the case n = 2
must be of the form (π Jπ), J2 = - I d , i.e., a Cauchy-Riemann m-
tableau.

In general it is easier to proceed by fixing n and allowing s to vary, but
it is worth noting that Lemma 7 allows us to determine the case s = 2.
In fact, involutive m-tableaux with s = 2 must have characters sχ = =
5 = 2, 5 { = -" = sn = 0. Moreover it is easy to show any such
m-tableau must be a Cauchy-Riemann m-tableau.

The rest of this part is devoted to the case of involutive m-tableaux for
n = 3, although this has implications for larger n (e.g., Theorem 3.3).
To produce a substantial further classification it would probably be better
to try a different approach, perhaps using the algebraic geometry of the
characteristic variety (although using the characteristic variety naively is
even worse in the sense that it involves more equations of higher degree).

Theorem 3.1. The only involutive m-tableaux that occur in G3 s+3 hav-
ing s2 = 2 are reducible to products of a special Lagrangian m-tableau and
Cauchy-Riemann m-tableaux and these can only occur when s is odd and
> 3 .

Theorem 3.2. The only involutive m-tableaux that occur in Gs s+3 hav-
ing character K = s2 = s-1 are products of a special Lagrangian m-tableau
and H-Dirac m-tableaux. In particular, s = 3 mod 4.

Theorem 3.3. The following are maximal dimensions for involutive m-
tableaux:

s\n 2 3 4 5 6 7 8

2
3
4
5
6
7
8

2
2
4
4
6
6
8

2
5
8
8
10
13
16

4
8
12
12
16

4
8
12
14

6
10
16

6
13

8
16
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Remark. For most cases in the chart, these are the largest possible
dimensions of all m-tableaux because any m-tableau of such dimension or
larger must be involutive.

We now set up the notation to enable us to prove the theorems. If A
has characters sχ = s, s2 = K , s3 = 0, we may choose bases eι of V and
fa of W such that we may write

c2π{+E2n2, c 3 n 1 + £ 3 n 2 ) ,
where

π,=

\πιJ

π.

0

( π* is the coefficient of eι <8> fa ), π\, π\, π\ π2 may be freely

specified, and Ca, Ea are fixed endomorphisms determined by A .
Let

where the p?. denote coordinates on W ® Sym F * .
On an integral element Pn , {E2Pχ2), and (E2P22) may be freely spec-

ified. The other P . are determined by

E2Pn)

= {C,Cj + EfiCJPu + (C,Ej + E,CjE2)Pl2 + ( £ , % •

Since A is involutive, we have commutation relations coming from the

requirement P.j = P.{, namely

(3.1) C Cj

(3.2) CiEj

(3.3)

The trace is given by

EiEj =
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We must have each coefficient in tτA{1) identically zero, which gives the
following:

(3.4) C\ + C\ + C\ + E2C\ + E3C3C2 = 0,

(3.5) C2E2 + C3E3 + E2C2E2 + E3C3E2 = 0,

(3.6) EI + EI = 0.

Since we are using Guillemin normal form, we may write our matrices
in the following form:

o o \ (c; c;

; c ; * \ / i o \ ( j o \ / o o \ / / o \

3 c'3'){o oj + U o){c'2 c'2'){o o)
_/o o \ // o\ // owe; c"\(i o\
-{c'2 c'2')[o oJ + U 0 J U 3 c'J{o 0)'

where C] € M{s_κ)χκ(R), C'J 6 M{s_κ)x{s_κ)(R), C*3 e Mκxκ, and
C 3 * € Mκx{s-κ) •

where Idκ, / e MKXK(R). We also have J2 = -Id by (3.6) (or Corollary
2.7). The nontrivial case of (3.2) is i = 3, j = 2 which gives C3E2 +
E3C2E2 = C2E3 + E2C3E2 . Expanding this out, we have

(3.7)

which gives

(3.8) C3 = C'2J.

The nontrivial case of (3.1) is / = 3 , j — 2 which says

( 3 . 9 ) C3C2 + E3C2 = C 2 C 3 •+• ^ 2 3 2 '

which when expanded out gives

(3.10) C3C2 = C'2C\ + C2C'2J,

(3.11) C3C2 - C2C3 = C'2C\*,

where we have used (3.8) to eliminate C3. Similarly, expanding (3.4)
yields

(3.12) / + C*2 + C3*C'2J + JC*3C'2 = 0,

(3.13) C*C*3* + C*3*C3 + JC*3*C2 = 0 ,

(3.14) / + C'2 + C2JCl* + C'2 = 0,
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while (3.5) implies

(3.15) C3V + /C3 = 0

and we have already adjusted E3 such that (3.6) holds.

In summary we look for matrices C'2, C'[, C\ , C^ *, C^ and a complex
structure / satisfying (3.10)—(3.15). We would like to use the Gl(s, R) x
SO(3) equivalence to make these equations simpler but we do not want to
break Guillemin normal form.

On the other hand, if we normalize by

(3.16) g =(I« X

V s—κ

Guillemin normal form is preserved, and

C* —• C* A- YC' T — 1YC'
\ ^ <3 τ % ' 2 1 '

CΓ -> CΓ - C\X - XC'JX - JXC'X + JC"

(3.17) 3 J * 2 2 2

If we normalize by

(3.18) g = ( π ? ) € G 1 ( J , R ) , ^€Gl (κ , R ) , BeGl(s-κ,R),

AJA '

Guillemin normal form is also preserved and

j

, - 1
AC\A

(319) c i - B C μ - ,

If we tried to normalize by g = (^ r ° ) 6 Gl(^, R), Guillemin normal
1 s — κ

form would be broken. Similarly we may only normalize by an SO(2) c
SO(3) action (the SO(2) that fixes the first column) without breaking
Guillemin normal form and this action changes things rather drastically,
making it difficult to use except in special cases.
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We now prove Theorem 3.1, i.e., we classify the case K = 2.
In this case we use A in (3.18) to normalize / to be the standard com-

plex structure (°{ ~Q

ι). Note that (3.15) now implies that C3* is traceless
symmetric.

Case 1. s = s{ is odd.

Case 1.0. C\ = 0. Here (3.12) implies that C*2 = - 7 2 , which is a

^2contradiction because C^2 must have positive eigenvalues by (3.15).

Case 1.1. rank C'2 = l. Use A in (3.18) to get

which can be done by an element of Gl(l, C) c Gl(2, R) (and thus leav-
ing / unchanged) again because of (3.15).

Use B in (3.18) to get

/I u\
0 0

\0 07

where u is unknown.
Use X in (3.16) to get

0

where f. e M^s_3^xl and Fj e ^(5_3)X(5_3) This can be done because the

top rows of C2X and C2JX are linearly independent (regardless of what

u is).
Now (3.10) becomes

-a \ / - \ /

X

(3.20)

(0 0 W 1 u\_ (I u\ίx 0 \

V/3 ^3/Vo oj- Vo o A o - x )
0 - 1
1 0

which implies x = 0 and / 2 = / 3 = 0. Now that we know C* = 0 we
are free again to use A to make u = 0. Write

Then (3.11) gives

(0 0 W 0 0 W 0 0 W 0 0 \ _ / l O λ / r ί -

Vθ F 3 Aθ F2) \0 F 2 Aθ F3;~Vθ OArf ..
's-2'
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which implies

(3.21) r\ =

Finally (3.14) gives

1 0\ ίθ 0

[F3,F2] =

0 0 \ O —r, -r\s-2

which implies r2 = = r 2 = 0, r, = - 1 , and

(3.22) = 0.

This shows the m-tableau is reducible in the sense that the top three rows

do not interact with the bottom s-3 rows (thinking in terms of equations,

the first three equations form an independent system from the others). In

fact we may recognize the top m-tableau to be the special Lagrangian m-

tableau while the bottom is a Cauchy-Riemann m-tableau by Lemma 2.4.

We see any involutive m-tableau in this case is Gl(s, R) x SO(3) equivalent

to

(3.23)
/SLagλ

U 7

π

π:

1

1

vπ

π2

0

where Js_3 is any complex structure on Rs and

Π = | :' I .

Case 1.2. rank C'2 = 2 . Use A and B in (3.18) to get

*_(x 0\ c'
C 3 ~ V θ -x)' Ci

Write

Use X of (3.16) to get C* = 0 .

Since

the remaining freedom in X after normalizing Cj to be zero is

λ -μ

μ λ y3

xs_
ys_
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We use this to get
Wα2 0\
'2 U Fi)'

where a2 is 2 x 2 , F2 is (s - 4) x (s - 4 ) , and a2J + Ja2 = 0 .
Now (3.10) implies a3 = a2J, /3 = f2J. Writing C** = {Rχ R2),

where i? t is 2 x 2 , (3.11) gives

-2a2

2J + g3f2 = RV

Substituting for g3f2 in (3.14) gives JRχ = 0. This implies Rχ = 0, but
(3.12) says RχJ + JR{ = - I d 2 , giving a contradiction.

Case 2. s is even (Note that s = 2 cannot occur because R2 is not a
Cl2 module, so assume s>4.)

Case 2.0. C2 = (0). Again (3.12) implies C*2 = -I2 giving a contra-
diction.

Case 2.1. rank C2 = 1. Nothing about Sj being odd was used to derive
the splitting of the m-tableau in Case 1.1, but now s - 3 is odd and Lemma
2.9 gives a contradiction.

Case 2.2. rank C2 = 2. Use B in (3.18) to get

and X in (3.16) to get

02,,_/02 ~ U

This can be done because the top rows of C2X and C2JX are respectively
the first row and minus the second row of X.

(3.11) gives

/ 0 0 \ / 0 0 \ / 0 0 W 0 0 \

Us ^JVΛ ^J"V/2 F2)\f3 F3)

i
which implies

(3.25) Λ1

1 =

Finally (3.14) gives, using (3.25),

0 > i l / ' 0
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which implies

(3.27) I + FJ + Ff = 0

and r2 = •- = r2_2 = 0. Substituting the zero r values into (3.24) we see

(3.28) [F3,F2] = 0.

Now (3.28) says that F2 and F3 share common eigenspaces, in particu-
lar, since they are odd dimensional they share a common real eigenspace,
thus their squares have a common eigenspace with nonnegative eigenvalue,
which gives a contradiction by (3.27). This concludes the proof of Theo-
rem 3.1. q.e.d.

We now prove Theorem 3.2. If C2 = 0 then (3.14) gives a contradic-
tion, so assume C2 Φ 0. Use X of (3.16) to get C2 = C3 = 0, and fix
J = d°d "0

I d). Use A of (3.18) to get

i 0

where m is | x \ . We may use the remaining freedom in A to get

C2 = ( r 0 . .. 0 δ ) = ( γ δ ) ,

where γ, δ are rows of length | .
Write Cj* = (»). In this notation the equations are

(3.10') γm = -δm = 0,

(3.11') γa + δβ = 0,

(3.12.1') ld + m2 + aδ-βγ = 0,

(3.12.2') αy + ̂  = 0,

(3.13') ma = mβ = 0,

(3.14') l - y £ + (5α = 0.

Now (3.12.2') implies β = λa and «J = - i y for some λ e R. This
is because in indices it says a]γi + βJδt = 0 Vi, j . Fixing i = 1 we get
β = λa and since both α, δ cannot both be zero we fix some j to get
δ = -\y.

(3.10r) implies
/0 0 \

m = Λ\m m,

where m is a column and m is | x \ . (3.12.1') now says m2 = -Id

so, in particular, it has no kernel.
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(3.13') says

so (3.12.1') implies

a =

Wπtmg

C2 =

E3--

this all

/o
0
0
0

\r

f°
0
1
0

Vo

out

0
0
0
0
0 -

0
0
0

Id
0

we

0
0
0
0

-J
- 1
0
0
0
0

have

0 Oλ
0 0
0 0
0 0
0 0/

0
-Id

0
0
0

, C3 —

Oλ
0
0
0

o)

/o
in
0
0

^ I

0
m
0
0
0

0
0
0
m
r

0
0
0
in
0

a
0

λal

0
0

where the blocking is of the form ( l , f , l , f , l ) x ( l , f , l , f , l ) . We
see that the first, | t h , and last rows do not interact with the others and we
know from the previous classification that the pieces must be special La-
grangian and H-Dirac type m-tableaux, concluding the proof of Theorem
3.2. q.e.d.

The preceding discussion covers all of the cases of Theorem 3.3 except
for the proof of the 4 x 5 , 5 x 5 , and 5 x 4 cases, which are similar to
the above and left to the reader.

PART II: EXAMPLES AND RIGIDITY OF M-SUBSETS

We now address the question of finding first-order systems implying
the minimal submanifold system. First we rephrase the question geo-
metrically; identifying m-tableaux with candidates for tangent spaces to
m-subsets. By the results of Part I, this immediately gives new restric-
tions on the dimensions of m-subsets. Next, for various m-tableaux, we
analyze the corresponding differential systems for m-subsets, i.e., we see
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what linear first-order systems from Part I are actually the linearization
of a first-order system implying the minimal submanifold system. The re-
sults are rather striking. In cases of dimension or codimension two, and
certain other Cauchy-Riemann m-tableaux, there are abundant examples
of m-subsets with a given type of m-tableau. For other m-tableaux, in-
cluding all the other standard examples of m-tableaux, we show rigidity in
the sense that any m-subset having tangent spaces isomorphic to the given
m-tableau must be the standard face corresponding to that m-tableau.

1. m-tableaux as candidate tangent spaces to m-subsets

Given / : Mn —• Rn+S any (oriented) submanifold, we have the Gauss

map γf:M-+ G n > l l + J defined by γf(x) = Tf(χ)f(M), where Gnn+S

denotes the (oriented) Grassmannian of ^-planes in ΈLn+s.

Let E e Gn n+s. We have the identification TEGn n+s ~ E^ Θ E*,

where E denotes the orthogonal complement of E in Rn+S. If g :
M —• Gn n+s is any map, then for all x e M, g^χ may be considered

as an element of E1" <g> E* <g> T*. If g = γf, then Tχ = E and in fact

γ, € E <g> Sym E*, essentially because mixed partials commute.
The derivative of the Gauss map y^ is called the second fundamental

form. The minimal submanifold condition is that y^ be traceless, i.e.,

γ^ € E1' ® Sym^E* at each point of M.

Let Σ c Gn n+s and denote TEΣ by A. A is a linear subspace of E± <g>
E*. What are the possible second fundamental forms of submanifolds
f(M) such that yf(M) c Σ? The derivative at g(x) = E e Σ of any map
g : M —• Σ is a linear map g^χ : TχM —> A and we think of g^χ as an
element of the linear space A<g>T*. If the map is a second fundamental
form, so E = TχM, then g^χ must also lie in E1- <g> Sym2^*. So let

A{1) := {A 0 E*) Π (E± ^ S y m V ) .

This is the space of all candidate second fundamental forms at E for
submanifolds f(M) having Gauss map locally contained in Σ.

F u n d a m e n t a l o b s e r v a t i o n . I f Σ c Gn n+s i s s u c h t h a t f o r a l l £ e Σ ,

(Γ £Σ) ( 1 ) is traceless, then Σ is an m-subset.

Remark. When we consider A as a tableau, A^ is just the prolonga-
tion of A as defined in Part I, §1.

So we may rephrase the observation by saying that Σ is an m-subset
if all its tangent planes are m-tableaux. It is in this sense that linear
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first-order systems implying the Laplace system, considered as m-tableaux,
are candidate tangent spaces to m-subsets.

Examples. In [8], Harvey and Lawson study the following m-subsets
(faces) arising from calibrations:

• The SU(n) orbit of a real «-plane in R2n, called the special La-
grangian face, SLagn 2n . It has m-tableau as in Example 2f of Part I.

• The G2 orbit of an associative 3-plane in R 7 , called the associative
face. It has m-tableau corresponding to the Dirac operator in Example 3'
of Part I, given in coordinates by 1.2.1 with n = 3, s — 4.

• The G2 orbit of a coassociative 4-plane in R , called the coassocia-
tive face. Its m-tableau is the transpose of the associative m-tableau and
as an operator it is the formal adjoint of the operator corresponding to the
associative m-tableau.

• The Spin(7) orbit of a quaternionic 4-planein R 8 , called the Cayley
face. It has m-tableau corresponding to the Dirac operator in Example 3 '
of Part I, given in coordinates by 1.2.1 with n = 4, s = 4.

• Of course the face of a normalized power of the Kahler form is
just the complex Grassmannian G(Cn, Cn+S) c G2n 2n+2s which is the
SU(n + s) orbit of a complex w-plane.

Remark. It is clear for global reasons that these faces of calibrations
must be m-subsets, but the reader may find it interesting to try to show
this directly.

Remark. These faces all have involutive m-tableaux. (When neces-
sary, we will call m-subsets whose m-tableaux are involutive, involutive
m-subsets.) Faces of calibrations with noninvolutive m-tableaux are also
studied. They have a small class of calibrated manifolds as we would
expect by the remark on noninvolutive tableaux in Part I. Their utility,
first noticed by F. Morgan, is that they often calibrate manifolds with
singularities which were previously only suspected to be area minimizing.
For example, D. Nance, in [13], uses a noninvolutive face to prove the
sufficiency of Morgan's Angle Criterion for a pair of planes to be area
minimizing.

At first glance m-subsets are not of much use in studying area minimiz-
ing submanifolds with singularities. However singular manifolds often
appear as the simplest Σ-manifolds (in the sense that they correspond to
the simplest solutions to the differential system induced by an m-subset
Σ). These singular Σ-manifolds are good candidates for area minimizing
submanifolds. For example, the Σ-manifolds produced by Theorem 3.9
are examples of such candidates, one class of which is proved to be locally
minimizing in the appendix.



MINIMAL SUBMANIFOLDS DEFINED BY FIRST-ORDER SYSTEMS OF PDE 393

It was known (e.g., [5]) that SLag3 6 , the associative, coassociative, and

Cayley faces, G(C, C m + 1 ) , and G(Cm, C m + 1 ) are maximal as faces, i.e.,
that they are not contained in any larger faces in their respective Grass-
mannian. From the results of Part I we see that they are also m-subsets
of maximal dimension in their respective Grassmannians, i.e., there is
no larger dimensional m-subset in their respective Grassmannians. Using
Theorems 1.3.1,1.3.2, and 1.3.3 it is possible to add to this list.

Theorem 1.1. The following involutive m-subsets are of maximal di-
mension:

1. SLag5 1 O C G 5 1 0 .
(5+2)

2. The product G(C, C 2 ) x SLag3 6 c G5 J + 5 of a complex Grass-
(s+2)

mannian G(C ,C2)inG2 s+2 with a special Lagrangian face SLag 3 6

inG36.
3. A Cayley face in G4 9 .
4. A Cayley face in G5 9 .
5. G(Cm,Cm+i)cG2m+l2m+3.

In the remainder of this part we study what possible m-subsets can
occur. We determine how many, if any, first-order systems implying the
minimal submanifold system correspond to various m-tableaux.

2. Setting up the problem

We now set up the differential systems for m-subsets having a given m-
tableau A . By this we mean that we look for Σ having TEΣ ~ A Vis e Σ,
where ' ~ ' means

T[g]Σ e Lg^Gl(s, R) x SO(n) orbit of A)

(i.e., if A has dimension a, we want 7JIdlΣ to be an element of the
Gl(s,R) x SO(Λ) orbit of A in the Grassmanian G(a, T[lά]Gn n+s),
and T ,Σ to be an element of the translate of this orbit to an orbit in
G(a, T[]Gn n + s ) . Here Gn n+s is being considered as a homogeneous
space of SO(n + s), g e SO(n + s), Lg^ denotes the derivative of left
action by g and [g] = E. Since smooth m-subsets have the same type
of m-tableaux in small neighborhoods, this is no restriction for the local
problem of finding smooth m-subsets and smooth minimal submanifolds.

To set up the appropriate differential systems, we want to allow TEΣ
to be equivalent to anything in the Gl(EL) x SO(E) orbit of Lg^A . To
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make this precise we will set up a more general situation.
Let G/H be a homogeneous space. Write m = g/ί) and let K be a

group that acts linearly on m. Let A be a given p-dimensional subspace
of m. We will define a differential system for p-dimensional submanifolds
of G/H whose tangent spaces are ΛΓ-equivalent to A, i.e., we will set up
a differential system whose solutions are Σp c G/H such that

for some k e K.
(The case that will be studied in this part is G/H = Gnn+S, K =

GL(s, R) x SO(AZ) , A: an m-tableau.) We will set up the system on G x K
as there is a convenient coframing there by Maurer-Cartan forms. Solu-
tions of the system on G x K will be lifts of solutions of the differential
system on G/H for submanifolds having tangent spaces ^-equivalent to
A.

Consider the map

where Gn(T(G/H)) denotes the Grassmann bundle of all «-planes in all
tangent spaces of G/H. The system we want is just the pullback via fA

of the canonical system on Gn{T{G/H)). At (x, En

χ) e Gp{T{G/H)), the
canonical system is

where π is the projection Gn(T(G/H)) —• G/H, and E± denotes the
forms in T*(G/H) annihilating E. (See [4, Chapter IV] for more details
on the canonical system on the Grassmann bundle of a manifold.)

Assume we have a metric on m giving rise to a left invariant metric
on G/H. (If G is compact as in our case, there is a natural metric.) Let
{v1*} be an orthonormal basis of m*.

Let γ. be the unique left invariant one-form on G/H which is equal to
vι* at [e]. (Thinking of 9 = f) Θ m, we may consider γ as an m valued
one-form.)

Say A is given by equations b\vι = 0, 1 < r < codim(^). This

means A± c m* has basis {tfv1*}. Then in coordinates, ΓA{^)\ k)

has generators k~lLg^b\vl* = fc"1^,-).
Following this general procedure in our case of the system for m-subsets

with a given m-tableau, one would naively set up a system on Gl(s) x
SO(n + s) x SO(Λ) , but here the SO(n) factor is unnecessary because it
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already is incorporated in SO(n + s). In fact most of the vector fields on
GL(s) will be Cauchy characteristics, so we work on Gl( s) x SO(n + s)
and expect at least (s

2) + 1 Cauchy characteristics related to the GL(s)
action.

For g e SO(n + s) write

For 5 G GL(s), let

(2.2) β = B~ldB, ψ = B~lφ, δ = B~l$B, κ = β + δ.

Notice that K e #l(s) and τ e so(n). </> is semibasic to the projection
SO(n + s) -+ G Π ϊ Π + J and it already has an SO(J) x SO(/i) action built into

it, but we use |^, which is left invariant under all of K. ( ψ = k~ιγ in
the notation of the general setting.)

We have the following structure equations:

dψ = ~{B~ldBB~l) Λφ + B~ι(-φΛτ-δΛφ)

= —K Λ ψ — ψ Λ τ ,

dτ = - τ Λ τ + '(/> Λ φ = -τ Λ τ + ^lBB Λ y/,

dκ = -β Aβ- (-B~ldBB~l) ΛδB + B^iφΛ'φ-SΛ δ)B

+ B~lδΛdB

= -K Λκ + ΨΛ'Ψ

The independence condition for the differential system is given by

where we assume A is in Cartan normal form, i.e., that we have chosen

bases such that there are no relations involving only A\, , A\ι, A\ , ,

As^ , , A1, , Asp, where s is the character of the system. Let the

relations on A be brjA" = 0, 1 < r < ns - (sx + - + sp). Let θr = brjψf .
Then the differential ideal J of forms which vanish on solutions is gener-
ated by {θr} . The m-tableaux we will deal with will often have symmetries
and we will adapt our notation to utilize them.

3. Clifford m-subsets and their duals

This section classifies a large class of m-subsets including the m-subsets
corresponding to linear systems involving the fewest possible equations,
the Dirac m-tableaux (see equation (1.2.1)).
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Example, m-subsets having the Cauchy-Riemann m-tableau in

We have

π

A = (π, Jπ), where π = I \ , / = -Id.

Take ^ — {θ := ψ2 - Jψχ} with independence condition Ω = ψ\ Λ

• Λ ψ[ where

and 0 =

Taking derivatives, we have

dθ = -K Λ ψ2 - ψ Λ τ 2

= -K: Λ Jψχ - (ψ{,

(3.1) + ( ^ i , -^i)AT

ΞΞ [/, K] Λ ψχ + [τ\ + Tj) Λ ψχ mod ^

= [/, K] Λ ^ mod J^.

The tableau of this system is [/, K] . (Remark: Do not confuse the
tableau of the differential system to solve for m-subsets with the m-tableau
of the solution m-subsets!) This tableau is involutive with characters sx =
••• = s.2 = s and Sn+S\n = 0. Thus maximal m-subsets contained in
G2 s+2 depend locally on s functions of s/2 variables for s even and
it is easy to see that for s odd, maximal involutive m-subsets contained
in G2 s+2 depend locally on s - 1 functions of (s - l)/2 variables. (We
have already seen that all such involutive m-subsets must have Cauchy-
Riemann m-tableaux.) Shortly we will see another proof of this giving a
global answer.

This example is important because it shows that it is possible to have
many nonisomorphic m-subsets having the same m-tableau and that there
exist locally inhomogeneous m-subsets (something not true locally for faces
of parallel calibrations).

Call an m-tableau built out of Dirac m-tableaux of Clifford type. For
example

A = (πχ, Jπχ, π2 , Jπ2 ,0) c R ' x R5*

is built from two Cauchy-Riemann m-tableaux and the zero m-tableau.
Call an m-tableau A of Clifford* type if there exists a metric on W such
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that the dual tableau A* is of Clifford type.
Theorem 3.1. I. The only m-subsets having Clifford type m-tableaux

have either C- or H-Clifford type m-tableaux.
II. The only Clifford m-subsets having H-Clifford type m-tableaux are

the associative and Cayley faces.
III. The only m-subsets having C-Clifford type m-tableaux are:
A. The complex Grassmannians.
B. (R. Bryant) C-Dirac type m-subsets (so n = 2), which correspond to

complex ^-dimensional subvarieties of G2 s+2 = Qs c CP*+1 satisfying a
transversality condition (where Qs is the null quadrίc).

C. C-Clifford type m-subsets in codimension 2, which correspond to
complex ^-dimensional subvarieties of Gn Λ + 2 = Qn c CP" + 1 satisfying a
transversality condition (where Qn is the null quadric).

D. m-subsets whose m-tableaux are of the type in B or C augmented by
zeros, which are plentiful (i.e., they are 'parametrized* by arbitrary func-
tions). (For an explanation of augmentation by zeros see § 5.)

Theorem 3.1 * . I. The only m-subsets having Clifford* type m-tableaux
have m-tableaux dual to either C- or H-Clifford type m-tableaux.

II. The only Clifford* m-subsets whose duals have H-Clifford type m-
tableaux are the coassociative and Cayley faces.

III. Same as 3.1 .III by self-duality of the Cauchy-Riemann equations (i.e.,
if A is a C-Clifford type m-tableau then so is A*).

Corollary 3.2. The only m-subsets of codimension max(«, s) are the
associative, coassociative, and Cayley faces and G(C, Cm+ι). (Codimen-
sion less than max(«, s) is impossible by Lemma 1.2.4.)

Remark. If we restrict to studying faces of calibrations then the anal-
ogous statements to 3.1 and 3.1* can be proven just by checking that the
Dirac m-tableau generate the full orthogonal algebra under Lie bracket ex-
cept for the exceptions above. In other words, one need only show that
there does not exist G, H c SO(n) such that A = T[e]G/H.

Proofs. With the exception of III, the proofs go as follows: the differ-
ential system for Dirac m-subsets will have a unique integral element at
the first stage. In other words, the 1-jet of a solution will uniquely deter-
mine the 2-jet. Then the prolonged system will either be Frobenius or have
unabsorbable torsion. In other words, there will either be a unique solu-
tion or incompatible conditions will be placed on the 3-jet of a solution.
The Frobenius systems will be the structure equations for a Lie algebra, in
fact the two Frobenius cases are the structure equations for the algebras
02 and 5pin(7) for the associative and Cayley faces respectively.
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Case 1. Dίrac m-subsets with H-Dirac type m-tableaux in G3 3+s (s

m u s t b e d i v i s i b l e b y 4 ) . W r i t e t h e m - t a b l e a u a s (πχ, π2, Jχπχ + J 2 π 2 ) ,

where jf = - Id and JχJ2 = -J2Jχ - Take J = {θ = ψ3 - Jχψx - J2ψ2}

and Ω = ψ\ A Λ ψ[ A ψ2 A Λ ψ2. Then

(3.2)
dθ = -K Λ ψ3 - ψ Aτ3 + Jχ(κ A ψχ + ψ Aτχ) + J2(κ A ψ2 + ψ Aτ2)

= (IJ{, K] + τ\j2 + τ\J\Ji) Λ Ψ\

This system has a unique integral element; i.e., to have dθ = 0 we must
have [Jχ, K] + Tj/2 + τ\jχJ2 and [/2, K] + τ^/j + τ\jχJ2 both identically
zero. Thus we prolong (i.e., add these forms to the system), with the
prolonged system defined on the same space. Set

jr+ = {θ,θχ:= [Jχ, K] + τ\j2 + τ\jχJ2, θ 2 := [J2,κ] + τ\jχ + τ\jχJ2}.

Write K: = K + fcj/j + k2J2 + k3JχJ2 , where JC' is both /j and J2 linear,
and the k. are (scalar valued) one-forms,

θ j = 0 says

(3.3) 2k2 = τ2

3, 2k3 = τ2

χ,

and θ 2 = 0 adds

(3.4) 2kχ = τ\.

Notice that K does not appear in the tableau so it is metric dual to
Cauchy characteristics. More precisely, the vector fields coming from
curves of quaternionic linear transformations within Gl(s, R) are Cauchy
characteristics and if we wanted to, we could set up the differential sys-
tem on (Gl(s, R)/G1(|, H)) x SO(s + 3), 'quotienting out' by the Cauchy
characteristics.

In fact the only relevant nonzero vector fields on Gl(s, R) must be
on O(s). We could work on O(s) x SO(s + 3), but the O(s) action is
redundant except for a Z 2 action, which we ignore since we are interested
in connected solutions. So we now work on SO(s + 3). We are fortunate
because the basis of the ideal we were using for the system on Gl(^, R) x
SO(s + 3) is basic to the projection to SO(s + 3) so we may work with the
same forms. Continuing with the equations of the prolonged system, now
that K e so(s) and B = Id, we have
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(3.5)

ύ?θ, = [/, , -K Λ K + ψ Λ V] + (~τ3τi + ψi Λ ψ()J2

+ (-τjτj + ψl A

m o d

The equations for the derivative of θ 2 are similar and thus the pro-
longed tableau is zero. If s > 4 there is torsion and thus no solutions.
However in the case s - 4, the right-hand side of (3.5) is identically zero
(as is the corresponding expression for dθ2). This gives us a Frobenius
system, in fact, the equations for a copy of Q2 C SO(7) , i.e.,

τ -V \
0 2 = I , ! , 1 τ 2 τ 2 τ τ λ2 \ψ K +j(τ3Jx + τ3J2 + τχJχ J2))

(p(sp(i)x) -Ά \
\ A β p ( l ) 2 + β p ( l ) J '

where p(δp(\)χ) is a representation isomorphic to the adjoint.
Thus any m-subset in G3 7 with m-tableau isomoφhic to the associative

tableau is an associative face. In fact, one can say more:
Corollary 3.3. Any smooth eight-dimensional m-subset of G3 Ί is {an

open subset of) an associative face.
Proof By the classification of m-tableaux in Part I, any eight-dimen-

sional m-tableau of R4 <g> R3* is the associative m-tableau. q.e.d.

Case 2. Dirac m-tableaux in G4 s+4 (again, s must be divisible by 4).

Here we may write our m-tableau as (πχ, π2, π 3 , Jχπx + / 2 π 2 + J3n3),

where jf = -Id and J.Jj = -J.Ji. Take

and

Ω = ψχ Λ Λ ^ Λ ^ Λ Λ ^ Λ Λ ^ Λ Λ ^ .
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Taking derivatives, we have

dθ = - K Λ ψ4 - ψ Λ τ 4 + Jχ(κ A ψχ + ψ Λ τχ)

+ J2(κ Λ ψ2 + ψ Λ τ2) + /3(κ Λψ3 + ψ Λτ3)

(3.6) = ([^ , *] + τ 2 / 2 + τ^/j/j + τ 3 / 3 -f τ^^/j) Λ ψx

+ (\T Ί-μ 2 / - μ 4 / / - μ 2 / + 4TI)Λ

+ ( [ / 3 , JC] + T J / J -h Tj «/| «/3 H- T 2 / 2 + ^2^2*^3) ^ ^ 3 m ^ ^

This system has a unique integral element, so we prolong, adding the
forms in the tableau to the ideal. Writing K = K + kχ Jχ + k2J2 + /c3/3, as
in (3.3) and (3.4), we add the following forms to the ideal:

2k2 - (τ\ + τ\), 2k3 - {τ\ + τ\), 2kχ - (τ\ + τ\).

As with the case above, we may quotient out the GL(s) action and
define the system on SO(4 + s). Again, the tableau of the prolonged
system is zero. If s > 4 we get torsion and therefore no solutions. Even
in the case s = 4, we get torsion unless JχJ2J3 = ±Id, i.e., unless we have
an H-module structure. In this case the system is a Frobenius system, in
fact the equations for a copy of spin(7) c so(8), i.e.,

+ p(sp(l)2) —A
A

where the columns of A satisfy Jχπχ + J2π2 + / 3 π 3 - π 4 = 0, and p and
p are both isomorphic to the standard representations, but given in terms
of different, nonstandard bases.

Thus any m-subset in G4 8 with m-tableau isomorphic to the Cayley
m-tableau is a Cayley face, and again by the classification in Part I we
have:

Corollary 3.4. Any smooth twelve-dimensional m-subset of G4 8 is (an
open subset of) a Cayley face.

Any larger Dirac m-tableau must contain one of the s > 4 cases and the
same equations that gave unabsorbable torsion will reappear, so they will
not have any solutions. The reader may check that horizontally stacked
H-Dirac type m-tableaux have no corresponding solution m-subsets (the
computation is similar to, but easier than, the proof of Case 2), and finally
Theorems 5.1 and 5.2 will prove the extension of I and II from Dirac to
Clifford m-tableaux.

We now prove the Gn n+3 case of II*: Here the m-tableau is the trans-
pose of (3.2). Write it as
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π1

π2

ιJι + π2J2,

where πJ = (π[ ••• πj

n) and we have changed the signs on the complex
structures for notational simplicity. Here

and

Ω = ψ\ Λ Λ ψ\ Λ ψ\ Λ Λ ψ].

Taking derivatives, we have

dθ = -K Aψ-ψ Λτ + (κ Aψ + ψ Λ T)/J + (/c Aψ + ψ Λτ)/2

= ψl A {[τ, Jχ] + (icf + κj)ld + (1C3 - K J ) ^ 4- κ2J2 + κljχJ2}

+ (1C3 - ^2)^2 "" K\J\ - ^^1^2} m o d ^

This system has a unique integral element, so we prolong. Write τ =
τ +tχJ{ + t2J2 + t3JχJ2 as we did with K in Case 1. With this notation,

κ:2 - 2ί2, κ\ + 2ί 3, -κ\ 4- 2 ί J .

Following the associative computation (and recalling that we are free to de-
fine the system on SL(3, R) x SO(n + 3)) we see that J ^ has unabsorbable
torsion unless n = 4, in which case it is a Frobenius system for copies
of g2 c 5θ(7). By the classification of Part I, the only eight-dimensional
m-tableau in G4 7 is the coassociative m-tableau, so we have:

Corollary 3.5. Any smooth eight-dimensional m-subset of G4 7 is (an
open subset of) a coassociative face.

The proofs for Dirac * m-subsets in Gn n+4 and larger Grassmannians
are similar to the above. We leave the details to the reader. Theorems 5.1
and 5.2 will complete the proof of Theorem 3.1*, parts I and II.

We now prove part III. We have already seen C-Dirac type m-tableaux

have, at least locally, many corresponding m-subsets and now we show the

global result stated in the theorem. It may be thought of as a generalization

in one direction of the classical theorem that M2 -̂ -> Rs+2 is minimal if

and only if the Gauss map M2 - ^ G2 J + 2 = Qs C CP S + 1 is holomorphic.
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Proposition 3.6 (R. Bryant). If γf{M2) is a complex submanifold of

G2 s+2 = Qs whose tangent space contains no decomposable vectors, then

f(M) is minimal. More generally, any complex submanifold Σ c G 2 J + 2 =

Qs, such that TEΣ contains no decomposable vectors for all E e Σ, is an

m-subset.

Proof Let eι, e2 be an orthonormal basis of E* and υ, w e E± .

The nondecomposability requirement says that if υ <8>eι +w ®e e TEΣ,

then v , w must be linearly independent. Write the complex structure /

as

J(v<S>e + w <8>e ) = - w <8>e + υ ® e .

Then we may choose a basis of E± such that TEΣ is spanned by

{υ{<8>e + v 2 < g > e , ••• , υ t _ {

- υ 2 ® e X + υ χ <8>e2, ••• , -

where Σ is t real dimensional, i.e.,

vt_χ <8> e2}

v2 \

—v.

0

Jt-\
0

0

which is clearly an m-tableau, in fact a Cauchy-Riemann m-tableau, so Σ
is an m-subset. q.e.d.

Since the generic linear subspace of E <g> E* of complex dimension
[|] will satisfy this transversality condition, we have:

Corollary 3.7 (R. Bryant). The generic complex submanifold of G2 s+2

of complex dimension [f ] is an m-subset.
Remark. Proposition 3.6 has the unfortunate consequence of showing

that, in general, m-subsets do not have global properties. Micallef [11] has
shown that any complete, oriented, nonholomorphic, parabolic minimal
surface in R4 is unstable. The image of the Gauss map of a minimal
surface in G2 4 is a complex submanifold. In general the image may
contain decomposable tangent spaces but these should occur at isolated
points, and the incomplete submanifold obtained by removing the points
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would still be unstable, even though its Gauss map takes images in an m-
subset. For an example of an unstable Σ-manifold, see Osserman [14, p.
42].

The C-Dirac m-subsets give a large class of m-subsets having a given
m-tableau, but only for minimal surfaces, which are already fairly well
understood. However G2 n+2 = Gn n+2 and the same proof (transposed)
gives:

Proposition 3.8. Complex submanifolds Σ c Gn n+2 whose tangent
spaces contain no decomposable vectors are m-subsets.

Corollary 3.9. The generic complex submanifold of Gn n+2 of complex
dimension [f ] is an m-subset.

Some homogeneous examples of this type of m-subset which are not
contained in any complex Grassmannian are given by representations of

()
Theorem 3.10. Let VN denote any irreducible real S U ( Λ + 1 ) module

other than the adjoint. Then the orbits of certain codimension-2 planes are
m-subsets {which ones will be made clear in the proof).

Remark. We deal with the real representations here because the m-
subsets resulting from complex representations will all be contained in
some standard complex Grassmanian.

Proof. Choose a basis of V such that a maximal torus of su(n + 1) is
on diagonal 2 x 2 blocks and choose a real eigenbasis for the weight zero
space. With this basis, every basis vector will either map to zero or remain
in a 2-plane under the action of the torus. Order the basis such that the
highest weight λ acts on the last two vectors.

Claim. The orbit of the codimension two plane orthogonal to the plane
of highest weight is an m-subset. The tangent space of this orbit in GN_2 N

is isomorphic to the lower left-hand 2 x (N - 2) block of the image of
βu(/i+l) in end(K) (JV = dim(F)).

Since the weight λ can only act on its nearest neighbors, the block will
be mostly zero. There will be n nonzero 2 x 2 subblocks corresponding
to the neighbors of λ on the outer 'shell' of weights of multiplicity one,
and two other nonzero subblocks coming from the neighbor to λ on the
next shell of weights of multiplicity two. The tableau is 2rc-dimensional
consisting of zeros and 2 x 2 blocks of the form

where the c. 's are constants and the a. 's and b- 's are free, and one block
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of the form

where c0 is a constant and aχ and bχ are associated to the weight λ -
(1, , 1) which occurs with multiplicity two. This is clearly an involu-
tive m-tableau (under a change of basis it is a standard Cauchy-Riemann
m-tableau with zeros).

Remark. The Σ-manifolds given by Theorem 3.10 are all austere (see
[8, p. 102]). By a result of Bryant in [3], they must have singularities. As
with all austere submanifolds, they may be used to construct new examples
of special Lagrangian submanifolds.

Remark. The Σ-manifolds associated to these m-subsets are ruled by
(N - 2n - 2)-planes and have the following geometric description: Let
Sf denote the subspace of the Grassmann bundle GN_2n_2 ^ x R ^ given

by the p(SU(n + 1)) x R* orbit of a special (N - In - 2)-plane, where
p denotes the map SU(AZ + 1) —• SO(iV). 5? is a complex manifold
which arises naturally as follows: We solve for the Σ-manifolds by solving
for their lifts to the p(SU(n + l))-coframe bundle ^ , and & is &
quotiented out by the Cauchy characteristics of the system to solve for
lifts of Σ-manifolds.

A Σ-manifold M is obtained by taking complex /2-folds in 3? that
solve the differential system induced from &. This gives a 2«-parameter
family of special (N -2n- 2)-planes whose union fills out M. (One lifts
the H-fold in Sf to & and pushes it back down to R^.)

The Σ-manifolds corresponding to the simplest solutions of the differ-
ential system on 5f are homogeneous cones, in fact the SU(« + 1) orbit
of a special (N — 2n — 2)-plane in R^. (In coordinates the general so-
lutions are functions graphed over a complex /i-plane and the simplest
solution corresponds to the complex «-plane itself, i.e., the case where all
the functions are identically zero.) In other words, we have the following
double fibration picture:

sr R"

where Σ-manifolds are obtained by lifting certain complex «-folds in
to SF and then projecting them down to R^.
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Remark. In [9] an explicit Weierstrass-type representation formula is
given for the 3-dimensional Σ-manifolds in R 5 . We show in the appendix
that these 3-folds are locally calibrated.

Remark, m-subsets consisting of orbits of real representations of SU(2)
are studied in all codimensions in [9]. These give examples of m-subsets
having the 2 x 2 Cauchy-Riemann m-tableau augmented by zeros as their
m-tableau.

We now prove the rigidity part of III, i.e., that for s, n > 2, C-Clifford
type m-tableaux have unique solution m-subsets up to isomorphism, cor-
responding to complex Grassmannians.

Proof. In G2p+q2p+q+s (s must be even), write

A = (πχ, , π , Jπ{, ,0).

L e t θj = ψp+j-JΨj, θr = ψr, l<j<p,2p+l<r<n = 2p + q.

Take J = {θj, θr} , and Ω = ^ Λ Λ ^ Λ Λ ^ Λ Λ ^ . Taking
derivatives, we have

dθj = - K Λ ψp+j -ψA τp+j + J ( κ Λψj-ψΛ τj)

= -KΛJψp-(ψl9 ,ψj, - ,Jψx,'" ,Jψp,0, , 0 ) Λ τp+j

+ J(κ/\ψj-(ψl9 > ,Ψp,- ,Jψx, ' ,

Jψp,0," , 0 ) Λ τ y ) m o d J Γ

= [/, K] Λ ψj + Γ^ Λ ψk mod J",

where Γj = (τk

p+j + τ*+')Id + (τJ+J - ή)J (notice that Γ] = -Γj

k), and

dθr = -K Λ ψr - ψ Λ τr = T*. Λ ψj mod J?,

where ¥) =-τj

r\ά r

We may write the tableau of this system in block form:

[J,κ] Γ2

Γ? [J,κ]

-'Γfλ

p+1

0

Vrf* ••• r^+? o ... o
It is easy to see this system has a unique integral element.
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Notice that Γj = 0 implies τJ

r, τf+; = 0 (p > 1) which reduces τ
to lie in so(2p) and shows that, at least in this case, adding zeros to an
m-tableau will not provide a more general class of m-subsets. (A general
discussion on adding zeros is given in §5.) To avoid cumbersome notation
we continue the computation for the m-tableau (π{, π2, Jπχ, Jπ2) for
m-subsets in G4 s+4 and the general case will be clear from this one.

In this case the tableau is

/ [J,κ] -txld + t2

\tχld-t2J [J,κ]

where tχ = τ\ + τ\ and t2 — τ\-τ\.
Notice that tχ and t2 occur on every row. To see there is a unique

integral element in this case, we may choose bases such that a zero occurs
in every column as long as s > 2 (e.g., take bases such that J = (Oj ~Q).
Thus on an integral element we must have tχ = t2 = 0. What remains of
the tableau is

f[J,κ] 0 \
I 0 [J,κ])'

which implies [J, κ] = 0 on an integral element.
The prolonged system is defined on the same space with the same inde-

pendence condition and the ideal J ^ = {θχ, θ2, [/, K] , tχ, t2}. Now

dtx = -τ\ A τ\ - τ\ A τ\ + *ψχS A ψ4 - τ\ A τ\ - τ\ A τ\ + 'ψ3S A ψ2,

where S = (BB, and

dtχ = ιψχS AJψ2Λ- '(JψJSΛ ψ2 mod J ^

= Vi[S J J] Λ ψ2 mod J ^ .

Since ψx and ψ2 have independent entries we must restrict the system to
the submanifold of G\{s) x SO(4 + s) on which [S, /] = 0 to get rid of
the torsion. (The equations for dt2 give the same thing.)

The next thing to do is to check if this restriction implies any new
relations:

= [*{Bκ - δB)B + *B(BK - δB), /]

= ['κS + Sκ, J] = ['κ, J]S + S[κ, J],

which already was in J ^ (as ['K: , /] = -[K , / ] ) .
The reader may now check that d[κ 5 / ] Ξ 0 mod J ^ restricted to the

submanifold [S, /] = 0, so J^ restricted to the submanifold [S, /] = 0
is Frobenius.
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Claim. The solutions correspond to complex Grassmannians,
G ( C 2 , C 2 + ί / 2 ) c G 4 l ί + 4

Proof. Without loss of generality we may 'quotient out' by some of the
Cauchy characteristics and redefine the system on W x SO(5), where

W = {BeGL(s, R)\'B = B, [B2, J] = 0,det(B)= 1}.

Claim. Any B eW may be written B = APB0Ά , where

A € Uj(s/2) := {g e SO(ί)| [g,J] = 0],

ίλ,

"s/2 A.

P =

This is true because B must be positive definite hermitian and thus ex-
pressible as B =A{B^)tA which has 2s possible square roots accounted
for by P.

On a solution we have

0 = [K , /] = [A(B~lPA~ιdAPB0 + B~ιdB0 - A~xdA

Bo

lPA lδAPB0)A ι,J],

i.e.,

[A dA + A δA,PJP] =

Notice that Bo does not show up in the equations, so we can reduce
further to define the system on the submanifold of W x SO(s+4) on which
Bo = Id. Now at this point W is orthogonal, so we may as well restrict
the system to SO(s + 4). However, on SO(s + 4) the system is easily
recognized as the structure equations of a copy of U(§ + 2) c SO(s + 4).
Thus the only solution to our system is a complex Grassmannian.

4. m-subsets with special Lagrangian m-tableaux

The only 'classical' m-tableau that remains to be analyzed is the special
Lagrangian m-tableau. We have seen that the m-subsets with the special
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Lagrangian m-tableau in G2 4 are far from rigid, in fact they may be
specified in terms of holomorphic data. (In G2 4 the Cauchy-Riemann m-
tableau is isomorphic to the special Lagrangian m-tableau.) The situation
in higher dimensions is quite different:

Theorem 4.1. Any smooth m-subset with m-tableau isomorphic to a spe-
cial Lagrangian m-tableau is (an open subset of) a special Lagrangian face
(n>2).

Proof Write the m-tableau as A such that (A = A and trace(^) = 0.
Take

j * * = {0 :=ψ - V , θo:=tmce(ψ)}

and
Ω = ψχ A Λ ψ" A ψ2 A Λ ψ" Λ Λ ψ3 A Λ ψ^Z\

Taking derivatives, we have

dθ = -K A ψ - ψ Λ τ + \κ Λ ψ + ψ Λ τ)

= —K Λ ^ - ^ Λ T - ^ Λ K + τ /\ψ mod J^.

Let a = τ - K then we have

(4.1) dθ = aΛψ + ψ A*a mod J = a A ψ - ι(a A ψ) m o d / ,

(4.2) dθ0 = tr(-κ Λ | ^ - ^ Λ T ) Ξ tr(α Λ ψ) mod <J.

Let l<i,j,k,l,m,p,q,t,w<s (= ή). On an integral element

we must have
alJ =

where p1^ = ptj by the symmetry of A^ , p1^ = p1^ because ψ = ιψ, and
no pair of indices = (ss). Equations (4.1) and (4.2) say that C := a A ψ is
such that C = 'C and tr(C) = 0. Substituting for α , C ^ = P
C symmetric says

Λ Ψjm = PwgΨwg Λ Ψti'

Say j ^ / and i φ m, then p ^ = 0 if {k, 1} n {/} = 0 because when
« > 2 there will be an m such that the form ψkι A ψjm will appear only
on the left-hand side of (4.3). Moreover, the term p*£ ψm A ψti on the
right-hand side must have a corresponding term on the left-hand side so
(no sum over i, m)

Σ ij

Pit Ψil Λ Ψjm =
rnt

jm = ZP
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Picking out a single term (no sum)

U * ml ml
Pil Ψil Λ Ψjm = PmjΨmj Λ Ψ\i = 'PmjΨil Λ Ψjm

so p\. = —Pmj for I, m, i, j disjoint, but using a cyclic permutation

(again we need n > 2) we have p1}. = 0 for I, i, j disjoint. Now only

the p"j have not yet been shown to be zero, so aιj = 0 for iφ j . The
trace condition

(4.4)

gives alJ Λ ψ.. = 0, where α" = pj/V,-/ for i < s and as = -^2i<sa
11.

Expanding out (4.4) we see p\\ = 0, so a = 0 and thus there is a unique
integral element.

The prolonged system is defined on the same manifold with ideal

Notice that a — 0 => K — τ => K e so(s), so the system may actually
be defined on SO(2s) because the right GL(s) action only contributes a
redundant orthogonal action to the system. In fact K = τ together with
the original conditions on ψ specifies a Frobenius system for copies of
S U ( J ) c SO(2s) and we may write

\Ψ J

where τ e so(s/2) and ψ is traceless and symmetric.

5. Adding zeros to an m-tableau

Example. The m-tableau

A
_ (a -b 0\
~\b a OJ

has many solution m-subsets including two distinct homogeneous ones,

G(C, C2) c G3 5 , and a degenerate SO(3) orbit of a 3-plane in R5 (by

Theorem 3.10). The reader may check in fact that the differential system

to solve for m-subsets with m-tableau A is involutive with tableau
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One gets a similar result for the m-tableau ιA. This illustrates the claim
in Theorem 3.1.ΠI.D, and the reader can see the general situation from
these two.

These examples might lead one to think that, in general, adding zeros
to an m-tableau may enlarge the class of corresponding m-subsets. There
are two ways to add zeros, 'horizontally' and 'vertically', i.e., given an m-
tableau A for Gn n+s we consider the m-tableaux (A, 0) for Gn+d n+d+s

and (£) for Gnn+W+S.

The minimal submanifolds produced by m-subsets with m-tableaux aug-
mented by zeros are ruled by rf-planes in the case of horizontal addition
of zeros, and osculate to an Rn+W c nn+w+s to second order at each point
in the case of vertical addition of zeros. (In the case that adding zeros does
not produce new classes of m-subsets, the minimal submanifolds produced
by the m-subsets having m-tableaux with zeros are products of minimal
AZ-folds and ύf-planes in the case of horizontal zeros and lie entirely in an
τ%n+w j*n+w+s . .1 poop πf prt'rai prπς "i

Theorem 5.1. If an involutive m-tableau A has characters such that
s{ > 2, and s2 = s{ or s2 = (sx - I), then 'adding vertical zeros' to A
will not enlarge its class of corresponding m-subsets. In particular (s > 2)
adding vertical zeros to the Dirac or Dirac * m-tableaux (except for C-type)
and special Lagrangian m-tableaux does not enlarge the class of solution
m-subsets.

Proof. Say the system for m-subsets with ^4-type m-tableau is J ^ =
{θr}, with independence condition Ω. Then the system for m-subsets
with (φ)-type m-tableau is ^f = {θr, ψ}, with independence condition
Ω, where

ίw\
κo =

where the zero subscript denotes the forms on the large Grassmannian.
Taking the derivative of ψ gives

dψ = —κ2 Aψ - κ4Aψ - ψ Aτ = -κ2 A ψ mod J^.

In particular, on an integral element,

κ2)a A (ψ){ moάJ? =• (κ2)a = Pabψι , Pab - Pba,

Case s{ = s2. Assume we have chosen bases such that the entries of the

first two columns of ψ are all independent. Then it is clear that κ2 = 0

since ψx , ψ2 are all independent. Since no other new forms appear in the
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structure equations, there are no new classes of solutions. If s2 = sχ - 1

then assume all forms in the first two columns are independent except for

ψ] . This implies Q™p = 0, 1 < p < s2, and, by the symmetry in Q,

that only Q™ could be nonzero. Thus (κ2)™ = 0 =* P™b = 0. The only

possible nonzero entries of κ2 are

where the Ca are given constants (were ψ2

ι to depend upon any ψξ , we
would already have κ2 = 0 ) . On the other hand, we must have

where the second equality is because the other P terms must be zero.
The above implies that to have nonzero κ2 we must have C — 0 but

now by rechoosing bases we may assume Cs = 0 which implies κ2 = 0.

Remark. This is the best result of this type one can expect because
adding vertical zeros to the 2 x 2 Cauchy-Riemann tableau does give new
solutions. Thus adding zeros to an m-tableau that is a 2 x 2 Cauchy-
Riemann tableau stacked below any m-tableau will also have new classes
of solutions when zeros are added vertically.

Theorem 5.2. If an involutive m-tableau A is equivalent to an m-tableau
having two rows of independent entries or one having two rows, all of whose
entries are independent but one, and n > 2, then adding 'horizontal ze-
ros' to A will not enlarge its class of corresponding m-subsets. In particu-
lar, adding horizontal zeros to the Dirac or Dirac* m-tableaux {except for
C-type) and special Lagrangian m-tableaux does not enlarge the class of
solution m-subsets.

Proof Write ψ0 = (ψ, ψ), and τ = (J1 \2). Say the system for m-

subsets with ^4-type tableau is J = {θr}, with independence condition
Ω. Then the system for m-subsets with (A 0)-type tableau is <J =
{θr, ψ} . Now proceed as with Theorem 5.1. q.e.d.

A related question to adding zeros is the following: Given G c SO(/ί+ί)
and H cG such that G/H c Gnn+S, and G/H is an m-subset, do there
exist other representations p(G) c SO(Λ )̂ such that p(G/H) c GM N is
an m-subset? This occurs for SU(m) as shown in Theorem 3.10, but the
above theorems suggest that it is a rare phenomenon.

Infinitesimally, if G/H c Gnn+S is an m-subset, write g = ()θm such

that
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where \)χ, ί)2 are not necessarily independent, and

m = (Qι -Ά\

where A is an m-tableau and Qχ, Q2 are linearly dependent on A (Q. =
0 if G/H is symmetric). The question is: Does there exist a representa-
tion p:G-> SO(JV) such that

' * * -A 0\
* * 0 0
A 0 * *

^0 0 * *J
Finding an example of this for a non-Cauchy-Riemann m-tableau would

also give the first example of a non-Cauchy-Riemann m-tableau having
more than one type of solution m-subset. By Theorems 5.1 and 5.2 this
cannot occur for the other faces studied in [8]. One may think of Theorems
5.1 and 5.2 as giving representation-theoretic information about SU(/ι),
G2, and Spin(7).

A representation-theoretic way of thinking of why Theorems 5.1 and
5.2 ought to be true in these cases is that in the relevant representations,
all the weights of the representation interact with the m-tableau under
the Lie bracket. (Compare with the codimension two representations of
SU(n + l).)

Appendix: Calibrating the Σ-manifolds for Σ , a μ ( S O ( 3 ) ) orbit
of a special codimension-two plane

Let μ : SO(3) —> SO(2n + 1) be the unique irreducible representa-
tion. Under the action of μ(SO(3)), not all (2n - l)-planes are the same,
some have a circle in SO(3) whose action preserves the plane. Call these
(2AZ - l)-planes special. Let Σ be the orbit in G2n_{ 2n+{ of a special
(2n - l)-plane. The associated Σ-manifolds are studied in detail in [9].
They are described in terms of holomorphic data on an auxiliary manifold
Jz?, the space of special lines in R2"+1 (compare with Theorem II.3.10).
We have the following double fibration picture:

9- s //(SO(3)) x

where & is the μ(SO(3)) coframe bundle and & ^ CxCP 1 is a quotient
space of & on which the differential system for lifts of Σ-manifolds to &
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are naturally defined. The Σ-manifolds M are obtained by lifting certain
complex curves in Sf to the coframe bundle &, and projecting them to
R 2 " + 1 . Moreover, in [9], we give a local representation formula explicitly
for the n = 2 case, using coordinates adapted to the differential system for
the Σ-manifolds. & is given coordinates z, w, y eC, 5 , / G R , where
z,w9y descend to also give coordinates on 2f. In these coordinates,
solutions are given by complex curves w = h(z), y = h'(z) which are
then lifted to & and projected down to R 5 .

Theorem. Let Σ be a μ(SO(3)) orbit of a special codimension-two
plane. Then the associated Σ-manifolds are calibrated (or twisted cali-
brated) as submanifolds of R 2 n + 1 minus a small subset (where the meaning
of 'small subset* will be made clear in the proof).

Proof. For the moment assume In + 1 = 5 . Following the notation of
[9], let

/ ω°

ω2

ω 3

\ω4 J

\_(ip -π\
2\π -ip)

denote the tautological and connection forms on &, respectively (where
we are using the isomorphism so(3) = su(2)). Let η = ωι + iω2 and
θ = ω 3 + iω4 . Let T 7 denote the quotient manifold ^ / S O ( 2 ) . It has
coordinates z, w, y e C and t e R. Let ΛJj c T be the submanifold
obtained by setting w = h(z), where h(z) is a given holomorphic function
specifying a Σ-manifold M as described above.

On T we have the well-defined quadratic form Q = (ω0)2 H h (ω 4 ) 2

which descends from the pullback of the metric on R5 to &.
Endow Λ with the metric obtained by restricting Q to Λ. This makes

the map Λ Λ R5 an isometry onto its image (where p is the restriction
of the projection T -> R5 ).

Let M be the Σ-manifold given by w = h(z), y = h\z). Notice that
the adapted lift of M to T actually lies in Λ (it is the submanifold of
Λ given by y = h'(z)).

Consider the three-form

Ω := l-a? Λ (η Λ η + θ Λ θ)

which is well defined on T . It has comass one because Ω := dx Λ
(dxι Λ dx2 + dx3 Λ dx4) has comass one and at any point Ω is just Ω
acted on by an element of μ(SO(3)) (which preserves comass).
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Restricted to Λ, Ω has comass less than or equal to one, but in fact
has comass one t

Λ, Ω is closed as
it has comass one because it is a volume form on p ι (M). Moreover, on

dΩ =

but examining the coordinate expressions (4.1) and (4.4) in [9], we see π
is a function times dz, and when restricted to Λ, so is θ. Thus Ω|Λ

defines a calibration on Λ which calibrates p~ι(M) and since p is an
isometry, if it is injective, we may pull Ω back to p(A) via p~ι to get
a nonconstant coefficient calibration on p(A) C R5 which calibrates M.
Thus M is minimizing among submanifolds of p(A). If p is not injective
then Ω may instead define a twisted calibration on p(A) (see [12]). In
this case M is minimizing among submanifolds of p(A) having a lift to
Λ. q.e.d.

The same proof as above works for any of the codimension two cases,
because the coordinate expression for θ was independent of the dimension
of the submanifold.

Remark. These calibrations are reminiscent of, but distinct from, those
used by Murdoch [12] and Lawlor [10]. All are nonparallel, basically cali-
brate one submanifold, and are essentially defined on the normal bundle of
the submanifold of interest and 'pushed down' to Rn . Murdoch constructs
a different local twisted calibration to calibrate the cone on the Veronese
than the one here. As with the calibrations here, his is not defined ev-
erywhere, but he determined the exact set on which his calibration was
not defined. Lawlor constructs nonparallel calibrations to calibrate cones,
which are defined on all of Rn , and is thus able to prove those cones are
globally minimizing. He is able to extend his calibrations to all of RΛ by
having them vanish off a neighborhood of the cone. One might hope that
his methods could be applied to the calibrations here. The nonparallel
calibrations used here are the first used to calibrate anything other than
cones or graphs of hypersurfaces.
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