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ON THE LAPLACIAN AND THE GEOMETRY
OF HYPERBOLIC 3-MANIFOLDS

RICHARD D. CANARY

Abstract

Let N = H3/Γ be an infinite volume hyperbolic 3-manifold which is
homeomorphic to the interior of a compact manifold. Let λQ{N) =
inf spec(—Δ) where Δ is the Laplacian acting on functions on TV. We
prove that if N is not geometrically finite, then λQ(N) = 0, and if N
is geometrically finite we produce an upper bound for λQ(N) in terms of
the volume of the convex core. As a consequence we see that λo(N) = 0
if and only if TV is not geometrically finite. We also show that if N has
a lower bound for its injectivity radius and is not geometrically finite,
then its limit set Lγ has Hausdorff dimension 2.

1. Introduction

In this paper we will study the relationship between the geometry of
infinite volume hyperbolic 3-manifolds and the bottom λ0 of the spectrum
of the Laplacian. We will also study the relationship between spectral
information and the measure-theoretic properties of the limit set. These
relationships have been studied extensively by Patterson (cf. [28], [27])
and Sullivan (cf. [32], [33]), and much of this paper may be regarded as
an extension of their work. Recall that a hyperbolic 3-manifold is said to
be topologically tame if it is homeomorphic to the interior of a compact
3-manifold. Our first result is:

Theorem A. Let N be an infinite volume, topologically tame hyperbolic
^-manifold. Then λo(N) = 0 if N is not geometrically finite. Moreover,
there exists a constant K such that if N is geometrically finite, then

κ

Kvol(C(N)) >
where vol(C(JV)) denotes the volume of N's convex core.

Combining Theorem A with work of Lax and Phillips ([20], [21]) we
show that λ0 detects whether or not a topologically tame hyperbolic 3-
manifold is geometrically finite.
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Corollary B. Let N be an infinite volume topologically tame hyperbolic
3-manifold. N is geometrically finite if and only if λQ(N) / 0.

In a forthcoming paper [5], Marc Burger and the author prove that there
exists a constant G > 0 such that if N is geometrically finite, then

λJN) >

where YO\{JV1(C{N))) denotes the volume of the neighborhood of radius
one of the convex core. (This result is analogous to results of Schoen
[29] and Dodziuk-Randol [13] for the closed and finite volume cases.)
Thus combining this result with Theorem A we see that the volume of the
convex core "controls" λQ. Here is one intuitive explanation for such a
relationship. There always exists a positive harmonic function / such that
Δ/ = -λof - V(-log/) is a bounded vector field whose associated flow
is volume-increasing and the rate of increase at each point is at least λ0.
Outside of the convex core the geometry is exponentially expanding, so it
is easy to construct volume-increasing flows with "large" rates of volume
increase. However, the convex core is more congested, and the thicker the
convex core is the more difficult it will be to construct flows with a "large"
rate of volume increase.

In [32], Sullivan proved that if N = H 3 /Γ is a geometrically finite
hyperbolic 3-manifold, and D is the Hausdorff dimension of the limit set
of Γ, then λo(N) = 1 if D < 1, while otherwise λQ{N) = D(2 - D).
Thus combining Theorem A with the above-mentioned result of Burger
and Canary makes explicit the intuitive relationship between the thickness
(volume) of the convex core and the fuzziness (Hausdorff dimension) of
the limit set. (The basis of this second intuitive link is that the convex
core is the quotient of the convex hull of the limit set by the group action.
It stands to reason that the limit set should be locally complicated if and
only if the convex core is thick.) Thus the bottom of the spectrum of the
Laplacian, the Hausdorff dimension of the limit set, and the volume of the
convex core all serve as measures of "how geometrically finite" N is.

By analogy one would conjecture that the limit set of a topologically
tame hyperbolic 3-manifold which is not geometrically finite had Hausdorff
dimension 2. We remark that it is shown in [8] that the limit set of a
topologically tame hyperbolic 3-manifold either has measure zero or is the
entire sphere at infinity. In this paper we prove the following result.

Theorem C. Let N = H3 /Γ be a topologically tame hyperbolic 3-
manifold with a lower bound on its injectivity radius. If N is not geomet-
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rίcally finite, then the limit set LΓ for Γ\s action on the sphere at infinity
has Hausdorjf dimension 2.

Theorem A and Corollary B hold for analytically tame hyperbolic 3-
manifolds, and Theorem C may be extended to analytically tame hyper-
bolic 3-manifolds with thin parts of uniformly bounded type (see §2 for
definitions). The results will be stated and proved in this generality in the
text.

In §2 we will review the structure of hyperbolic 3-manifolds. In §3 we
will reprove an upper bound on λ0 due to Buser and also derive a prelim-
inary result about the growth of harmonic functions on analytically tame
hyperbolic 3-manifolds. In §4, we will use Buser's upper bound to derive
Theorem A and Corollary B and some other consequences of Theorem A
concerning the critical exponent of the Poincare series and the bottom of
the essential spectrum. In §5 we will prove Theorem C, by showing that
the harmonic function given by Patterson-Sullivan measure has subexpo-
nential growth.

2. The structure of hyperbolic 3-manifolds

Let N be a (orientable) hyperbolic 3-manifold with finitely generated
fundamental group. N may be represented as the quotient of hyperbolic
3-space H 3 by a group Γ of orientation-preserving isometries of H 3 . We
recall that the limit set Lγ of Γ is defined to be the smallest closed Γ-
invariant subset of the sphere at infinity S^ for hyperbolic 3-space. We
will say that N is elementary if Γ is abelian. If TV is nonelementary,
the convex core C(N) of N is defined to be the smallest convex subman-
ifold such that the inclusion map is a homotopy equivalence. Explicitly,
C(N) = CH{LΓ)/T, where CH{Lγ) denotes the convex hull (in H 3) of
the limit set Lγ. (See Maskit [24] for basic definitions in the theory of
Kleinian groups.) The following structural theorem is central to under-
standing hyperbolic 3-manifolds and Kleinian groups.

Theorem 2.1 (Ahlfors' finiteness theorem [1]). Let N be a nonelemen-
tary hyperbolic 3-manifold with finitely generated fundamental group. The
boundary dC(N) of the convex core C(N) is a finite area hyperbolic sur-
face, i.e., there exists a C°-isometric embedding of a finite area hyperbolic
surface into N with image dC(N).

This statement combines Ahlfors' finiteness theorem [1] with Thurston's
observation that the boundary of the convex core is a hyperbolic surface
(see Epstein-Marden [17] or Thurston [34]). Thus, in particular, ΘC(N)
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has area 2π\χ(dC(N))\. If C(N) has finite volume or TV is elementary,
then N is said to be geometrically finite. (If N is elementary we will
say that vol(C(7V)) = 0.) Recall that N is topologically tame if it is
geometrically finite (see, e.g., Marden [23]). We will say that N is convex
cocompact if C(N) is compact (i.e., if N is geometrically finite and has
no cusps).

We will say that a hyperbolic 3-manifold N with finitely generated
fundamental group is analytically tame if C(N) may be exhausted by a
sequence of compact submanifolds {CJ such that Ct c Cj if i < j ,

UC° = C(N) (where C? is the interior of Ci considered as a subset
of C(N))9 and there exist K and L such that the boundary dC( of
C. has area at most K and the neighborhood of radius one of dCt has
volume at most L for all /. We only require that our submanifolds Ci

have Lipschitz boundary. This regularity assumption is natural, as the
boundary of the convex core itself is always a Lipschitz submanifold but
is not in general a C1-submanifold (see Epstein-Marden [17]).

In [8] the following theorem is proved.
Theorem 2.2 [8]. If N is a topologically tame hyperbolic 3-manifold,

then N is analytically tame.
In the same paper [8] the following generalization of a result of Thurston

[34] is established.

Theorem 2.3. If N is analytically tame hyperbolic 3-manifold, then

either LΓ = S^ or Lγ has measure zero. Moreover, if LΓ = S^, then Γ

acts ergodically on S1^ .
Work of Bonahon guarantees that there is a large class of hyperbolic

3-manifolds which are topologically tame. (This ordering is historically
misleading—Theorem 2.4 was actually used to prove Theorem 2.2; see
the remarks at the end of the section for a further discussion.) Let Γ
be a discrete subgroup of the group of isometries of hyperbolic 3-space.
A finitely generated group Γ of hyperbolic isometries is said to satisfy
condition (B) if it is not cyclic, and whenever Γ = G * H is a nontrivial
free decomposition of Γ there exists a parabolic element γ which is not
conjugate to any element of G or H. In particular, condition (B) is
satisfied if Γ is freely indecomposable.

Theorem 2.4 (Bonahon [3]). If N = H 3 /Γ is a hyperbolic 3-manifold
and Γ satisfies condition (B), then N is topologically tame.

It will be necessary in the proof of Theorem C to make use of the
thick-thin decomposition of a hyperbolic 3-manifold. We recall that the
injectivity radius of TV at a point x, denoted inj( c), is defined to be



ON THE LAPLACIAN AND THE GEOMETRY OF HYPERBOLIC 3-MANIFOLDS 353

half the length of the shortest (homotopically nontrivial) loop through
x . There exists a constant ./#, called the Margulis constant, such that if
ε < Jί and

then every component of N t h i n ( e ) is either

(a) a torus cusp, i.e., a horoball in H 3 modulo a parabolic action of
ZθZ,

(b) a rank one cusp,i.e., a horoball in H 3 modulo a parabolic action of
Z , or

(c) a solid torus neighborhood of a geodesic
(see Thurston [34] or Morgan [25]). We also define

We further remark that if ε is chosen to be less than the Margulis constant,
that there exists an L > 0 (depending only on ε) such that if σ is any
geodesic in N, then the distance (in σ) between any two components of
σ Π Nthin,ε) is at least L. (When reading about hyperbolic 3-manifolds it
is often easier, on a first reading, to assume that there are no parabolics
or even that there is a uniform lower bound on injectivity radius. This
caution applies equally well to this paper, especially the proof of Theorem
C.)

We furthermore say that N has thin parts of uniformly bounded type if
there exists / such that if S is any component of dNihin{ε)Γ\C(N), then S
has diameter less than / . In particular, if N contains any rank-one cusps,
then their intersections with the convex core have finite volume; such rank-
one cusps are said to be bounded or doubly cusped in the language of
Kleinian groups.

Remarks. (1) Actually Bonahon [3] proved that hyperbolic 3-manifolds
satisfying condition (B) are geometrically tame. The main theorem of [8]
uses this theorem to prove that hyperbolic 3-manifolds are topologically
tame if and only if they are geometrically tame. Analytic tameness is a
consequence of geometric tameness. We have developed the structure in
this way to avoid introducing simplicial hyperbolic surfaces and the more
technical points in the definition of geometric tameness, none of which
is necessary for the work in this paper. We urge the reader to consult
Bonahon [3], Thurston [34], or Canary [8] for a discussion of geometric
tameness.

(2) It is conjectured that all hyperbolic 3-manifolds with finitely gener-
ated fundamental groups are topologically tame, and hence both geometri-
cally and analytically tame. However, there are hyperbolic 3-manifolds
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which are known to be analytically tame but which are not known to
be topologically tame. In particular, Culler and Shalen [12] proved that
there is a dense Gδ of analytically tame manifolds in the boundary of the
Schottky space of genus 2.

(3) Condition (B) is really a topological condition. Let Λ̂ 0 be obtained
from N by removing the noncompact components of N t h i n ( ε ) . There

exists a compact submanifold C of N® such that the inclusion map is a
homotopy equivalence and C intersects each component of the boundary
in either an annulus or a torus (see Feighn-McCullough [18]). Γ satisfies
condition (B) if every compressible curve on the boundary dC of C
intersects the boundary of a noncompact component of NMn^ . (A curve
in d C is said to be compressible if it is homotopically trivial in C, but
not in dC.)

3. Buser's upper bound for λ0

Let N be a complete Riemannian «-manifold (without boundary). We
recall some equivalent definitions of λo(N) (in this paper the Laplacian
Δ/ = div(grad/) is a negative definite operator):

λo(N) = sup{λ I 3/ e C°°(N) s.t. Δ/ = -λf and / > 0}

ά- inf

= inf spec(-Δ).

We also recall that the Cheeger constant h(N) is defined to be the infi-
mum, over all compact «-submanifolds A of N (with Lipschitz bound-
ary), of vo\n_χ(dA)IYO\{A) . Buser [6] proved that if N has Ricci curva-
ture bounded from below, then h(N) gives an upper bound for λo(N).
(In Cheeger's original paper [9] he proved that the Cheeger constant gives
a lower bound on λ0 with no constraints on the geometry of the manifold,
to be precise λo(N) > h(N)2/4.) We give a new proof of this upper bound
which also yields a iΛbound on the growth rate of harmonic functions
on analytically tame hyperbolic 3-manifolds.

Theorem 3.1 (Buser [6]). If the Ricci curvature of a complete Rieman-
nian n-manifold N {without boundary) is bounded below by -(n - \)κ2,
then

λo(N)<Rκh(N),

where R depends only on n .
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Proof of3.1. We may assume, by scaling the metric, that K = 1. Then
Cheng's comparison principle [10] assures us that λo(N) < (n-l)2/4. Let
/ be a positive eigenfunction of the Laplacian with eigenvalue -λ0 (see
either Cheng-Yau [11] or Sullivan [38] for a proof that / exists). Now
the infinitesimal Harnack inequality of Yau [36] implies that | ^ ( x ) | < R
for some R depending only on n and all x £ N.

Now consider log/ Vlog/ = V/// and

Let A be a compact n-submanifold of N. Then by Stokes' theorem,

/ Δ ( - l o g / ) = / - ^ n.
JA

But

dA

and

so
JdA

Δ(-log/)>Vol(Λ)

^•hKRvoX^dA),

vol A3 A)

\o\(A) ~ °'
which completes the proof, q.e.d.

When N is analytically tame and h is a positive harmonic function,
the same argument applies to prove:

Proposition 3.2. If N is an analytically tame hyperbolic 3-manifold
and h is a positive harmonic function on N, then

2

< 00.

JC(N)

VΛ

Proof of 3.2. Let Ct be a sequence of compact submanifolds exhaust-
ing C(N) such that dCi has area less than K. Then

2

ί A(-\ogh)= ί ^ =[ - ^ n <area
JQ Ja n JdCi

 n

Therefore,

JC(N)
<KR< oo.

Remark. It is a consequence of Theorem 1.2 in Li-Yau [22] that if
u(x, t) is any positive solution of the heat equation (Δ- §-t)u(x, t) = 0 on
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Nx(O, oo), where N is a complete noncompact Riemannian n-manifold
without boundary whose Ricci curvature is bounded below by -(n - 1),
then

|Vκ|2 aut na2(n- 1) na2

- l ) + 2t

for all a > 1. If / is a positive eigenfunction of the Laplacian with

eigenvalue -λ on N, then u(x, t) = e~λtf(x) is a positive solution of

the heat equation. Applying the above inequality to u and letting a = 2

and t go to oo, we obtain

Therefore in our proof of Buser's theorem we may take R to be

ln(n — 1). This appears to improve on the constant obtained in

Buser's original paper [6].

4. Proofs of Theorem A and Corollary B

Theorem A. Let N be an infinite volume, analytically tame hyperbolic
^-manifold. Then λQ(N) = 0 if N is not geometrically finite. Moreover,
there exists K > 0 such that if N is geometrically finite, then

Proof of Theorem A. We first suppose that C(N) has infinite volume
(i.e., that TV is not geometrically finite). Let {C } be a collection of
compact submanifolds exhausting C(N) such that area(dC ) < K for
some K. In this case, lim j W o ovol(C f) = oo, so h(N) = 0. Therefore,
applying Buser's Theorem 3.1, we see that λQ(N) = 0.

If TV is geometrically finite, let Ce = C(N) n TVthick(ε). Since C(N) n

t̂hick(ε) ^s compact, TVthin(ε) has only finitely many components, so there

exists ε0 > 0 such that if e < ε0 then all the components of TVthin(e) are

noncompact. Let T be a noncompact component of TVthin(ε) If T is a

torus cusp, then it is isometric to T x [c, oo) with the metric

ί/ί2 = -
t1 '

where ds2

Ti is a Euclidean metric on T2 and c > 0. If T is a rank-one
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cusp, then T Π C(N) is isometric to A x [c, oo) with metric

where dsA is an Euclidean metric on the annulus A and c > 0. If ε < ε 0,
then aCε - flC(tf) = dNχhin{ε) n C(tf), so

a r e a ( d C - dC(N)) =[-) a r e a ( 0 C - dC(N)),
e \«o/ °

which implies

limarea(aC) = aτea(dC(N)) = 2π\χ(dC(N))\,

while
limvol(Cε) = vol(C(iV)).

Therefore,

h(N)<

and one may again use Theorem 3.1 to complete the argument, q.e.d.
In a series of papers Lax and Phillips ([20], [21]) have studied the spec-

trum of the Laplacian on finite volume geometrically finite hyperbolic
manifolds. In particular, they proved that λ0 Φ 0. (One may also see
that λ0 Φ 0 for geometrically finite hyperbolic 3-manifolds using the tech-
niques of Patterson and Sullivan; see, for example, [32], [33].) We state a
portion of their results.

Theorem 4.1 (Lax and Phillips). Let N be an infinite volume geomet-
rically finite hyperbolic 3-manifold. The intersection of spec(—A) with the
interval [0,1) consists entirely of a finite number of point eigenvalues {of
finite multiplicity) all lying in (0,1), and there are no point eigenvalues
in [1, oo). Moreover, the spectrum is absolutely continuous and of infinite
uniform multiplicity in [1, oo).

We combine this with Theorem A to obtain:
Corollary B. Let N be an infinite volume analytically tame hyperbolic

^-manifold. Then λo(N) = 0 if and only if N is not geometrically finite.
We recall that the critical exponent of the Poincare series of a Kleinian

group Γ is defined to be

δ = inf < s
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This critical exponent is closely related to λ0 . In fact (see Sullivan [33]),
if λQ = 1 then δ < 1, otherwise δ > 1 and λQ = δ(2 - δ). Therefore
Theorem A implies:

Corollary 4.2. If N = H3/Γ is analytically tame but not geometrically
finite, then the critical exponent of its Poincare series is 2. Moreover, if N
is geometrically finite and λo(N) Φ 1, then

K\χ(dC(N))\
~ vol C(N) '

Let nk denote the number of elements γ of Γ such that γ(0) is con-
tained in the ball of (hyperbolic) radius k about 0. Then

δ = l imsup—τ-£.

If N is further convex cocompact, then there exist constants a and A
such that aekδ < nk < Aekδ (see Sullivan [30]). So we can interpret
Corollary 4.2 as an asymptotic estimate on the number of lattice points in
the ball of radius k in terms of the volume of the convex core.

We recall that the discrete spectrum of N is defined to be the isolated
points in spec(-Δ) which correspond to eigenvalues of finite multiplicity.
The essential spectrum of N is the complement of the discrete spectrum
in spec(-Δ). (See Donnelly [14] for a discussion of the essential spec-
trum.) One direct consequence of Lax and Phillips' result is that the bot-
tom λ™s(N) of the essential spectrum is 1, whenever N is geometrically
finite. As a consequence of Theorem A we obtain:

Corollary 4.3. If N is analytically tame, but not geometrically finite,
then λ™{N) = 0.

Proof of '4.3. Theorem A assures us that 0 e spec(-Δ). But it is a result
of Yau [37] that there are no (nonzero) harmonic functions in L (N) when
TV is a complete infinite volume Riemannian manifold. Therefore 0 is in
the essential spectrum, q.e.d.

Another consequence of Theorem A and Lax and Phillips' result is:
Corollary 4.4. If N is geometrically finite and

then N has nonempty point spectrum.
Remarks. (1) If N is a geometrically finite hyperbolic 3-manifold,

then there exists a positive eigenfunction / such that Δ/ = -λof and
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where 1 < d < 2, and v is a probability measure on the sphere at infinity
for the Poincare ball model for H 3 (see Sullivan [30], Patterson [28],
or Nicholls [26]). In particular, |V///| < 2. Therefore, returning to the
proof of Buser's theorem, we see that λQ(N) < 2h(N), so that the constant
K in Theorem A may be taken to be 4π . Notice that the topological term
\χ(dC(N))\ is necessary in the statement of Theorem A, since when one
passes to a finite cover of a geometrically finite hyperbolic 3-manifold λQ

remains the same.

(2) In [31] Sullivan proves that λo(N) = 0 when N is a "hyperbolic
half-cylinder" (see remark (1) at the end of §5 for the definition of a
hyperbolic half-cylinder and a discussion of Sullivan's work). Let M be
a hyperbolic 3-manifold which fibers over the circle. C. L. Epstein [16]
proved that λo(N) = λ™s(N) = 0 if TV is the cover of M associated to
the fiber subgroup. In both cases the manifolds involved are known to be
topologically tame.

(3) In [15] Doyle shows that there exists Y > 0 such that if Γ is a
classical Schottky group, then λQ(N) > Y, where N = H 3 /Γ. Therefore,
Theorem A implies that vol(C(JV)) < κ(ϊg - 2)/Y, where g is the genus
of the classical Schottky group. We can interpret this as a quantitative
version of the fact (see Jorgensen-Marden-Maskit [19]) that all algebraic
limits of classical Schottky groups are geometrically finite. Recall that Γ
is a classical Schottky group of genus g if there exist g mutually disjoint
pairs of circles in the sphere at infinity such that Γ is generated by a set of
g Mόbius transformations each of which takes the interior of a circle to
the exterior of its partner circle. In this case, the neighborhood of radius
1 of C(N) is a handlebody of genus g .

(4) If N is convex cocompact and λQ(N) = 1, then Γ is either a Schot-
tky group (i.e., the neighborhood of radius 1 of C(N) is a handlebody)
or a Fuchsian group (i.e., C(N) is a totally geodesic surface) (see Sullivan
[30] or Braam [4]). Presumably, the case with cusps is equally restrictive.

5. The Hausdorff dimension of the limit set

In this section we prove that the limit sets of geometrically infinite, ana-
lytically tame hyperbolic 3-manifolds with thin parts of uniformly bounded
type have Hausdorff dimension 2. If the limit set is not all of S , then
such limit sets provide naturally arising examples of sets with measure
zero but Hausdorff dimension 2. This phenomenon was first studied by
Sullivan [31], who proved this result for "hyperbolic half-cylinders" (see
the remarks at the end of the section for a discussion of Sullivan's work).
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Theorem C. If N = H3/Γ is an analytically tame hyperbolic ^-manifold
with thin parts of uniformly bounded type which is not geometrically finite,
then its limit set Lγ has Hausdorff dimension 2.

Proof of Theorem C. The first step in the Patterson-Sullivan program
is the construction of a probability measure μ on S^ (called Patterson-
Sullivan measure) supported on the limit set such that

where δ is the critical exponent of the Poincarέ series, E is any Borel

subset of the sphere, and γ is any element of Γ. (All calculations are

done in the Poincare ball model for hyperbolic 3-space.) We also recall

that if v is any probability measure on S1^ and d e [0, 2], then we may

define a function φv d on H 3 , where

being a hyperbolic isometry taking x to 0. Explicitly,

φv d is then a positive eigenfunction of the Laplacian with eigenvalue
d(d - 2). When μ is the Patterson-Sullivan measure on Lγ and d = δ ,
condition (*) guarantees that φ δ is equivariant with respect to Γ. Re-
call from Corollary 4.2 that in our case δ = 2, so φμ 2 descends to a
positive harmonic function on TV. See Sullivan [30], [32], Patterson [28],
or Nicholls [26] for a discussion of Patterson-Sullivan measure.

Our proof depends on the following result of Sullivan (see Theorem
2.15 of [33] or [31]) whose proof we will review. Recall that if φ is a
function on H 3 , we define its exponential growth rate to be

If e(φ) < 0, then φ is said to have subexponential growth.

Proposition 5.1 (Sullivan). Let v be a probability measure on 5 ^ , and

φ{x) — JS2 \aχ\
2 dv . If φ has subexponential growth, then the support of

v has Hausdorff dimension 2.

Proof of 5.1. If { € S1^, let v(ξ, r) denote the ι/-mass of a disk
B(ζ, r) of (spherical) radius r about ξ. Given ε > 0 choose T(ε) such
that if d{0, x) > T(ε) then φ(x) < e

εd{0'x).
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Lemma 5.2. There exists C > 0 such that if r < e~τ{ε) and < J G S ^ ,

then v(ξ,r)<Cr2~ε.
Proof of 5.2. Let σ(ξ) denote the geodesic ray from 0 to ξ9 and let

p(ξ, r) denote the point along this ray at a distance of - log(r) away from
the origin. Then p{ξ, r) = ((1 - r)/(l + r))ζ, so

If ξ e B{ξ, r), then |{ - p(ξ, r)\ < 3r. Moreover

If ξ e B(ξ9 r) and ap is a hyperbolic isometry taking p(ξ, r) to 0, then

since r < 1. Therefore,

Φ{p(ξ,r))> J \dp\du2

which implies

u(ζ, r) < Slr2φ(p(ξ, r)) < 8 l Λ " ε l o g r = 81r2" ε. q.e.d.

If {B(ξ, r()} is a covering of the support of v by a countable collection

of balls of radius r. < e~τ^ centered at ζ., then

which shows that supp(z/) has positive (2-ε)-dimensional Hausdorff mea-
sure. In particular, the Hausdorff dimension of supp(ι/) is at least 2 - ε.
But since this holds for all ε > 0, supp(ϊ^) has Hausdorff dimension 2,
and hence Proposition 5.1 is proved.

The proof of Theorem C is then completed by the following proposition.
Proposition 5.3. Let N be an analytically tame hyperbolic ̂ -manifold

with thin parts of uniformly bounded type which is not geometrically finite,
and μ its associated Patterson-Sullivan measure. Then φμ2 has subexpo-
nential growth.

Proof of 53. Throughout this proof we will fix a value of ε > 0 which
is less than the Margulis constant. For convenience we will assume that
0e C(N)Π N t h i c k ( ε ) , and φ will serve as shorthand for Φμt2-

We will need the following easy consequence of elliptic theory:
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Lemma 5.4. Given any δ > 0 and ε > 0, there exists A > 0 with the

following property.
x e ^thick(e)' and
\ψ{x)\>δ,then

y ,
If M is any complete hyperbolic 3-manifold,

is any positive harmonic function on M such that

/ h
> A.

Proof of 5 A. Since x e Mύύck.e, we may assume that M — H and

x = 0. Suppose that the lemma is false. Then there exists a sequence un

of positive harmonic functions on H 3 such that un(0) = 1,

VM,
> δ, and

The Harnack inequality [36] assures us that I - ^ M I < R for some R > 0,

all n , and all x e H 3 , so that un(x) < e

Rd{0'x) for all x e H 3 . Therefore,
by elliptic theory (see Aubin [2] for example), there exists a subsequence
{Uj} which converges in the C1-topology to a positive harmonic function
u. But this would imply that

U
> δ and

VM

M
= 0,

which contradicts the fact that u is C°°, and completes the proof of
Lemma 5.4. q.e.d.

We now recall, from Proposition 3.2, that

2

~ΊΓ <0°'
C(N) Ψ

Thus | ^ ( J C ) | goes to 0 uniformly on C(N)nNihick,,, i.e., given δ > 0,

there exists a compact submanifold Yδ of C{N) n Nthick,ε) such that

\^(x)\<δ on {C(N)nNthick{ε))-Yδ. Let Mδ denote max{0(x) \xeYδ}.
Let L > 0 be such that if σ is any geodesic in N, then the distance (mea-

sured in σ) between components of σn7Vthin(e) is at least L. Let / > 0 be

a uniform bound on the diameter of each component of dNχh{,ε) nC(N).

Lemma 5.5. // x e C{N) n N t h i c k ( e ) , ^ «

φ(x) < (Mδe )e ι ,

where Cx = 1 + / / L .
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Proof of5.5. Let x e C(N) Π N t h i c k ( ε ) , and let σ be a path joining 0
to x and lying entirely in C(N) Π N t h i c k ( ε ) . We may integrate φ, over the
portion of σ which does not lie in Yδ , to obtain

φ{x)<M/1(σ\

where l(σ) denotes the length of σ . Now let c be the shortest geodesic

joining 0 to x notice that σ lies entirely in C(N) and l(σ) = d(0, x).

Now a intersects at most 1 + d(0, x)/L components of N t h i n ( ε ) . We

may replace each component of σ Π Nth{,, by a path lying entirely in

cWthin(ε) Π C(N) of length of most / to form a new path σ joining 0 to

x , lying entirely in C(N) Π Nχhick{ε), and having length at most

d(0, x) + (l + d ^ x Λ j = cχd(0, x) + /.

(Notice that the new path σ need not be homotopic to the original path.)
Therefore,

1φ(x) < Mδe < Mδe

proving Lemma 5.5. q.e.d.
Let R: N -+ C(N) denote the nearest point retraction, i.e., R(x) is the

nearest point of C(N) to x (see Canary-Epstein-Green [7] or Epstein-
Marden [17] for a discussion).

Lemma 5.6. If R: N —• C(N) is the nearest point retraction and 0 e
C{N), then rf(0, R(x)) < d(0, x) and φ(x) < φ(R(x)) for all xeN.

Proof of 5.6. We may assume that x e N-C(N). Let P be the totally
geodesic hyperplane which passes through R(x) and is perpendicular to
the geodesic segment xR(x)) through x and R(x). Notice that C(N)
lies entirely on one side of P (see Epstein-Marden [17]). The geodesic
segment 0R(x) lies entirely within C(N) and thus makes an obtuse angle
with the geodesic segment xR(x). Therefore by considering the geodesic
triangle with vertices 0, x, and R(x) we see that d(0, R{x)) < d(0, x).

We will now see that \aχ(ξ)\ < \<*R{x)(ζ)\ for all ξ e Lγ, which clearly

implies that φ(R(x)) > Φ(x). If ξ e LΓ, then the geodesic half ray R{x)ξ

lies entirely in C(N) and is perpendicular to the horoball

\y-ξf -tfj
based at ζ and passing through R(x). Therefore, since R(x)ξ makes an
obtuse angle with xR(x), we have
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* 1*1 l lft(χ)l

which completes the proof of Lemma 5.6. q.e.d.

We now deal with compact components of ( )

Lemma 5.7. If T is any compact component of N t h i n ( ε ) and x e T,

then

φ(x) < (Mse
S{C>J+J))eC>δdi°'X).

Proof of 5.7. Let S be the boundary of T. The maximum principle
(cf. Aubin [2]) implies that the maximum of φ over T occurs at a point
x on S. Lemma 5.6 shows that x e S Π C(N) (since if y e Γ, then
R(y) G T). Consider σ , the shortest geodesic joining 0 to x . Notice that
σ lies entirely within C(N), and let y be the first point of intersection of
σ with T. Since y is within / of x, we have d(0, x) < d(0, x) + J.
We may then apply Lemma 5.5 to see that

xι \ ^ Mi ~\ ^ ι\jf δ J \ C]δd(0,x)+C.Jδ ,Ά/f δ{CxJ+J)λ C,δd(0,x)

φ(x) < φ(x) < (Mδe )e λ κ } ι = (Mδe
 κ ι })e ι ,

proving Lemma 5.7. q.e.d.
We now need only deal with noncompact portions of N t h i n ( ε ) . In §2 of

[32] Sullivan establishes that the eigenfunction corresponding to Patterson-
Sullivan measure behaves roughly like e ( 2 ~ ^ ( 0 ' x )

 O n torus cusps and like

e(\-δ)d(0,χ) o n r a n k _ o n e C U S p S of bounded type (see also Patterson [27]).
To both be precise and avoid introducing the construction of the Patterson-
Sullivan measure we will use an explicit version of Sullivan's result, which
is obtained in the proof of Theorem 3.5.9 in Nicholls [26].

If M is any complete hyperbolic 3-manifold and T is any noncom-
pact component of Mχhin,ε) having boundary S, then there exists a map
Fτ: T -+ S which takes a point x e T to the nearest point on S. (If
Γ^ is a group of parabolic elements preserving oo in the upper half-
space model for H 3 and T is isometric to {(z, t)\t > l j /Γ^, then
F(z,t) = (z,l).)

Lemma 5.8. Let M be a complete hyperbolic 3-manifold, v its associ-
ated Patterson-Sullivan measure, and T a bounded cusp of rank k. Then
given any point y in the boundary S of T and any a > 0 there exists D
such that if p e F~ι(y) then

where δ is the critical exponent of the Poincare series.
We then improve this slightly to obtain:
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Lemma 5.9. If T is any noncompact component of N, then given any
a > 0 there exists B(T, a) such that if x e T n C(N), then

φ(x)<B(T,a)eadi°'x).

Proof of 5.9. Pick y e S Π C{N), and let D be such that if

p € F~\y), then φ(p) < Dead(y'p). If x e T n C{N), then there

exists a point x e ^ ' ( y ) such that d(x,x) < J. Now notice that

d(x,y) < d(0,x) + 2J, therefore φ(x) < De

a(d(θ,χ)+2J) ^ β u t ήnc&

\ψ(y)\ < R for all y e N and d(x,x)<J,

φ{x) <eRJφ{x) <DeRJ+2aJead(0'x),

from which we obtain the assertion in Lemma 5.9. q.e.d.
(Notice that this is the only point at which we have used the construction

of Patterson-Sullivan measure; if TV has no cusps, then the proof applies
when μ is any measure supported on the limit set satisfying condition

(*)•)
Let B(Cχδ) denote the maximum of B(T, Cχδ) taken over the (finitely

many) noncompact components of N t h i n ( e ) . Recall from Lemma 5.6 that
φ(x) < φ(R(x)), and from Lemma 5.2 that d(0, x) < d(0, R{x)). Thus,
by combining Lemmas 5.5, 5.7, and 5.9 we see that

φ(x) < φ(R(x)) < (Mδe
δ{CιJ+J) +B(Cχδ))eC'δφ'x)

for all points x e N. Therefore, e (φ) < Cx δ , but since this is true for all
δ > 0, e(φ) < 0. This completes the proof of Proposition 5.3 and hence
of Theorem C.

Remarks. (1) Let N be a hyperbolic 3-manifold homeomorphic to
S x R whose convex core is homeomorphic to S x [0, oo) and which has
a uniform lower bound on its injectivity radius. N is said to be a "hyper-
bolic half-cylinder" if there exists an embedded surface S, homotopic to
S x {0} , such that if p(x) denotes the distance from x to S, there exists
K such that given any n there exists d e[n, n+ 1] such that the portion
of p~l(d) contained in the convex core has diameter less than K. With
these assumptions, Sullivan proves that φ has linear growth on the convex
core, and that Patterson-Sullivan measure is ergodic, hence unique.

(2) Examples of topologically tame hyperbolic 3-manifolds which are
not geometrically finite but do have a lower bound on their injectivity
radius may be given by using the techniques of Thurston [35] or Jor-
genson. The space QF(S) of geometrically finite hyperbolic structures
without cusps on S x R is parametrized by F(S) x <T(S), where ^(S)
denotes the space of marked hyperbolic structures on the closed surface
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S of genus g > 2. If (σ, τ) is any point in QF(S), and φ is any
pseudo-Anosov homeomorphism of S, then the sequence of hyperbolic
manifolds (σ, φn(τ)) converges, both geometrically and algebraically (at
least up to subsequence), to a topologically tame hyperbolic 3-manifold
with a lower bound on its injectivity radius. These examples have limit
sets of measure zero. (Recall that a homeomorphism φ: S —> S is said to
be pseudo-Anosov if it is not homotopic to a finite order homeomorphism
and no finite collection of disjoint simple closed curves on S is preserved
up to isotopy by φ.) This construction provides a (6g - 6)-dimensional
space of hyperbolic 3-manifolds with a lower bound on there injectivity
radius, however one still expects such examples to be rare in the boundary
of QF(S).
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