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ON THE SPECTRAL GAP
FOR COMPACT MANIFOLDS

PAWEL KROGER

1. Introduction

We aim to give lower bounds for the spectral gap of the Laplace operator
on a compact Riemannian manifold in terms of a lower bound for the Ricci
curvature and an upper bound for the diameter of the manifold.

We apply the maximum principle technique to |V^|2 - G(φ) for ap-
propriate auxiliary functions G. The auxiliary functions are chosen in
such a way that the above quantity vanishes identically if φ is replaced
by an eigenfunction of an appropriate Neumann boundary problem. For
the case of manifolds with nonnegative Ricci curvature it is sufficient to
consider radial eigenfunctions for annular regions in constant curvature
spaces.

Our approach seems to yield better results than techniques using isoperi-
metric inequalities (cf. [1]). If additional information about the median
value of an eigenfunction is known, a sharper estimate can be obtained
which, in particular, improves the result by Zhong and Yang (see [11] and
[6], §4]). Our basic examples show that the estimates are in some sense
sharp.

2. Statement of the basic gradient estimate

We obtain our basic estimate by comparison with a Neumann problem
on a manifold with boundary. The manifold is constructed using Fermi
coordinates on a sphere of constant curvature with sufficiently small di-
ameter. This construction is also closely related to the proof of the Levy-
Gromov isoperimetric inequality (see [3], §§XXIL8 and XII.9]). We adopt
the notation of ChaveΓs book.

Let a dimension n > 1, a diameter d, and a constant Ricci curvature
R be given. We set K = R/(n - 1 ) . Suppose that the condition d < π/y/ϊc
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is fulfilled if R > 0. We set

Cκ{t) = cos(Vκt), Sκ(ή = (1 /Vic) sin(Vict) for K > 0,

Cκ(t) = coshiV^ict), Sκ(t) = (I/Λ/ 1 1* 7) sinhiV^Kt) for K < 0,

C0(0 = 1, SQ(t) = t

for every /. Let δ < 0 and </ > 0 be given such that Jκδ(t) =

(C^ίί) - ίS'JC(ί))π~1 is nonnegative on [-d/2, d/2]. We will consider a

manifold M^ δ d d with boundary containing a hypersurface M which

is isometric to an (n - l)-dimensional sphere S^"1 of constant curva-
ture, and with diameter ds which will be specified later. The manifold
M^ δ d d is up to isometry uniquely determined by the conditions that
the exponential map Exp (cf. [3, p. 319]) based on the normal bundle
JVM is a diffeomorphism from {ζ e JVM\ |£| < d/2} onto the interior of
M^ δ d d , and that the Riemannian metric ds on M^ δ d d is given
by ' ' ' S

ds\Έjφtξ) = dt2 + \{CK - δSκ)(t)dp\2

for every vector ξ from a connected component of the unit normal bundle
SWM c JVM and a generic element dp of the tangent spaces of S^" 1.
We consider a nonconstant solution ψ of the Neumann boundary value
problem

dψ

Tn
= 0

amiιR,δ,d,ds

for the smallest possible eigenvalue μ . For sufficiently small values of ds

the eigenfunction ψ can be given by a function ψ\ δ d on [-d/2, d/2]

as follows (notice that μ — μ(n, R, δ, d) and ψn

R δ d do not depend on

ψ(Exp ίί) = ^ , rf(/) for every ί € [ ~ , ^

Moreover, ψ\ δ d is an eigenfunction for the first nontrivial eigenvalue
μ of the following Sturm-Liouville equation:

(1)

with Neumann boundary conditions. The relations among the quantities
n, R, δ, d, and μ will be studied in the §§4 and 5. We normalize ψ\ δ d

by ψRiδfd{-d/2) = 1. Notice that d < π/φc for K > 0.
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We remark that in the case of positive Ricci curvature R we could

also define the function ψn

R δ d by means of the first nontrivial "radial"

eigenfunction on M^ δ d d for ds = π/y/ic. For this choice of ds the

manifold M^ δ d d is isomorphic to an annular region in the w-sphere

with constant sectional curvature R/(n - 1). Similarly, we could consider

annular regions in Euclidean space instead of M^ δ d d for R = 0 and

δ^O.
Our basic result can be stated as follows.
Theorem 1. Let M be an n-dimensional compact Riemannian mani-

fold with Ricci curvature greater than or equal to R. Let φ be an eigen-
function on M for the smallest positive eigenvalue λχ. Suppose that we
are given a function ψn

R δ d and a scalar a such that the eigenvalue μ =
μ(n ,R,δ ,d) for ψ\ δ d coincides with λχ and range(^)crange(α^ δ d).
Then

\Vφ(x)\2 < \{θLψn

Rδ)d)'\2 o {otψn

Rδd)~X o φ(χ) for every xeM,

where ((aψ)~ι denotes the inverse function of aψ, and | ( α ^ ) 7 | 2 denotes
the square of the real number \(aψ)'\.)

The proof of Theorem 1 is the objective of §3.
Corollary 1. Suppose that in the situation of the theorem the stronger as-

sumption range(^) = range(o:^ δ d) holds. Then it follows that diam(Λf)
> d, where diam(Λf) denotes the diameter of M.

Proof The proof is a consequence of the well-known argument which
considers a shortest geodesic joining a maximum and a minimum point of
the eigenfunction φ (cf. for instance [6] or [7]).

Remarks. 1. We will see in §6 that it is also possible to give an estimate
of the diameter of M without special assumptions on the range of an
eigenfunction on M.

2. For any d > d we can choose a sufficiently small ds such that
M^ δ d d can be imbedded in a rotational symmetric compact manifold

M with diameter less than d and Ricci curvature greater than or equal
to R. For an appropriate choice of M we can deduce from theorems on
the continuous dependence of the solutions of Sturm-Liouville equations
from a parameter that the first nontrivial eigenvalue for the Laplacian
on M and the range of the first eigenfunction are arbitrary close to the
corresponding quantities for M^ δ d d . It follows that the bound of
Corollary 1 is essentially sharp.
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3. The maximum principle technique

Proof of Theorem 1. We can consider ψ = ψ^ δ d as the solution of
an initial value problem for the Sturm-Liouville equation (1) if we are
given the values ψ(0) and ψ'{Q). The interval (-d/2, d/2) can then
be characterized as the maximal interval containing the origin such that
(ψx δ d)' is different from zero on that interval.

From the standard theorems on the continuous dependence of the solu-
tions on the coefficients of an ordinary differential equation it follows that
the endpoints of the maximal interval containing the origin such that on
that interval ψ1 is different from zero and the maximum and the mini-
mum of ψ are continuous functions of R with n, δ, μ remaining fixed.
An appropriate translation with respect to the independent variable yields
again a solution of a Neumann boundary value problem of type (1) (with
an appropriate δ in place of δ) on an interval [-d/2, d/2] which is
symmetric with respect to the origin.

Therefore we can and will suppose that

(2) (1 +β)ranges c range(ά^~ } < M)

and
( d

for some R < R, ε > 0, and d and a arbitrarily close to d and a, re-
spectively. The proof of the correctness of the assertion under the original
assumption can be reduced to the case in (2) by a limit argument. We set

Gβ(u) Ξ (βάψZjjf o (βάψlSJ)-ι(u)

for every β > 1 and every u e mnge(βάψ~ $ j ) .

By the compactness of M, there is a point x0 e M such that the func-

tion \Vφ\2 - Gβ(φ) achieves its supremum. Suppose that sup(|V^|2 -

Gβ(φ)) > 0 for some β > 1. Since this supremum is negative for suffi-

ciently large β , we can choose β in such a way that

(3) sup(|V^|2 - Gβ(φ)) = (\Vφ\2 - Gβ(φ))(x0) = 0.

Recall that by (2)

Hence, we have Gβ{λ) > 0 for every λ e range(^). Thus, by (3), we

can conclude that \Vφ(xo)\ > 0. The following argument is similar to
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that used by Li and Yau in [7] although we consider different auxiliary
functions (cf. also §4 in [6]). It follows from (3) that

(4) iVdV^-G^))!,. =0

and

(5) ^Δ(|V^|2 - Gβ(φ))\XQ < 0.

At xQ, we rotate the frame so that Vφ\x is in the direction of the first

coordinate axis. By (4),

5 ^ ( | V f | 2 ~ Gβ{φ))k = φ* ('π " \G'β{φ)) K = °
and hence

Applying the Bochner-Lichnerowicz formula to (5), we obtain

0 > I Hess0>|2 + (Vφ, VAφ) + Ric(Vί>, Vφ)

Since

(6) IHess^l2 ><Pn+Σφ]i > φ\x + ̂ r j ( Δ ^ - 9nΫ

it follows that

Finally, using \Vφ(xo)\ = Gβ(φ(x0)) and φu(x0) = \G'β(φ{xϋ)), we
arrive at

0> -
(7)

Now our key observation is that we obtain an equality instead of an in-
equality if we replace R by R, M by the domain M~ ̂  j d , and φ by

the corresponding eigenfunction ψ with ^(Exp^) = βάψ~ $ j(t):

0 = -

(8)
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for every x e M~ ^ j d . Notice in particular that Ric(V^, V^) =

^ | Moreover, (6) is actually an equality since the restriction of the

Hessian matrix of ψ to the orthogonal complement of Vψ is a multi-

ple of the identity matrix for each tangent space of M~ $ d d ' Since

Gβ(φ)(x0) > 0, R < R, and range(^) c range(^), it follows that in-

equality (7) and equality (8) contradict each other. This completes the

proof of the theorem.
Remark. An alternative approach to equations similar to (8) will be

given in §5.

4. Relations between diameter and median

We aim to investigate the relations between d and the range of the

eigenfunction ψ for the first nontrivial eigenvalue μ for the Neumann

boundary value problem on M^ δ d d s t a t e d in §2 if n , R, and μ are

fixed.

For K = 0 and for K < 0, δ < -</-# we can derive Proposition

1 below immediately from Sturm's comparison theorem (cf. the corre-

sponding argument in the proof of Proposition 1). Therefore we can re-

strict ourselves without loss of generality to the cases K = +1 δ < 0 and

JC = —1 —1 <δ<0.

We set τsf(u) = f(u - s) for every s, u and every function / . In

place of the function ψn

R δ d we will investigate the translated function

χ = τ_sψχ δ d , where s = arctanί or s = arctanhJ. The function χ

solves the following Sturm-Liouville equation on its interval of definition:

S
χ" -κ(n-l)-+χ +μχ = 0 for/c = ± l

κ

(restricted to (-π/2, π/2) if K = 1). We set r = -d/2 - s. Given
n, R, r, and μ, we can define d as the difference between r and the
next zero f of χ . Hence, χ is uniquely determined by n, R, r, and
μ. We will prefer however to simply write χ instead of χn

R r whenever
this is unlikely to lead to misunderstandings. Let n, R, μ be fixed.

The interlacing property of the zeros of the solutions of a Sturm-
Liouville equation yields that δ = tan((r + r)/2) (or tanh((r + f)/2)) is an
increasing function of r. Our assumption δ < 0 implies that r + f < 0.

Proposition 1. Given n, R, and μ, the diameter d is a decreasing
function of δ for every δ with δ < 0.
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Proof. We set / = (-π/2, π/2) if K = +1 and / = R1 if K = - 1 . In
view of the above remarks we will study d as a function of r. Standard
calculations show that

Λ(w) = X (u)Cκ (u)

satisfies the equation f" •+- // / r = 0 with

n - 1 \ A n - I ) 2 n-\\ S2(u)

By definition, ^ ( r ) = 0 and ^ ; ( r ) < 0 . Consider r{, r2 e I Π (-00, 0]
with Γj < r2 < —f2 . Thus, g = τr _r fr satisfies the equation

We aim to show that g has at least one zero between rχ and rχ. Other-
wise, by Picone's formula (see [5, §10.31]; we write / for f r ) , we obtain

Once we have established that the integral of (τΓ _r H - H)f2 between
two consecutive zeros of / is positive, the proof of the proposition can
be completed as follows. Integration of (9) between rχ and the next zero
fχ of / would give

0 = Γ ((τΓ _rH- H)f2)(u) d

Since the right-hand side of the last equation is positive, we have arrived
at a contradiction.

For the proof of j / 1 ((τΓ _r H - H)f2)(u) du > 0, we can restrict our-

selves to the case that r2 - r{ is infinitesimally small. More precisely, we

will prove that f'ι(Hff2)(u)du > 0. In addition, we will suppose that

rχ < 0 < r{ since the assertion is otherwise a consequence of Sturm's

comparison theorem (it can easily be checked that Hf is positive on

/ Π (-00, 0)). Consider the reflection σf of / at the axis u = 0, i.e.,

σf(u) = f(-u). Since /(0) = σ/(0), it follows from the standard results

about Sturm-Liouville equations that

\f(u)\>\σf(u)\ for -rx<u<0,

\f(u)\<\σf(u)\ fovO <u<rv
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In view of H\u) = -H'(-U) > 0 for u < 0, we obtain

Γ H'f\u) du > Γ H'f\u) du= ί H\f2 - σf2)(u) du>0,

which completes the proof, q.e.d.
Now we aim to study the range of ψ\ δ . for a fixed eigenvalue μ > 0

in dependence on δ. The "asymmetry" of the range of an eigenfunction
ψ with respect to 0 can be described by its median value

a(ψ) = I (max ψ + min ^)/(max ψ - min ψ)\

(cf. [6, §4]).
Proposition 2. Given n, R, and μ, the median a is a decreasing

function of δ for every δ with δ < 0.
Proof It is clear that a depends continuously on δ. We will show that

the function δ ι-> a is invertible. Suppose that the median a coincides
for two different δ{, δ2. It follows that ψn

R δ . and ψ% δ . have the
same range. Now, the analysis of §3 shows that

\ — 1

By the uniqueness theorems for solutions of ordinary differential equations
of first order we obtain that the functions ψ£ δ , and ψn

R δ . coincide
up to a translation with respect to the independent variable. This leads to
a contradiction.

Corollary 2. Given n, R and μ, the diameter d is an increasing
function of the median a.

Remark. For the sake of completeness we mention that the behavior
of the eigenfunctions ψR δ d can be described in more detail as follows.

First, we consider the case R = 0. We obtain the maximal value of d
and a if δ is chosen in such a way that (Co — δS0)(t) vanishes at the left
endpoint of the interval [-d/2, d/2] (recall that δ < 0 by convention).
The Sonin-Pόlya Theorem yields in particular that \ψ(-d/2)\ > \ψ(d/2)\
(see [2, §X.13, Exercise 4]).

Now, we suppose that R = + 1 . By Lichnerowicz' Theorem (see [3, p.
82]), λι = n/(n - 1). By Obata's Theorem (see [3, p. 82]), λχ = n/(n - 1)
if and only if M is isometric to a sphere with constant sectional curvature
R/(n - 1). Therefore, we restrict ourselves to the case μ > n/(n - 1).

Again, we obtain the maximal value for d and a if δ is chosen in
such a way that (Cκ -δSκ){t) with K = l/(n - 1) vanishes for t = -d/2 .
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Moreover, we have \ψ(-d/2)\ > \ψ(d/2)\. (By assumption, ψ(-d/2) >
0. Let t0 be the unique zero of ψ in [-d/2, d/2]. Then ψ"{tQ) >
0. Considering the associated Riccati equation, it can be shown that
ψ(2t0 -t)> ψ{t) f o r e v e r y te(t0, d/2].)

Finally, we consider the case R = - 1 . For δ = -yjl/(n - 1) we obtain
the following translation invariant equation: ψ" - yjn-\ψ + μψ = 0.
The first nontrivial eigenvalue for the corresponding Neumann boundary
value problem on a finite interval is always bigger than (n -1 )/4 and tends
to (n - l)/4 if the length of the interval tends to infinity. By Sturm's
Comparison Theorem, the Neumann boundary value problem (1) has no
solution if 0 < μ < (n - l)/4 and δ < -y/l/(n- 1) (cf. [8]). On
the other hand, δ = 0 yields a solution for every μ > 0 (this can be
seen by comparison with the particular solution /(cosh w)"*11"1* du of the
equation ψ"(u)+(n—l)taήhuψ'(u) = 0). By consideration of appropriate
initial value problems (cf. the argument before Proposition 3 for R = +1),
we obtain solutions ψ\ δ d with arbitrarily large diameter d and median
value α tending to 1. For μ > (n - l)/4, we again obtain the maximal
value for d and α if (Cκ - δSκ)(t) with K = - l / ( n - 1) vanishes for
t = -d/2.

5. Eigenvalue, median, and diameter for variable dimension

First of all we notice that the right-hand side of (7) is decreasing with
respect to the dimension n. For technical reasons we will also consider
noninteger values of n although the corresponding differential equations
do not admit a geometrical interpretation. For n T oo we can conclude
from (7) that

0 > -G{φ){\G'\φ) + λχ - R) + \G\φ){\G\φ) + λχφ)

for every smooth function G which is defined on range φ such that (3)
holds. We intend to define G using appropriate solutions ψ oftheSturm-
Liouville equation

(10) ψ'\u)-{Ru-t)ψ\u) + λιψ(u) = Q foreverywGR

for an appropriate real number t. It follows that

(Ru-t) =
ψ" +λχψ

Ψ

on every interval such that ψ is strictly decreasing, and by differentiation

(11) R = ψ'~2(ψ'ψ'" ' 2 " 2 λ " )
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With G{ψ) = ψ'2 we obtain ψ'G\ψ) = 2ψ'ψ" and hence ψ" = \G\ψ).
Furthermore, ψ'ψ'" = ψ\\G\ψ))' = \G(ψ)G'\ψ). Thus, we have ar-
rived at the analogue of (8):

0 = -G(ψ){\G'\ψ) +λx-R) + \G\ψ){\G\ψ) + λχ ψ).

Remark. A similar calculation as above provides a direct way of ob-
taining (8) from a Sturm-Liouville equation. Suppose for instance that
R = n-\. Then we obtain from ψ" + (n- l)(cot ύ)ψ' + λψ = 0 that

(cotu) 2 = I -
ψ" + λψ\

n-\ ψ'

and
. , ( 1 ψ"+λψ\
{cotu) = I — j - 2 - I .

\ /
Summing the last two equalities, we obtain a differential equation which
does not explicitly contain the independent variable u. Thus we can show
that (8) also holds for noninteger values of n .

Equality (10) has a particular simple form if R = 0. As a consequence
we obtain the following result which improves an estimate given by Zhong
and Yang (see [11] or [6], §4]).

Corollary 3. Let M be a compact Riemannian manifold with nonneg-
ative Ricci curvature. Let φ be an eigenfunction on M for the smallest
positive eigenvalue λx. Then the following holds:

2 2 2

(diamM) λχ>π + {ln(max^/ - minfi)} .
Proof Let z be the complex number z = ln(max$?/ - mmφ)/d +

πi/d. The function ψ:u*-> Reexp(zw) is a solution of (10) for λχ = \z\2

and an appropriate t. The difference between the values of the indepen-
dent variable at two consecutive extrema of ψ is equal to d, and the ratio
of the values of ψ at those points is equal to exp(± ln(max φ/ - min φ)).
Hence the assertion follows by a similar argument as Theorem 1 and Corol-
lary 1.

Remark. Zhong and Yang proved that

/max φ
(diamM) λλ > π + - - - 1

We notice that (in contrast to our result) the expression on the right-hand
side of this inequality remains bounded if max φ/—min φ —• +00 (or +0).

Remark. Using the above methods and the upper bounds for eigen-
values obtained by Cheng (see [4]), it can be deduced that the median
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of an eigenfunction on an /ί-dimensional compact Riemannian mani-
fold with Ricci curvature bounded below by a constant R can be esti-
mated above by a constant a(n, R, ε) < 1 if λx is bounded below by
((n - l)(-i?)/4)(l + ε) for a positive ε . For the sake of simplicity we re-
strict ourselves to the case of a manifold with nonnegative Ricci curvature.
The assertion immediately follows from the above corollary and Cheng's
estimate (dmmM)2λι < 2n{n + 4).

However, it seems to be impossible to obtain sharp estimates for the
value of a(n, R, ε) by a simple combination of Cheng's results with our
results since Cheng considered functions which approximate the eigen-
functions in some symmetric situations where the value of the median is
0. In particular, we cannot prove in this manner that the maximum value
of the median is attained for a manifold of the form M^ δ d d , where

δ is chosen such that (Cκ(t) - δSκ(t)n~ι) vanishes at an endpoint of the
interval [-d/2, d/2] (cf. the remark at the end of the previous section).
This makes the following considerations necessary.

We aim to show that (1) has for some d and δ solutions with median
value arbitrarily close to 1 if we choose a sufficiently large n with all the
other quantities remaining fixed.

If R = 0, we can deduce the above statement from the proof of the
above corollary if we take into account that we can approximate an arbi-
trarily real number t uniformly on an interval [-d/2, d/2] of length d
by functions of the form u \-* n/(u - s) for appropriate values of s and
n large.

Now, we consider the case R = + 1 . By a limit argument, we can
restrict ourselves to the proof of the assertion for the differential equation
(10) with t = 0 in place of (1).

First, we notice that we can find a finite interval (depending only on λχ)
such that every solution of (10) has at most one local extremum in each of
the two connected components of the complement of the above interval.
This follows if we differentiate (10) and apply Sturm's Comparison The-
orem to the resulting equation for ψ' and an appropriate equation with
constant coefficients. (10) has the following odd solution:

We can deduce from Lichnerowicz' Theorem that λχ > R for every finite
n . The modulus of every solution of (10) tends to oo if u —> ±oo (cf.
[10, §16.5]). A simple calculation shows that the derivative of the above
odd solution ψ has a local maximum at 0 if λx > R = + 1 . Hence,
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the above solution has at least two local extrema. By consideration of
the solution of the initial value problem ψ(u) = 1, ψ'(u) = 0 for every
u, we obtain that there exist solutions of (10) such that the ratio of two
particular consecutive extremal values of the solution is arbitrarily large
if R = -hi and the sum of the corresponding values of the independent
variable is positive.

Finally, the assertion in the case R = - 1 follows from the remark at
the end of §4.

We can now state the following (rather technical) result which is needed
for the proof of Theorem 2 below.

Proposition 3. Suppose that n, R, λχ > 0, and an a with 0 < a < 1
are given such that

max ψ + min ψ
< a

max ψ — mm ψ

for every solution ψ = ψR δ d of the Neumann problem (1) with eigenvalue
μ = λx. Then there exist real numbers h with h > n and d such that the
smallest eigenvalue for the Neumann boundary problem for

S' R
(12) ω" + (n-l)Ί±ω +μω = 0 with K = ̂ A-r on[0, d]

Sκ n-\

is equal to λχ and such that for the corresponding eigenfunction ω = ωn

R j
the following holds:

max ω + min ω
= a.

max ω - mm ω

Moreover, d > d for every solution ψn

R δ d of (1) with μ = λχ.

Proof There is nothing to prove if R < 0 and μ <-{n- ί)R/4 (cf.
the remark at the end of §4).

In view of the above considerations the assertion is established once
we have shown that the diameter d and the median of the eigenfunction
ωn

R j are increasing with respect to h for R and μ fixed. The proof is
similar to the proofs of Propositions 1 and 2.

For R < 0 it follows from Sturm's Comparison Theorem that d is
a decreasing function of h. Therefore we restrict ourselves to the case
R = + 1 . The function

f(u) = ω (u) sπr

satisfies the equation

= 0 with H Ξ(μ-
l-ή-R(*^i + 1)
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As in the proof of Proposition 1, we can derive the assertion from the
Picone's formula. We only have to show that

This follows in a similar way as in the proof of Proposition 1 since

cas{uy/R/(Λ-l)l

dh ~ V 4 2) (fι - l)(fι - l)3/2 sin\uy/R/(h - I))'

Finally, suppose that ωn

R d and ωn

R j have the same range for n and h
with n < h. Since the right-hand side of (7) is decreasing with respect
to n, we can apply the argument of Theorem 1 and Corollary 1 with
Gβ = (βάωn

R J)1 o {βάωn

R j)~ι to conclude that d > d. Thus, we have
arrived at a contradiction.

6. Eigenvalue estimates by comparison with auxiliary problems

Our main result is the following theorem.
Theorem 2. Let M be an n-dimensional compact Riemannian mani-

fold with Ricci curvature greater than or equal to R, and φ be an eigen-
function on M for the smallest positive eigenvalue λχ. Then

diam(Λf) > v - u,

for every solution ψ of the Sturm-Liouville equation

Ψ +{n-\y^ _δ£
J ψ +λxψ = 0

on an interval [u,υ]fora real parameter δ with Cκ-δSκ ΦQ on (u,v)
(recall that K = R/{n - I ) ) , and ψ strictly decreasing on [u,υ] such that

max ψ + min ψ

max ψ — mm ψ

max φ + min φ

max φ — mm φ

Proof The result is an immediate consequence of the proof of The-
orem I (take into account that the right-hand side of (7) is a decreasing
function of ή), and of the proofs of Corollary I, Corollary 2, and Propo-
sition 3.

Remark. If we choose δ = 0 and consider an odd solution ψ of the
above equation with ψ'(0) < 0 on the maximal interval [-v , v] with ψ
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decreasing, then we obtain a lower bound for the first nontrivial eigenvalue
on M without special assumptions on the range of φ .

7. Examples

The following simple example shows that the maximum principle tech-
nique yields in general sharper estimates than techniques using isoperimet-
ric inequalities.

Example 1. Let M be a two-dimensional compact manifold with non-
negative Ricci curvature. It was shown in [1] that the isoperimetric func-
tion h\ [0, 1]->R with

h{β) = inf{vol(<9Ω)/ vol(Af)|Ω c M, vol(Ω)/ vol(M) = β}

is bounded below by 2Is0ff)/diam(Aί), where Is(β) = y/β{\ - β) de-

notes the isoperimetric function of the 2-sphere S with constant curva-

ture -hi. By consideration of a family of truncated cones Kβ , 0 < β < \ ,

in R3 with

Kβ = {\(x2, χ3)\ = exχ for xχ e [y/β/(l-β)9

for sufficiently small ε, it can easily be seen that the above estimate for
the isoperimetric function is sharp, since Ω Ξ Mn{xχ < 1} yields

vol(Ω) 1

vol(Ω)+vol(Ω\M) = β,

and vol(aΩ)diam(Λf)/vol(M) « 2>/)S(l - β) if ε is small. Suppose that

diam(M) = 2. It follows that λ{(M) > λχ{S2) = 2 (see [1]).
On the other hand, Theorem 2, Corollary 3, or the estimate given by

Zhong and Yang (see [6, §4]) gives the sharp lower bound λχ{M) > π 2/4
(> 2). The reason why the technique using isoperimetric inequalities does
not yield the optimal result seems to be that the function h(β) approaches
its minimum with respect to M for different manifolds if β varies.

Arguments of the following type can provide better bounds for the first
eigenvalue if the mass of the manifold is mainly concentrated "close" to
one end of a diameter.

Remark. Let M be an Az-dimensional compact manifold with diam-
eter d0 and Ricci curvature greater than or equal to R. Assume that we
are given a subset Mo of M with diam(Af\M0) < dχ for some dχ < d0

and a positive number λ0 .
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Suppose that for every x e Mo and every solution ψR δ d of the Neu-
mann problem (1) for d <d0, μ < λQ , and an arbitrary δ (we admit also
positive δ , the only restriction is that Cκ-δSκ / 0 on (-d/2, d/2)) the
following holds:

d(x, z) stands for the Riemannian distance of x and z .
Then it follows that either the first nontrivial eigenvalue λχ on M is

larger than λ0 or that an eigenfunction φ for λχ exists such that the
distance between the points where φ attains its maximum and minimum
value is less than dχ.

Proof. Suppose that λχ < λ0 and that an eigenf unction φ for λχ exists
with min φ = φ(xQ) for some x0 £ Mo . A similar argument as in the proof
of Theorem 2 shows that there exist d <d0, δ , and a solution ψn

R δ d of
the Neumann problem (1) with range(^ δ d) = range(^). By Theorem
1, we obtain

for every z with d(x, z) < d. Hence,

/ φ{z)dz< ψn

R δ d ίmm\--d{x, z); - - i J dz<0,

which gives a contradiction.
We notice that there always exists an eigenf unction for λχ with median

zero if the dimension of the corresponding eigenspace is larger than 1.
The following example shows that our results are not always sharp even

in the case of manifolds with constant curvature.

Example 2. Let L3(/: 1, 1 ) Ξ S 3 / ^ be a three-dimensional lens space,

where Aι is the cyclic subgroup of U(n) generated by (zχ, z2) ι->

{e2πi/lzχ, e2πi/lz2) for {zχ, z2) e C2 £ R 4 , / an integer with / > 2, and

S3 the unit sphere in R4 (cf. [9]). L3(2: 1, 1) is the projective space

P 3 . The diameter of L3(/: 1, 1) is equal to π/2 and the first nontrivial

eigenvalue is equal to 8 for every even /.

Now suppose that / is an even integer with / > 4. Then the eigenspace
for the eigenvalue 8 has dimension 3, and every eigenfunction can be
written in the form φa Λzχ, z2) = α d z j 2 - |z 2 | 2) + Re(βzχ~z2) for a
real parameter a and a complex parameter β. Hence, φa β(zχ, z2) =

-φa Aeιωt~z2, -eιωt~zχ) for every (zχ, z2) and every real t. In particular,
the median value of φa β is zero. Moreover, φa β attains its maximum
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and minimum value at points with distance equal to the diameter of the

lens space.

However, the estimate for the diameter of L3(/: 1, 1) given by The-

orem 2 cannot be sharp since the eigenfunction (zχ, z2) »-> (ReZj)2 - \

on the projective space has a median value larger than zero (recall that

the diameter and the first nontrivial eigenvalue coincide for the projective

space P 3 and the lens space L3(/: 1, 1)).
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